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A B S T R A C T   

Advancements in artificial intelligence (AI) technologies are rapidly changing the competitive 
landscape. In the search for an appropriate strategic response, firms are currently engaging in a 
large variety of AI projects. However, recent studies suggest that many companies are falling 
short in creating tangible business value through AI. As the current scientific body of knowledge 
lacks empirically-grounded research studies for explaining this phenomenon, we conducted an 
exploratory interview study focusing on 56 applications of machine learning (ML) in 29 different 
companies. Through an inductive qualitative analysis, we uncover three broad types and five 
subtypes of ML value creation mechanisms, identify necessary but not sufficient conditions for 
successfully leveraging them, and observe that organizations, in their efforts to create value, 
dynamically shift from one ML value creation mechanism to another by reconfiguring their ML 
applications (i.e., the shifting practice). We synthesize these findings into a process model of ML 
value creation, which illustrates how organizations engage in (resource) orchestration by shifting 
between ML value creation mechanisms as their capabilities evolve and business conditions 
change. Our model provides an alternative explanation for the current high failure rate of ML 
projects.   

Introduction 

Artificial intelligence (AI) holds the potential to reshape the corporate landscape, be it in the form of business models and corporate 
offerings (Fanti et al., 2020; Wiener et al., 2020), business processes (Ransbotham et al., 2017; Tarafdar et al., 2019), or the nature of 
work (Frank et al., 2019). Despite recent technological advances in AI technologies, their impact on economies and organizations has 
been modest so far (Brynjolfsson et al., 2017). The increasing diffusion of AI has not led to any measurable growth in productivity at the 
level of economies; in fact, the growth of the overall economy has declined over the past decade (Brynjolfsson et al., 2017). According 
to Brynjolfsson and colleagues (2017), likely explanations for this AI productivity paradox are organizational implementation and 
restructuring time lags. The full effects of AI will not be realized until companies develop and implement new complementary 
organizational capabilities that would allow them to mobilize and leverage AI resources and achieve their business objectives. This 
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already points to a need for organizations to understand how to structure AI and other resources, bundle them into capabilities, and 
ultimately capitalize on these capabilities. 

Research at the organizational level supports this proposition. Companies seem to struggle with realizing and sustaining value from 
AI initiatives (Brynjolfsson et al., 2017; Tarafdar et al., 2019). Many companies run only ad-hoc projects without developing 
organization-wide AI strategies or apply AI in just a single business process (Fountaine et al., 2019). Others go directly for “moonshot” 
projects (i.e., ambitious, exploratory, and ground-breaking endeavors) without any expectation of near-term profitability and without 
systematically evaluating where AI would create the most value (Davenport & Ronanki, 2018). 

Both academic and practitioner-oriented discourses focus on the possibilities that AI offers (Coombs et al., 2020; Davenport & 
Ronanki, 2018; Shrestha et al., 2019), but fall short of uncovering the mechanisms that may produce the promised outcomes. So far, 
the academic discussion on AI value creation mechanisms centers around the choice between AI augmentation versus AI automation, 
otherwise known as the support-versus-replace debate (see Markus, 2017; Zuboff, 1985). Yet, we are currently lacking empirical 
research that analyzes how organizations decide about the level of augmentation/automation (Coombs et al., 2020), what kind of 
value organizations try to generate with AI (Lyytinen et al., 2020), and what organizational strategies they employ to pursue value 
from AI (Berente et al., 2021; Günther et al., 2017). We address the calls from both information systems (IS) (Coombs et al., 2020; 
Galliers et al., 2017; Markus, 2017; Rai et al., 2019) and management scholars (Raisch & Krakowski, 2020; von Krogh, 2018) to study 
how organizations pursue their value targets through AI applications. 

From a technology perspective, there are two approaches to developing AI systems (Berente et al., 2021): the rule-based approach, 
also known as symbolic AI; and the machine learning (ML) approach, also known as the connectionist approach (Chollet, 2019; Legg & 
Hutter, 2007). While the rule-based approach played an important role in the early days of AI, since the resurgence of ML in the 1990s 
and the rise of deep learning in the 2010s, the learning approach is increasingly becoming the dominant approach to building AI 
systems (Berente et al., 2021; Haenlein & Kaplan, 2019). Therefore, in our study, we focus on the applications of ML and examine the 
mechanisms firms employ in trying to reach their value targets. Our work draws on theoretical foundations of the business value of 
data-intensive practices, especially big data analytics (BDA). More specifically, we use the research framework of Grover et al. (2018) 
on “value creation by big data analytics” and insights from resource orchestration literature as sensitizing devices. The framework 
highlights the importance of value creation mechanisms in the process of translating investments in IT infrastructure into business 
value. Value creation mechanisms represent “different ways to create value” (Grover et al. 2018, p. 400) using a technology and 
“indicate the fundamental source of value being pursued” (p. 401). In other words, value creation mechanisms describe the way to 
reach certain organizational goals (e.g., product and service innovation, business process improvement); whether this goal will 
eventually be reached (i.e., measurable business value is created) depends on several additional factors (e.g., the overall economic 
situation, competition in the industry, changing customer needs). Against this background, we investigate the following research 
question: 

What are the value creation mechanisms that organizations employ to pursue their value targets through ML applications? 
To answer the above research question, we carried out an exploratory interview study focusing on 56 applications of ML in 29 

organizations. Our findings show that there are three different ML value creation mechanisms (with five subtypes) that organizations 
can employ to pursue their value targets. Each ML value creation mechanism represents a unique and fundamental source of value that 
organizations pursue. Next to that, we found that organizations sometimes shift from one value creation mechanism to another, within 
the same project, by rearranging their human-ML configurations. Finally, we identified necessary but not sufficient conditions for 
employing the different value creation mechanisms that provide explanations for the current high failure rate of ML projects. Based on 
these findings, we synthesize a process model of ML value creation, which illustrates how organizations engage in (resource) 
orchestration by shifting between ML value creation mechanisms as their capabilities evolve and/or business conditions change. In this 
respect, our study contributes to the current literature on designing and implementing strategies in the context of ML systems by 
linking capabilities, managerial action, and value creation mechanisms in dynamic organizational environments. Furthermore, our 
findings contribute to data-intensive work studies showing the critical role of data scientists in orchestration activities, as they pursue 
creating and sustaining value through ML applications. 

The remainder of this paper is structured as follows: First, we provide the background of our study. Next, we present our research 
method, followed by the presentation and discussion of our findings. We conclude by summarizing the study’s limitations and 
contributions. 

Background 

As the objective of this study is to identify value creation mechanisms that explain how organizations can reach their value targets 
with ML, rather than any digital technology, we focus our literature review on how ML applications can be used for pursuing orga
nizational goals. In doing this, we first summarize the characteristics of ML technology and how it is currently used in organizational 
settings. Next, we unpack the notion of mechanisms, what it means to identify value creation mechanisms in organizations, and how 
they are grounded in the resource-based view of the firm—more specifically, in the idea of resource orchestration. 

ML technology and its organizational uses 

Advances in ML technology have revitalized interest in AI research. Recent breakthroughs in the field of ML (e.g., deep neural 
networks) have been driven by dramatic increases in the availability of digital data and computing resources (Dean et al., 2018). 
Indeed, the effective use of ML would not be possible without foundational data-intensive technologies such as big data analytics 
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(BDA). Yet, ML and BDA are distinct phenomena with essential conceptual differences. BDA stands in a long tradition of technologies1, 
all of which were meant to “informate” (Zuboff, 1985); that is, to provide decision makers with relevant information (Abbasi et al., 
2016; Debortoli et al., 2014; Grover et al., 2018; Kitchin & McArdle, 2016; Müller et al., 2018). The vision of the field of ML, on the 
other hand, is to develop intelligent machines that are able to learn how to perform complex cognitive tasks without being explicitly 
programmed to do so (Samuel, 1959). This vision goes beyond mere decision support; instead, it highlights the ambition to create 
artificial agents that are able to automate cognitive tasks which were formerly reserved for humans, and learn how to do this better 
over time (Rai et al., 2019; Schuetz & Venkatesh, 2020; Sturm et al., 2021). Currently, we are still far away from this vision. The 
learning capacity of today’s ML systems is limited to finding ways to optimize an objective function defined by its designer; in other 
words, today’s ML systems cannot set or modify their own learning goals (Aleksander, 2017). So, while ML and BDA are related 
technologies (e.g., ML uses the data provided by BDA), there are important differences in how these technologies contribute to 
organizational goals (i.e., informate human decision makers vs. automate cognitive tasks). 

In fact, seen as a new generation of IS that can learn and act autonomously, ML-based AI systems constitute a new form of agency 
(Ågerfalk, 2020). Following this notion, several scholars have drawn up new research agendas to understand the implications of AI and 
underlying technologies for individuals, businesses, and societies (Ågerfalk, 2020; Baird & Maruping, 2021; Coombs et al., 2020; 
Lyytinen et al., 2020; Schuetz & Venkatesh, 2020). Regarding the value contribution of ML applications in organizations, we identify 
three main streams of research. 

The first stream covers conceptual work around the automation possibilities of AI technologies, including ML (Acemoglu & 
Restrepo, 2021; Agrawal et al., 2018; Coombs et al., 2020; Makridakis, 2017; Tarafdar et al., 2019). In these studies, in line with the 
economic logic, the contribution of AI to organizational goals is often associated with automation (Zuboff, 1985). 

In parallel to the rather technology-oriented view of AI as an automation technology, a second research stream has evolved that 
highlights the use of AI and ML-based applications for augmentation purposes (i.e., ameliorate—instead of substitute—human work 
with AI). This research focuses on the organizational embedding of ML technology and expands on the effective combination of 
human-ML configurations (Baird & Maruping, 2021; Grønsund & Aanestad, 2020; Shrestha et al., 2019; van den Broek et al., 2021). 
Combining these first two views suggests that the value contribution of ML applications in organizations is not as black and white as 
often portrayed. Hence, organizations need to engage in applications of ML that both augment and automate human capabilities in 
order to “achieve complementarities that benefit business and society” (Raisch & Krakowski, 2020, p. 192). This requires that or
ganizations continuously realign work practices, organizational models, and stakeholder interests in order to sustain these comple
mentarities (Grønsund & Aanestad, 2020; Günther et al., 2017; Lebovitz et al., 2021; Markus, 2017; van den Broek et al., 2021). In 
relation to these complementarities, researchers have started to develop and explore concepts such AI readiness and AI capability 
(Jöhnk et al., 2021; Mikalef & Gupta, 2021; Pumplun et al., 2019) to characterize organizational abilities to deploy and use AI in ways 
that add value. These studies, however, are either on a conceptual level describing and defining these new notions or they are variance 
studies that provide evidence for, or quantify, AI capability’s impact on organizational performance. These are important steps in 
understanding if and what are the AI readiness factors and AI resources that enable organizations to create business value. Yet, we still 
lack an understanding of the different ways organizations bundle, mobilize, configure, and reconfigure these AI resources and ca
pabilities into AI applications in order to pursue organizational objectives. 

Finally, a third debate has emerged on the actors that manage ML scoping, development, and deployment in organizations. While 
managers are acknowledged and expected to “make all key decisions about AI” (Berente et al., 2021, p. 1434), they also face a variety 
of new challenges, many of which are of a technical nature (Berente et al., 2021). As managers struggle with understanding AI 
technologies and how they work (Davenport & Ronanki, 2018; Li et al., 2021), data scientists appear to take a more prominent role as 
agents of change. Organizational field studies on human-ML configurations provide evidence of the important role data scientists play 
not only in setting up ML models but also in many managerial activities in ML projects (Grønsund & Aanestad, 2020; Pachidi et al., 
2021; van den Broek et al., 2021). It appears that “the role of the data scientist is to be the value creator—the bridge between stat
istician/computer engineer/etc. and key decision makers’’ (Vaast & Pinsonneault, 2021, p. 1095). As such, they have emerged as key 
actors in leveraging ML applications for organizational value creation (see Joshi et al. (2021) for examples). 

Value creation mechanisms and the resource orchestration view 

From a managerial perspective, ML technology is a new technology that organizations can employ to achieve organizational goals. 
That is, ML technology enables new value creation mechanisms through which organizations can pursue their organizational goals. 
Following this, we continue our review with unpacking the notion of value creation mechanisms and their grounding in the resource 
orchestration perspective of the resource-based view of the firm. 

According to Anderson et al. (2006), a focus on organizational mechanisms enables one to “move beyond thinking about individual 
variables and the specific links between them to considering the bigger picture of action in its entirety” (p. 103). This means that the 
important elements of organizations are not the components (e.g., resources and capabilities) themselves, but rather the cogs and gears 
that enable the translation from moving one component into the movement of another component. Specifically, as Hernes (1998) 
points out, mechanisms are about “the wheelwork or agency by which an effect is produced. In this way, mechanisms do not merely 
address what happened, but also how it happened” (p. 74). Mechanisms, however, do not apply or always work no matter what. There 

1 From the emergence of the first decision support systems in the 1960s to the wide-spread diffusion of enterprise-wide business intelligence 
platforms in the 1990s, later continued to business intelligence & Analytics (see Chen et al., 2012 for a historical overview). 
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are boundary conditions that become explicit as researchers identify mechanisms. The main task of the researcher then becomes 
to’identify’ mechanisms and to establish under which conditions they’come into being’,’fail to operate’, and so on (Merton & Merton, 
1968). 

Together with resource-based theory, dynamic capabilities, and resource orchestration are theoretical concepts often used to 
investigate value creation mechanisms in organizations. Resource-based theory emphasizes the role of firm resources as the basis for 
creating business value and achieving competitive advantage. In this way, companies can identify, acquire, and develop the necessary 
assets, capabilities, and competencies that would provide them the potential to deliver superior competitive advantages. While the 
resource-based view is still a very useful framework for managers, it emphasizes resource possession and selection (i.e, the charac
teristics of resources that influence performance through competitive advantage), rather than resource renewal or managerial action 
that appear especially critical in dynamic business environments (Sirmon et al., 2011; Teece et al., 1997; Teece et al., 2007). To address 
these limitations, new concepts have emerged, such as dynamic capabilities (Teece et al., 1997) and resource orchestration (Sirmon 
et al., 2011). 

Dynamic capabilities encapsulate the evolutionary nature of resources in organizations (Teece et al., 1997; Teece et al., 2007; 
Pavlou & El Sawy, 2006; Pavlou & El Sawy, 2011; Zahra & George, 2002) and emphasize “the firm’s ability to integrate, build, and 
reconfigure internal and external competences to address rapidly changing environments” (Teece et al., 1997, p. 516). On the other 
hand, the resource orchestration view emphasizes process-oriented managerial actions that are involved in value creation processes 
(Sirmon et al., 2011). The resource orchestration view points out that strategic resources do not appear by magic but are rather 
developed (Chadwick et al., 2015), given that firms do not inherently know how to leverage resources to create value (Ndofor et al., 
2011). Therefore, managers usually need to be actively involved in orchestrating resources for reaching their goals (Chadwick et al., 
2015). Hence, the resource orchestration view focuses on managers’ actions to effectively structure, bundle, and leverage firm re
sources as they are critical to achieve not only organizational goals but also resource-based competitive advantage. 

While extant literature on resource orchestration recognizes that there are multiple levels of management in companies, so far 
studies have tended to focus on top-level managers (Chadwick et al., 2015; Holcomb et al., 2009; Sirmon et al., 2008). The existing 
literature suggests that top-level managers direct the synchronization of the firm’s resource orchestration in a top-down process of 
strategic initiatives. In bottom-up and bidirectional approaches, however, middle-level managers are often more instrumental in 
synchronizing a firm’s resource orchestration efforts (Sirmon et al., 2011). 

From the above insights, we understand value creation mechanisms as ways of orchestrating resources and capabilities to pursue 
value targets. Furthermore, we also understand that both top-level and middle-level managers play an active role in orchestrating 
resources. Top-level managers set value targets. Middle-level managers are the value creators by actively pursuing the value targets 
through mobilizing and leveraging value creation mechanisms. 

Research on value creation mechanisms in IS 

Several IS specific value creation models were developed grounded on the resource-based view (e.g., Kohli & Grover, 2008; 
Melville et al., 2004; Soh & Markus, 1995), highlighting the main components (e.g., resources, assets, capabilities, applications) and 
the fact that they need to undergo transformation processes for value to be created. More recently, Grover et al. (2018) proposed a 
value creation framework for BDA technologies by integrating key constructs from Soh & Markus (1995) and Melville (2004) into 
capability building and capability realization processes using the general framing of dynamic capabilities. The framework of Grover 
et al. (2018) emphasizes the role of value creation mechanisms as enablers for the transformation of capabilities into value targets. 
Value creation mechanisms indicate the fundamental source of value being pursued by specific technologies. Grover et al. (2018) 
consider the mechanisms underlying value creation of BDA practices as critical for organizations to achieve their value targets. Yet, 
there is no indication of how the capabilities for these mechanisms are combined when pursuing the value target, nor is there any 
explanation of who performs this work in organizations. 

To the best of our knowledge, the literature lacks a comprehensive overview of ML value creation mechanisms. Previous studies 
have identified and confirmed value creation mechanisms for BDA technologies (Grover et al., 2018; Hopf et al., 2022; Zeng & Glaister, 

Fig. 1. Positioning of this study.  
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2018), such as “democratize data,” “contextualize data,” “experiment with data,” and “execute data insights.” Yet, as we have argued 
earlier, because BDA pursues a different organizational goal than ML, one cannot simply generalize or transfer BDA value creation 
mechanisms to the context of ML. Hence, identifying ML-specific value creation mechanisms promises to allow new insights into how 
ML resources and capabilities are combined to achieve respective value targets. 

Motivated by the practical need to understand the mechanisms of ML value creation mechanisms in organizations and given the 
aforementioned theoretical gap, our study empirically explores the mechanisms of how organizations pursue their value targets 
through ML. Viewing ML value creation mechanisms through a resource orchestration lens means looking for ways that resources and 
capabilities are bundled, mobilized, configured, and reconfigured into ML applications in order to pursue specific value targets. We 
explicate boundary conditions and managerial decision options for value creation mechanisms. We illustrate the goal of our study 
within the existing theoretical framing in Fig. 1. 

Method 

We chose an exploratory and qualitative research design in which we conducted 40 semi-structured interviews with data scientists 
and managers who are involved in the development of ML applications. Below, we describe our study design, data collection, and 
analysis in detail. 

Study design 

Following the framework of Grover et al. (2018), we pursued a process perspective to investigate ML value creation in organi
zations and thoroughly examine the value creation mechanisms that are existent in organizations. For that, we selected to interview 40 
data scientists of which seven had grown to a managerial position from a data science background (they are data science team leads or 
C-level representatives of small to medium-sized data analytics and ML service providers; most of them have a PhD). As indicated in the 
literature review, data scientists take over many managerial activities and decisions when it comes to ML applications. For example, 
they have “a role that demands more responsibility and a deeper sense of accountability” than statisticians or pure technical employees 
(Vaast & Pinsonneault, 2021, p. 1095), they decide over the inclusion and exclusion of domain experts in ML model development (van 
den Broek et al., 2021), and they switch between roles of augmenting and altering ML models (Grønsund & Aanestad, 2020). Based on 
their involvement in managerial activities, we view data scientists as active pursuers of ML value targets and key actors in leveraging 
the ML value creation mechanisms, and therefore a strong foundation for our study. The hybrid technical and business nature of their 
profession and their involvement throughout the lifecycle (Hummer et al., 2019) of ML projects gives them a holistic view on ML and 
its application in organizations (Davenport & Patil, 2012; Plastino & Purdy, 2018; van der Aalst, 2014) and makes them critical in
formants of how organizations achieve value targets through ML applications. By interviewing them, we gained an inside, bottom-up 
view into how ML applications are leveraged to pursue value targets (Plastino & Purdy, 2018)—a view we believe is lacking currently 
in the IS literature. Following Gioia (2013), we treated these “informants” as “knowledgeable agents,” giving them an “extraordinary 
voice” (p. 26). Practically, this meant that we assumed that our informants “know what they are trying to do and can explain their 
thoughts, intentions, and actions” (Gioia et al., 2013, p. 17). 

Data collection 

We collected our empirical data between October 2018 and March 2020. In this period, we interviewed 40 data scientists from 29 
companies about their involvement in 56 corporate applications of ML (ongoing projects and deployed systems). 

Sampling strategy 
In exploring the breadth and depth of the phenomenon, we followed a maximum variation strategy for purposeful sampling, which 

helped us to capture and describe mechanisms of ML value creation that cut across a great deal of variation (Patton, 2002, p. 234f). The 
organizations for which the interview partners worked covered six large (above 1,000 employees), sixteen medium-sized (between 15 
and 1,000 employees), and seven small companies (below 15 employees). The companies belonged to a variety of industries (e.g., 
retailing, mechanical engineering, energy, banking and finance, robotics, IT consulting, data analytics vendors, transportation, media, 
pharma, foods and beverages, public sector). They were located mainly in Germany and Denmark, but also in other European 
countries, the U.S., and Singapore. Fourteen of them were operating globally. The interview partners had between several months to up 
to seven years of job experience in their current position. Some 21% of our interview partners were female. We provide full lists of the 
interviews and analyzed projects—together with descriptive information on the interviews, the investigated projects, and the com
panies—in the appendix (projects in Table A.1 and interviews in Table A.2). 

We continued to conduct interviews until we found a point of redundancy in the mechanisms identified and further data collection 
did not add any new mechanisms (Corbin & Strauss, 2015; Lincoln & Guba, 1986, p. 203; Patton, 2002, p. 246). This manifested in our 
observation that the identified types of ML value creation (and subtypes, see next section) did not change in the last quarter of in
terviews of our study. 

Structure and contents of the interviews 
The retrospective accounts of our interviewees constituted the main data source for our research and theorizing process. The in

terviews followed an interview guide that we flexibly adjusted over time, driven by the accounts of the informants (Gioia et al., 2013) 
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and the ongoing coding and theorizing process that we carried out with the help of a coding logbook. The overall structure of the 
interview guide (given in full in Appendix B) was, however, stable over time. We asked the informants about concrete ML projects in 
which they were involved in the past, or at the moment of the interview, thereby grounding the interview in participants’ own ex
periences. This helped to keep the interviews rooted in actual events and settings, and reduced the risk of the conversation “spiraling 
into abstractions, generalities, and cultural scripts” (Schultze & Avital, 2011, p. 5). In some cases, we reached back out to informants of 
earlier interviews to ask about concepts that were arising from later interviews (Gioia et al., 2013). 

Given the process perspective on ML value creation, which our chosen conceptualization (Grover et al., 2018) is based on, we used 
the typical steps of ML projects according to well-known project process models for ML and data analytics (Fayyad et al., 1996; 
Hummer et al., 2019; Sharma et al., 2014; Shearer, 2000; Thiess & Müller, 2018). In particular, we asked the informants how they 
approached and experienced each stage of this process (business problems to data, data to insight, insight to decisions, decisions to 
actions, and actions to value targets), what difficulties they faced in each stage, and which practices they used to achieve their value 
targets. The process steps proved to be useful for structuring our interviews. Still, the interviews remained open to probing into 
informant responses when they initiated a new area of inquiry. 

Our technical background and experience in ML technology allowed us to go into the necessary depth of the domain with the 
interview partners, so that we understood how the projects were embedded in the organizational context and which ML technologies 
were used. The recorded interviews have a mean duration of 48.5 min (12 min standard deviation). Occasionally, we considered the 
company website in addition, as a means of researching metadata about the company or validating information provided in the 
interview. 

To gather data about the value contribution of each investigated ML project, we opted—in accordance with the value creation 
framework of Grover et al. (2018)—to ask our informants for concrete value targets of each project. An (economic) impact assessment 
of the investigated projects under study would not have been feasible in our study. Such impacts are generally hard to measure and 
would require a longitudinal quantitative investigation, which was not and could not be achieved in a qualitative research design 
(Brynjolfsson et al., 2017; Müller et al., 2018; Schryen, 2013). Instead, to help interviewees think about the value targets, we used 
terms like “achievement,” “contribution,” or “success” and we asked what they were trying to or expected to achieve through the ML 
applications. We categorized the reported value targets based on categories of previous work (Elia et al., 2020; Gregor et al., 2006) and 
listed the specific value targets of each project in Table A.1. 

Most of the interviews were conducted in English (23 out of 40), the rest in German. We analyzed the interviews in their original 
language and translated original quotes into English, when necessary, to include them in this paper for an international audience. 

Data analysis 

We recorded all interviews and transcribed them verbatim, which resulted in more than 600 pages of original text. Due to the 
exploratory nature of our research question, we applied an open coding approach to identify relevant and interesting chunks of data. 

Fig. 2. Overview of the data collection and analysis approach.  

A. Shollo et al.                                                                                                                                                                                                         



Journal of Strategic Information Systems 31 (2022) 101734

7

Our data analysis procedure is illustrated in Fig. 2. We used MAXQDA software to analyze all collected data (interview and focus group 
meeting transcripts, written feedback). 

The initial round of coding was done independently by two of the authors (Step 1 in Fig. 2), who tried to stay close to the words and 
phrases of the informants. This led to a large amount of open codes (Gioia et al., 2013). When disagreements emerged on open coding 
or their categories, the two researchers first went back to the raw data, discussed their interpretations, and tried to reach a collective 
interpretation. If an agreement on interpretation was not reached, the researchers engaged the help of the other researchers. After an 
agreement between the two initial coders (Step 2 in Fig. 2), all authors discussed the large number of data-driven open codes and used 
their experience and knowledge of relevant theory to make sense of the emerging concepts. In an iterative procedure of axial coding, 
we identified broader themes (Step 3 in Fig. 2). In a selective coding step, we integrated categories of organized data from axial coding 
to overarching theoretical dimensions: i.e., the value creation mechanisms (Gioia et al., 2013), as illustrated in Figs. 3 and 4. The full 
lists of open codes (with indicative quotes), themes, and dimensions are listed in the appendix in Table A.3 and Table A.4. Following an 
inductive approach, we tried not to force the emerging concepts into frames of pre-existing theory. 

Through an iterative analysis, the themes and dimensions in relation to different mechanisms of creating value with ML and their 
characteristics emerged as “transparently observable” (Eisenhardt, 1989, p. 537). The first rounds of analysis resulted in three unique 
ML value creation mechanisms, which we refined in further rounds of analysis and coding until we reached a point of theoretical 
saturation, in which no conceptual deviations remained (Glaser & Strauss, 1967). This point of theoretical saturation (appearing often 
in the last quarter of interviews) was also the reason why we stopped collecting new interviews. Frameworks and concepts from 
existing literature supported this iterative data analysis process. In particular, we used the resource orchestration view and the BDA 
value creation framework by Grover et al. (2018) as an analytical lens and vocabulary for our theorizing process. 

Once the emerging ML value creation mechanisms were sufficiently stable, we re-analyzed the data again through the lens of the 
emerging theory (step 4 in Fig. 2); that is, we classified all projects according to their value creation mechanisms (see Table A.1). This 
led us to uncover that the projects pursuing the same value creation type have certain conditions to be fulfilled to pursue their value 
targets. In addition, we found that, over the lifecycle of ML applications, projects often did not follow only one mechanism of value 
creation. Rather, some organizations reconfigured their ML applications in order to shift to a different value creation mechanism. 
These reconfigurations eventually became the focus of our final round of data analysis (step 5 in Fig. 2), in which we could substantiate 
the changing conditions that triggered the reconfiguration. 

Fig. 3. From raw data over open codes to themes and dimensions (value creation mechanisms).  
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Findings 

This section describes the results of our empirical analysis. We identify three distinct ML value creation mechanisms, link them with 
their primary value targets, and describe the nature of each mechanism in detail using a common set of attributes. Thereafter, we 
exemplify how companies sometimes reconfigure their ML applications in reaction to changed internal or external conditions and, 
thereby, shift between different value creation mechanisms. We synthesize these rich findings into a process model for ML value 

Fig. 4. Open codes, themes and dimensions for conditions.  

Fig. 5. Similarities and differences between knowledge creation, task augmentation, and autonomous agent mechanisms.  
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creation in organizational settings. 

ML value creation mechanisms 

In general, value creation mechanisms describe the way organizations intend to achieve certain value targets (Grover et al., 2018). 
In the context of ML, we found three broad value creation mechanisms and five subtypes within those. Fig. 5 gives an overview of the 
technical similarities and differences between the three ML value creation mechanisms. In all cases, we have an ML system that 
operates within an environment by collecting data from and returning information to that environment. 

The value creation mechanisms differ in three main aspects: First, how tight this feedback loop is (from indirect to closed-loop); 
second, what kind of output the ML system generates (ranging from descriptions to prescriptions); and third, the division of labor 
between ML systems and human decision makers. The division of labor ranges from a clear focus on human agency in the case of the 
knowledge creation mechanism, to almost full algorithmic automation in the case of the autonomous agent mechanism. It also goes 
hand in hand with a varying amount of information processing through the ML system. 

In the case of the knowledge creation mechanism, the ML system merely produces models which provide descriptions and ex
planations for organizational knowing processes. Task augmentation systems, in contrast, are equipped with prediction and decision 
functions on top of models. These functions generate predictions or prescriptions, respectively. Moreover, autonomous agents go 
beyond decision-making and actually perform—based on algorithmic prescriptions—real actions in the environment. Table 1 (on page 
27) provides a structured summary of further differentiating characteristics for the value creation mechanisms. More details are 
available in the Tables A.3 and A.4 in the appendix, where we compiled an extensive listing of quotes from the interviews to further 
illustrate these mechanisms. 

ML value creation mechanism 1: Knowledge creation 
The first group of ML applications we identified pursued the value target of organizational knowledge creation. More specifically, 

24 of 56 applications we studied had the goal of supporting humans in discovering new knowledge by providing them with ML-based 
tools for inductively identifying trends and patterns in historical data (see left part of Fig. 5). These knowledge creation systems are not 
independent agents. Rather, they are tools that are used by organizational decision makers—just as scientists use instruments like 
microscopes or telescopes in their research. We found that these systems often supported rather strategic decision-making processes (e. 
g., data-driven customer segmentation for market research, root-cause analysis for delivery shortages). We further found that these 
applications of ML rarely ended directly in the implementation of productive IT systems and instead focused on prototypes, or reports 
that have a relatively low technical maturity, without interactive user interfaces. However, project execution was frequently inefficient 
due to the ad-hoc nature of these projects and the fact that the analysis outputs were not used in a clearly defined downstream decision- 
making task, but rather mobilized as inputs for strategic decisions. Hence, these projects resembled more data-intensive research 
projects than classical IT projects. They included one-time, typically ad-hoc, analyses of historical data to generate exploratory and 
explanatory knowledge by modeling patterns and trends related to strategic decisions. Overall, we could observe a tendency to apply 
transparent models instead of highly complex black box algorithms, as the goal of these projects was to explore relationships between 
variables or to test hypotheses. Many interviewees described the objective of these projects as “identifying the drivers of the [data 
generating] process,” which then allow the creation of an understanding of existing phenomena and support the development of new 
concepts and ideas. These projects typically create knowledge that describes or explains phenomena for whole (sub-)populations (e.g., 
customer groups) rather than predicting events on an individual level (e.g., a single customer). For example, describing a customer 
churn analysis in the energy industry, one of our interviews explained: “In my opinion, what generates the most impact are the factors 

Table 1 
Attributes of the ML value creation mechanisms.   

Knowledge creation (ML 
value creation mechanism 
1) 

Task augmentation (ML value creation 
mechanism 2) 

Autonomous agents (ML value creation 
mechanism 3) 

Subtypes – Low- and high-discretion (decision-making) 
tasks 

Process automation, Intelligent products and 
services 

Value targets Organizational knowing More effective (faster or better) decision- 
making 

Increased productivity, novel value offerings 

Required capabilities and 
environmental factors 

Strong data science 
capabilities, deep domain 
knowledge 

Mature data infrastructure, strong DevOps, user 
experience (UX) capabilities 

Integration with transactional systems and 
processes, stable environment, few legal and 
ethical constraints 

Output Descriptions (patterns, trends) 
and explanations 
(tested hypotheses) 

Predictions (probabilities, scores, forecasts, 
etc.) and prescriptions (recommendations, 
instructions) 

Prescriptions (instructions) 

Deployed algorithms and 
models 

Unsupervised ML, causal 
inference, simulation 

Supervised ML and optimization Supervised ML and optimization 

Decision maker Human Human 
(at least in the loop) 

Machine 

Action taker Human Human or machine Machine 
Level of decision-making Strategic and tactical Tactical and operational Operational  
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influencing customer behavior that our models spit out. They serve as a basis for discussion in the company about how one might 
develop new concepts.” (Translated; P03: Customer churn modeling). Such data-driven discoveries are usually represented as pa
rameters of a statistical model that, for example, explains customer churn. In the above-mentioned project, for instance, a pattern was 
identified that for a one-unit increase in customer spending, the likelihood that customer churn decreases by a certain percentage 
point. 

ML value creation mechanism 2: Task augmentation 
The second group of ML applications we identified (18 of 56 applications) pursued the value target of more effective decision- 

making by enabling humans to either make better or faster decisions. In contrast to knowledge creation systems, these ML-based 
systems, which we named task augmentation systems, focus on more structured decisions that occur in higher frequency and vol
ume. We found that task augmentation projects are mostly concerned with implementing ML-based systems into production envi
ronments to augment human capabilities and support them in their everyday work tasks. Here, humans still remain the final decision 
makers in the end, but they receive advice or instructions originating from a predictive or prescriptive ML model and optional decision 
function. Hence, the underlying value creation mechanism is to augment the limited information processing capabilities of humans 
with the superhuman capabilities of ML, hence combining and leveraging human capabilities and ML resources for targeting more 
effective or efficient decision-making. 

We identified two subtypes of the task augmentation mechanism: applications that leave high or low discretion for the human 
decision maker (i.e., the user of the system). 

High-discretion task augmentation. These applications of ML support decision-making in ways that leave large parts of the final judg
ment and choices to the discretion of their users. This is done, for example, by displaying a set of predictions or recommendations, from 
which the user can select one or decide to ignore them completely. The sales department of a pharmaceutical company, for example, 
has enriched its customer relationship management (CRM) system with color-coded ratings that indicate the preferred communication 
channel for office-based physicians. Leveraging these predictions, but also the experience and personal relationships of the sales 
agents, they can choose the most promising channel for contacting the client. Another example is a digital parking assistant, which one 
of our interviewees described as follows: “That’s ultimately a tool with a dashboard that shows how likely it is that a parking space will 
be available. Then the drivers can decide whether they use the parking space or not.” (Translated, P34: Parking area demand forecast). 

Low-discretion task augmentation. These applications of ML allow users only little influence on the final decisions made. For example, 
an energy retailer implemented a task augmentation system in its call center, which dynamically instructs agents what questions to ask 
and in which order. The agents have little influence on how to conduct the conversation, as they continuously receive prescriptions by 
the system on how to act and have only a few seconds to think about questions and answers. In the case of such low-discretion 
augmentation systems, the main role of the user is not to be a decision maker, but rather to be an actuator that can intervene and 
overrule the system when exceptions or anomalies occur. We found that tasks that are supported by such low-discretion systems could 
be fully automated in theory (including implementation of the chosen actions), because users mostly follow the instructions of the 
system. However, in practice, the final decision remained with the human due to technical, ethical, legal, or risk-related concerns. 

In contrast to high-discretion augmentation systems, which usually make predictions, low-discretion augmentation systems go one 
step further and generate prescriptions. They do so through decision functions that perform automatic selection of a final and often 
mathematically optimal set of courses of actions out of several evaluated alternatives. Frequently, optimization algorithms (e.g., linear 
programming) or simple heuristics like “take the alternative with the highest score” are applied. For example, in the call center system 
mentioned earlier, the task augmentation system only instructs agents to ask questions about customer satisfaction at the end of a call, 
if the estimated churn probability for a given customer exceeds a certain threshold. Therefore, the call center agent has almost no 
discretion in this case. 

ML value creation mechanism 3: Autonomous agent 
The third ML value creation mechanism we identified was concerned with automation. The primary value target of the underlying 

projects (14 of 56) was to use automation to either increase productivity, by substituting human labor through ML-based agents, or to 
enable new value propositions, by offering smarter products and services. In contrast to knowledge creation and augmentation sys
tems, autonomous agents make decisions and implement actions without a human in the loop (see right part of Fig. 5). In order to 
achieve this, they typically combine supervised ML models with decision functions to automatically choose a mathematically optimal 
sequence of actions. 

We identified two subtypes of ML-based autonomous agents. ML can improve, on the one hand, the efficiency of (existing) business 
processes by reducing time and resources needed for process execution. We name these applications of ML process automation. On the 
other hand, ML can be an integral part of an intelligent—often called smart—product or service. We label these applications of ML as 
intelligent products and services. 

Process automation. Here, the ML system executes internal business processes to make them more efficient. A representative example 
for this type of application is the automated placement of advertisement banners at websites, operated by a multinational jewelry 
retailer we interviewed. In the past, external agencies or internal advertisement professionals decided which banner to place at which 
website and when. Today, they have automated this process end-to-end; the ML system is provided with a budget to spend and not only 
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makes all placement decisions autonomously, but also executes all required actions. Customers, however, do not even have to realize 
that ML is at work. A service provider that offers a media summary for companies (e.g., all mentions of the company name in important 
magazines), for example, had automated its process with ML, but the value proposition that the company delivered to customers 
remained unchanged (i.e., a standardized email, PDF report). 

Intelligent products and services. ML applications are also used to create new intelligent products and services that can be offered 
directly to customers. The offers may be sold as separate goods (e.g., smart devices, apps, or paid services) or are intended to increase 
the service level of existing offers (e.g., to improve customer service). Typical of these novel offerings is that they would not be feasible 
(economically at least) without ML technology. In contrast to the process automation subtype, where ML alters internal business 
processes, these applications are customer facing and change the offering itself (we illustrate the customer contact with a separate box 
in the right part of Fig. 5). Often, customers can tailor such products and services to their needs. An example is a content provider we 
interviewed that developed a service based on deep neural networks to automatically write penny novels. They offer this paid service 
to large publishing houses in order to generate content in an extremely cheap and fast way. At the time of our interview, the service was 
“currently able to influence the number of protagonists and … how creative this network should be … too much freedom usually ends 
up in some doomsday dystopia.” (P11: Automatic writing). Another example, focusing on offering customer service for existing 
products, is a chatbot deployed at an energy retailer to quickly answer simple questions from customers, so that they do not spend time 
in the queue at the call center. 

We summarize the overall characteristics of the three identified value creation mechanisms in Table 1 and differentiate them 
according to attributes that we described before. 

Shifting ML value creation mechanisms 

While analyzing the ML value creation mechanisms of all projects in our sample, we made two observations. First, we identified 
conditions that need to be fulfilled for successfully leveraging the identified ML value creation mechanisms and, in turn, achieving the 
aspired value targets. Second, we found that some ML applications changed their value creation mechanism over time and switched 
from one type to another. For example, there are over-ambitious ML automation projects which fail in the pilot project stage and, 
consequently, are reconfigured to task augmentation projects. Some data-intensive research projects, on the other hand, can evolve 
into ML systems that augment human tasks or fully automate processes. The following two vignettes illustrate the necessary conditions 
for the value creation types and illustrate the fact that some ML applications reconfigure over time. To unpack this phenomenon of 
reconfiguration, we first describe the identified conditions for each value creation type below and then explain the observed trajec
tories of reconfiguring projects.   

Conditions for value creation mechanisms 
We identified a set of necessary but not sufficient conditions that need to be fulfilled in order to successfully leverage the identified 

ML value creation mechanisms. These conditions can be internal (e.g., necessary assets or capabilities) or external to the company (e. 
g., necessary environmental factors). The conditions apply to the value creation mechanisms and the respective subtypes. We illustrate 
all the identified conditions as part of the process model in Fig. 6 and further explain them below. Conditions are inherited from 
mechanism to mechanism from left to right (i.e., the knowledge creation mechanism has two necessary conditions, the task 

Vignette 1: Churn management in energy retailing (project 1) 

An analytics vendor developed an ML-based process automation application for energy retailers to identify customers that are 
likely to cancel their contract (i.e., to churn). Based on the system’s predictions, customers with high churn probability would be 
automatically approached with targeted advertising mail (value creation through partly automating customer communication). The 
churn predictions worked successfully in the lab using historical training and test data, but it turned out that the system had no 
effect on actual customer churn rates in the first field tests. In addition, the utility company had technical problems feeding the 
predictions back into their CRM system, which should send out advertising mails to customers. As a reaction to these difficulties, 
the project team started to investigate the drivers of customer churn to find out reasons for the good performance in the lab and 
the bad performance in the field trial (value creation through knowledge creation about customers). Once such drivers were iden
tified, the vendor built a pilot and field tested in order to investigate how customers would react to targeted advertising in a 
churn context. After several rounds of development and testing of the new predictive ML model, both the predictive accuracy of 
the model and the estimated business impact of its implementation increased steadily. Eventually, the company integrated the 
churn scores into their CRM system via a newly-built interface (value creation through task augmentation for account managers with 
high discretion to act on these insights). After that, the application was extended to include the scores in the company’s call center 
system. If the churn score of a customer exceeded a certain predefined threshold, the application prescribed specific questions for 
sales professionals to ask. Due to the fast response time in the call center, the agent has little chance to ask questions other than 
the suggested ones (value creation through low-discretion task augmentation).  
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augmentation mechanism has five necessary conditions, the autonomous agent mechanism has eight necessary conditions). 
Two basic conditions are necessary to realize value from any of the three ML value creation types: strong data science capabilities and 

deep domain knowledge. Strong data science capabilities are, on the one hand, necessary for collecting and transforming the necessary 
data for ML applications and to allow for rigorous model development and evaluation. On the other hand, they are necessary to be able 
to communicate the often-complex outcomes of ML models to a broader business audience. Technical capabilities alone, however, are 
not sufficient to succeed with ML projects. Deep domain knowledge is equally important, as it enables people to understand the data 
generating process—the true (underlying) phenomenon that is creating the data—that they are trying to model. Although modern ML 
algorithms allow for a largely data-driven approach to modeling, deep domain knowledge is necessary to ensure a dataset that rep
resents the phenomenon and does not produce biased results, and to detect causal mechanisms in observational data (when that is 
desired). It can both be brought in via data scientists’ own domain knowledge or via domain experts from the business, which data 
scientists can consult. An interviewee at a global jewelry retailer emphasized: 

Vignette 2: Pandemic disrupts marketing automation at a jewelry retailer (project 56) 

A global jewelry retailer had already successfully automated its online advertisement process (value creation through process 
automation). However, during the Covid-19 pandemic, it found itself in new uncharted waters. The predictions of their ad 
placement algorithms were suddenly no longer as accurate as they used to be, leading to unsatisfactory, if not disastrous, 
advertising performance. After the first week of the pandemic, the company suspended their automatic advertising, and all 
marketing-related decisions were taken based on human judgment. Meanwhile, the company started a data-intensive research 
project (value creation through knowledge creation about customers) by collecting sales data about countries which were hit early by 
the pandemic (i.e., China, Italy). Based on these data, the company created interactive dashboards that would allow decision 
makers to quickly gain an understanding of the changing customer needs and behaviors: 

“We have taken all our online and offline sales traffic and created a timeline and looked at ‘during what events did sales start to 
change?’. Also, we have looked at all our media efforts: ‘When did they leave?’. Then we created a picture based on it, to find the 
right model.“ (P56: Online advertisement process) 

Based on these data and insights, the company then started to train new predictive models tailored to the pandemic situation. In 
the third week of the pandemic, the company created a new decision-making team—they called it the SWAT team—acting across 
the owned and paid media channels of the global organization, using the output of the new predictive models as information for 
their decision-making. Hence, while ML was applied to create knowledge about customer needs (knowledge creation) in the 
beginning, it transformed to being used for routine decision-making (value creation through high-discretion task augmentation) over 
time. The initiative was still ongoing, but the midterm goal was to return to the old mode of ML-based process automation (value 
creation through process automation).  

Fig. 6. ML value creation mechanisms and their necessary but not sufficient conditions: A process model of ML value creation in organizations.  
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“What is very challenging is to understand the data itself. Because my background is not really from retail, it’s not really from marketing. 
So, I have to know at least ‘what does this data mean?’ Is it reasonable to have this kind of output, or what kind of input can I use?” (P45: 
Customer target groups for email campaign) 

The two conditions, thus, form the building blocks to successfully leverage the ML value creation mechanisms. They allow an 
explorative and risk-averse approach to ML—centered around the question “What can ML do for us?”, with strong data science capa
bilities answering the “what can ML do” part of the question and domain knowledge answering the “for us” part of the question. 

Beyond these two basic conditions, we identified three necessary conditions to move from the knowledge creation mechanism to 
task augmentation mechanism: mature data infrastructure, UX capabilities, and strong DevOps capabilities. 

We found that a mature data infrastructure is necessary to assure mid- and long-term success of task augmentation. Without a mature 
data infrastructure and the high-quality data it provides, even the most advanced ML technology cannot be fully utilized. 

While a strong data foundation is a key enabler of ML, our informants reported that a carefully designed user experience (UX) - the 
way how a user interacts with and experiences a system—may be equally important. Especially for task augmentation applications, in 
which there is always a human in the loop, a positive user experience can avoid phenomena like algorithm aversion. One enabler for 
achieving a positive experience is to avoid the sole use of incomprehensible black box algorithms, either by using transparent models 
(e.g., linear or logistic regression, decision trees, and rule-based systems) which are inherently interpretable for users or by adding 
post-hoc explanation capabilities to highly complex model types like those based on neural networks. The following statement of an 
informant from a large bank exemplifies the need for interpretable ML algorithms in task augmentation systems: 

“In most cases [users] ask like, ‘Oh, but how does the algorithm work?’ or ‘Why did the algorithm give this low score or this high score?’ 
… That is one of our challenges, because as per se, most of the ML models are black boxes. You do not know exactly what happens there.” 
(P42: Fraud detection) 

Finally, we found that for sustaining value realization of task augmentation systems, it is necessary to continuously monitor and 
improve data pipelines, models, interfaces, and actuators. Therefore, strong development and operations (DevOps) capabilities are 
necessary to assure the quality of ML-based systems. Such capabilities allow, for instance, raising warnings and adjusting systems 
whenever significant performance drops are observed. 

“You don’t put something into production and then just [run it]. It’s very much about continuous monitoring and figuring out if there’s a 
drift or changes [in the data]. … Traditional software keeps functioning the same way over time. Whereas ML models might degrade, or 
other stuff happens to [it when] the data changes. I think there’s more complexity than the underlying system [alone].” (P32: Document 
matching natural language processing). 

For successfully implementing autonomous agents, we identified three necessary conditions: integration with transactional systems 
and processes, stable environment, and few ethical and legal constraints. 

We observed that many ML projects struggle with implementing automation systems, because they cannot easily achieve a seamless 
integration with transactional systems and processes. While it is usually possible to read data from transactional systems in a more or less 
timely manner, it can be difficult to write new data back into them. Even if the required legacy programming skills (e.g., Cobol, ABAP) 
were in place, it was hard for some projects to integrate ML systems with old transactional systems because they lacked interfaces. 
Another reason that we found were governance structures that do not allow data science teams to make required changes to trans
actional systems. 

Fig. 7. Reconfigurations observed in our data.  
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It is essential that autonomous systems are deployed in a sufficiently stable environment. One of the main issues that we observed 
was that ML models were built under the assumption that the data generating process is stationary. However, changes to transactional 
systems, business processes, or the organizational environment can change the underlying data generating process. For example, 
frequent price changes in business-to-consumer settings are known to change consumers’ buying patterns and, hence, will have 
negative consequences for the predictive accuracy of existing demand forecasting models. Such performance losses due to unstable 
data generating processes can draw a whole project into question, as one interviewee reported that their system after months in 
production showed “a drift in the performance. And then [the stakeholder] didn’t trust us as much as after that.” (P32: Document matching 
natural language processing). 

Lastly, we observed that the success of autonomous agents can be dependent on the presence of ethical and legal constraints. While 
knowledge creation and augmentation systems always operate under human supervision (humans make final decisions and/or take 
actions), autonomous agents do not have any humans in the loop when making procedural decisions. Hence, it is essential to design 
and monitor these systems carefully to ensure that they act within the ethical and legal boundaries. The CTO of an analytics vendor 
gave an example of a situation in which they did not want to automate a process fully due to legal and ethical concerns: 

“A client said recently: ‘It’s totally cool if you can automate this, but we will never do it, we always want to have a manual step in it… 
because then it’s not profiling … because of data protection, compliance … otherwise every customer has to be informed and [has to] 
agree.” (P01: Churn prediction). 

Reconfiguration trajectories 
We noticed that for some projects, the value creation mechanisms changed over time as conditions changed or opportunities to 

advance to a more “mature” ML value mechanism emerged. We found seven ML applications in our sample in which such reconfi
gurations took place, and illustrate their trajectories schematically in Fig. 7. These trajectories suggest that a mismatch between a value 
creation mechanism and its necessary conditions is the main reason for value not being realized. 

The dominant trajectory of ML applications in our data is from left to right, i.e., from knowledge creation to augmentation, then, to 
autonomous agents. Our interviewees mentioned several reasons. First, it seems that managers generally associate ML applications 
with automation. Our interviewees repeatedly reported that managers envisioned automated processes and had high expectations with 
regard to productivity gains. These inflated management expectations might support the tendency of ML projects to evolve towards 
automation as more conditions are fulfilled. Many interviewees reported that they need to educate business people on what problems 
can be solved with ML. One respondent explained: 

“Automation is actually one of the challenges [where we have] to manage expectations, because people think much of AI—Fantastic! But 
it is not really like that…. Models come with errors, you cannot do everything, and you must explain the limitations.” (P09: Automatic 
processing of health care policies). 

A reason why organizations did not start with automation projects right away, but rather tended to evolve their ML applications 
from “left to right” was risk management. Our interviewees referred to this evolution as a cautious approach to ML—which first 
implements prototype applications, then tests them in the lab, and finally deploys them in the field. 

Starting with knowledge creation projects also allowed organizations to explore what ML can do for them, while providing rela
tively quick results. As the ML models became more stable (e.g., training data sets become more comprehensive), they could be further 
embedded in business processes and produce useful predictions for knowledge workers. If additional conditions were met and reliable 
results had been produced, the ML application became more autonomous and the process automated. 

We also observed trajectories from right to left, i.e., automation projects that shifted to another value creation mechanism because 
certain conditions were not met anymore (see Vignette 2), or were never met from the start (see Vignette 1). In vignette 1, for example, 
the utility company could not feed predictions from the model into their transactional systems (condition: integration with transactional 
systems and processes). In vignette 2, the phenomenon under investigation (i.e., consumer behavior on the internet) was not stable 
anymore due to the Covid-19 pandemic and could not be modeled through ML (condition: stable environment). The project also changed 
scope by shifting to a different value creation mechanism and continued as a knowledge creation project before eventually evolving to 
a task augmentation system. The company could quickly release a “Corona dashboard,” given that they met all conditions to shift to the 
task augmentation value creation mechanism. Another situation we observed multiple times, which led to right-to-left reconfigura
tions was inflated management expectations. Managers often pushed for full automation of processes, even when the necessary 
conditions were not present. This led to scope changes during the project lifecycle or sometimes after the ML application had been 
poorly implemented and no value could have been realized. One interviewee, for instance, was working on a new automated pro
duction planning system to optimize logistics at a large pharmaceutical company. Eventually, the system could not go live as its ML 
components lacked an interface to the existing planning systems, an issue that the technical team was well aware of. Management, 
however, seemed to expect a working fully automated ML solution, nonetheless (P29: Pharmaceutical company). 

To enable reconfigurations, in general, a failure culture that allows organizations to put working prototypes into production, try 
them out, and learn from failures, seems necessary. An interview partner from a startup stated: 

“You should not let yourself get demotivated by failures. It is not unusual to spend a month and a half gathering a dataset, then two weeks 
preparing the data, evaluating and analyzing it, and in the end, nothing comes out of it.” (P10: Publisher consulting) 

In this section, we synthesized the empirical findings of our study into a process model of ML value creation (presented in Fig. 6). In 
the next section, we discuss its theoretical and practical implications. 
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Discussion 

Inspired by recent studies indicating that AI value creation remains an ambition rather than a reality for many organizations 
(Brynjolfsson et al., 2017; Davenport & Ronanki, 2018; Fountaine et al., 2019; Ransbotham et al., 2017; Tarafdar et al., 2019), we 
investigated how organizations try to achieve their value targets with ML applications. We synthesized the empirical findings of our 
study into a process model of ML value creation (presented in Fig. 6), which we further discuss below. 

A process model of ML value creation 

Our process model highlights the complex and dynamic nature of the ML value creation and includes three main interrelated el
ements: ML value creation mechanisms, necessary but not sufficient conditions, and the shifting practice. 

First, there are three different ML value creation mechanisms and five subtypes through which organizations can create value by 
pursuing specific value targets. Common to the three mechanisms of ML value creation is that they represent distinct ways in which ML 
applications contribute—through new knowledge, predictions, prescriptions, actions, or new value offerings—to the pursuit of value 
targets set by an organization. Therefore, our findings show that ML value creation mechanisms represent crucial elements in the ML 
value creation process (Grover et al., 2018; Hedström & Ylikoski, 2010). Each mechanism is executed by a different human-ML 
configuration, hence, it represents a different mode of delegation between humans and AI (Baird & Maruping, 2021). Our results 
thereby underpin the discourse on how to leverage the broader set of AI technologies to increase task-technology-fit with an empir
ically grounded set of ML technology uses (Makasi et al., 2021; Vimalkumar et al., 2021). 

While the types and subtypes are not new per se, they do provide evidence that organizations employ them sequentially on a project 
level but simultaneously on a portfolio level to pursue different value targets from ML applications. Scholars have largely discussed the 
use of AI for achieving value targets through augmentation and/or automation mechanisms (Grønsund & Aanestad, 2020; Raisch & 
Krakowski, 2020). The ML value creation mechanism of knowledge creation has so far remained primarily detached from the 
augmentation and automation mechanisms (e.g., Berente et al., 2019; Tremblay et al., 2021). Yet, this new form of knowledge creation 
through ML-based models represents a new form of goal-setting for the use of ML in companies. 

Second, for each mechanism, we found a set of necessary, but not sufficient, conditions that need to be fulfilled in order to successfully 
leverage the ML value creation mechanisms. The conditions indicate necessary capabilities and environmental factors in which or
ganizations can leverage the different ML value creation mechanisms. The presence of all necessary conditions does not guarantee that 
a mechanism will produce the desired outcome (i.e., achieve the respective value target). But the absence of any necessary condition 
explains that organizations cannot successfully leverage the ML value creation mechanism. While previous studies recognize and 
mention many resources and capabilities necessary for successful implementation of ML applications (e.g., Akkiraju et al., 2020; 
Amershi et al., 2019; Fountaine et al., 2019; Mikalef & Gupta, 2021; Tarafdar et al., 2019), these resources and capabilities together 
with environmental factors have not yet been linked to specific ML value creation mechanisms. Without this integrated view, previous 
studies attribute the high failure rate to organizational implementation and restructuring time lags (Brynjolfsson et al., 2017). Hence, 
our process model provides an alternative explanation for high failure rate of ML projects and their poor business impact, as we 
demonstrate that the mismatch between the necessary conditions and the targeted ML value creation mechanism does not allow 
organizations to successfully leverage the ML value creation mechanism. Furthermore, our process model shows that necessary 
conditions are inherited from left to right, i.e., augmentation inherits conditions from knowledge creation and the autonomous agent 
mechanism inherits from task augmentation. This means that a growing number of conditions need to be met to leverage a tighter 
integration of ML into business processes (Fountaine et al., 2019). This is in line with computer science studies (Akkiraju et al., 2020; 
Garcia et al., 2018), which have also observed a correlation between automation and high maturity of ML applications. 

Third, we discovered that, in dynamic environments, where capabilities and environmental factors change, shifting between ML 
value creation mechanisms is necessary to achieve and sustain value. The identified reconfiguration trajectories underline that stra
tegic decisions about the ML value creation mechanisms are not static. Organizations have to constantly orchestrate their resources and 
capabilities based on organizational and environmental conditions in order to sustain value creation from ML applications (Markus, 
2017). Thus, organizations need to configure and reconfigure their ML applications continuously to match changing conditions, which 
reflects the ML value creation orchestration and the dynamic capability of managing ML applications (Božič & Dimovski, 2019; Daniel 
et al., 2014; Pavlou & El Sawy, 2006; Pavlou & El Sawy, 2011; Zhang et al., 2021). As ML systems are different from other IT ap
plications (Amershi et al., 2019), organizations need to develop new dynamic capabilities to sense changes in the environment, assess 
their impact on the ML effectiveness, and accordingly make necessary changes. It is especially crucial to monitor data generating 
processes, because the data generated today will become tomorrow’s training data and, thereby, alter future ML models, which, in 
turn, will influence future predictions, prescriptions, or even decisions. 

Having identified ML project reconfigurations, our data suggests that the left to right reconfiguration trajectory (i.e., moving to
wards autonomous agents) is driven by managers as the “desired evolution” driven by the economic logic to automate processes 
(Zuboff, 1985). This indicates a tendency of business managers to have positive evaluations towards delegation to ML models. In these 
situations, data scientists as operational managers seem to be the ones that understand the intricacies of delegation by making explicit 
both the capabilities of the ML models and the conditions that need to be in place for leveraging the ML value creation mechanism and 
actively pursuing the value target. This trajectory shows deliberate, planned steps of managerial actions. As data infrastructures, data 
science skills, DevOps and UX skills mature over time, or legal requirements change, new opportunities for resource orchestration 
emerge. These new opportunities are exploited by deliberately shifting the ML value creation mechanism and reconfiguring the 
human-ML configuration: i.e., delegating more and more to ML systems. 
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The opposite trajectory from right to left (e.g. automation projects that shifted to another value creation mechanism because certain 
conditions were not met anymore) also indicates resource orchestration. Contrary to the left-to-right trajectory, the resource 
orchestration is primarily driven by actions of data scientists in collaboration with domain experts. Data scientists—in this case acting 
as middle-level managers—seem to have the most knowledge about the limitations of ML systems. While ML systems have superhuman 
capabilities in terms of speed and scale (Lyytinen et al., 2020), they still remain limited as they have been designed to optimize an 
objective function. In other words, today’s ML cannot set or modify their own goals (Aleksander, 2017). When changes in the envi
ronment occur, the competences of ML systems might be irrelevant, meaning that they might be fulfilling the wrong goals for the 
current situation. Hence, changes in conditions (organizational or environmental) signal that the ML value creation mechanism cannot 
be leveraged anymore. Therefore, data scientists engage in resource orchestration by sensing and identifying the changing conditions 
and changing the project scope to the adequate ML value creation mechanism. 

These findings are in line with research on resource orchestration that points to the fact that different managerial levels are 
involved in the firm’s resource orchestration efforts (Sirmon et al., 2011). For ML applications, top-level managers drive ML projects 
towards more automation while data scientists are more aware of the actual conditions and can suggest alternative trajectories for 
projects. 

From a computer science perspective, reconfiguration is key to realign ML with changes in humans’ problem understanding and 
ensure a high level of ML performance (e.g., Amershi et al., 2019; Sculley et al., 2015). From an organizational learning perspective, 
not only do reconfigurations have a positive effect on organizational learning, but reconfiguration intensities also play a significant 
role in establishing when “ML contributions to organizational learning become valuable enough to produce actual gains in the or
ganization’s knowledge” (Sturm et al., 2021). Our findings answer the so-far open question about when and how organizations should 
reconfigure their human-ML configurations from a resource orchestration perspective. We provide an explanation of why and when 
reconfigurations of human-ML arrangements happen and what trajectories these reconfigurations follow. 

Theoretical contributions 

Our process model contributes to the current literature on designing and implementing strategies in the context of ML systems in 
three ways. First, as mentioned in the background section, most studies on ML or AI value creation in organizations are either con
ceptual (e.g., Coombs et al., 2020; Davenport & Ronanki, 2018; Raisch & Krakowski, 2020) or pursue a variance perspective (Jöhnk 
et al., 2021; Mikalef & Gupta, 2021; Pumplun et al., 2019). This suggests lists of AI readiness factors (e.g., AI resources and capabilities 
that organizations need) without, however, necessarily taking into account that these capabilities or environmental factors might 
change over time. Our study contributes to this discourse by linking combinations of capabilities to ML value creation mechanisms and 
showing that a change in these combinations (deliberate or not) triggers a change in the value creation mechanism that can be 
leveraged. We know that strategic actions that effectively bundle and leverage existing resources have performance-enhancing effects 
(Morrow Jr. et al., 2007). Our empirically grounded process model not only contributes by providing more nuance into the pursuit of 
ML value creation through a set of ML value creation mechanisms but also explains how organizations engage in orchestration by 
shifting between ML value creation mechanisms as their capabilities evolve and business conditions change. 

Second, by taking a process perspective on resource orchestration, we focus on the actors and the actions they take to leverage the 
adequate ML value creation mechanisms in dynamic environments. In this regard, our study contributes by highlighting the emerging 
role of data scientists as orchestrators. Recent studies have also pointed to the increased role of data scientists in pursuing and creating 
value through ML applications (Grønsund & Aanestad, 2020; Joshi et al., 2021; Pachidi et al., 2021; Vaast & Pinsonneault, 2021; van 
den Broek et al., 2021). Adding to this growing body of work, our study illustrates how data scientists act as middle-level managers in 
creating uniquely complementary resource bundles by integrating organizational capabilities, considering environmental factors, and 
shifting between ML value creation mechanisms in their pursuit of value creation through ML technologies. This shifting practice 
enables organizations to leverage AI-driven “novel human–machine capabilities” that complement traditional competitive capabilities 
in organizations with those of ML-based systems (Krakowski et al., 2022). Our process model further extends the findings of Krakowski 
et al. (2022) by contributing an integrated evolutionary view of how these novel human–machine capabilities can be built and 
leveraged in organizational settings. 

Third, on a broader scope, our process model also contributes to the IS and data-intensive value creation studies. In particular, we 
further unpack previous value creation process models (Grover et al., 2018; Soh & Markus, 1995; Zeng & Glaister, 2018) and show 
concrete relationships between capabilities and value creation mechanisms. This allows a deeper understanding of the transformation 
that takes place from the capability building process into the capability realization process (Grover et al., 2018). At the same time, 
these previous process models focus on just identifying value creation mechanisms for IS and do not account for relationships between 
the different mechanisms. Instead, the focus of our process model is the shifting between the value creation mechanisms. This dem
onstrates interaction between different value creation mechanisms, which lead to concrete orchestration paths through which orga
nizations pursue value creation. We believe that this novel perspective opens up a new direction for future research in the area of IS 
value creation process, considering links and interdependencies among different data-intensive value creation mechanisms. 

Practical implications 

Our research has four main implications for practitioners. First, the identified ML value creation mechanisms and conditions are 
effective management tools for the strategic positioning of ML initiatives. Both top-level managers (e.g., executives) and middle level 
managers (e.g., business managers or data scientists) can use the mechanisms and the conditions as guidance for formulating value 
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targets for ML projects. In particular, our Table 1 helps in selecting the most effective type of ML use based on the intended value 
contribution (organizational knowing → Mechanism 1, more effective decision-making → Mechanisms 2a and 2b, increased pro
ductivity / novel value offerings → Mechanisms 3a and 3b). Likewise, the architectures illustrated in Fig. 5 can act as blueprints for 
designing ML systems and their interactions with users and the environment (e.g., whether to implement an indirect or closed feedback 
loop, whether to automate decisions through ML or let the human decision makers have the final word). This clarity helps to avoid 
situations where applications of ML are evaluated based on performance measures that do not apply to their specific types (e.g., the use 
of predictive accuracy for an interpretable model or the insistence on explainability without a need for it) or there are inconsistencies in 
the division of labor between ML and human. Second, we underlined that ML applications can be based on diverse value creation 
mechanisms, focusing not only on automating or augmenting, but also on creating new knowledge. Firms should consider the complete 
bandwidth of value creation mechanisms to achieve the whole variety of value targets, for example by using ML in innovation or 
research and development processes. Third, knowing the identified conditions and the fact that reconfigurations are not only possible 
but rather inevitable helps firms sustain value creation over time. Firms should also update their ML strategy based on this knowledge 
and allow for incremental improvements (e.g., start with experimental pilot projects in labs and integrate them into productive 
processes when technical infrastructures and processes are mature enough), and proactively shift the value creation mechanism when 
conditions are no longer met. To enable this shifting, managers should establish an iterative reflective process to allow for unforeseen 
reconfiguration of projects so that they continue to create value, even if the value target changes over time or different environmental 
factors were anticipated. Fourth, the identified conditions inform executives, but also data scientists and ML project managers, about 
possible problems and mitigation approaches (e.g., what alternative paths for ML projects exist to sustain value creation when con
ditions are not met anymore or when new opportunities arise). They also provide decision support for AI strategists and managers to 
(re-)adjust the ML value creation mechanisms adopted by projects, as well as the development steps that need to be undertaken for 
sustaining ML value by shifting value targets as conditions change. This is particularly important, as a change in conditions means that 
the pursuit of a value target is at risk. 

Conclusion 

Over the last years, IS and management scholars have repeatedly called for empirical research on the strategies that organizations 
employ to pursue their organizational goals and create business value from AI (e.g., Coombs et al., 2020; Galliers et al., 2017; Markus, 
2017; Rai et al., 2019; Raisch & Krakowski, 2020; von Krogh, 2018). With this study, we contribute to research on the management of 
AI and specifically ML-based AI applications by proposing an empirically-grounded process model of ML value creation mechanisms, 
conditions, and reconfigurations. This process model explains the orchestration efforts of data scientists in leveraging diverse value 
creation mechanisms in their effort to pursue value targets. Our findings assist in understanding why many organizations struggle with 
managing ML applications and leveraging them to meet their value targets. At the same time, the process model provides practical 
guidance for managers to navigate the largely uncharted waters of the ML value creation process. 

In this study, we go as far as identifying ML value creation mechanisms and associated necessary conditions. Due to the explorative 
nature of this research, the identified ML value creation mechanisms are possibly not exhaustive. Furthermore, we cannot quantify the 
exact value that ML creates in these organizations. Explicitly, we do not capture the functional and symbolic impact these ML ap
plications have on organizational performance (Grover et al., 2018). Future studies, similar to those on the impact of big data analytics 
on firm performance (Müller et al., 2018; Tambe, 2014; Wu et al., 2019), should add an economic point of view on the impact of ML 
applications in organizations. It would be also interesting to investigate if there is a correlation between the type, size, and digital (ML) 
maturity of a company and the types of ML value creation mechanisms that they exploit. 

Reflecting on our methodology, and as ML applications are being increasingly diffused in organizations, we acknowledge that 
interviewing more stakeholders involved in ML application management and use (e.g., users, decision makers, strategists, business 
domain experts), as well as gathering value-related artifacts (e.g., business cases, cost benefit analysis, benefit realization measures and 
reports) would provide a more holistic view while also unpacking the micropolitics of the ML value creation process. 

Furthermore, our study takes the perspective of data scientists which have emerged into operational as well as middle level 
managers and shows their orchestration efforts in pursuing organizational goals. While this is an important contribution of our study, 
since most studies on the management of AI so far focus on top-level managers (Fountaine et al., 2019), it would be interesting to have 
studies that investigate the synchronization efforts that span different managerial levels in organizations. 

In our study, we also did not focus on the unintended consequences of ML applications (Newell & Marabelli, 2015)—an aspect that 
might severely impact value creation while at the same time allow for broader conceptions of value (like societal value) to be taken into 
account. Longitudinal case studies might provide richer insights into the unintended consequences of ML applications and their impact 
on value creation. While our findings are a first step towards understanding the intricacies of ML value creation processes in orga
nizations, future studies could build on the limitations and provide additional contributions in this research area. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

A. Shollo et al.                                                                                                                                                                                                         



Journal of Strategic Information Systems 31 (2022) 101734

18

Acknowledgements 

We thank Ioanna Constantiou and Bob Galliers for friendly reviews of earlier versions of the paper. We also thank Suprateek Sarker, 
Mari-Klara Stein, and Guido Schryen for helpful discussions around the topic and for pointing us to relevant literature. In addition, we 
are grateful for the excellent comments and constructive feedback we received from the editorial and review team throughout the 
review process. Last but not least, we would like to thank all interviewees and their organizations for the time they dedicated to our 
research project and for opening up a window to their everyday work. Without them, this project would not have been possible. We 
were financially supported by the Digital Transformations Platform at CBS in conducting a workshop with the interviewees. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jsis.2022.101734. 

References 

Abbasi, A., Sarker, S., Chiang, R., 2016. Big Data Research in Information Systems: Toward an Inclusive Research Agenda. J. Assoc. Inform. Syst. 17 (2) http://aisel. 
aisnet.org/jais/vol17/iss2/3.  

Acemoglu, D., & Restrepo, P. (2021). Artificial Intelligence, Automation and Work (Working Paper No. 24196; p. 43). National Bureau of Economic Research. Retrieved 
March 28, 2021, from http://www.nber.org/papers/w24196. 

Ågerfalk, P.J., 2020. Artificial intelligence as digital agency. Eur. J. Inform. Syst. 29 (1), 1–8. 
Agrawal, A., Gans, J., Goldfarb, A., 2018. Prediction machines: The simple economics of artificial intelligence. Harvard Business Press. 
Akkiraju, R., Sinha, V., Xu, A., Mahmud, J., Gundecha, P., Liu, Z., Liu, X., Schumacher, J., 2020. Characterizing Machine Learning Processes: A Maturity Framework. 

In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (Eds.), Business Process Management. Springer International Publishing, pp. 17–31. https://doi.org/10.1007/ 
978-3-030-58666-9_2. 

Aleksander, I., 2017. Partners of Humans: A Realistic Assessment of the Role of Robots in the Foreseeable Future. J. Inform. Technol. 32 (1), 1–9. https://doi.org/ 
10.1057/s41265-016-0032-4. 

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B., Zimmermann, T., 2019. Software engineering for machine learning: A case 
study. In: Proceedings of the 41st International Conference on Software Engineering: Software Engineering in Practice, pp. 291–300. https://doi.org/10.1109/ 
ICSE-SEIP.2019.00042. 

Baird, A., Maruping, L.M., 2021. The Next Generation of Research on IS Use: A Theoretical Framework of Delegation to and from Agentic IS Artifacts. MIS Quarterly 
45 (1), 315–341. 

Berente, N., Gu, B., Recker, J., Santhanam, R., 2021. Managing Artificial Intelligence. MIS Quarterly 45 (3), 1433–1450. 
Berente, N., Seidel, S., Safadi, H., 2019. Research Commentary—Data-Driven Computationally Intensive Theory Development. Inform. Syst. Res. 30 (1), 50–64. 

https://doi.org/10.1287/isre.2018.0774. 
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