
The LSD tree: spatial access to multidimensional point and non a1oint objects *

Andreas Henrich Hans-Werner Six Peter Widmayer
FernUniversitat Hagen FernUniversitat Hagen Universitat Freiburg

5800 Hagen 5800 Hagen 7800 Freiburg
West Germany West Germany West Germany

Abstract

We propose the Local Split Decision tree (LSD tree, for
short), a data structure supporting efficient spatial access to
geometric objects. Its main advantages over other structures
are that it performs well for all reasonable data distributions,
cover quotients (which measure the overlapping of the data
objects), and bucket capacities, and that it maintains mul-
tidimensional points as well as arbitrary geometric objects.
These properties demonstrated by an extensive performance
evaluation make the LSD tree extremely suitable for the im-
plementation of spatial access paths in geometric databases.
The paging algorithm for the binary tree directory is inter-
esting in its own right because a practical solution for the
problem of how to page a (multidimensional) binary tree
without access path degeneration is presented.

1. Introduction
In non-standard applications such as cartography, CAD

and robotics, Database Management Systems have to orga-
nize large sets of multidimensional geometric objects on
secondary storage such that these objects can quickly be
retrieved according to their spatial locations. Typical spa-
tial queries are the retrieval of an object by its coordinates
(exact match) and range queries where all objects geomet-
rically intersecting the query region are selected for further
processing or presentation on a screen. Since the set of ob-
jects varies over time, insertions and deletions have to be
performed as well.

Data structures, which efficiently support spatial ac-
cess to geometric objects, usually divide the data space into
cells and store all objects located in a cell in an associ-
ated data bucket. As far as multidimensional points are
concerned, various efficient data structures have been pro-
posed (see e.g. [Free87], [HSW88a], [HSW88b], [KS86],
[KS88], [KW85], [NHS84]; [Otoo86], [Rob81]). In typical
applications, however, most objects are arbitrary geometric,
i.e. non-point, objects. In many situations, it has proven
to be useful to represent non-point objects by their (mini-
mal) bounding boxes, serving as simple geometric keys. We
therefore concentrate on multidimensional intervals, as far
as non-point objects are concerned.

Permiuion to copy without fee all or part of thia material is
granted provided that the copies are not made or diatributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice i,
given that copying ia by permiHion of the Very Large Data Baae
Endowment. To copy otherwiae, or to republi,h, require, a fee
and/or apecial permiuion from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

An obvious approach for storing intervals uses data
structures for points. Here, intervals need not be entirely
contained in a cell, but may instead intersect several cells.
Hence, in order to perform range queries efficiently, infor-
mation about an interval must be stored in each bucket,
whose corresponding cell intersects the interval. Using
this so-called clipping technique, the space requirements in-
crease substantially due to the redundant information.

The clipping approach is based on data structures which
partition the data space into pairwise disjoint cells. To
avoid clipping problems, in R-Trees ([Gut84], [FSR87]),
respectively multilayer grid files [SW88], the data space is
divided into overlapping cells, such that all, respectively
most, intervals are entirely contained in a cell, i.e. need
not be clipped. Unfortunately, the R-Tree suffers from a
poor exact match performance and often from inefficient
range queries because cells may overlap considerably in
a dynamic setting. In the multilayer grid file with each
layer a grid file is associated inducing a directory overhead
which deteriorates the efficiency of operations concerning
few objects.•

In the so-called transformation technique ([Hin85],
[SK88]), k-dimensional intervals are interpreted as points in
a 2k-dimensional space, in order to use point data structures
in a standard way. For instance, a I-dimensional interval
[a, b] may be interpreted as point (a, b). Since a < b holds,
the image space is a triangle. The main drawbacks of this
approach are that the point distribution in the triangular im-
age space is extremely skew and that a (bounded) range
query on intervals becomes a partly unbounded range query
on image points.

From a wide spectrum of performance tests we have
got the experience that the efficiency of spatial data struc-
tures depends at least on the object distribution, the cover
quotient defined as the sum of all object areas divided by
the area of the data space, and the bucket capacity, i.e. the
maximal number of objects in a bucket. For an increas-
ing cover quotient as well as for small bucket capacities,
clipping and overlapping cell techniques deteriorate substan-
tially. On the other hand, all non-tree structures (see e.g.
[HSW88a], [KS86], [KS88], [NHS84]) degenerate for skew
object distributions.

In this paper, we propose a data structure support-
ing spatial access to k-dimensional points as well as k-
dimensional intervals; The access to intervals is based on
the transformation technique. A sophisticated directory tree
together with a refin~ splitting technique eliminates the pre-

• This wodc has been supported by DFG grants Si 374/1 and Wi 810!2.

Amsterdam, 1989

- 45 -

DOI: 10.20378/irb-58916

https://doi.org/10.20378/irb-58916

dimensim2

100

80 - 3 7
4 9

60 -

40 6
20

5 8
1- 2

0 I I I I
0 20 40 60 80 100

dimClllion 1

Figure 2.1: Possible partition of the data space for an LSD tree

vious drawbacks of this technique. The perfonnance eval-
uation convincingly demonstrates that the new structure is
well qualified for maintaining Jarge sets of geometric ob-
jects. However, the main advantage of the new structure is
not only the efficient spatial access but also its robustness.
By robustness we mean that the new structure behaves well
for all reasonable data distributions, cover quotients and
bucket capacities.

Section 2 explains the new data structure for point
objects while in section 3 the generalization to non-point
objects is provided. In section 4 a perfonnance evaluation
of the new structure and a comparison with the multilayer
grid file is presented. Section S concludes the paper.

2. The LSD tree for points

2.1 Basic ideas and properties
Like most structures, the new structure partitions the

data space into pairwise disjoint cells with associated buck-
ets of fixed size. In contrast to the grid file [NHS84], how-
ever, it is not grid oriented, i.e. all cell boundaries may
occur at arbitrary positions. The free choice of split posi-
tions is the basis of the graceful adaptation to arbitrary skew
object distributions. Since a new split position can be cho-
sen locally optimal, i.e. optimal with respect only to the cell
to be split and independent from other existing cell bound-
aries, we call the new structure Local Split Decision tree
(LSD tree, for short). Figure 2.1 shows a possible partition
of a 2-dimensional data space for an LSD tree.

The LSD directory maintaining the flexible data space
partition is a binary tree similar to a k-d tree [Ben75]. Each
node of this tree represents one split decision by storing the
split dimension and the split position. Figure 2.2 illustrates
the LSD tree associated with the data space partition of
Figure 2.1.

It should be obvious that the directory provides the
freedom for using the split strategy best suitable for the
actual application. This is an important advantage over other
structures (see e.g. [Free87], [HSW88a), [KS86), [KS88),
[NHS84]) where split decisions are more or less influenced
by previous split decisions. Furthennore, the size of the

directory

Figure 2.2: LSD tree associated with
the data space partition of Figure 2.1

directory is directly related to the number of buckets, i.e.
for n buckets the directory contains n-1 nodes. This is in
contrast to the grid file where several entries in the directory
may point to the same bucket

Besides the advantages of the LSD tree directory there
are some drawbacks which are typical for multidimensional
binary tree structures:

1. A multidimensional binary tree may become unbal-
anced, i.e. may contain long paths with almost no
branches, and

2. no suitable method for paging a multidimensional bi-
nary tree is known. (The interesting paging technique
presented in [IZL88) is suitable only for the one-
dimensional case.)

We overcome these problems by introducing a paging
algorithm which preserves the following external balancing
property:

The number ofexternal directory pages which are tra-
versed on any two paths from the directory root to a
bucket di/fers by at most 1.

When geometric objects are inserted into an initially
empty LSD tree the directory grows up to a size when it
cannot be kept in the dedicated part of the main memory
any longer. Then the paging algorithm determines a subtree
to be paged on secondary storage such that the external
balancing property is preserved. If the subtree consists of
n. nodes, the main memory is then able to receive additional
n. nodes until a further invocation of the paging algorithm
must take place.

Figure 2.3 shows the overall structure of the LSD tree.

2.2 A closer look
In this section, we discuss the LSD tree in more detail

by explaining the insertion of a new geometric object into
the structure.

- 46 -

ol,j.. l
ol,j..2

l
internal

directory
Ti

directory
T

external
directory

pages
(0 « more level)

buckets

l
Figure 2.3: Overall structure of the LSD tree

splitofb

Figure 2.4: Effect of a bucket split

The search for the bucket b which will receive the new
object is guided by the· directory as in k-d trees. If b does
not overflow, the insertion is finished, otherwise the bucket
split algorithm creates two new buckets bi and bu from b
according to a split strategy we describe afterwards. In case
of a bµcket split the pointer in the directory referencing b
is changed to a pointer referencing a new directory node q
representing the split decision concerning b, i.e. the new
node q is inserted into the directory by calling the directory
insertion algorithm explained later. The new node q points
to the new buckets bi and bu. Figure 2.4 depicts the effect
of a bucket split

We distinguish between two inherently distinct types
of split strategies:
1. Data dependent split strategies

These strategies depend only on the objects stored in
the bucket to be split A typical example for such a
strategy is to choose for the split position the aver-
age of all object coordinates with respect ·to a certain
dimension.

2. Distribution dependent split strategies
These strategies choose the split dimension and the split
position independently of the actual objects stored in
the bucket to be split. A typical example for such

a strategy is to split a cell into two cells of equal
areas. Note that this "halving split strategy" relies on
the assumption of a uniform distribution of the objects.

Since the LSD directory is a binary tree, any type of
split strategy can be implemented in an easy and efficient
manner. Note that data dependent split strategies cannot
be realized by data structures based on hashing (see e.g.
[HSW88a], [KS86], [KS88], [NHS84]).

We now tum our attention to the directory of the LSD
tree. As already mentioned in the previous section, if the
number of nodes in the directory T exceeds the maximal
possible number of internal nodes, a subtree of T is written
onto secondary storage, i.e. stored in a directory page. In
such a directory page a subtree is organized as a sequential
heap of fixed height hp. Hence, whenever the height of the
associated subtree exceeds hp after an additional insertion,
a directory page split has to be performed. The directory
page split algorithm is simple: the left and right subtree of
the root are stored in two distinct directory pages and the
root is inserted into the directory T by calling the directory
insertion algorithm.

We are now in a position to describe how a new node q,
resulting from a bucket or a directory page split, is inserted
into the directory T by the directory insertion algorithm.
The heart of this algorithm is the paging algorithm we
explain afterwards. In the following, we assume that the
main memory capacity reserved for the directory T is ni.
The directory insertion algorithm assures that the internal
prefix tree Ti of the directory T contains at most Di-1 nodes.
Two cases may occur:

case 1: The father p of the new node q is an internal node.

case 1.1: The number of internal nodes is less than
ni-1. Then insert q into Ti and finish.

case 1.2: The number of internal nodes is equal to
ni-1. Then insert q into Th call the paging
algorithm for T, and finish. Note that after
the execution of the paging algorithm the
number of internal nodes is at most n;-1.

case 2: The father p of the new node q is a node in a subtree
Tp of T stored in an external directory page.

case 2.1: After the insertion of q the height of Tp is
at most hp; then finish.

case 2.2: After the insertion of q the height of Tp is
greater than hp. Then call the directory page
split algorithm for Tp and finish.

The paging algorithm is called when after an insertion
of an additional node the size of the internal prefix tree Ti
reaches the maximal possible number n; of internal nodes.
The algorithm searches for a subtree T1 in T; such that
paging T1 preserves the external balancing property defined
in section 2.1. This property is preserved if TI is a paging
candidate, i.e. T1 fulfills the following properties: -

- 47 -

Figure 2.5: Directory before and after paging subtree T,

1. Any path from the root of T, down to a bucket contains
the minimal number of external directory pages (of all
paths in the directory 1).

2. The height of T, is at most hp.

Figure 2.5 shows a directory before and after paging
the subtree T,.

If more than one paging candidate occurs in Ti, the
paging algorithm chooses a candidate with the maximal
possible number of nodes.

In order to direct the search for a paging candidate in
Ti the following numbers are attached to each node v in Ti:
nei>nun(v), resp. ne1>max(v},: the minimal, resp. maximal,

number of external directory pages occurring on any
path in T containing v.

s(v): the number of nodes of the biggest paging candidate
which can be reached from v.

h(v): The height of the subtree with root v in Ti.
The paging algorithm moves down the internal direc-

tory Ti branching at each node w on the search path accord-
ing to the following criteria:

1. If OOPnun(left son of w) 'I nei>nun(right son of w),
continue with the son with lower neJ>mm.

2. If nePnun(left son of w) = nei>nun(right son of w),
continue with the son with greater s.

The root r of a paging candidate T1 is determined if

1. h(r) hp and
2. neJ>min(r) = nel)mu.{r).

The second condition assures that after paging T, the exter-
nal balancing property is preserved for T.

It should be clear that after the insertion of a new node q
into the internal directory Ti, resp. the paging of a subtree T,
of Ti, the numbers nei>nun, nel)mu., sand h must be updated
for each node w on the path P from the root of Ti to the
father of q, resp. to the father of the root of T, (now stored
in an external directory page). These numbers can easily
be recomputed from the existing numbers of the nodes (and
their direct sons) on the path P.

2.3 The operations
2.3.1 Exact match

In an exact match operation the directory is traversed
until the corresponding bucket is determined. The bucket

is scanned until the object searched for is located or the
search ends unsuccessfully.

2.3.2 Insertion
The insertion algorithm has been explained in detail in

the previous section.

2.3.3 Deletion
The deletion of a node in the directory T basically

works inversely to the insertion of a node. Due to space
limitations we cannot discuss this topic in more detail.

2.3.4 Range query
In a range query all points located in the query region

are reported. According to Fredman [Fred80], a query
region may be a rectangle (orthogonal range query), a circle
(circular range query) or a polygon (polygonal range query).
In the following, we restrict the discussion to orthogonal
range queries, because the algorithm is the same for all query
types, except for the procedures evaluating whether a data
region is enclosed by, intersected by, or disjoint from the
query region. But these are details left to the implementation
level.

In order to report all points located in the query region
Q we have to traverse the LSD tree to determine all buckets
whose associated cells intersect Q. The query algorithm
moves down the LSD tree branching at each directory node
w according to the following criteria: (Here D(w) denotes
the data region which is the union of all data cells whose
corresponding buckets can be reached from w.)

1. If Q n D (right son of w) = 0,
continue with the left son of w.

2. If Q n D (left son of w) = 0 ,
continue with the right son of w.

3. Otherwise continue with both sons of w.

Note that Q n D(w) 'I 0 is the invariant condition of
the loop of the query algorithm. Hence, in 1., resp. 2.,
Q n D(left son of w) 'I 0, resp. Q n D(right son of w)
-=/ 0, holds.

3. The LSD tree for non-point objects
We explain the non-point situation for k-dimensional

intervals which serve as bounding boxes for arbitrary geo-
metric objects in many applications. We restrict the dis-
cussion to the 2-dimensional situation, i.e. to rectangles in
the plane, because a generalization to higher dimensions is
straightforward.

To store a set of rectangles in the LSD tree we use
the transformation technique ([Hin85], [SK88]), i.e. 2-
dimensional rectangles are stored as 4-dimensional points.
We choose the simple comer representation [SK88] which
considers for each of the two dimensions the lower and
upper bounds of the rectangles to be distinct dimensions.

The idea is simple but several severe problems arise
from this approach. First, there is a strong correlation be-
tween upper and lower bounds, because for each dimension
the upper bound of a rectangle is always greater than (or

- 48 -

equal to) the lower bound. Because of the correlation_ all
points are located in a triangu~ shaped subsp~ of _the nn-
age space. Furthermore, since m almost all applications_ all
rectangles are small compared to the data space, the pomts
are located in a small strip above the diagonal.

Data structmes which rely on a rectangular shaped data
space and partition the data space into rectangular cells
tend to degenerate for such applications, especially if they
are based on hashing techniques. However, the LSD tree
overcomes the drawbacks of the transformation technique
if a refined bucket split strategy is used. Since the split
strategy is crucial to the efficiency of the LSD tree for non-
point objects, we devote the next section to this topic.

3.1 The split strategies
In this section we discuss split strategies suitable for

the skew data distributions induced by the transformation
technique. First of all, a suitable split strategy must take into
account the correlation between lower and upper bounds of
rectangles in the original dimension 1, resp. 2, stored in
dimensions 1 and 2, resp. 3 and 4.

We will explain two different split strategies, a data
dependent and a distribution dependent one.. ~e "'!ta
dependent split strategy is simple: For the spilt dimension
under concern the average over all coordinates of objects
stored in the bucket to be split including the object to be
inserted is chosen as the split position.

The distribution dependent split strategy is a combi-
nation of two basic (distribution dependent) split strategies
each of them designed for an extreme situation. The first
split strategy relies on the (fictitious) assumption that all
rectangles are degenerated to points, i.e. the upper and
lower bounds coincide for each dimension. Here, all im-
age points are located on the diagonal w.r.t the dimensions
1 and 2, resp. 3 and 4. A suitable split strategy for this case
is to split the data cell into two cells containing equally
long parts of the diagonal. The split position achieved by
this split strategy is denoted bp SP1 in Figure 3.1.

The second basic split strategy relies on the assump-
tion that all image points are uniformly distributed over the
triangular subspace of the image space built from dimen-
sions 1 and 2, resp. 3 and 4. Here, a suitable split strate~
halves the data cell into two cells of equal areas. The spht
position achieved by this split strategy is denoted bp SP2
in Figure 3.1. . .

The split position SP calculated by the combmed spht
strategy is the weighted sum of SP1 and SP2:

SP = aSP1 +(l -a)SP2, where

data cell area above diagonal
a = io 2

(Ud - Ld)
(Here 4 denotes the lower and Ud the upper bound of the
data space w.r.t the split dimension d)

The effect of the choice of o is that for large data
cells SP approaches SP1 while for small cells SP approaches

upper bounds

lower bounds

Figure 3.1: Split positions achieved by two basic split strategies

SP2• This effect is desirable for the usual situation where
rectangles tend to be small compared to th~ data s~ce and
hence the image points tend to be located m a strip above
the diagonal. We performed simulations with other roots
but the 10th root behaved well in all cases.

3.2 The operations
In this section, we discuss the LSD tree operations for

non-point objects. The operations exact match, inser_tion
and deletion are identical to the corresponding operations
for 4-dimensional points. In the case of a range query
the situation is different, because the original 2-dimensional
query region and the 4-dimensional image query region
differ substantially because of the different representations
of the objects.

In a range query, the query region can either be an
orthogonal rectangle, a circle or a polygon. Independent of
the three kinds of query regions we distinguish between two
query types for a set of rectangles (see [SK88]):
1. Rectangle intersection:

Given a query region Q find all R E s.L Q nR ¢ 0.
2. Rectangle enclosure:

Given a query .region Q find all R E s.L R s; Q.

In contrast to the point situation, the algorithm for
circular and polygonal range queries is different from the
algorithm for orthogonal range queries. However, due to
space limitations of the paper we discuss only orthogonal
range queries.

We begin explaining the rectangle intersection problem
for orthogonal qUJ!ry regions. In this case, the original ~-
dimensional query region for rectangles ~1 1 ui] x ~2, u2] is
transformed into a 4-dimensional query region for points.

For each original dimension d E (1, 2} we define

I()([~, Ud]) [Ld, lld] X ~d, Ud] ,

Then for the original query region ~1, u1) x ~2, u2) the im-
age region is given by i,,W1, ui]) x<pW2, u2]). Figure 3.2
illustrates the transformation of a query interval lld, lldl•

The area of the· image region can be reduced by using
the transformation <p' instead of <p. Let Ee! denote the

- 49 -

upper bowtds

Figure 3.2: Transformation of query interval [l.i, ud]

upper bounds

...:.. - . ,,/'/\";;··

Ud·· ····· ······::·;;J/'
ld··· ····M·iiiiii'-_.

::/::

lower bounds

Figure 3.3: Improved transformation of query interval [l.i, Ile!]

greatest extension of an inserted rectangle for dimension
d, then

Figure 3.3 illustrates the improved transformation of a query
interval [I.!, Uc!].

For the image region the range query algorithm for
points can directly be used.

We continue the discussion with the rectangle enclosure
problem/or orthogonal query regions. Since in this case for
each dimension d both, the lower and the upper bound of
a rectangle, must be enclosed in the query interval [I.!, Uc!],
we use the simple transformation

The image query region for the rectangle enclosure
problem is smaller than for the rectangle intersection prob-
lem. Hence, an enclosure query can be performed more
efficiently than an intersection query. Note that this holds
only for transformation techniques and not for clipping or
overlapping cell techniques.

Figure 4.1: "Uniformly distributed" rectangles

4. Performance evaluation
To assess the merits of the LSD tree we have evaluated

the performance for rectangles in the plane. We do not
·discuss the efficiency of the LSD tree for points, because
the performance for rectangles is an upper bound of the
performance for points. We have implemented an LSD tree
on a SUN workstation in Modula-2.

The internal directory is stored in an array storing 1000
nodes. An external directory page of size 512 bytes contains
subtrees up to a height of 6 organized as sequential heaps.
We choose bucket capacities of 5 and 50 rectangles.

The simulations are based on a sophisticated random
rectangle generator creating sets of 10,000 and 100,000
rectangles according to two different distributions. These
distributions are illustrated for 1,000 rectangles in Figures
4.1 and 4.2. Since the cover quotient remains constant at
2.5, in the case of 10,000, resp. 100,000, rectangles the
average area of a rectangle is 10, resp. 100, times smaller
than for 1,000 rectangles.

Bucket splits are performed according to the split strate-
gies described in section 3.1. In the case of the data depen-
dent split strategy we used a refined insertion procedure: If
a new rectangle causes the split of a bucket b1 which has
a brother bucket b:z, i.e. both buckets stem from the same
bucket split with split line S, and the capacity of b:z is not
exhausted, the object which is closest to S in b1 is moved to
b:z and S is updated in the directory. Then the new rectangle
can be inserted without a bucket split Otherwise, b1 is split

First, we focus on the directory evaluation. We have
randomly inserted 10,000, resp. 100,000, uniformly dis-
tributed rectangles and 10,000, resp. 100,000, skew dis-
tributed rectangles into an initially empty LSD tree. To sim-
ulate a ''worst case" situation, 100,000 uniformly distributed
rectangles have been inserted in "sorted" order. The "sort-
ing" has been carried out by random insertions into an LSD

- 50 -

test data size of the directory storage utili:zation

n()(lesrectangle bucket height number number of average buckets bucket overall
of rect-
number split internal

~-,1al utili:zationdistribu- strategy capac- nodes of the of directory utilia- storage
angles tion ity and internal external pages of tion utili:za-

cllLCrnal) direc- directory directory tion (100
tory levels pages byte per

objekt)

2,865100,000 unifonn data 2,864 13 41 73.5 % 69.8% 68.2%50 976 1

"10,000 " 281 281 0 0 282 70.9 % 68.l %" 9 -
skew 2,837 2,838100,000 74.8 % 70.5% 68.8 %" 962 13 1 40"

10,000 " " 289 0 0 290 69.0% 66.3 %" 289 9 -
100,000 3,302unifonn distrib. 3,STI 28.6 % 60.6 % 59.0%" 986 15 1 150

100,000 27.0% 3,266 61.2 %skew 3,526 16 59.6 %" 985 1 156"
25,883100,000 skew 25,882 1,172 34.7 % 77.3 % 71.8 %data 5 980 14 2

39.2% 2,593 77.2 % 71.7 %10,000 " 2,592 17 1 67" " 979

30,678 65.2% 56.0%100,000 34,688 17 4,031 14.6 %distrib. 2997" "
3,058 65.4%10,000 " 3,419 21 221 18.7 % 58.4 %" " 1994

23,086100,000 23,085 4,836 8.7% 86.6% 69.6%sorted data 204 25 997

100,000 33,787 16.2% 29,967 66.7 % 58.l %" distrib. 16 2 3,501" 985

Table 4.1: Size of the directory and storage utilization (directory page sii.e =512 bytes; max. number of internal nodes = 1000)

Figure 4.2: "Skew distributed" rectangles

tree with bucket capacity 5 followed by a left to right scan
through the LSD leaves. The results are shown in Table 4.1.

It comes out very clearly that the size of the directory
does not depend on the data distribution but on the split
strategy (and of course on the size of the data set and the
bucket capacity). For unsorted situations, the data depen-
dent split strategy performs significantly better than the dis-
tribution dependent variant, while, as expected, in the sorted

case the distribution dependent split strategy is the winner.
For the sorted case and the data dependent split strategy the
unbalance of the directory is reflected mainly by the height
of the internal directory. Because of the external balancing
property the number of external directory levels is 2 as for
the distribution dependent split strategy. The utilization of
the directory pages is mainly influenced by the split strategy
and the bucket capacity (and, for the data dependent split
strategy, of course by the order of insertion).

For the same test set we have also measured the bucket
utilization which is defined as

number of stored objects
number of buckets x bucket capacity

and the overall storage utilization defined as

number of stored objects x 100 bytes
bytes needed for the LSD tree

which includes the storage space needed for the directory
and some administrative informations. Empty buckets are
not allocated but represented by nil-pointers in the directory.
The results are shown in Tobie 4.1.

For the data dependent split strategy the bucket utiliza-
tion is independent of the object distribution and slightly
above the theoretical value of 69.3% (In 2). Due to the
refinement of the insertion procedure which prefers small
bucket capacities the utilization is even higher for bucket
capacity 5. The bucket utilization of 86.6% for the sorted
situation is a consequence of the same effect For the dis-
tribution dependent split strategy the bucket utilization is

- 51 -

number of rectangle split bucket range query type 1 range query type 2
rectangles distribution strategy capacity (0.5% of the data space) (5% of the data space)

objects bucket directory page objects bucket directory page
found accesses accesses found accesses accesses

100,000 unifonn data 50 579.7 35.6 1.9 5272.8 199.3 6.3

10,000 " " " 76.4 9.7 - 585.1 30.2 -
100,000 skew " " 818.9 49.9 1.8 6625.9 244.6 6.3

10,000 " " " 110.7 13.5 - 744.4 38.2 -
100,000 unifonn distrib. " 579.7 39.5 3.8 5272.8 229.4 14.2

100,000 skew " " 818.9 52.0 4.2 6625.9 276.1 17.7

100,000 skew data 5 818.9 332.3 26.0 6625.9 1995.3 100.9

10,000 " " " 110.7 70.3 4.1 744.4 277.3 11.0

100,000 " distrib. " 818.9 347.8 66.9 6625.9 2282.3 350.0

10,000 " " " 110.7 73.5 8.7 744.4 304.9 27.5

100,000 soned data 5 579.7 537.6 139.6 5272.8 2059.5 633.9

100,000 " distrib. " 579.7 251.8 44.5 5272.8 1790.1 249.9

Table 4.2: Range query performance (directory page size= 512 bytes; max. number of internal nodes= 1000)

below 69% but still above 60% and hence not bad at all. A
comparison of the overall storage utili7.ation and the bucket
utilization convincingly demonstrates that the storage space
needed to accommodate the directory is rather small com-
pared to the data storage space.

We now turn our attention to the performance of the
LSD tree operations. Clearly, in an exact match at most i
directory pages and one bucket must be read if the directory
contains i external levels. The performance of the insertion
procedure is easy to estimate, too. For bucket capacity 5,
resp. 50, we have between 4 and 5, resp. less than 3, ex-
ternal accesses (directory page and bucket J/0) per inserted
object, if 100,000 objects are inserted into an initially empty
LSD tree irrespective of the split strategy used.

Hence, we focus on range queries. We concentrate on
the intersection query because its performance is an upper
bound of the enclosure query performance. (Experiments
show that the enclosure queries can be carried out 10% faster
than intersection queries on the average.) Table 4.2 shows
the average number of external accesses for two types of
range queries. For square regions of sizes 0.5% and 5%
of the size of the data space, we have performed 20 range
queries each, at random positions.

As with all other data structures larger query regions
lead to fewer disk accesses per found object, because the
number of buckets completely contained in the query region
grows faster than the number of buckets intersected by the
region boundary.

Another important characteristic number is the hit ratio,
defined as

number of objects found
bucket capacity x disk accesses ·

The hit ratio is higher for smaller bucket capacities, be-
cause of the higher selectivity. For the data dependent split
strategy, bucket capacity 5, skew distribution, and query
type 2, the hit ratio is 66.4% if only bucket accesses are
counted. This is nearly optimal with respect to a normal
bucket utilization of 69.3%. For smaller query regions and
larger bucket capacities the hit ratio deteriorates: Changing
the bucket capacity to 50 yields 54.2%.

The performance results in the sorted situation can be
explained by the fact that the data cells tend to be long and
small for the data dependent split strategy in this case.

For the remainder of this section we compare the per-
formance ofthe LSD tree and the multilayer grid file [SW88]
using 5 layers (5L-GF for short). According to the multi-
layer philosophy layer 5 is implemented as a clipping grid
file. We have inserted 50,000 uniform distributed rectan-
gles in random order into both initially empty structures.
The cover quotient is 2.5 and the bucket capacity varies
from 5 to 30 in steps of 5. It turns out that the 5L-GF is not
able to work with bucket capacity 5. After the insertion of
20,974 rectangles a bucket of the clipping layer could not
be split because each rectangle stored in this bucket covered
the whole corresponding data cell. (For the skew data dis-
tribution the 5L-GF runs into a similar error situation even
for bucket capacity 10.)

Figure 4.3 shows the bucket utilization for the LSD tree
with the data dependent split strategy (LSDc1a1a), the LSD
tree with the distribution dependent split strategy (LSDdis),
and the 5L-GF.

The range query performance is illustrated in Figures
4.4 and 4.5. We have used the same query types as before.
For the first, resp. second type, 308, resp. 2712, objects are
selected on the average.

- 52 -

80%

70%

60%

50%

40%

35%

30%

25%

20%

bucket utilization

~Ddata

LSD~------......................... .

5 10 15 20 25 30 bucket capacity

Figure 4.3: Bucket utilization

hit ratio

--~-----·······••····-··
Ddata

........................

-~~~·~---···········
.............. .. : ·-·--...

SL-

5 10 15 20 25 30 bucket capacity

Figure 4.4: Range query performance (0.5% of the data space)

60%

55%

50%

45%

40%

hit ratio

---~---··--···--·-·····

~D~·····~···

···;h~-·-

5 10 15 20 25 30 bucket capacity

Figure 4.5: Range query performance (5% of the data space)

It turns out that the LSD tree with the data dependent
split strategy clearly outperforms the 5L-OF while the LSD
tree with the distribution dependent split strategy is at least
as efficient as the SL-OF. We have not compared the exact
match and insertion performance because it is obvious that
the S layers of the SL-OF do not allow a competitive
performance.

It should be noted that besides its better overall perfor-
mance the LSD tree is much easier to implement than the
SL-OF and does not need an additional (completely differ-
ent) "overflow" data structure for storing objects which do
not fit into the main structure.

5. Conclusion
We have proposed the LSD tree, a data structure sup-

porting efficient spatial access to geometric objects. Its main
advantages over other structures are that it performs well for
all reasonable data distributions, cover quotients, and bucket
capacities, and that it maintains multidimensional points as
well as arbitrary geometric objects. These properties make
the LSD tree extremely suitable for the implementation of
spatial access paths in geometric databases.

In addition to the performance evaluation an analysis
of the expected storage utilization and the expected external

height proves the efficiency of the LSD tree [HSW89]. At
the moment, we are implementing more general (spatial)
operations, like non-orthogonal range queries, point queries
[SK88] and queries where geometric as well as standard
attributes are qualified. Furthermore, we are embedding the
LSD tree as spatial access path into the geometric database
system Oral [Oiit89]. Hence, an empirical study about the
benefits of the LSD tree in such an environment can be
carried out in the near future.

References
[Ben75] Bentley, J.L: 'Multidimensional Binary Search Trees Used in

Database Applications', Communications of the ACM, Vol. 18, 9,
509-517, 1975

[FSR87] Faloutsos, C., Sellis, T., Roussopoulos, N.: • Analysis of Object
Oriented Spatial Access Methods'. Proc. ACM SIGMOD lnL Conf.
on Management of Data, 426-439, 1987

[Fred80] Fredman, M.L: 'The Inherent Complexity of Dynamic Data
Structures Which Accommodate Range Queries', IEEE, CH1498-5/80,
1980

[Free87] Freeston, M.: 'The BANG file: a new kind of grid file', Proc.
ACM SIGMOD Int. Conf. on Management of Data, 260-269, 1987

[Gut84] Guttman, A.: 'R-Trees: A Dynamic Index Structure for Spatial
Searching', Proc. ACM SIGMOD lnL Conf. on Management of Data,
47-57, 1984

[Giit89] Giiting, R.H.: 'Oral An Extensible Relational Database System
for Geometric Applications', Proc. 15111 Int. Conf. on VLDB (1989),
to appear

[Hin85] Hinrichs, K.: 'The Grid File System: Implementation and Case
Studies of Applications', Doctoral Thesis No. 7734, ETH Ziirich, 1985

[HSW88a] Hutflesz, A., Six, H.-W., Widmayer, P.: 'Globally Order
Preserving Multidimensional Linear Hashing', Proc. IEEE 4th lnL
Conf. on Data Engineering, 572-579, 1988

[HSW88b] Hutflesz, A., Six, H.-W., Widmayer, P.: 'Twin Grid Files:
Space Optimizing Access Schemes', Proc. ACM SIGMOD lnL Conf.
on Management of Data, 183-190, 1988

[HSW89] Henrich, A., Six, H.-W., Widmayer, P.: 'Paging binary trees with
external balancing•, Proc. Int. Workshop on Graphtheoretic Concepts
in Computer Science (WG '89), Springer Lecture Notes in Comp.
Science, to appear

[KS86] Kriegel, H.-P., Seeger, B.: 'Multidimensional Order Preserving
Linear Hashing with Partial Expansions•, Proc. Int. Conf. on Database
Theory, 203-220, 1986

[KS88] Kriegel, H.-P., Seeger, B.: 'PLOP-Hashing: A Grid File without
Directory', Proc. IEEE 4t1i lnL Conf. on Data Engineering, 369-376,
1988

[KW85] Krishnamurthy, R., Whang, K.-Y.: 'Multilevel Grid Files', IBM
Research Report, Yorktown Heights, 1985

[I.ZL88) Litwin, W., Zegour, D., Levy, G.: 'Multilevel Trie Hashing',
Proc. lnL Conference Extending Database Technology (EDBT '88),
Springer Lecture Notes in Comp. Science, 309-335, 1988

[NHS84] Nievergelt, J., Hinterberger, H., Sevcik, K.C.: 'The Grid File:
An Adaptable Symmetric Multikey File Structure', ACM Transactions
on Database Systems, Vol. 9, 1, 38-71, 1984

[Otoo86) Otoo, E.J.: 'Balanced Multidimensional Extendible Hash Tree',
Proc. S1" ACM SIGACT / SIGMOD Symposium on Principles of
Database Systems, 100-113, 1986

[Rob81] Robinson, J.T.: 'The K-D-B-Tree: A Search Stru~ture for Large
Multidimensional Dynamic Indexes', Proc. ACM SIGMOD lnL Conf.
on Management of Data, 10-18, 1981

[SK88] Seeger, B., Kriegel, H.-P.: 'Techniques for Design and Implemen-
tation of Efficient Spatial Access Methods', Proc. 14th lnL Conf. on
VLDB, 360-371, 1988

[SW88) Six, H.-W., WidmT,r, P.: 'Spatial Searching in Geometric
Databases', Proc. IEEE 4 · lnL Conf. on Data Engineering, 496--503,
1988

- 53 -

