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We derive mixing properties for a broad class of Poisson count time series satisfying a certain contraction condi-
tion. Using specific coupling techniques, we prove absolute regularity at a geometric rate not only for stationary
Poisson-GARCH processes but also for models with an explosive trend. We provide easily verifiable sufficient
conditions for absolute regularity for a variety of models including classical (log-)linear models. Finally, we illus-
trate the practical use of our results for hypothesis testing.
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1. Introduction

Conditional heteroscedastic processes have become quite popular for modeling the evolution of stock
prices, exchange rates and interest rates. Starting with the seminal papers by Engle [12] on autore-
gressive conditional heteroscedastic models (ARCH) and Bollerslev [3] on generalized ARCH, numer-
ous variants of these models have been proposed for modeling financial time series; see, for exam-
ple, Francq and Zakoïan [18] for a detailed overview. More recently, integer-valued GARCH models
(INGARCH) which mirror the structure of GARCH models have been proposed for modeling time se-
ries of counts; see, for example, Fokianos [14] and the recently edited volume by Davis, Holan, Lund,
and Ravishanker [6].

We consider integer-valued processes where the count variable Yt at time t , given the past, has a
Poisson distribution with intensity λt . The intensity λt itself is random and it is assumed that λt =
ft (Yt−1, λt−1,Zt−1), for some function ft , that is, λt is a function of lagged values of the count and
intensity processes and a covariate Zt−1. Mixing properties of such processes have been derived for a
first time in Neumann [21], for a time-homogeneous transition mechanism with λt = f (Yt−1, λt−1).
This has been generalized by Neumann [22] to a GARCH structure of arbitrary order. In both cases a
contractive condition on the intensity function f was imposed which resulted in an exponential decay
of the coefficients of absolute regularity. Under a weaker semi-contractive rather than a fully contractive
condition on the intensity function, Doukhan and Neumann [10] also proved absolute regularity of the
count process, this time with a slower subexponential decay of the mixing coefficients. In the present
paper, we extend these results in two directions. We include an exogeneous covariate process in the
intensity function and we also drop the condition of time-homogeneity. This allows us to consider
“weakly non-stationary” processes, see, for example, with a periodic pattern in the intensity function.
Moreover, we also allow for a certain explosive behavior which could see, for example, result from a
deterministic trend. As shown in the text, this requires certain modifications of the techniques used in
our previous work.
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In the next section, we state the precise conditions, describe our approach of deriving mixing prop-
erties, and state the main results. In Section 3, we apply these results to time-homogeneous and time-
inhomogeneous linear INGARCH models, to the log-linear model proposed by Fokianos and Tjøstheim
[16] as well as to mixed Poisson INGARCH models. Section 4 clarifies connections to previous work
and sketches a few possible extensions. In Section 5, we discuss a possible application of our results.
All proofs are deferred to a final Section 6.

2. Assumptions and main results

We derive mixing properties of an integer-valued process Y = (Yt )t∈N0 defined on a probability space
(�,F,P), where, for t ≥ 1,

Yt | Ft−1 ∼ Pois(λt ), (2.1a)

λt = ft (Yt−1, λt−1,Zt−1), (2.1b)

and Fs = σ(Y0, λ0,Z0, . . . , Ys, λs,Zs). Here, λ = (λt )t∈N0 is the process of random (non-negative)
intensities and Z = (Zt )t∈N0 is a sequence of Rd -valued covariates. We assume that Zt is independent
of Ft−1 and Yt . We do not assume that the Zt ’s are identically distributed since we want to include cases
with a possibly unbounded trend. Note that with a slight abuse of notation and to avoid an unnecessary
case-by-case analysis Pois(0) denotes the Dirac measure in 0.

In what follows we derive conditions which allow us to prove absolute regularity (β-mixing) of the
process X = (Xt )t∈N0 , where Xt = (Yt ,Zt ). In contrast, the intensity process (λt )t∈N0 is not mixing
in general; see Remark 3 in Neumann [21] for a counterexample. We will show that, in case of a two-
sided stationary process, λt = g(Xt−1,Xt−2, . . .), for a suitable function g. This allows us to conclude
that the intensity process, and the joint process ((Yt , λt ,Zt ))t∈Z as well, are ergodic.

Let (�,A,P ) be a probability space and A1, A2 be two sub-σ -algebras of A. Then the coefficient
of absolute regularity is defined as

β(A1,A2) = E
[
sup

{∣∣P(B | A1) − P(B)
∣∣ : B ∈A2

}]
.

For the process X = (Xt )t∈N0 on (�,F,P), the coefficients of absolute regularity at the point k are
defined as

βX(k,n) = β
(
σ(X0,X1, . . . ,Xk), σ (Xk+n,Xk+n+1, . . .)

)
and the (global) coefficients of absolute regularity as

βX(n) = sup
{
βX(k,n) : k ∈N0

}
.

Our approach of proving absolute regularity is inspired by the fact that one can construct, on a suit-
able probability space (�̃, F̃ , P̃), two versions of the process X, (X̃t )t∈N0 and (X̃′

t )t∈N0 , such that
(X̃0, . . . , X̃k) and (X̃′

0, . . . , X̃
′
k) are independent and

βX(k,n) = P̃
(
X̃k+n+r �= X̃′

k+n+r for some r ≥ 0
)
. (2.2)

Indeed, for given (X̃t )t∈N0 , it follows from Berbee’s lemma (see Berbee [2] or Rio [24], Lemma 5.1,
for a more accessible reference) that one can construct (X̃′

t )t≥k+n following the same law as (X̃t )t≥k+n

and being independent of (X̃0, . . . , X̃k) such that (2.2) is fulfilled. Using the correct conditional dis-
tribution, we can augment (X̃′

t )t≥k+n with X̃′
0, . . . , X̃

′
k+n−1 such that (X̃′

0, . . . , X̃
′
k) is independent of
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(X̃0, . . . , X̃k), as required. Such an ideal coupling is usually hard to find and we do not see a chance to
obtain this in the cases we have in mind. However, any coupling with (X̃0, . . . , X̃k) and (X̃′

0, . . . , X̃
′
k)

being independent provides an estimate of the mixing coefficient since then

βX(k,n) ≤ P̃
(
X̃k+n+r �= X̃′

k+n+r for some r ≥ 0
);

see our arguments below.
We obtain the following estimate of the coefficients of absolute regularity at the point k.

βX(k,n)

= β
(
σ(X0,X1, . . . ,Xk), σ (Xk+n,Xk+n+1, . . .)

)
≤ β

(
Fk, σ (Xk+n,Xk+n+1, . . .)

)
= β

(
σ(λk+1), σ (Xk+n,Xk+n+1, . . .)

)
= E

[
sup

C∈σ(Z)

{∣∣P((Xk+n,Xk+n+1, . . .) ∈ C | λk+1
)− P

(
(Xk+n,Xk+n+1, . . .) ∈ C

)∣∣}], (2.3)

where Z = {A1 × B1 × · · · × Am × Bm ×N0 ×R
d ×N0 ×R

d × · · · | A1, . . . ,Am ⊆N0,B1, . . . ,Bm ∈
Bd,m ∈ N} is the system of cylinder sets. Note that the last but one equality in (2.3) follows since
the process ((Yt , λt ,Zt ))t∈N0 is Markovian and since the conditional distribution of (Yt , λt ,Zt ) under
Ft−1 depends only on λt .

Since a purely analytic approach to estimate the right-hand side of (2.3) seems to be nearly im-
possible, we use a stepwise coupling method to derive the desired result. Suppose that we have two
versions of the original process ((Yt , λt ,Zt ))t∈N0 , ((Ỹt , λ̃t , Z̃t ))t∈N0 and ((Ỹ ′

t , λ̃
′
t , Z̃

′
t ))t∈N0 , which are

both defined on the same probability space (�̃, F̃, P̃). If λ̃k+1 and λ̃′
k+1 are independent under P̃, then

we obtain from (2.3) the following upper estimate of the coefficients of absolute regularity at time k:

βX(k,n)

≤ Ẽ

[
sup

C∈σ(Z)

{∣∣̃P((X̃k+n, X̃k+n+1, . . .) ∈ C | λ̃k+1
)− P̃

((
X̃′

k+n, X̃
′
k+n+1, . . .

) ∈ C | λ̃′
k+1

)∣∣}]
≤ P̃

(
X̃k+n+r �= X̃′

k+n+r for some r ∈N0
)

= P̃
(
X̃k+n �= X̃′

k+n

)
+

∞∑
r=1

P̃
(
X̃k+n+r �= X̃′

k+n+r , X̃k+n+r−1 = X̃′
k+n+r−1, . . . , X̃k+n = X̃′

k+n

)
.

Thus we have just proved the following result.

Proposition 2.1. If there are two versions, ((Ỹt , λ̃t , Z̃t ))t∈N0 and ((Ỹ ′
t , λ̃

′
t , Z̃

′
t ))t∈N0 , of the process

((Yt , λt ,Zt ))t∈N0 defined by (2.1a) and (2.1b) which are both defined on the same probability space
(�̃, F̃, P̃) such that λ̃k+1 and λ̃′

k+1 are independent under P̃, then

βX(k,n) ≤ P̃
(
X̃k+n �= X̃′

k+n

)
+

∞∑
r=1

P̃
(
X̃k+n+r �= X̃′

k+n+r , X̃k+n+r−1 = X̃′
k+n+r−1, . . . , X̃k+n = X̃′

k+n

)
. (2.4)
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The close relationship between absolute regularity and coupling has been known for a long time.
Berbee [2], Theorem 2, showed that, for two random variables X and Y defined on the same probability
space, the latter one can be replaced by a random variable Y ∗ being independent of X and following
the same distribution as Y such that the probability that Y ∗ differs from Y is equal to the coefficient
of absolute regularity between X and Y ; see also Doukhan [7], Theorem 1.2.1.1, for a more accessible
reference. In our paper, we go the opposite way: Starting from a coupling result we derive an upper
estimate of the coefficients of absolute regularity.

In what follows we develop a coupling strategy to keep the right-hand side of (2.4) small. To this
end, we couple Z̃k+n+r and Z̃′

k+n+r (r ∈ N0) such that they are equal with probability 1, and we apply
the technique of maximal coupling to the count variables Ỹk+n+r and Ỹ ′

k+n+r . If Q1 and Q2 are two
probability distributions on (N0,2N0), then one can construct random variables X̄1 and X̄2 on a suitable
probability space (�̄, Ā, Q̄) with Q̄X̄i = Qi , i = 1,2, such that

Q̄(X̄1 �= X̄2) = dTV(Q1,Q2),

where dTV(Q1,Q2) = max{|Q1(C) − Q2(C)| : C ⊆ N0} denotes the total variation distance be-
tween Q1 and Q2. (An alternative representation is given by dTV(Q1,Q2) = 1 −∑∞

k=0 min{Q1({k}),
Q2({k})}.) In our case, we have to couple among others Ỹk+n and Ỹ ′

k+n. We denote by F̃s =
σ(Ỹ0, λ̃0, Z̃0, Ỹ

′
0, λ̃

′
0, Z̃

′
0, . . . , Ỹs , λ̃s , Z̃s, Ỹ

′
s , λ̃

′
s , Z̃

′
s) the σ -algebra generated by all random variables

up to time s. We construct Ỹk+n and Ỹ ′
k+n such that, conditioned on F̃k+n−1, they have Poisson distri-

butions with respective intensities λ̃k+n and λ̃′
k+n and

P̃
(
Ỹk+n �= Ỹ ′

k+n | F̃k+n−1
)= dTV

(
Pois(̃λk+n),Pois

(̃
λ′

k+n

))
.

Let d : [0,∞) × [0,∞) → [0,1] be any distance such that

dTV
(
Pois(λ),Pois

(
λ′))≤ d

(
λ,λ′) ∀λ,λ′ ≥ 0.

Examples for such distances are given by d(λ,λ′) = √
2/e|√λ − √

λ′| (see, e.g., Roos [25], formula
(5), or Exercise 9.3.5(b) in Daley and Vere-Jones [5], page 300), and d(λ,λ′) = |λ − λ′|. Hence, we
can construct Ỹk+n and Ỹ ′

k+n such that

P̃
(
X̃k+n �= X̃′

k+n | λ̃k+n, λ̃
′
k+n

)= P̃
(
Ỹk+n �= Ỹ ′

k+n | λ̃k+n, λ̃
′
k+n

)≤ d
(̃
λk+n, λ̃

′
k+n

)
. (2.5)

Since Zt is by assumption independent of Ft−1 and Yt , we choose Z̃k+n and Z̃′
k+n such that they are

equal with probability 1. In view of the other terms on the right-hand side of (2.4), we impose the
following condition.

(A1) There exists some L1 < 1, such that the following condition is fulfilled: If λ,λ′ ≥ 0, Y ∼
Pois(λ) being independent of Zt , then

E
[
d
(
ft (Y,λ,Zt ), ft

(
Y,λ′,Zt

))]≤ L1d
(
λ,λ′) ∀t ∈ N.

Then, if we continue to use maximal coupling,

P̃
(
X̃k+n+1 �= X̃′

k+n+1, X̃k+n = X̃′
k+n | λ̃k+n, λ̃

′
k+n

)
= Ẽ

(̃
P
(
X̃k+n+1 �= X̃′

k+n+1 | F̃k+n

)
1
(
X̃k+n = X̃′

k+n

) | λ̃k+n, λ̃
′
k+n

)
≤ Ẽ

(
d
(
ft (Ỹk+n, λ̃k+n, Z̃k+n), ft

(
Ỹ ′

k+n, λ̃
′
k+n, Z̃

′
k+n

))
1
(
X̃k+n = X̃′

k+n

) | λ̃k+n, λ̃
′
k+n

)
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≤ Ẽ
(
d
(
ft (Ỹk+n, λ̃k+n, Z̃k+n), ft

(
Ỹk+n, λ̃

′
k+n, Z̃k+n

)) | λ̃k+n, λ̃
′
k+n

)
≤ L1d

(̃
λk+n, λ̃

′
k+n

)
.

Proceeding in the same way, we obtain that

P̃
(
X̃k+n+r �= X̃′

k+n+r , X̃k+n+r−1 = X̃′
k+n+r−1, . . . , X̃k+n = X̃′

k+n | λ̃k+n, λ̃
′
k+n

)
≤ Lr

1d
(̃
λk+n, λ̃

′
k+n

)
(2.6)

holds for all r ∈ N. It follows from (2.4) to (2.6) that

βX(k,n) ≤ 1

1 − L1
Ẽ
[
d
(̃
λk+n, λ̃

′
k+n

)]
. (2.7)

To proceed, we have to find an upper estimate of Ẽ[d(̃λk+n, λ̃
′
k+n)|], still under the condition that

λ̃k+1 and λ̃′
k+1 are independent, having the same distribution as the frequency λk+1 of the original

process. We make the following assumption.

(A2) There exists some L2 < 1, such that the following condition is fulfilled. If λ,λ′ ≥ 0, then there

exists a coupling of (Y,Z) and (Y ′,Z′), with Y ∼ Pois(λ), Y ′ ∼ Pois(λ′), Z, Z′ d= Zt , Z being
independent of Y and Z′ being independent of Y ′, such that

E
[
d
(
ft (Y,λ,Z),ft

(
Y ′, λ′,Z′))]≤ L2d

(
λ,λ′) ∀t ∈ N.

If (A2) is fulfilled, we obtain that

Ẽ
(
d
(̃
λk+n, λ̃

′
k+n

) | λ̃k+1, λ̃
′
k+1

)≤ Ln−1
2 d

(̃
λk+1, λ̃

′
k+1

)
.

Therefore, we obtain in conjunction with (2.7) that

βX(k,n) ≤ 1

1 − L1
Ln−1

2 Ẽ
[
d
(̃
λk+1, λ̃

′
k+1

)]
. (2.8)

Finally, in order to obtain a good bound for βX(n) we have to ensure that sup{Ẽd(̃λk+1, λ̃
′
k+1) : k ∈

N0} < ∞. Recall that, with the above method of estimating βX(k,n), λ̃k+1 and λ̃′
k+1 have to be inde-

pendent, following the same distribution as λk+1. In the case of a stationary process, an upper bound
may follow from the fact that the intensities λk are stochastically bounded in an appropriate sense.
Such an argument, however, cannot be used if the process has an explosive behavior which means that
we genuinely have to derive an upper bound for Ẽd(̃λk+1, λ̃

′
k+1), with an appropriately chosen distance

d ; see the examples in the next section for the necessity of a tailor-made way of handling this problem.
As above, it seems to be difficult to derive an upper bound for Ẽd(̃λk+1, λ̃

′
k+1) in a purely analytical

way. Therefore, we employ once more a coupling idea and the desired upper bound will be obtained by
observing two independent versions (̃λt )t∈N0 and (̃λ′

t )t∈N0 of the original intensity process. We impose
the following condition.

(A3) Let (̃λt )t∈N0 and (̃λ′
t )t∈N0 be two independent processes on (�̃, F̃, P̃) which have the same

distribution as (λt )t∈N0 . Suppose that there exist constants L3 < 1 and M0,M1 < ∞ such
that
(i) Ẽd(̃λ0, λ̃

′
0) ≤ M0,

(ii) Ẽ(d(̃λt+1, λ̃
′
t+1) | λ̃t , λ̃

′
t ) ≤ L3d(̃λt , λ̃

′
t ) + M1, ∀t ∈ N.
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If (A3) is fulfilled, then

Ẽd
(̃
λ1, λ̃

′
1

) ≤ Ẽ
[
Ẽ
(
d
(̃
λ1, λ̃

′
1

) | λ̃0, λ̃
′
0

)]
≤ L3Ẽ

[
d
(̃
λ0, λ̃

′
0

)]+ M1

≤ L3M0 + M1.

Furthermore, since ((̃λt , λ̃
′
t ))t∈N0 is a Markov chain,

Ẽd
(̃
λ2, λ̃

′
2

) ≤ Ẽ
[
Ẽ
(
Ẽ
(
d
(̃
λ2, λ̃

′
2

) | λ̃1, λ̃
′
1

) | λ̃0, λ̃
′
0

)]
≤ M1 + L3

(
L3Ẽd

(̃
λ0, λ̃

′
0

)+ M1
)

≤ M1(1 + L3) + L2
3M0.

By induction we obtain that

Ẽd
(̃
λk, λ̃

′
k

)≤ M1

1 − L3
+ M0 (2.9)

holds for all k ∈N. Now we obtain from (2.8) and (2.9) the following result.

Theorem 2.1. Suppose that (A1) to (A3) are fulfilled.

(i) Then

βX(n) ≤ Ln−1
2

1

1 − L1

(
M1

1 − L3
+ M0

)
.

(ii) Suppose in addition that ((Yt , λt ,Zt ))t∈Z is a two-sided strictly stationary version of the pro-
cess. Then there exists a (σ (Z)−B)-measurable function g, where Z = {A1 ×B1 ×· · ·×Am ×
Bm ×N0 ×R

d ×N0 ×R
d × · · · | A1, . . . ,Am ⊆ N0,B1, . . . ,Bm ∈ Bd,m ∈ N} is the system of

cylinder sets, such that

λt = g(Xt−1,Xt−2, . . .) a.s. (2.10)

The process ((Yt , λt ,Zt ))t∈Z is ergodic.

Remark 1. As it can be seen from the proofs of Corollaries 3.1 and 3.2 below, the broad applicability
of this result is assured by flexibility in the choice of the metric d in (A1) to (A3); for details, see the
discussion about Corollary 3.1.

In retrospect, we note that our coupling method which delivers an upper estimate for βX(n) =
sup{βX(k,n) : k ∈ N0} consists of three phases: (2.8) shows that the upper estimate depends on the
expectation of d(λ,λ′), where λ and λ′ are independent versions of λk+1. Since this expectation can
hardly be computed analytically we consider two independent versions, (̃λt )t∈N0 and (̃λ′

t )t∈N0 , of the
intensity process and we derive recursively an upper estimate of Ẽd(̃λk+1, λ̃

′
k+1). Condition (A3) en-

sures boundedness of this expectation. Once we have a uniform bound for Ẽd(̃λk+1, λ̃
′
k+1), we start

a second coupling mechanism which keeps the probability of X̃k+n �= X̃′
k+n small; see (2.4) for how
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this enters the upper estimate for βX(k,n). This is accomplished by a coupling which leads to an
exponential decay of d(̃λk+n, λ̃

′
k+n) as n → ∞; (A2) serves this purpose. And finally, it can also be

seen from (2.4) that the term
∑∞

r=1 P̃(X̃k+n+r �= X̃′
k+n+r , X̃k+n+r−1 = X̃′

k+n+r−1, . . . , X̃k+n = X̃′
k+n)

contributes to the upper estimate for βX(k,n). For this we have to take care that X̃k+n+r differs from
X̃′

k+n+r with a small probability, given X̃k+n = X̃′
k+n, . . . , X̃k+n+r−1 = X̃k+n+r−1. Condition (A1) is

intended to keep the probability of these undesired events small.

3. Examples

3.1. Linear Poisson-INGARCH processes

In this section, we discuss some of the most popular specifications for INGARCH(1,1) processes. We
begin with a linear INGARCH(1,1) process allowing for real-valued covariates, where

λt+1 = atYt + btλt + Zt . (3.1)

Without covariates and with at = a, bt = b ∀t , this model has become popular for modeling count
data. Rydberg and Shephard [26] proposed such a model for describing the number of trades on the
New York Stock Exchange in certain time intervals and called it BIN(1,1) model. Stationarity and
other properties for this model where derived by Streett [27], Ferland et al. [13] who referred to it
as INGARCH(1,1) model, and Fokianos et al. [15]. Agosto et al. [1] generalized model (3.1) by
augmenting a covariate process and coined the term PARX (Poisson autoregression with exogeneous
covariates). These authors also proved the existence of a stationary distribution. We study first the
non-explosive case.

Corollary 3.1. Suppose that

(i) (2.1a) is fulfilled,
(ii) (3.1) holds, where at , bt ≥ 0 and L2 = sup{at + bt : t ∈N0} < 1,

(iii) sup{EZt : t ∈ N0} < ∞ and Zt is a non-negative random variable (covariate) which is inde-
pendent of λ0, Y0,Z0, . . . , λt−1, Yt−1,Zt−1, λt , Yt ,

(iv) Eλ0 < ∞.

Then the process (Xt )t∈N0 is absolutely regular with coefficients satisfying

βX(n) ≤ Ln−1
2

1

1 − L1
M,

where L1 = sup{bt : t ∈N0} and M = 2(Eλ0 + sup{EZt : t ∈N0}/(1 − L2)).

Remark 2. As it can be seen from the proof, we obtain the same result if we consider more generally
λt+1 = g(atYt + btλt + Zt) for some Lipschitz function g with Lip(g) ≤ 1 under conditions (i), (iii),
and (iv) of Corollary 3.1 if L2 = sup{|at | + |bt | : t ∈N0} < 1. In particular, we obtain absolute regular-
ity with an exponential rate for softplus INGARCH(1,1) processes with exogenous regressors under
the conditions on the coefficients at and bt and on the regressors (Zt )t mentioned above. Softplus IN-
GARCH processes without exogeneous regressors have been introduced just recently by Weiß, Zhu,
and Hoshiyar [29], where g = sc is the so-called softplus function

sc(x) = c ln
(
1 + ex/c

)
, with c > 0;

see also Section 4 for further details.

----
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The proof of Corollary 3.1 relies on the application of Theorem 2.1 with the simple metric d(λ,λ′) =
|λ − λ′|. In case of an explosive INGARCH(1,1) process, however, it could well happen that this
distance is no longer appropriate. To see this, consider the simple case of a specification

λt+1 = aYt + Ct ,

where 0 < a < 1 and Ct being an arbitrarily large non-negative constant. Recall that our estimate
(2.8) of the local coefficients of absolute regularity βX(k,n) contains the factor Ẽd(̃λk+1, λ̃

′
k+1) which

would be Ẽ|̃λk+1 − λ̃′
k+1| using the L1-distance. Let ((Ỹt , λ̃t ))t∈N0 and ((Ỹ ′

t , λ̃
′
t ))t∈N0 be two indepen-

dent versions of the bivariate process. Then λ̃t+1 − λ̃′
t+1 = a(Ỹt − Ỹ ′

t ) and, conditioned on λ̃t , λ̃′
t , Ỹt and

Ỹ ′
t are independent and Poisson distributed with respective intensities λ̃t and λ̃′

t . Since λ̃t , λ̃
′
t ≥ Ct−1

it follows that Ẽ|̃λt+1 − λ̃′
t+1| → ∞ as Ct−1 → ∞, which means that assumption (A3) will be vi-

olated. We show that the alternative distance |√λ − √
λ′| saves the day. The use of such a square

root transformation should not come as a big surprise. Recall that dTV(Pois(λ),Pois(λ′)) ≤ d(λ,λ′) ≤√
2/e|√λ−√

λ′|. On the other hand, it is well-known that a square root transformation on Poisson vari-
ates has the effect of being variance-stabilizing. In fact, if Yλ ∼ Pois(λ), then E[(√Yλ − √

λ)2] → 1/4
as λ → ∞; see, for example, McCullagh and Nelder [20], page 96. This transformation is similar to
the Anscombe transform (x �→ 2

√
x + 3/8) which is also a classical tool to treat Poisson data. On the

other hand, for small values of λ and λ′, the distance |λ − λ′| turns out to be more suitable when a
contraction property has to be derived; see the proof of Corollary 3.2 below. In view of this, we choose

d
(
λ,λ′) =

{
|λ − λ′|/M if

√
λ + √

λ′ ≤ M,

|√λ − √
λ′| if

√
λ + √

λ′ > M

= min
{∣∣λ − λ′∣∣/M,

∣∣√λ − √
λ′∣∣}, (3.2)

where a suitable choice of the constant M ∈ (0,∞) becomes apparent from the proof of Corollary 3.2
below.

Corollary 3.2. Suppose that

λt+1 = atYt + btλt + Zt , (3.3)

where

(i) at , bt ≥ 0 with sup{at + bt : t ∈N0} < 1,
(ii) sup{E|√Zt −E

√
Zt | : t ∈N0} < ∞,

(iii) E
√

λ0 < ∞.

Then the process (Xt )t∈N0 is absolutely regular with coefficients satisfying

βX(n) = O
(
ρn
)

for some ρ < 1.

Note that the random variable Zt may get arbitrarily large as t increases, for example, it could
represent a trend. Hence, we allow for nonstationary, explosive scenarios here.
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3.2. Log-linear Poisson-INGARCH processes

Next, we consider the log-linear model proposed by Fokianos and Tjøstheim [16].

Proposition 3.1. Suppose that

log(λt+1) = d + a log(λt ) + b log(Yt + 1) + Zt , (3.4)

where d ∈ R and |a| + |b| < 1, and (Zt )t∈N0 are i.i.d. random variables such that E|Z0| < ∞.
Then

(i) there exists a (strictly) stationary version of ((Yt , λt ,Zt ))t ,
(ii) if additionally E[e2Z0 ] < ∞, then the process (Xt )t is absolutely regular with exponentially

decaying coefficients.

3.3. Mixed Poisson-INGARCH processes

The above results can be generalized to models where the Poisson distribution is replaced by certain
mixed Poisson distributions. We consider two cases, the zero-inflated Poisson and the negative binomial
distribution, in more details. In both cases, our model can be put in the above framework by setting

λt = ft (Yt−1, λt−1,Zt−1) := Z
(2)
t−1f̃t

(
Yt−1, λt−1,Z

(1)
t−1

)
, (3.5)

where Zt−1 = (Z
(1)
t−1,Z

(2)
t−1) is a covariate with independent components Z

(1)
t and Z

(2)
t , Z

(2)
t being

non-negative.
If (Z

(2)
t )t in (3.5) is a sequence of i.i.d. Bin(1,p) variables for some p ∈ (0,1) and if

Yt | Ft−1 ∼ Pois(λt ),

with Ft−1 = σ(Y0, λ0,Z0, . . . , Yt−1, λt−1,Zt−1) then, conditioned on F (1)
t−1 = σ(Y0, λ0,Z0, . . . , Yt−2,

λt−2,Zt−2, Yt−1, λt−1,Z
(1)
t−1), Yt has a zero-inflated Poisson distribution (see Lambert [19]) with pa-

rameters p and νt = f̃t (Yt−1, λt−1,Z
(1)
t−1), that is,

P
(
Yt = k |F (1)

t−1

)=
{

pe−νt νk
t /k! if k ≥ 1,

(1 − p) + pe−νt if k = 0.

Similar INGARCH models with such a distribution were considered see, for example, in Zhu [30] to
account for overdispersion and potential extreme observations.

If instead (Z
(2)
t )t has a Gamma distribution with parameters a, b > 0 and

Yt | Ft−1 ∼ Pois(λt ),

then, conditioned on F (1)
t−1 as above, Yt has a negative binomial distribution. Indeed, since a

Gamma(a, b) distribution has a density p with

p(x) =
⎧⎨⎩

ba

�(a)
xa−1e−bx if x ≥ 0,

0 if x < 0,

---
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we obtain that, for all k ∈N0,

P
(
Yt = k |F (1)

t−1

) =
∫ ∞

0

ba

�(a)
xa−1e−bxe−λx (λx)k

k! dx

= 1

�(a)k!b
aλk

∫ ∞

0
xa+k−1e−(λ+b)x dx

= �(a + k)

�(a)k!
(

b

λ + b

)a(
1 − b

λ + b

)k

.

This is the probability mass function of a NB(a, b/(λ + b)) distribution.
In both cases, we may use Theorem 2.1 to prove that the process (Xt )t is absolutely regular with

exponentially decaying coefficients. Note that under validity of (A3), it suffices to check (A1) and (A2)
for f̃t rather than ft (with L1,L2 < b/a for the NB example). To see this, consider a coupling such

that Z̃
(2)
t = Z̃

(2)′
t which then gives

Ẽ
(
d
(
Z̃

(2)
t f̃t

(
Ỹt , λ̃t , Z̃

(1)
t

)
, Z̃

(2)
t f

(
Ỹ ′

t , λ̃
′
t , Z̃

(1)′
t

)) | λ̃t , λ̃
′
t

)
= Ẽ

[
Z̃

(2)
t

]
Ẽ
(
d
(
f
(
Ỹt , λ̃t , Z̃

(1)
t

)
, f

(
Ỹ ′

t , λ̃
′
t , Z̃

(1)′
t

)) | λ̃t , λ̃
′
t

)
.

Those are the two most suitable cases for applications; anyway the distribution of other independent
variables Z

(2)
t for which (A1) and (A2) hold can also be considered.

4. Relation to previous work and possible perspectives

In the context of stationary INGARCH processes, absolute regularity with a geometric decay of the
mixing coefficients of the count process has already been proved in Neumann [21] under a fully con-
tractive condition,∣∣f (y,λ) − f

(
y′, λ′)∣∣≤ a

∣∣y − y′∣∣+ b
∣∣λ − λ′∣∣ ∀y, y′ ∈N0,∀λ,λ′ ≥ 0, (4.1)

where a and b are non-negative constants with a +b < 1. Doukhan and Neumann [10] proved absolute
regularity with a somewhat unusual subgeometric decay of the coefficients for GARCH and INGARCH
processes of arbitrary order p and q under a weaker semi-contractive condition,

∣∣f (y1, . . . , yp;λ1, . . . , λq) − f
(
y1, . . . , yp;λ′

1, . . . , λ
′
q

)∣∣≤ q∑
i=1

ci

∣∣λi − λ′
i

∣∣ (4.2)

for all y1, . . . , yp ∈ N0; λ1, . . . , λq, λ′
1, . . . , λ

′
q ≥ 0, where c1, . . . , cq are non-negative constants with

c1 + · · · + cq < 1.
For the specification (3.3) and without a covariate (Zt = 0 ∀t ), conditions (4.1) and (4.2) are both

fulfilled. However, in case of a non-stationary covariate process (Zt )t∈N0 , stationarity of the process
((Yt , λt ))t∈N0 might fail and the results in the above mentioned papers cannot be used. More seriously,
in case of an explosive behavior, for example, if Zt is non-random with Zt → ∞ as t → ∞, the
stability condition (2.5) in Neumann [21] as well as the drift condition (A1) in Doukhan and Neumann
[10] are violated and a direct adaptation of the proofs in those papers seems to be impossible.
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In case of a specification λt = (a
√

Yt−1 + b
√

λt−1)
2 we obtain that∣∣̃λt+1 − λ̃′

t+1

∣∣= ∣∣a2(Ỹt − Ỹ ′
t

)+ b2(̃λt − λ̃′
t

)+ 2ab
(√

Ỹt

√
λ̃t −

√
Ỹ ′

t

√
λ̃′

t

)∣∣.
If Ỹt and Ỹ ′

t are equal but large, then the right-hand side of this equation will be dominated by the

term 2ab
√

Ỹt |
√

λ̃t −
√

λ̃′
t | which shows that both (4.1) and (4.2) are violated. However, Theorem 2.1

is applicable. One can follow the lines of the proof of Corollary 3.1 to verify the validity of (A1) to
(A3) for d(λ,λ′) = |√λ − √

λ′|.
We would like to mention that similar results as in our paper are possible for INGARCH models with

distributions different from the Poisson. Doukhan, Mamode Khan, and Neumann [9] proved existence
and uniqueness of a stationary distribution and absolute regularity of the count process for models
where the Poisson distribution is replaced by the distribution of the difference of two independent
Poisson variates (special case of a Skellam distribution). We expect similar results in the case of a
generalized Poisson distribution which was advocated in the context of INGARCH models in Zhu
[31]. Moreover, standard GARCH models with a normal distribution can be treated by this approach
as well.

After our paper was completed, a referee brought to our attention a recently accepted paper by Weiß,
Zhu, and Hoshiyar [29], where the log-linear function is replaced by the softplus function sc stated in
Remark 2. The corresponding Poisson-INGARCH model is specified by

λt = sc

(
α0 +

p∑
i=1

αiXt−i +
q∑

j=1

βjλt−j

)
.

These authors proved existence and uniqueness of a stationary distribution and, relying on results
derived by Doukhan and Neumann [10], absolute regularity of the count process with a subexponential
decay rate for the corresponding mixing coefficients under weaker summability assumptions on the
coefficients than in our Remark 2 (but neither allowing for exogenous regressors nor for time-varying
coefficients). The setting of general observation-driven models with covariates is also considered in
Doukhan, Neumann, and Truquet [11].

5. Testing for a trend in linear INARCH(1) models with application
to COVID-19 data

5.1. Statistical study

Suppose that we observe Y0, . . . , Yn of a linear INARCH process as in (3.1) with bt = 0,∀t . We aim
to test stationarity versus the presence of an isotonic trend. Thus, the null hypothesis will be that
EY1 = · · · = EYn while the alternative can be characterized by EY1 ≤ EY2 ≤ · · · ≤ EYn with at least
one strict inequality in this chain of inequalities. When we fit a linear model

Yt = θ0 + θ1t + εt , t = 1, . . . , n,

with a possibly non-stationary sequence of innovations (εt )t , then the null hypothesis corresponds to
θ1 = 0 and the alternative to θ1 > 0. (Even if the above linear model is not adequate, a projection will
lead to θ1 > 0.) The following discussion will be simplified when we change over to an orthogonal
regression model,

Yt = θ0 + θ1wt + εt , t = 1, . . . , n,
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where wt = (t − n+1
2 )/

√∑n
s=1(s − n+1

2 )2. Then the columns in the corresponding design matrix are
orthogonal and the l2 norm of the vector composed of the entries in the second column is equal to 1.
Therefore, we obtain for the least squares estimator θ̂1 of θ1 that

θ̂1 =
n∑

t=1

wtYt .

As before, we have θ1 = Eθ̂1 > 0 if there is any positive (linear or nonlinear) trend and θ1 = 0 under
the null hypothesis. Therefore, θ̂1 can be used as a test statistic.

Proposition 5.1. Suppose that Y0, . . . , Yn is a stretch of observations of a stationary INARCH(1) with
constant coefficients such that

λt = aYt−1 + b0 with a ∈ (0,1), b0 ≥ 0.

Then, with σ 2 = b0/(1 − a)3,

θ̂1
d−→ Z0 ∼N

(
0, σ 2).

We show that the test statistic is asymptotically unbounded for the special case of a linear trend
component in the intensity function. Other situations such as general polynomial trends can be treated
similarly.

Proposition 5.2. Suppose that Y0, . . . , Yn is a stretch of observations of a nonstationary INARCH(1)

with constant coefficients and trend such that

λt = aYt−1 + b0 + b1t with a ∈ (0,1), b0 ≥ 0 and b1 > 0, t ∈N0

and λ0 has a finite absolute fourth moment. Then, for any K > 0

P(θ̂1 > K) −→
n→∞ 1.

Hence, a test rejecting the null if

θ̂1/σ > z1−α

is asymptotically of size α and consistent. Here, z1−α denotes the (1 − α) quantile of N (0,1). In
practice, σ is unknown and has to be estimated consistently. For our simulations and the data example
presented below, we used the corresponding OLS-estimators â and b̂0 to obtain σ̂ 2 = b̂0/(1 − â)3.
More precisely, we considered the model stated in Proposition 5.2 and calculated⎛⎝ â

b̂0

b̂1

⎞⎠= (
XT X

)−1
XT Y with Y =

⎛⎜⎝Y1
...

Yn

⎞⎟⎠ and X =
⎛⎜⎝ Y0 1 1

...
...

...

Yn−1 1 n

⎞⎟⎠ (5.1)

Lemma 5.1. In the situation of Proposition 5.1 the OLS estimators of a and b0 are consistent.

With similar arguments as in the proof of Lemma 5.1 it can be shown that the OLS estimators of a

and b0 are also consistent under the alternative described in Proposition 5.2.
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Figure 1. Left: a = 0.2 and n = 50 dotted, n = 100 dashed, n = 200 solid line; Right: a = 0.5 and n = 100
dotted, n = 250 dashed, n = 500 solid line.

Remark 3. We stick to the INARCH(1) model although a generalization of Propositions 5.1 and 5.2
to INGARCH(1,1) models is possible. In the latter case, the naive OLS estimation is no longer feasi-
ble since the intensity process is unobserved. Of course, there are consistent estimators for stationary
INGARCH(1,1) processes as well. However, their behavior under the alternative would have to be
investigated, too. This goes far beyond the scope of the paper.

5.2. Numerical study

Next, we investigate the finite sample behavior of the proposed test. Considering low and moderate
levels of persistence (a = 0.2 and a = 0.5) we increase the effect of a linear trend from b1 = 0 (null
hypothesis) to b1 = 0.1 holding the intercept fixed (b0 = 1). We vary the sample size n = 50,100,200
for a = 0.2 and n = 100,250,500 for a = 0.5. The results for α = 0.1 using 5000 Monte Carlo loops
are displayed in Figure 1. The power properties of our test are very convincing however it tends to
reject a true null too often in small samples. In particular, note that for a = 0.5 increasing the sample
size from 250 to 500 improves the performance of the test under the null but barely influences the
behavior under the alternative (the solid and dashed line in Figure 1 nearly coincide).

5.3. Analysis of COVID-19 data

We applied our test to investigate daily COVID-19 infection numbers as well as the cases of deaths
related to COVID-19 in France and Germany from July 15 to September 15, 2020 using a data set
published by the European Centre for Disease Prevention and Control [17]; see Figure 2. Observing a
weekly periodicity in the data, we pre-processed the data eliminating an estimated seasonal component.
Obviously, no test is required to observe an increasing trend in the daily infection numbers in France
as well as in Germany. Our test clearly rejects the null in both cases (France: θ̂1/σ̂ = 349,693.30,
Germany: θ̂1/σ̂ = 96.39). However, the situation changes if we look at the cases of deaths. Again, the
null is rejected for France (θ̂1/σ̂ = 7.50) at any reasonable level. Contrary, evaluating the test statistic
based on the number of deaths in Germany that are related to COVID-19, we obtain θ̂1/σ̂ = −0.11,
that is, the null hypothesis of no trend is not rejected at any reasonable level. We also studied a shift of
the window of observation of 16 days, that is, we considered the period from August 1 to September

• ---_-, a=-===--o----o ~g 

0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05 

b1 b1 
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and, therefore,

λt − λ
[k]
t

P−→ 0.

By taking an appropriate subsequence (kn)n∈N of N we even obtain

λt − λ
[kn]
t

a.s.−→ 0. (6.1)

In order to obtain a well-defined function g, we define, for any sequence x1, x2, . . . ,

g(x1, x2, . . .) = lim sup
n→∞

g[kn](x1, . . . , xkn, λ̄).

As a limit of the measurable functions g[kn], g is also (σ (Z)−B)-measurable. From (6.1), we conclude
that

λt = lim
n→∞λ

[kn]
t = g(Xt−1,Xt−2, . . .)

holds with probability 1, as required.
Since absolute regularity of the process (Xt )t∈Z implies strong mixing (see e.g. Doukhan [7],

page 20) we conclude from Remark 2.6 on page 50 in combination with Proposition 2.8 on page 51 in
Bradley [4] that any stationary version of this process is also ergodic. Finally, we conclude from (6.1)
by Proposition 2.10(ii) in Bradley [4], page 54, that also the process ((Yt , λt ,Zt ))t∈Z is ergodic. �

Proof of Corollary 3.1. We choose the distance d as d(λ,λ′) = |λ − λ′| and verify that conditions
(A1) to (A3) are fulfilled.

(A1): We construct the coupling such that Z̃t = Z̃′
t . Then∣∣̃λt+1 − λ̃′

t+1

∣∣1(Ỹt = Ỹ ′
t

)≤ bt

∣∣̃λt − λ̃′
t

∣∣.
Therefore, (A1) is fulfilled with L1 = sup{bt : t ∈ N0}.

(A2): We couple the covariates such that Z̃t = Z̃′
t . The count variables are coupled in such a way

that Ỹt ≥ Ỹ ′
t if λ̃t ≥ λ̃′

t and Ỹt ≤ Ỹ ′
t if λ̃t ≤ λ̃′

t . Such a coupling is necessary and sufficient for Ẽ(|Ỹt −
Ỹ ′

t ||̃λt , λ̃
′
t ) = |̃λt − λ̃′

t |; otherwise the term on the left-hand side will be larger. Note that the maximal
coupling but also the simple “additive coupling” share this property. The latter can be constructed as
follows. If λ̃′

t ≤ λ̃t then Ỹt = Ỹ ′
t + Wt , where Wt ∼ Pois(̃λt − λ̃′

t ) is independent of Ỹ ′
t . Vice versa, if

λ̃′
t > λ̃t then Ỹ ′

t = Ỹt + Wt , where Wt ∼ Pois(̃λ′
t − λ̃t ) is independent of Ỹt . Then

Ẽ
(∣∣̃λt+1 − λ̃′

t+1

∣∣ | λ̃t , λ̃
′
t

)= at Ẽ
(∣∣Ỹt − Ỹ ′

t

∣∣ | λ̃t , λ̃
′
t

)+ bt

∣∣̃λt − λ̃′
t

∣∣= (at + bt )
∣∣̃λt − λ̃′

t

∣∣,
that is, (A2) is fulfilled with L2 = sup{at + bt : t ∈N0}.

It follows from (3.1) that Eλk+1 ≤ (ak + bk)Eλk +EZk , which implies that

Eλk ≤ Eλ0 + 1

1 − L2
sup{EZt : t ∈ N0}. �

Proof of Corollary 3.2. (A1): We construct the coupling such that Z̃t = Z̃′
t . Since |√λ + c −√

λ′ + c| ≤ |√λ − √
λ′| holds for all λ,λ′, c ≥ 0 we obtain that∣∣√λ̃t+1 −

√
λ̃′

t+1

∣∣1(Ỹt = Ỹ ′
t

)≤√
bt

∣∣√λ̃t −
√

λ̃′
t

∣∣.
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On the other hand, the inequality |̃λt+1 − λ̃′
t+1|1(Ỹt = Ỹ ′

t ) ≤ b|̃λt − λ̃′
t | is obvious. Hence, (A1) is

fulfilled with L1 = sup{√bt : t ∈N0}.
(A2): We couple the covariates such that Z̃t = Z̃′

t . For the count variables, we use an additive cou-
pling as described in the proof of Corollary 3.1(A2). This yields in particular that Ỹt ≥ Ỹ ′

t if λ̃t ≥ λ̃′
t

and Ỹt ≤ Ỹ ′
t if λ̃t ≤ λ̃′

t . We will show that, for some ρ < 1,

Ẽ
(
d
(̃
λt+1, λ̃

′
t+1

) | λ̃t , λ̃
′
t

)≤ ρd
(̃
λt , λ̃

′
t

)
, (6.2)

provided that the constant M in (3.2) is chosen appropriately. To this end, we distinguish between two
cases:

Case (i):
√

λ̃t +
√

λ̃′
t ≤ M

Then d(̃λt , λ̃
′
t ) = |̃λt − λ̃′

t |/M and it follows that

Ẽ
(
d
(̃
λt+1, λ̃

′
t+1

) | λ̃t , λ̃
′
t

)
≤ Ẽ

(∣∣̃λt+1 − λ̃′
t+1

∣∣/M | λ̃t , λ̃
′
t

)
= (at + bt )

∣∣̃λt − λ̃′
t

∣∣/M = (at + bt )d
(̃
λt , λ̃

′
t

)
. (6.3)

Case (ii):
√

λ̃t +
√

λ̃′
t > M

In this case, d(̃λt , λ̃
′
t ) = |

√
λ̃t −

√
λ̃′

t |. We choose ε > 0 such that sup{√at + bt : t ∈ N0} < 1 − ε. To
simplify notation, let λ, λ′ be non-random with λ ≥ λ′,

√
λ + √

λ′ > M and let Y = Y ′ + Z, where
Y ′ ∼ Pois(λ′) and Z ∼ Pois(λ − λ′) are independent. Furthermore, we drop the index t with at and bt .
Again, we have to distinguish between two cases.

(a): ε
√

λ ≥ (1 + ε)
√

λ′

In this case the proof of (6.2) is almost trivial. We have

E
[√

aY + bλ − √
aY ′ + bλ′]

≤ E
√

aY + bλ

≤ √
a + b

√
λ

= √
a + b(1 + ε)

(
1 − ε

1 + ε

)√
λ

≤ √
a + b(1 + ε)

(√
λ − √

λ′)
≤

√
a + b

1 − ε

∣∣√λ − √
λ′∣∣. (6.4)

Here, the second inequality follows by Jensen’s inequality since x �→ √
x is a concave function.

(b): ε
√

λ < (1 + ε)
√

λ′

This case requires more effort. We split up

E
[√

aY + bλ − √
aY ′ + bλ′]

≤ E
[(√

aY + bλ − √
aY ′ + bλ′))1(√aY + bλ + √

aY ′ + bλ′ ≥ (1 − ε)
√

a + b
(√

λ + √
λ′))]
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+E
[(√

aY + bλ − √
aY ′ + bλ′)1(√aY + bλ < (1 − ε)

√
(a + b)λ and

√
aY ′ + bλ′ ≥ (1 − ε)

√
(a + b)λ′)]

+E
[(√

aY + bλ − √
aY ′ + bλ′)1(√aY ′ + bλ′ < (1 − ε)

√
(a + b)λ′)]

=: T1 + T2 + T3, (6.5)

say. Then

T1 = E

[
aY + bλ − aY ′ − bλ′

√
aY + bλ + √

aY ′ + bλ′ 1
(√

aY + bλ + √
aY ′ + bλ′ ≥ (1 − ε)

√
a + b

(√
λ + √

λ′))]
≤ E

[
aY + bλ − aY ′ − bλ′

(1 − ε)
√

a + b(
√

λ + √
λ′)

]

=
√

a + b

1 − ε

λ − λ′
√

λ + √
λ′ =

√
a + b

1 − ε

∣∣√λ − √
λ′∣∣. (6.6)

Since
√

aY + bλ < (1 − ε)
√

(a + b)λ implies that Y < (1 − ε)2λ, and therefore |Y − λ| > (1 − (1 −
ε)2)λ, we obtain that

T2 ≤ E
[
(1 − ε)

√
a + b

(√
λ − √

λ′)1(|Y − λ| ≥ (
1 − (1 − ε)2)λ)]

≤ (1 − ε)
√

a + b
(√

λ − √
λ′) 1

(1 − (1 − ε)2)2λ

≤ ∣∣√λ − √
λ′∣∣ (1 − ε)

√
a + b

(1 − (1 − ε)2)2

4

M2
. (6.7)

Note that the last inequality follows from 2
√

λ ≥ √
λ + √

λ′ > M . To estimate T3, we use the simple
estimates

√
aY + bλ − √

aY ′ + bλ′ = √
aY + bλ − √

aY ′ + bλ + √
aY ′ + bλ − √

aY ′ + bλ′

≤ √
a
(√

Y − √
Y ′)+ √

b
(√

λ − √
λ′)

and
√

Y − √
Y ′ ≤ Y − Y ′, as well as the fact that

√
aY ′ + bλ′ < (1 − ε)

√
(a + b)λ′ implies that |Y ′ −

λ′| > (1 − (1 − ε2))λ′. This leads to

T3 ≤ √
aE

[(√
Y − √

Y ′)1(√aY ′ + bλ′ < (1 − ε)
√

(a + b)λ′)]
+ √

bE
[(√

λ − √
λ′)1(√aY ′ + bλ′ < (1 − ε)

√
(a + b)λ′)]

≤ √
aE

[(
Y − Y ′)1(∣∣Y ′ − λ′∣∣> (

1 − (
1 − ε2))λ′)]

+ √
b
(√

λ − √
λ′)P(∣∣Y ′ − λ′∣∣> (

1 − (
1 − ε2))λ′)

≤ (√
a
(
λ − λ′)+ √

b
(√

λ − √
λ′)) E(Y ′ − λ′)2

(1 − (1 − ε2))2λ′2 .

From ε
√

λ < (1 + ε)
√

λ′ we obtain that M ≤ √
λ + √

λ′ ≤ 1+2ε
ε

√
λ′, which leads to

T3 ≤ ∣∣√λ − √
λ′∣∣ 1

(1 − (1 − ε2))2

(
1 + 2ε

ε

)2(√
a

M
+

√
b

M2

)
. (6.8)
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To sum up, we conclude from (6.3) to (6.8) that (6.2) is fulfilled for

ρ =
√

a + b

1 − ε
+ (1 − ε)

√
a + b

(1 − (1 − ε)2)2

4

M2
+ 1

(1 − (1 − ε2))2

(
1 + 2ε

ε

)2(√
a

M
+

√
b

M2

)
.

Choosing now the constant M sufficiently large we obtain that ρ < 1, as required.

(A3): Part (i) of (A3) is fulfilled by assumption.
Assume that the processes ((Ỹt , λ̃t , Z̃t ))t∈N0 and ((Ỹ ′

t , λ̃
′
t , Z̃

′
t ))t∈N0 are independent copies of the

original process ((Yt , λt ,Zt ))t∈N0 . We have that

∣∣√λ̃t+1 −
√

λ̃′
t+1

∣∣
= ∣∣√aỸt + b̃λt + Z̃t −

√
aỸ ′

t + b̃λ′
t + Z̃t +

√
aỸ ′

t + b̃λ′
t + Z̃t −

√
aỸ ′

t + b̃λ′
t + Z̃′

t

∣∣
≤ ∣∣√aỸt + b̃λt −

√
aỸ ′

t + bỸ ′
t

∣∣+ ∣∣√Z̃t −
√

Z̃′
t

∣∣
≤ ∣∣√aỸt + b̃λt −

√
(a + b)̃λt

∣∣
+ √

a + b
∣∣√λ̃t −

√
λ̃′

t

∣∣
+ ∣∣√aỸ ′

t + b̃λ′
t −

√
(a + b)̃λ′

t

∣∣
+ ∣∣√Z̃t −

√
Z̃′

t

∣∣
=: Rt,1 + · · · + Rt,4, (6.9)

say. We obtain that

Ẽ
(
Rt,1 | λ̃t , λ̃

′
t

) = Ẽ

(
a|Ỹt − λ̃t |√

aỸt + b̃λt +
√

(a + b)̃λt

∣∣∣ λ̃t , λ̃
′
t

)

≤ a√
a + b

Ẽ
(|Ỹt − λ̃t |/

√
λ̃t | λ̃t , λ̃

′
t

)
≤ a√

a + b

√
Ẽ
(
(Ỹt − λ̃t )2/̃λt | λ̃t , λ̃

′
t

)= a√
a + b

(6.10)

and, for the same reason,

Ẽ
(
Rt,3 | λ̃t , λ̃

′
t

)≤ a√
a + b

. (6.11)

Finally, we have that

Ẽ
(∣∣√Z̃t −

√
Z̃′

t

∣∣ | λ̃t , λ̃
′
t

)= Ẽ
∣∣√Z̃t −

√
Z̃′

t

∣∣≤ 2E|√Zt −E

√
Zt |. (6.12)

It follows from (6.9) to (6.12) that part (ii) of condition (A3) is fulfilled with L3 = √
a + b and M0 =

2 sup{E|√Zt −E
√

Zt | : t ∈ N0} + 2a/
√

a + b. �
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Proof of Proposition 3.1. (i) First of all, note that the process (Vt )t∈N0 with Vt = (log(λt ), log(Yt +
1),Zt ) forms a time-homogeneous Markov chain. Let S = R × log(N) × R be the state space of this
process.

In order to derive a contraction property, we choose the metric


(
(x, y, z),

(
x′, y′, z′))= κ1

∣∣x − x′∣∣+ κ2
∣∣y − y′∣∣+ ∣∣z − z′∣∣,

where κ1 and κ2 are strictly positive constants such that |a| ≤ κ1, |b| ≤ κ2, and κ := κ1 + κ2 < 1. We
show that we can couple two versions of the process (Vt )t∈N0 , (Ṽt )t∈N0 and (Ṽ ′

t )t∈N0 , such that

Ẽ
(

(
Ṽt+1, Ṽ

′
t+1

) | Ṽt , Ṽ
′
t

)≤ κ
(
Ṽt , Ṽ

′
t

)
. (6.13)

We couple the corresponding covariate processes such that they coincide, i.e. Z̃t = Z̃′
t ∀t ∈ N0. Let

v = (x, y, z), v′ = (x′, y′, z′) ∈ S be arbitrary. We assume that Ṽt = v and Ṽ ′
t = v′ and construct Ṽt+1 =

(log(̃λt+1), log(Ỹt+1 + 1), Z̃t+1) and Ṽ ′
t+1 = (log(̃λ′

t+1), log(Ỹ ′
t+1 + 1), Z̃′

t+1) as follows. According
to the model equation (3.4) we set

log(̃λt+1) = d + ay + bx + Z̃t

and

log
(̃
λ′

t+1

)= d + ay′ + bx′ + Z̃′
t .

Conditioned on Ṽt and Ṽ ′
t , the random variables Ỹt+1 and Ỹ ′

t+1 have to follow Poisson distributions
with intensities λ̃t+1 and λ̃′

t+1, respectively. At this point we employ a coupling such that Ỹt+1 − Ỹ ′
t+1

has with probability 1 the same sign as λ̃t+1 − λ̃′
t+1. This implies in particular that

Ẽ
(∣∣log(Ỹt+1 + 1) − log

(
Ỹ ′

t+1 + 1
)∣∣ | Ṽt , Ṽ

′
t

)
= ∣∣Ẽ(log(Ỹt+1 + 1) − log

(
Ỹ ′

t+1 + 1
) | Ṽt , Ṽ

′
t

)∣∣
= ∣∣E(log(Yt+1 + 1) | λt+1 = λ̃t+1

)−E
(
log(Yt+1 + 1) | λt+1 = λ̃′

t+1

)
. (6.14)

To estimate the term on the right-hand side of (6.14), we show that, for Y (λ) ∼ Pois(λ),

d

dλ

{
E log

(
Y (λ) + 1

)
)
}≤ 1

λ
∀λ > 0. (6.15)

To see this, suppose that Y (λ) ∼ Pois(λ) and Y (ε) ∼ Pois(ε) are independent. Then

E
[
log

(
Y (λ) + Y (ε) + 1

)− log
(
Y (λ) + 1

)]
= e−εε

∞∑
k=0

[
log(k + 2) − log(k + 1)

]
e−λ λk

k!

+ e−ε

∞∑
l=2

εl

l!
∞∑

k=0

[
log(k + l + 1) − log(k + 1)

]
e−λ λk

k!
=: Tε,1 + Tε,2,



682 P. Doukhan, A. Leucht and M.H. Neumann

say. Since log(k + l + 1) − log(k + 1) = ∫ k+l+1
k+1

1
u

du ≤ l
k+1 we obtain that

0 ≤ Tε,1 = e−εε

∞∑
k=0

1

k + 1
e−λ λk

k! ≤ ε
1

λ

∞∑
k=0

e−λ λk+1

(k + 1)! = ε

λ
P(Yλ �= 0)

as well as

0 ≤ Tε,2 ≤ 1

λ

∞∑
l=2

ελ

l!
∞∑

k=0

e−λ λk+1

(k + 1)! ≤ 1

λ

∞∑
l=2

εl = 1

λ

ε2

1 − ε
.

Therefore,

d

dλ
E
[
log

(
Y (λ) + 1

)]= lim
ε→0

Tε,1

ε
= P(Y (λ) �= 0)

λ
≤ 1

λ
,

that is, (6.15) holds true. Hence, we obtain from (6.14) that

Ẽ
(∣∣log(Ỹt+1 + 1) − log

(
Ỹ ′

t+1 + 1
)∣∣ | Ỹt , Ỹ

′
t

)≤ ∣∣log(̃λt+1) − log
(̃
λ′

t+1

)∣∣. (6.16)

Recall that we have, by construction, Z̃t+1 = Z̃′
t+1. Using this and the above calculations we obtain

Ẽ
(

(
Ṽt+1, Ṽ

′
t+1

) | Ṽt , Ṽ
′
t

)
≤ κ1

∣∣log(̃λt+1) − log
(̃
λ′

t+1

)∣∣+ κ2Ẽ
(∣∣log(Ỹt+1 + 1) − log

(
Ỹ ′

t+1 + 1
)∣∣ | Ṽt , Ṽ

′
t

)
≤ κ

∣∣log(̃λt+1) − log
(̃
λ′

t+1

)∣∣
≤ κ

(|a|∣∣log(̃λt ) − log
(̃
λ′

t

)∣∣+ |b|∣∣log(Ỹt + 1) − log
(
Ỹ ′

t + 1
)∣∣)

≤ κ
(
Ṽt , Ṽ

′
t

)
. (6.17)

It remains to translate this contraction property for random variables into a contraction property for the
corresponding distributions. For the metric  on S, we define

P(S) =
{
Q : Q is a probability distribution on S with

∫
(z0, z) dQ(z) < ∞

}
,

where z0 ∈ S is arbitrary. For two probability measures Q,Q′ ∈ P(S), we define the Kantorovich
distance based on the metric  (also known as Wasserstein L1 distance) by

K
(
Q,Q′) := inf

V ∼Q,V ′∼Q′ Ẽ
(
V,V ′),

where the infimum is taken over all random variables V and V ′ defined on a common probability space
(�̃, F̃, P̃ ) with respective laws Q and Q′. We denote the Markov kernel of the processes (Vt )t∈N0 by
πV . Now we obtain immediately from (6.17) that

K
(
QπV ,Q′πV

)≤ κK
(
Q,Q′). (6.18)

The space P(S) equipped with the Kantorovich metric K is complete. Since by (6.18) the mapping πV

is contractive it follows by the Banach fixed point theorem that the Markov kernel πV admits a unique
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fixed point QV , that is, QV πV = QV . In other words, QV is the unique stationary distribution of the
process (Vt )t∈N0 . Therefore, the process ((Yt , λt ,Zt ))t∈N0 has a unique stationary distribution as well.

(ii) In this case, we do not use Theorem 2.1 to prove absolute regularity, but Proposition 2.1. To this
end, we make use of a contraction property on the logarithmic scale and change over to the square root
scale afterwards. As above, we construct on a suitable probability space (�̃, F̃, P̃) two versions of the
three-dimensional process, ((Ỹt , λ̃t , Z̃t ))t∈N0 and ((Ỹ ′

t , λ̃
′
t , Z̃

′
t ))t∈N0 where these two processes evolve

independently up to time k. Then λ̃k+1 and λ̃′
k+1 are independent, as required. For t = k + 1, . . . , k +

n− 1, we couple these processes such that Z̃t = Z̃′
t as well as Ỹt ≥ Ỹ ′

t if λ̃t ≥ λ̃′
t and vice versa Ỹt ≤ Ỹ ′

t

if λ̃t ≤ λ̃′
t .

We obtain from (6.16) that

Ẽ
(∣∣log(̃λt+1) − log

(̃
λ′

t+1

)∣∣ | λ̃t , λ̃
′
t

)
≤ a

∣∣log(̃λt ) − log
(̃
λ′

t

)∣∣+ bẼ
(∣∣log(Ỹt + 1) − log

(
Ỹ ′

t+1 + 1
)∣∣ | λ̃t , λ̃

′
t

)
≤ (a + b)

∣∣log(̃λt ) − log
(̃
λ′

t

)∣∣
holds for all t ∈ {k + 1, . . .}. Using this inequality (n − 1)-times we obtain that

E
(∣∣log(̃λk+n) − log

(̃
λ′

k+n

)∣∣ | λ̃k+1, λ̃
′
k+1

)≤ (|a| + |b|)n−1∣∣log(̃λk+1) − log
(̃
λ′

k+1

)∣∣. (6.19)

For t = k + n, k + n + 1, . . . , we use a maximal coupling of the count variables, that is,

P̃
(
Ỹt �= Ỹ ′

t | λ̃t , λ̃
′
t

)= dTV
(
Pois(̃λt ),Pois

(̃
λ′

t

))
.

This implies by Proposition 2.1 that

βX(k,n)

= P̃
(
Ỹk+n �= Ỹ ′

k+n | λ̃k+1, λ̃
′
k+1

)
+

∞∑
r=1

P̃
(
Ỹk+n+r �= Ỹ ′

k+n+r , Ỹk+n+r−1 = Ỹ ′
k+n+r−1, . . . , Ỹk+n = Ỹ ′

k+n | λ̃k+1, λ̃
′
k+1

)
=

∞∑
r=0

Ẽ
(
dTV

(
Pois(̃λk+n+r ),Pois

(̃
λ′

k+n+r

)) | λ̃k+1, λ̃
′
k+1

)
. (6.20)

Finally, it remains to make the transition from our estimates of | log(̃λt ) − log(̃λ′
t )| to the above total

variation distances. Since x �→ ex/2 is a convex function we have, for 0 ≤ x ≤ y, |ex/2 − ey/2| =∫ y/2
x/2 eu/2/2du ≤ ex/2+ey/2

8 |x − y|, which implies that

∣∣√λ̃k+n+r −
√

λ̃′
k+n+r

∣∣≤
√

λ̃k+n+r +
√

λ̃′
k+n+r

8

∣∣log(̃λk+n+r ) − log
(̃
λ′

k+n+r

)∣∣. (6.21)

Using this and the estimate dTV(Pois(λ),Pois(λ′)) ≤ √
2/e|√λ − √

λ′| we obtain

P̃
(
Ỹk+n �= Ỹ ′

k+n

) = Ẽ
[
dTV

(
Pois(̃λk+n),Pois

(̃
λ′

k+n

))]
≤
√

2

e
Ẽ
[∣∣√λ̃k+n −

√
λ̃′

k+n

∣∣]
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≤
√

2

e

√
Ẽ
((√

λ̃k+n +
√

λ̃′
k+n

)
/8
)2
√
Ẽ
(
log(̃λk+n) − log

(̃
λ′

k+n

))2

≤
√

1

2e

√
E
[
λ2

k+n

](|a| + |b|)n−1
√
Ẽ
(
log(̃λk+1) − log

(̃
λ′

k+1

))2 (6.22)

and, analogously,

P̃
(
Ỹk+n+r �= Ỹ ′

k+n+r , Ỹk+n+r−1 = Ỹ ′
k+n+r−1, . . . , Ỹk+n = Ỹ ′

k+n | λ̃k+1, λ̃
′
k+1

)
≤
√

1

2e

√
E
[
λ2

k+n

](|a| + |b|)n−1|a|l
√
Ẽ
(
log(̃λk+1) − log

(̃
λ′

k+1

))2
. (6.23)

It remains to show that E[λ2
k+n] is bounded. If Y ∼ Pois(λ), then E[(Y + 1)2] = λ2 + 3λ + 1. This

implies

E
(
λ2

t+1 | λt

)= e2d
E
[
e2Z0

]
λ2a

t

[
(λt + 2)(λt + 1)

]b ≤ C1
(
λ

2(a+b)
t + 1

)
,

for some C1 < ∞. Therefore we obtain that

E
(
λ2

t+1 | λt

)≤ C0λ
2
t + C2,

for appropriate C0 < 1 and C2 < ∞. From this recursion, we conclude that E[λ2
k+n] is bounded. (6.22)

and (6.23) yield that

sup
{
βX(k,n) : k ∈ N0

}= O

((|a| + |b|)n−1
∞∑

r=0

|a|r
)

= O
((|a| + |b|)n).

�

Proof of Proposition 5.1. First, note that the contraction condition a ∈ (0,1) assures existence of a
strictly stationary version of the process with β-mixing coefficients tending to zero at a geometric rate
(see Corollary 3.1 and Theorem 2.1 in Neumann [21]). (Alternatively, since we are in the stationary
case, Theorem 3.1 in Neumann [21] containing both results.) Moreover, all moments of Yt are finite,
see, for example, Weiß [28], Example 4.1.6. Asymptotic normality of θ̂1 can be deduced from Appli-
cation 1 in Rio [23] setting ai,n = wi and ξi = Yi − EYi if σ 2 = limn→∞ var(θ̂1) > 0. To this end, note
that from

∑n
t=1 wt = 0 and stationarity, we get

θ̂1 =
n∑

t=1

wt(Yt − EYt).

Additionally, straight-forward calculations yield

sn := 1

n3

n∑
t=1

(
t − n + 1

2

)2

= 1

12
+ o(1).

From Weiß [28], Example 4.1.6, we know that

cov(Y0, Yh) = ah b0

(1 − a)2(1 + a)
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which gives

σ 2 · (1 − a)2(1 + a)

b0

= 1 + lim
n→∞

2

snn3

n∑
t=2

(
t − n + 1

2

)
at

t−1∑
s=1

(
s − n + 1

2

)
a−s

= 1 + lim
n→∞

2

snn3

n∑
t=2

(
t − n + 1

2

)
at

[
(t − 1)a−(t+1) − ta−t + a−1

(a−1 − 1)2
− n + 1

2

a−t − a−1

a−1 − 1

]

= 1 + lim
n→∞

2a

snn3(1 − a)

n∑
t=2

(
t − n + 1

2

)2

= 1 + 2a

1 − a

and finally yields the desired result. �

Proof of Proposition 5.2. We split up

θ̂1 =
n∑

t=1

wt(Yt − EYt) +
n∑

t=1

wtEYt . (6.24)

First, note that the second sum tends to infinity. To see this, rewrite

EYt = aEYt−1 + b0 + b1t = · · · = atEY0 +
t−1∑
k=0

ak
(
b0 + b1(t − k)

)
.

As
√∑n

s=1(s − n+1
2 )2 ≥ C1n

3/2, we obtain sup |wt | ≤ C2n
−1/2 which implies

n∑
t=1

wtEYt = o(n) + b1

n∑
t=1

wt

t−1∑
k=0

akt

= o(n) + b1

n∑
t=1

wt t
at − 1

a − 1

= o(n) + b

1 − a

n∑
t=1

twt

= C3n
3/2 + o

(
n3/2),

for some positive, finite constants C1, C2, C3. It remains to show that the first sum in (6.24) is oP (n3/2).
To this end, we consider

E

[
n∑

t=1

wt(Yt − EYt)

]2

≤ 1

n

n−1∑
h=−(n−1)

√
βX

(|h|) min{n,n−h}∑
s=max{1,1−h}

4
√

E(Ys+h − EYs+h)4E(Ys − EYs)4
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applying the covariance inequality for α-mixing processes in Doukhan [7], Theorem 3(1), or Theo-
rem 1.1 in Rio [24], the fact that the α-mixing coefficients can be bounded from above by the corre-
sponding β-mixing coefficients and Corollary 3.2. Recall that the 2nd and the 3rd central moment of
a Pois(λ) distributed random variable is just λ while the fourth central moment is λ2 + 3λ. Using the
binomial theorem and Eλ2

s = O(s2), we can further bound

E(Ys − EYs)
4

= E
[
λ2

s + 3λs

]+ 4E
[
λs(λs − EYs)

]+ 6E
[
λs(λs − EYs)

2]+ E(λs − EYs)
4

= E
[
λ2

s + 3λs

]+ 4aE
[
λs(Ys−1 − EYs−1)

]+ 6a2E
[
λs(Ys−1 − EYs−1)

2]+ a4E(Ys−1 − EYs−1)
4

= E
[
λ2

s + 3λs

]+ 4a2E(Ys−1 − EYs−1)
2 + 6a2E

[
λs(Ys−1 − EYs−1)

2]+ a4E(Ys−1 − EYs−1)
4

= E
[
λ2

s + 3λs

]+ a2[4 + 6Eλs]E(Ys−1 − EYs−1)
2 + 6a3E(Ys−1 − EYs−1)

3

+ a4E(Ys−1 − EYs−1)
4

≤ C̃s2 + a2C̃sE(Ys−1 − EYs−1)
2 + 6a3E(Ys−1 − EYs−1)

3 + a4E(Ys−1 − EYs−1)
4

≤ C̄s2 + 6a3E(Ys−1 − EYs−1)
3 + a4E(Ys−1 − EYs−1)

4

≤ C̄s2 + 6a3[C′s2 + aE(Ys−2 − EYs−2)
3]+ a4E(Ys−1 − EYs−1)

4

≤ C′′s2 + a4E(Ys−1 − EYs−1)
4.

Iterating these calculations yields that E(Ys − EYs)
4 = O(s2) which concludes the proof. �

Proof of Lemma 5.1. Rewrite Yt = aYt−1 + b0 + ηt with ηt = Yt − λt , t = 1, . . . , n. Using the cor-
responding matrix notation and the definition of X, we have to show that (XT X)−1XT η = oP (1),
where η = (η1, . . . , ηn)

T . We proceed in two steps. First, we show that NXT η = oP (1) with N =
diag(n−1, n−1, n−2). Second, we show that (NXT X)−1 = OP (1).

For the first part, straight forward calculations show that

NXT η = 1

n

n∑
t=1

⎛⎝Yt−1(Yt − λt )

Yt − λt

(Yt − λt )t/n

⎞⎠= oP (1).

For the second part, we rewrite (NXT X)−1 = M(NXT XM)−1 with M = diag(1,1, n−1) and show
that NXT XM converges stochastically to an invertible matrix. To this end, note that

NXT XM = 1

n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−1∑
t=0

Y 2
t

n−1∑
t=0

Yt n−1
n−1∑
t=0

tYt

n−1∑
t=0

Yt n (n + 1)/2

n−1
n−1∑
t=0

tYt (n + 1)/2 (n + 1)(2n + 1)/(6n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎝ EY 2

0 EY0 EY0/2
EY0 1 1/2

EY0/2 1/2 1/3

⎞⎠+ oP (1)
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due to the exponentially decaying autocovariance function of (Yt )t . Finally, straight forward calcula-
tions show that the determinant of the remaining matrix is positive which concludes the proof. �
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