
Evaluation of Actor Based Code Offloading from Android

Smartphones in Real-Time

Marcel Großmann and Andreas Keiper

Computer Networks Group, University of Bamberg
An der Weberei 5, 96047 Bamberg, Germany

marcel.grossmann@uni-bamberg.de

Abstract. The widespread idea of cloud computing affects developing

approaches ofmobile applications.With ubiquitous computing capabil-

ities and mobile devices, one question arises for mobile application de-

velopers: How could battery drainage be reduced? To combine the cloud

computing services and mobile applications, an offloading of processes

may produce a benefit to save battery life. For example, background pro-

cesses are mainly uninteresting for mobile users and can be offloaded

to the cloud, as well as image processing or searching. Only a feedback

mechanism is necessary to obtain results of a process in the cloud.With

already existing technologies, an approach based on actors seems to be

able to handle code offloading. By avoiding the pitfalls of this concept,

system designers, who identify battery and processing power consum-

ing applications, can offload critical code to an actor in real-time. The

signalling concept is analysed with existing web-service technologies

and described by a messaging paradigm, which fulfills the actor’s re-

quirements. A trial architectural design demonstrates the functionality

of real-time code offloading on mobile devices.

Key words: Android; Architectural Design; Actor Framework; Code Off-

loading; Real-Time

1 Introduction

Since a lot of computing power nowadays is provided by cloud services, code off-

loading may reduce battery drainage of mobile devices. Modern technologies of-

fer a lot of platforms that are capable to ease the process of programming code

61

https://doi.org/10.20378/irbo-51782

lower workload

lower workload

lower workload

lower workload

0110100101

0
11

0
10

0
10

1

0110100101

0
11

0
10

0
10

1

Fig. 1. The idea behind dynamic code offloading into the cloud. The server in the

middle has highspeed network access, while themobile devices around can offload

user defined code onto it. This results in a lower workload of the devices.

62 MMBnet 2017

offloading paradigms. The following approach describes, how to dynamically out-

source code to be computed inside a cloud or fog architecture as depicted in Fig-

ure 1. Especially, a selection of communication protocols is analysed, if they are

capable to handle the exchange of dynamic code offloading in a platform indepen-

dent way. On cloud side, an actor based methodology is used, in order to provide a

scalable server infrastructure. This architectural principle eliminates the problem

of accessing commonly used memory; it is implemented by the open source ac-

tor framework akka.io [13]. The actor approach was presented by Hewitt et al. [6],

which was adapted and implemented several times. The model is based on four

principals:

– share nothing

– message transmission

– message queues

– simple scaling

Standard Java libraries for serialization are used for code transmission. Mobile

classes are dynamically loaded into a Java runtime environment via a classloader

approach. Therefore, the transmission technologies are evaluated to determine an

approach to access the server application running on a cloud infrastructure.

1.1 Related Work

Roelof Kemp et al. introduced the framework Cuckoo [8]. With Cuckoo it is pos-

sible to offload compute intensive services by defining interfaces for them before

the application is built, but not on realtime. Besides, a weakness is the concurrent

usage of a single remote resource by multiple users, as the server is not solving

concurrency issues by now. In CloneCloud [2] it is not possible to migrate native

state, while this approach tries to offload classes by serializing them in realtime

with their state information for execution. In our approach the execution of tasks

is restricted to actor based technology that offers the ability to construct indepen-

dent jobs, which can not interfere. Moreover, every job is controlled through a

standardized message based methodology.

Approaches like MAUI [3] offload mobile code to the infrastructure, based on

the whole process. In the cloud MAUI uses virtual machines, where an emulated

smartphone system is executed. Thus, this results in a lack of scalability andwastes

CPU resources through the virtualization of an entire mobile platform on a cloud

63

server. Besides, Thinkair [9] removes this burdensome emulation and runs with

an Android x86 port on server side. Nevertheless, both approaches provide their

scalability in the cloud by generating a new VM for each offloading device, which

is a very heavyweight and less cost effective solution.

Flores et al. [4] propose that offloading as a service is not going to be established

in those architectural proposals, because computational capabilities of the latest

smartphones are comparable to some servers running in the cloud. Thus, emula-

tion and heavyweight creation of VMs lacks the ability to scale offloading services

in a cost-effective fashion.

In this paper, a finer offloading granularity is achieved by using the serialization

of classes in realtime to migrate their byte representation to a cloud service. The

cloud service itself is based on an actor system, where a new actor is generated

for each offloading device. Moreover the actor system is integrated in a Glassfish

server, which runs in a Docker container.

2 Technologies

In this section, the principles of the actor framework are described in more de-

tail. This is followed by the question, how to perform dynamic classloading in a

Java environment to be able to offload code in realtime. Existing technologies for

transmission are analysed in subsection 2.4 and evaluated accordingly. Finally, the

cloud infrastructure, especially the server and middleware technologies are evalu-

ated in subsection 2.5.

2.1 The Actor Framework

The open source actor based framework akka is written in Scala and targets the

parallel and fault-tolerant execution of scalable applications [13]. Thus, the actor

model offers scalability and concurrency, while fault tolerance is achieved by a let

it crashmodel within the error handling. For the later, it is possible to define strate-

gies on how to handle errors of actors. Akka is a distributed system, which may be

extended over several Java Virtual Machines (JVM) and possesses an approach to

realise atomic messaging as transactions. Furthermore, there are possibilities to

configure the internal thread management, to manipulate the message flows and

comprehensive functions to manage the actor system.

64 MMBnet 2017

To program actors in the simplest way, a subclass of AbstractActor must be
implemented, where themethod createReceive is overwritten to handle received
messages. With the help of the configuration class Props, actors can be generated
from the actor class files in an actor system. Scala’s integrated execution frame-

work performs the actual execution of the actors, thus, the actor execution is solely

separated from user commands.

2.2 Dynamic Classloading

While akka executes the code, one question arises, on how to transmit the code

from a mobile device to the server. Investigations in akka’s source code revealed

that instances of Props are serializable, but also that a loaded actor class file is
needed in the JVM for actor generation. Hence, separate dynamic reloading of

class files with a self-defined classloader is required. Due to the transmission pro-

cess, all of the byte code of a class and the code of individual instantiated objects

must be transmitted. Therefore, the serialization is done in two steps. On the one

hand, class files must be converted into byte arrays, such that a class loader can

process them on the server side; this is done with the help of Java’s streaming ap-

plication programming interface (API). For serialisation and de-serialisation of in-

stantiated objects of the memory Java offers a serialization API, which takes care

of referential dependencies. To use this mechanism, the interface Serializable
must be implemented by the class that should be serialized. It is the user’s respon-

sibility to define, if an object state is serializable. For identification purposes the

serialVersionID is the same on both JVMs for a successful de-serialization. Nev-
ertheless, dynamic class loading is even more complicated and must be analysed

in more detail.

Classloader offer the possibility to find, load and link the binary representation

of a class, such that they are usable for initialisation in the virtual machine. All

classloaders inherit the abstract class ClassLoader. Concerning the JVM 8 speci-

fication, the point in time for classloading is differentiated either during the pro-

gram start or user-defined at runtime. While the program starts up, the JVM uses

its own Bootstrap-classloader for loading and linking of the non-array classes that

are known on compile time. Arrays in Java are an internal class of the virtual ma-

chine and do not need any form of an explicit representation. Regarding the spec-

65

..Loading of binary
data into the JVM

. Verifying.

Preparing

.

Resolving

.

Initialising

.

Linking

(a) . . . procedure [10].

..bootstrap-
classloader

.

extension-
classloader

.

system-
classloader

.

user defined
classloader

.

user defined
classloader

.

user defined
classloader

. $JAVAHOME/jre/lib/rt.jar.

$JAVAHOME/jre/lib/ext/*.jar

.

$CLASSPATH

(b) . . . hierarchy [14].

Fig. 2. Java’s classloading . . .

ification this procedure including the method call is processed for a single class

Test with the method main as follows:

– Loading of the class Test
The JVM tries to execute the program via themainmethod. It recognizes that

there is no binary representation of the class Test in the memory and thus
uses the classloader to find a representation in its classpath. If it succeeds, it

loads this representation in the cache of the classloader, else it throws an ex-

ception. Is the classloader part of a classloader hierarchy, it delegates the load-

ing procedure to the next higher classloader in the hierarchy. This procedure

continues until no higher classloader is found anymore and the current one

performs the loading. On the highest program level, this would be the system

classloader. Inside the JVM two more hierarchy levels exists, the bootstrap and

the extension classloader. The former is integrated into the JVM and loads the

core classes from $JAVAHOME/jre/lib/rt.jar, while the later is responsible
for extensions in $JAVAHOME/jre/lib/ext. The system classloader serves for

loading of the program classes of the classpath of a program.

– Linking of Test
Themethod main requires an object of the class Test, whichmust be initialized
first by linking the class. Linking consists of verifying, preparing and resolving.

Verifying ensures that the code is well-formed regarding the semantics of Java

and the JVM. Preparing includes the allocation of static memory and all data

structures, which are internally used by the JVM, e.g., method tables. Resolving

66 MMBnet 2017

controls the references of Test to other classes and interfaces and checks their
correctness. Two methods are used for linking: static or dynamic. With static

linking all references of a class are resolved recursively. In contrast, by dynamic

linking it is done successively within the usage of a class. Java implements this

dynamic approach, which allows a transmission and execution of remote code

[10].

– Initialising

Initialising consists of the generation of all static elements of Test. Evenmore,
this means that all super classes of Test are also initialised. Therefore, a re-
cursive loading and linking of the super classes must take place to build up

the inheritance hierarchy in the memory. Initialization is a prerequisite, which

must be fulfilled, to create object instances of a class.

– Calling

After initialization of Test and all super classes, themethod main can be called.
Specific for Java is that main is declared public, static and void.

To influence the classloading procedure, a new classloadermust be implemented,

which inherits the abstract class ClassLoader or any other classloader implemen-
tations and serves to load classes from external sources. This is a main contribu-

tion Java has ahead of machine-oriented languages, like C or C++.

2.3 Manual Classloading

Classloaders deliver class objects, which can be instantiated. With the extension of

a delegation model and resulting hierarchies, requests are delegated upwards in

the hierarchy. One classloader usually delegates the loading procedure to the next

upper one before it tries to load the class by itself. As a consequence, classes loaded

on a higher hierarchy level can not refer to classes, which were loaded on a lower

level, though it works vice versa. Threads use their own context classloader, such

that all class requests inside a thread are primarily handled by this classloader.

To understand the structure of the classloader itself, all important methods are

described in the following:

– Class loadClass(String name)
Until Java 1.2 this methods must be overwritten for an adjusted classloading

procedure. With the help of the classes name with a given package structure it

tries to find the class and returns a not instantiatable Class object.

67

– protected Class defineClass(String name, byte[] b, int off, int
len)
Method that generates a Class object out of a byte array by reading, controlling
and converting byte code into an executable data structure.

– protected Class findClass(String name)
Method used inside of loadClass to find the class by a given name. Adjust-
ments of the classloader should be done by overwriting this method.

– protected Class findLoadedClass(String name)
Searches the cache of the actual classloader, if the corresponding class was al-

ready loaded.

– protected Class findSystemClass(String name)
Tries to load a class with the help of the system classloader.

– protected void resolveClass (Class c)
Links the Class object, such that it is instantiatable.

– static ClassLoader getSystemClassLoader()
Returns the system classloader.

– Classloader getParent()
Returns the classloader of the next higher hierarchy level.

Many classloader methods are declared protected, such that they can be used
only by implementing a subclass of ClassLoader. The primary method is load-
Class, whereas all others can be used internally to design the loading procedure.
Additionally, only the method findClass should be overwritten, which is used
to define a loading procedure or a self defined source of class files, which is in-

ternally used by loadClass. For defining a loading procedure of class files from
byte arrays, they are read in by defineClass and linked by resolveClass. Sub-
sequently, they are available from the standard implementation of loadClass [7].
Moreover, the self-defined classloader should be involved in the hierarchy, such

that the executing thread uses it as standard context classloader to instantiate new

objects.

2.4 Server Access

Systematically, the server access is separated into synchronous and asynchronous

request-response communications. This is extended by the transmission of user

code and the generation of actors. In general three access structures could be used.

68 MMBnet 2017

RESTful Webservice

Representational State Transfer (REST) is an architecture, which offers the following

principles [12]. Resources are addressable via Uniform Resource Identifiers (URI).

Resources are manipulated in a representation oriented way, which means that

a representation consists of a sequence of bytes and metadata, to describe those

bytes. Metadata represented with theHyptertext Transfer Protocol (HTTP) can be a

request type, a parameter, or a MIME type. Each message is self explanatory, such

that themessage content is sufficient to tell the server what to do. There is no need

of an implicit session, since there is no information that is not contained in the

message. Communications are stateless and independent from former requests.

Hypermedia as the engine of application state (HATEOAS) defines that interactions

are data driven and document oriented. Links are used to connect data and clients

recognize from the response, how to process within the context.

The communication interfaces are self-defined HTTP requests, which are com-

parable to a Remote Procedure Call (RPC) calling methods with parameters on

server side and expect a return value as HTTP response. The HTTP basis is a

system independent and well supported technology. It offers a simple mechanism

for sending and receiving requests through tomighty servlet technology for server

development. With the Java API for RESTful webservices (JAX-RS) a framework is

available that offers declarative annotations for designing server functions. How-

ever, designing all requests is more elaborative. Without a standardised interface,

the documentation should be done in a proper way to compensate this fact. Alter-

natively, a source development kit (SDK) could be provided for the clients.

WSDL/SOAP Webservice

This type of webservice is composed of two technologies, the webservice description

language (WSDL) as interface definition language and the simple object access pro-

tocol (SOAP) to encapsulate data for transmission. Both are based on the extensible

markup language (XML) and gained a lot of interest with the hype of service-oriented

architectures (SOA). For an implementation, Java offers several robust webservice

stacks, which enable a simpler development. The standard also offers extensive

functionalities for authentication, encryption, and secured data transmissions. A

clear benefit of this approach is its standardised interface and communication

technology with a clear definition by WSDL. Moreover, Java API for XML webser-

vices (JAX-WS) is a framework for Java, which utilizes several webservice stacks.

69

However, extensive technology knowledge is required on developer side and the

project depends on webservice stacks, which come with the issue that extending

the basic functionality may lead to incompatibilities. Finally, inside of a WSDL

there is no metadata included to classify binary data, such that additional docu-

mentation is necessary.

Remote Method Invocation (RMI)

This is Java’s variant of the remote procedure call (RPC) client-server model on an

object oriented basis. Method calls are performed with a proxy object on client side

that represents the actual object on server side. On server side the communication

object is a skeleton and regulates the access on the actual object. Two subvariants

are available: with unicast each remote connection is delegated to the same object

and in contrast, activatable, where a new object is created for each connection

establishment.

This technology is integrated in Java APIs. A bidirectional connection is estab-

lished between client and server, which results in a complicated connection setup.

This approach is restricted to use the Java language. Regarding mobile devices,

the handling of potential connection losses in mobile networks is uncertain, since

RMI requires a constant connection.

Evaluation results

All three technologies are usable as server interfaces. On a glassfish basis it is pos-

sible to implement them as parallel access points for the actor system component.

The last approach RMI, however, expects an excessive effort while developing and

establishing; also the problem of connection losses in an instabile mobile context

must be solved. The RESTful webservice based on JAX-RS offers all functional-

ity, however the development of the client component is more complex, since the

HTTP-requests have to be designed; in addition an interface definition is not au-

tomatically available. That is why a WSDL/SOAP webservice is the first choice for

the access systematic. On server side, the functionality is configurable with anno-

tations in the source code and the correspondingWSDL file as interface definition

is generated automatically after deploying the program on a glassfish server. For

the client side, it is possible to generate classes with tools of the webservice stack

from a WSDL file.

70 MMBnet 2017

2.5 Server and Middleware Technologies as Execution Environment

The execution environment should support Java and a free usage of threads. The

first condition simplifies the usage with Android, while the free thread require-

ment is function critical for an actor system.

Cloud Computing Platforms Cloud computing platforms offer different kinds of

services to third parties to use their system resources. This begins with prede-

fined software for web applications over runtime environments to execute own

programs, to complex network and storage solutions dependent on the offer of the

cloud platform. For the server software the platform as a service is most promis-

ing, as it offers the possibility to run programs on cloud platforms. Therefore, the

application has to be rewritten using platform dependent SDKs. In the following

both platforms Windows Azure [11] and Google’s AppEngine [5] with Appscale [1]

are analysed, if their service supports the actor framework and the access technol-

ogy. The main pitfall impacted by the architecture of the cloud platforms and the

access on the SDK functionality restricts the possibility of thread generation and

management. This causes malfunctions in combination with the actor system.

Google’s AppEngine

This system supports Java as development language. However, extensive trials

with a test implementation revealed massive restrictions when threads are gener-

ated. The Java standard edition (SE) functionality is replaced by aGoogle implemen-

tation, which enables the cloud platform to manage the threads. In the program

code, the class ThreadManager for the generation of new threads according to the
factory design pattern has to be used. Amodification of the akka framework, espe-

cially the class MonitorableThreadFactory was identified as component for the
internal thread generation and rewritten, such that no Java SE functionality is used

anymore, but Google’s implementation. Hence, the thread generation is properly

working, new restrictions occurred; the akka framework calls themethod setDae-
mon on the thread objects internally, which causes Google’s security manager to
throw an exception.

Windows Azure

The documentation revealed, similar to Google’s AppEngine, a restricted thread

usage.

71

Java EE with Glassfish To develop scalable distributed systems, Java enterprise edi-

tion (EE) comes with an API and runtime environment for a simplified develop-

ment. According to the enterprise Java bean (EJB) API, the management of threads

is done by the server component. Server internal management of instances of pro-

gram components may cause an overlapping between runtime environment and

user threads, when a self-defined thread is generated. User threads can be multi-

ply created by a server internal instantiation of program components, what uses

resources and disturbs a clean access of themselves. To solve this problem an archi-

tecture internal singleton EJB can be used. This variant of a session EJB is gener-

ated only once per running application by the Java EE runtime environment, thus

this omits a multiple generation of user threads through internal mechanisms.

However, an access synchronization on the threads is necessary. The actor frame-

work uses Scala’s own executor framework and its own thread management. In a

test implementation the actor system is executed successfully in a singleton EJB.

Moreover, Java’s webservice APIs can be used for an efficient access on a consis-

tent thread management. There is a fracture between actor and server threads,

but both thread managements are logically separated and cause at most a not opti-

mal scheduling of both thread groups inside the JVM. Additional trial implemen-

tations showed pitfalls by using this platform. Internally, glassfish uses a strict

classloader hierarchy. It prevents that different Java EE programs gainmutual code

access on each other. Furthermore, glassfish uses the executor framework of Java,

which prevents to assign self-defined classloader to executing threads. In the trial

environment it is not possible to add self-defined classloaders to the existing hi-

erarchy to load classes from byte arrays; the glassfish internal loading procedure

is designed to circumvent self-defined classloaders. To use self defined classes at

runtime, it is necessary to copy them directly into the classpath folders of the corre-

sponding classloaders or to deploy them together with the program on the server.

Stand-Alone-Server Implementation In this approach, no middleware would be

used. The complete server component would be written manually with the help

of Java’s internal frameworks; this is a burdensome implementation, but the only

one that results in full functionality. The thread management is completely des-

ignable, including the actor framework with configuration files. Without the re-

strictions of a middleware, a construction of a self-defined classloader hierarchy is

72 MMBnet 2017

possible with this architecture, including a self-defined classloader in the execu-

tion environment of the actor framework.

Decision on Used System Finally, two types of systems are capable. The first sys-

tem, which is also the current trial implementation is based on glassfish. Though,

the loading procedure of remote classes is not implementable, this program en-

ables to offload program routines from amobile device. Therefore, the correspond-

ing class files are deployed with the server implementation or copied into the class-

path of the glassfish server. The second system would be a stand-alone-server pro-

gram without middleware technology, enabling full functionality including the re-

mote class loading procedure. The final decision must be this stand-alone-server

program, but the functionality besides the remote class loading is implemented

on a glassfish basis and therefore, trial programs can already be tested.

3 Architectural Design

This section lays the foundation for the first architectural design of the server in

subsection 3.1. Moreover the client generation is described in subsection 3.2.

3.1 The Server Component

The server component implemented on a glassfish basis is separated into two sub-

components. The EJB component, which contains the actor system and all internal

methods for accessing it. And the user access with a web component, which con-

sists of an annotated class using the JAX-WS standard. To simplify deployment,

the software is designed in a way to work with a standard setup of a glassfish server.

Without a database for the trial implementation, all data is only available during

the runtime of an application in the memory. However, it is important to copy the

jar libraries of akka into the domain folder of the glassfish server.

The project is divided into three subprojects:

– dynOff-EJB contains the EJB component of the actor environment. The access

on it is provided by the web component.

– dynOff-Web consists of a webservice for the remote access.

– dynOff-EAR is a project to encapsulate the previous two projects and to generate

a deployable enterprise application archive (EAR) file.

73

The Class Diagram of the Server Figure 3 shows the separation into two container

components, the left one for EJB and the right one for the webservices. The dia-

gram only depicts classes and methods with self defined program logic. Libraries

of Java and akka are not contained for providing a better overview.

Description of the Server Functionality Usage of the server functionality and in-

cluding the akka libraries into glassfish’s classpath, is the last part necessary for

understanding the system. The libraries, including the Scala ones, are available

on the akka.io website and must be separately downloaded to use the server com-

ponent. Alternatively, the project is built with Maven and generates a Docker im-

age, which can be deployed on a Docker enabled server. The implementation re-

lies on akka in version 2.5.3, though no problems should occur with future ver-

sions, as long as there are no changes on the basic functionality. All library files for

akka must be copied into the classpath of the glassfish server. Recommended by

glassfish’s documentation is to include user libraries into the directory domain-
dir/lib. It is also possible to include the libraries into the EAR container, but it
will increase the size of the container and slow down deployment. Executable code

is bound to actors and controlled by messages.

Figure 4 depicts the general system usage in more detail:

1. Generation of actors with the webservice function generateActorFromProps
or generatePreAvailableActor.

2. Transmission of a message to a generated actor via sendMessage or dispatch-
AsyncJob.

3. Reception of amessage object either synchronously or asynchronously via get-
AsyncJobResult.

Actor Generation All actors must inherit the class AbstractActor of akka. All
classes used inside the actors, including the actor and message classes, must be

integrated in the classpath of the glassfish server either on application or on server

level. For the generation of actors with the method generateActorFromProps a
serialised instance of the configuration class Props is needed in a byte array rep-
resentation and in return a string with identification features is generated. This

string is used by the actor for identification. The return string of the method get-
PreAvailableActor has the same functionality. An example implementation is
found in the test actor.

74 MMBnet 2017

...

En
te
rp
ri
se
Ja
va
B
ea
ns
C
on
ta
in
er

..

Ja
va
W
eb
C
on
ta
in
er

.

1

...

1

...

0…
*

..

1

..

1

...

1

...

0…
*

.

1

......

1

....................

1

......................

A
ct
or
R
ef
T i
m
eW

ra
pp

er

.

A
ct
or
R
ef
:A
ct
or
R
ef

tim
eo
ut
:l
on
g

..

Jo
bT

im
eW

ra
pp

er .

jo
b
:O
bj
ec
t

tim
eo
ut
:l
on
g ..

P
ro
ps
P
re
A
va
ila
bl
eW

ra
pp

er

.

pr
op
s
:P
ro
ps

ac
to
rN
am
e
:S
tr
in
g

de
sc
ri
pt
io
n
:S
tr
in
g ..

A
ct
or
en

vi
ro
nm

en
t

.

ac
to
rs
ys
:A
ct
or
Sy
st
em

ac
to
rR
ef
Ta
bl
e
:C
on
cu
rr
en
tH
as
hM
ap

jo
bs
Ta
bl
e
:C
on
cu
rr
en
tH
as
hM
ap

ac
to
rP
re
Ta
bl
e
:C
on
cu
rr
en
tH
as
hM
ap

as
yn
cA
ct
or
:A
ct
or
R
ef

st
or
ag
eT
im
e
:l
on
g

.

ge
ne
ra
te
A
ct
or
P
re
Ta
bl
e(
):
vo
id

gn
er
at
eA
ct
or
Fr
om
P
ro
ps
(p
ro
ps
:P
ro
ps
):
St
ri
ng

se
nd
M
es
sa
ge
(a
ct
or
Id
:S
tr
in
g,
m
sg
:O
bj
ec
t,
w
ai
tT
im
e
:i
nt
):
O
bj
ec
t

di
sp
at
ch
A
sy
nc
Jo
b(
ac
to
rI
d
:S
tr
in
g,
m
sg
:O
bj
ec
t)
:S
tr
in
g

ge
tA
sy
nc
Jo
bR
es
ul
t(
so
ur
ce
ac
to
r
:S
tr
in
g)
:O
bj
ec
t

cl
ea
nu
p(
):
vo
id

ge
tA
ct
or
P
re
Ta
bl
e(
):
C
on
cu
rr
en
tH
as
hM
ap

ge
ne
ra
te
A
ct
or
Fr
om
P
re
P
ro
ps
(p
ro
ps
id
:S
tr
in
g,
tim
eo
ut
:l
on
g)
:S
tr
in
g

.

A
sy
nc
M
ai
lb
ox
A
ct
or
In
iM

sg

.
ac
to
rR
ef
Ta
bl
e
:C
on
cu
rr
en
tH
as
hM
ap

jo
bs
Ta
bl
e
:C
on
cu
rr
en
tH
as
hM
ap

st
or
ag
eT
im
e
:l
on
g

.

to
St
ri
ng
()
:S
tr
in
g

ge
tJ
ob
sT
ab
le
()
:C
on
cu
rr
en
tH
as
hM
ap

ge
tS
to
ra
ge
Ti
m
e
:l
on
g

ge
tA
ct
or
R
ef
Ta
bl
e(
):
C
on
cu
rr
en
tH
as
hM
ap

.

A
sy
nc
M
ai
lb
ox
A
ct
or
J o
bM

sg

.
ac
to
rI
d
:S
tr
in
g

m
sg
:O
bj
ec
t

.

to
St
ri
ng
()
:S
tr
in
g

ge
tA
ct
or
Id
()
:S
tr
in
g

ge
tM
sg
()
:O
bj
ec
t

se
tA
ct
or
Id
()
:v
oi
d

se
tM
sg
()
:v
oi
d

.

A
sy
nc
M
ai
lb
ox
A
ct
or

ex
te
nd

s
A
bs
tr
ac
tA
ct
or

.
jo
bs
Ta
bl
e
:C
on
cu
rr
en
tH
as
hM
ap

st
or
ag
eT
im
e
:l
on
g

ac
to
rR
ef
Ta
bl
e
:C
on
cu
rr
en
tH
as
hM
ap

op
en
Jo
bs
:H
as
ht
ab
le

.

cr
ea
te
R
ec
ei
ve
()
:R
ec
ei
ve

in
itM
sg
R
ec
ei
ve
d(
m
sg
:O
bj
ec
t)
:v
oi
d

jo
bM
sg
R
ec
ei
ve
d(
m
sg
:O
bj
ec
t)
:v
oi
d

re
su
ltM
sg
R
ec
ei
ve
d(
m
sg
:O
bj
ec
t)
:v
oi
d

cl
ea
nU
p(
):
vo
id

.

W
eb
Se
rv
ic
eA

cc
es
s

.

ac
to
re
nv
:A
ct
or
en
vi
ro
nm
en
t

.

gn
er
at
eA
ct
or
Fr
om
P
ro
ps
(p
ro
ps
:b
yt
e[
])
:S
tr
in
g

se
nd
M
es
sa
ge
(m
sg
:J
ob
M
es
sa
ge
):
by
te
[]

di
sp
at
ch
A
sy
nc
Jo
b(
m
sg
:J
ob
M
es
sa
ge
A
sy
nc
):
St
ri
ng

ge
tA
sy
nc
Jo
bR
es
ul
t(j
ob
id
:S
tr
in
g)
:b
yt
e[
]

ge
tP
re
A
va
ila
bl
eP
ro
ps
()
:L
is
t

ge
ne
ra
te
P
re
A
va
ila
bl
eA
ct
or
(p
ro
ps
id
:S
tr
in
g)
:S
tr
in
g

.

W
eb
se
rv
ic
e
fu
nc
tio

ns
:

ge
ne
ra
te
A
ct
or
Fr
om
P
ro
ps

se
nd
M
es
sa
ge

di
sp
at
ch
A
sy
nc
Jo
b

ge
tA
sy
nc
Jo
b

ge
tP
re
A
va
ila
bl
eP
ro
ps

ge
ne
ra
te
P
re
A
va
ila
bl
eA
ct
or

.

W
eb
se
rv
ic
e
fu
nc
tio

ns
:

ge
ne
ra
te
A
ct
or
Fr
om
P
ro
ps

se
nd
M
es
sa
ge

di
sp
at
ch
A
sy
nc
Jo
b

ge
tA
sy
nc
Jo
b

ge
tP
re
A
va
ila
bl
eP
ro
ps

ge
ne
ra
te
P
re
A
va
ila
bl
eA
ct
or

..

Jo
bM

es
sa
ge

.

ac
to
rI
d
:S
tr
in
g

w
ai
tT
im
e
:i
nt

m
sg
:b
yt
e[
]

..

Jo
bM

es
sa
ge
A
sy
nc

.

ac
to
rI
d
:S
tr
in
g

m
sg
:b
yt
e[
]

..

P
ro
ps
P
re
A
va
ila
bl
eM

es
sa
ge

.
ac
to
rN
am
e
:S
tr
in
g

de
sc
ri
pt
io
n
:S
tr
in
g

..

Se
ri
al
iz
at
io
nH

el
pe
r

.

de
se
ri
al
iz
e(
ar
ra
y
:b
yt
e[
])
:O
bj
ec
t

se
ri
al
iz
e
(o
bj
ec
t:
O
bj
ec
t)
:b
yt
e[
]

...........................

Fi
g.
3.
A
n
U
M
L
cl
as
s
di
ag
ra
m
of
th
e
gl
as
sfi
sh
im
pl
em
en
ta
tio
n.
It
sh
ow
s
th
e
m
od
ul
ar
st
ru
ct
ur
e
of
th
e
EA
R
ar
ch
iv
e,
w
hi
ch
co
nt
ai
ns

tw
o
co
nt
ai
ne
rs
:t
he
EJ
B
co
nt
ai
ne
r,
w
hi
ch
is
re
sp
on
si
bl
e
fo
r
ex
ch
an
gi
ng
m
es
sa
ge
s
w
ith
th
e
ac
to
r
en
vi
ro
nm
en
t,
an
d
th
e
w
eb
co
nt
ai
ne
r

th
at
pu
bl
is
he
s
th
e
se
rv
ic
es
vi
a
w
eb
se
rv
ic
e
fu
nc
tio
ns
de
sc
ri
be
d
in
W
SD
L.

75

.................

generateActorFromProps(props)

.

String actorID

...
byte[] props

.

actorID

.......

generatePreAvailableActor(propsID)

.

String actorID

...

String propsID

.

actorID

.......

sendMessage(msg)

.

byte[] response

...

JobMessage msg

.

response

.......

dispatchAsyncJob(msg)

.

String jobID

.....

JobID

.....

getAsyncJobResult(jobID)

.

byte[] response

...

JobMessageAsync msg

.

response

.......

dispatchAsyncJob(msg)

.

String empty

...

JobMessageAsync msg

.Client:.

..

. Client-Stub:. Server:.

syn

....

asy

....

wor

...

Fig. 4. Sequence diagram of communication processes between a client and a

server. The job message msg can be transmitted with three different paradigms:

either syn, which describes a synchronous pattern, asy, which shows the asyn-

chronous communication, or wor, which shows an offloading without a reponse.

76 MMBnet 2017

Message Transmission Message transmission is done by either sendMessage or
dispatchAsyncJob. The first uses synchronous communication and takes a Job-
Message object as encapsulating object for the SOAP transmission. This object
contains an actor identification string, a serialisedmessage object and amaximum

response time. The second method provides an encapsulating object without a

timeout and returns a job identification string, which enables a delayed message

call via getAsyncJobResult. For the case that no response is expected, it is advis-
able to send an empty object as answer from your own actor.

Message Reception With a synchronous communication by sendMessage, a se-
rialised response object is returned directly. If the wait time is expired a Server-
Fault exception is thrown. Using asynchronous communication the response
message must be called with the job identification string with the method get-
AsyncJobResult. If a responsemessage is not available, a ServerFault exception
is thrown, too. For a successful deserialisation and casting into the message class,

it is necessary that the corresponding class files are available on the client and on

the server.

3.2 The Client Access

The implementation on client side depends on the webservice technology with

its access based on WSDL/SOAP. Since the API of JAX-WS was already used for

the preparation of the webservice functionality and is included into the Java SE

standard libraries, the following description is based on it. After deploying the

project on the glassfish server, a WSDL file is available via an URL. With the help

of this file and the tool wsimport, classes and interfaces can be generated, which

can be instantiated into a service object on runtime. On this object the service

functions can be called like methods. The generated artefacts can be divided into

the following categories:

– Message artefacts

Classes formessage transport annotated regarding the Java architecture for XML

binding (JAXB). For each request and response as well as own classes for com-

plex encapsulated content and exceptions. All classes are necessary for the func-

tions.

77

– Helper artefacts

An ObjectFactory class to generate classes regarding the factory pattern and a
package-info class with annotations for setting the namespaces in the trans-
mitted XML code. These classes are not relevant for the functions.

– Stub artefacts

Consisting of an interface with JAX-WS annotated methods for using the web-

service and a factory class for generating stub instances, which can be used on

the former mentioned interface. Both classes are function critical.

3.3 An Actor Example

With the trial program code an example actor is delivered, which implements a

simple echo call. It consists of two classes, a TestActor, which is the actor class
and a TestMessage as message class, which expects an actor and transmits it.
Instances of TestMessage contain a String that the actor sends back as response.

4 Conclusion & Future Work

The concepts of remote usage of the akka framework for dynamic code upload

from a mobile device were described and a sample architectural implementation

is made publicly available at the github repository whatever4711/dynOff1. This

platform is hopefully used for dynamic code offloading experiments soon. A great

advantage is the usage of the akka.io framework, which simplifies outsourcing

user code, since Java libraries and resources are used, which offer a widespread

area of application. Furthermore, akka with its actor model eliminates any concur-

rency issues when it is deployed on a server. Moreover, akka offers a great potential

by configuring its execution environment andmay even be distributed onto a clus-

ter of servers to be more efficient. Thus, the offloading procedure sounds useful

with the help of a server, it is also possible to run the actor system itself on the

mobile device by using a background service, too. Nevertheless, a potential area

of application is to avoid the bottleneck of a mobile network by outsourcing im-

portant communication structures onto a server with high-speed network access.

However, security issues were not focused until now and should be analysed, es-

pecially regarding the WSDL access of the server communication. Another point

1 https://github.com/whatever4711/dynOff

78 MMBnet 2017

is a migration of the Java EE functions into a Java SE, since Android devices are

not supporting a Java EE environment. Finally, with the stand-alone-server imple-

mentation it should be possible in future to extend it with own classloader func-

tionalities, such that realtime code offloading is enabled.

References

1. AppScale Systems Inc. AppScale, 2013.
2. Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.
CloneCloud: Elastic Execution Between Mobile Device and Cloud. In Proceedings of
the Sixth Conference on Computer Systems, EuroSys ’11, pages 301–314, New York, NY,
USA, 2011. ACM.

3. Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,
Ranveer Chandra, and Paramvir Bahl. MAUI: Making Smartphones Last Longer
with CodeOffload. In Proceedings of the 8th International Conference onMobile Systems,
Applications, and Services, MobiSys ’10, pages 49–62, New York, NY, USA, 2010. ACM.

4. H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya. Mobile code offloading:
from concept to practice and beyond. IEEE Communications Magazine, 53(3):80–88,
March 2015.

5. Google. Google App Engine, 2013.
6. Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formal-
ism for artificial intelligence. In Proceedings of the 3rd international joint conference on
Artificial intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973. Mor-
gan Kaufmann Publishers Inc.

7. IBM. Understanding the Java ClassLoader, 2011.
8. Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. Cuckoo: A Com-
putation Offloading Framework for Smartphones. In Martin Gris and Guang Yang,
editors,Mobile Computing, Applications, and Services, volume 76 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering,
pages 59–79. Springer Berlin Heidelberg, 2012.

9. S. Kosta, A. Aucinas, Pan Hui, R. Mortier, and Xinwen Zhang. Thinkair: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading. In
2012 Proceedings IEEE INFOCOM, pages 945–953, March 2012.

10. Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Ma-
chine Specification - Java SE 8 Edition, 2015.

11. Microsoft. Windows Azure, 2013.
12. Oracle. Java EE 6 Tutorial, 2013.
13. Typesafe Inc. akka.io, 2013.
14. Christian Ullenboom. Java ist auch eine Insel Einführung, Ausbildung, Praxis. Rhein-

werk, Bonn, 2016.

79

