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Abstract: 

Deep Learning (DL), Artificial Intelligence (AI), Machine Learning (ML): Three 
terms, often used synonymously, that stand for a new kind of intelligent systems. 
Companies worldwide invest financial and human resources to tap the potential 
and promises of these technologies for themselves: be it in the establishment of data 
science departments or of powerful computer clusters. The automotive industry is 
no exception – thereby, with a prominent media focus on “autonomous driving”. 
However, this is not the only application area for Artificial Intelligence in the au-
tomotive domain. The use of machine learning is also researched and applied in 
automotive production plants: From the use in the body shop all the way to predic-
tive estimations of what proportion of a component is damaged. In this contribution, 
we discuss the use of Artificial Intelligence in practical examples of automotive 
production and point out which challenges exist and which approaches are promis-
ing. At the same time, we discuss and evaluate the potentials and challenges. 
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1 Introduction 

The digital transformation in the early 21st century has a significant impact on mod-
ern society and is accompanied by phenomena like the Internet of Things (IoT) and 
the fourth industrial revolution (I4.0) (Federal Ministry of Education and Research, 
2013). The development and introduction of modern digital technologies – above all 
artificial intelligence – lead to high expectations among companies in all branches 
of industry. As one of the most advanced industries in digitizing its production envi-
ronments, the automotive industry has great potential for value-added approaches 
based on artificial intelligence (AI) and machine learning (ML) (Exone, 2018). AI 
and ML have seen great success in domains like computer vision (CV) (Krizhevsky 
et al., 2012; He et al., 2016) and natural language processing (NLP) (Graves et al., 
2013; Cho et al., 2014) and are increasingly exploited for applications in the classi-
cal production technology sector, not only, but especially of the automotive indus-
try. Here, manufacturing processes from prototype and series production scenarios, 
which are generally subject to a number of restrictions imposed by the requirements 
placed on production machines and manufactured products, demand careful adapta-
tions of today’s AI and ML methods for the successful transfer to these complex 
scenarios. Some relevant challenges of such scenarios regarding data is the assur-
ance of its quality, its security and its accessibility, i.e. the possibility to collect rel-
evant data. Specifically, the limited possibility to interfere with specific process 
steps and to take the necessary precautions when dealing with the requirements of 
stable and clocked series production processes is a major concern for the successful 
transfer of data driven AI and ML methods. Another frequently encountered chal-
lenge is the beneficial utilization of domain expert knowledge for AI and ML meth-
ods. In many cases, domain experts make decisions based on years of experience 
and human intuition. Formalizing this experience and intuition often significantly 
improves the performance of an AI/ML model or even enables its beneficial use. 

In this paper, we demonstrate the transferability of AI and ML methods to industrial 
scale challenges. Therefore, we present and discuss three different scenarios from 
the automotive industry and the application of AI and ML approaches to contribute 
to these scenarios. The first use case addresses the task of forecasting sensory time 
series signals acquired from a deep drawing tool to predict process failures, i.e. 
cracks in the manufactured metal sheets, in order to react to possible process fail-
ures before they actually occur. The second use case addresses the task of predicting 
the curvature of windshields manufactured along a multi-step production line based 
on process parameters in order to complement the posterior manual quality control 
process at the end of the line by a data driven a-priori estimation of the windshield’s 
quality. Last, the third scenario addresses the reconstruction of real-world sensory 
time series signals from internal control units in a prototype vehicle in order to re-
place these sensors by soft sensors that provide the same information in series pro-
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duction vehicles without the need of the actual physical hardware. We further dis-
cuss the potential to generalize our transferred approaches to other scenarios with 
similar problem settings and identify some key considerations to be made for a suc-
cessful use of AI and ML methods in industrial setups. 

2 Use Case: Deep Drawing of Car Body Parts 

Deep drawing is a sheet metal forming process in which a sheet metal blank is radi-
ally drawn into a forming die by the mechanical action of a punch (cf. Figure 1) 
(DIN 8584-3, 2003-09).  

Figure 1: Schematic illustration of the deep drawing manufacturing process.  
Left: before the deforming process. Right: after the deforming process 

The most frequently occurring process failure in deep drawing is the accidental 
formation of cracks in the metal sheet. Besides economic aspects of producing 
waste products, such process failures pose the much more critical problem that the 
deep drawing tool may be damaged in the process. Currently, the quality of the 
manufactured metal sheets is assessed manually by human workers at the end of the 
line. If a cracked sheet is identified, it is sorted out and recycled, however, no data 
about the quality control process is saved and the cause of the crack is not deter-
mined. Therefore, the occurrence of cracks in the metal sheets and potentially dev-
astating consequences for the deep drawing tool can only be identified after the ac-
tual manufacturing process, however, an a-priori prediction about the likelihood of 
process failures is required to react to these failures before they happen in order to 
protect the deep drawing tool from critical damage.  

In order to address this issue, first the deep drawing tool was enhanced with strain 
gauge sensors and flange retraction laser sensors that acquire data during the deep 
drawing process (cf. Figure 2). 
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Figure 2: First: exemplary time series data of a good stroke acquired from the deep drawing tool. 
Second: exemplary time series data of a bad stroke acquired from the deep drawing tool. Note 

that the sudden decrease of the strain gauge sensor data likely indicates a crack in the metal 
sheet. Additionally, the distance measured by the flange retraction laser plateaus before the end 

of the stroke and is much smaller as compared to the good stroke. 

The acquired data contains information about whether a crack occurred in the metal 
sheet and can be used for predictive analysis in order to forecast process failures. 
Second, we utilized a combination of two Long-Short-Term-Memory (LSTM) neu-
ral networks that were trained on the acquired sensory data to estimate whether a 
deep drawing process will result in a good product or a waste product and to fore-
cast the sensory signals to predict the occurrence of process failures, i.e. cracks in 
the metal sheet. 
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2.1 State of the Art 

Prominent research fields in the deep learning domain that largely utilize LSTM 
based neural network architectures to analyze time series data are natural language 
processing (NLP), computer vision (CV) and anomaly detection. In addition to the 
successful use of LSTMs for CV and NLP tasks, there is a number of applications 
using standard LSTMs for industrial use cases. For example, in the field of process 
control engineering LSTMs are used to predict package signatures of field-devices, 
detect anomalies in the communication and finally identify problematic processes 
(Feng et al., 2017). Furthermore, in the field of chemical process control, LSTMs 
are utilized as a dynamic soft sensor modelling method to deal with complex non-
linearities and to predict sensory time series data of coal gasification online (Tsing-
hua et al., 2017). An example much closer to the field of mechanical engineering 
and production engineering utilized LSTM based analysis of industrial internet of 
things equipment for the regression of 33 sensors of a main pump in a power station 
(Zhang et al., 2018). Despite the numerous applications that utilize LSTMs in dif-
ferent fields, to the best of our knowledge, there are no realizations to transfer bidi-
rectional LSTM networks optimized for frequency-based anomaly detection to 
manufacturing processes. We adopt the combination of a wavelet transformation-
based approach for feature extraction and a bidirectional LSTM based neural net-
work to sensor time series data for anomaly prediction and regression analysis in 
manufacturing. 

2.2 Methods and Results 

In a first step, we supported the manual quality control process at the end of the line 
by an automated and data driven solution to identify cracks right after the deep 
drawing process preparing the data for further training. We utilized the labeled data 
to train a supervised learning model to identify cracks and predict their severity and 
occurrence in time before they actually happen. 

label 
true 

∑ 
good bad 

predicted 
good 604,25 2,4 606.65 

bad 36,75 21,6 58.35 

∑ 641 24 665 

Table 1: Contingency table containing the averaged results across the threefold cross-validated 
performance evaluations  

Figure 3 shows the analysis workflow starting with preprocessing the raw sensory 
data from the strain gauges and the flange retraction lasers. The preprocessed data 
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was cut before all the cracks occurred so that the model’s input has no information 
about when a crack occurred or how severe it was. The cut data is fed into a classi-
fier, which estimates the likelihood of a particular stroke to cause a crack in the de-
formed metal sheet. That estimation is fed together with the preprocessed strain 
gauge sensory data into a regression model that forecasts the strain gauge time se-
ries, thus estimating the point in time and the severity of the predicted crack. 

 
Figure 3: Schematic illustration of the architectures of the classifier model  

and the regression model 

Figure 4 shows the architectures of the LSTM classifier and the LSTM regressor. 
The classifier contains three LSTM layers with hyperbolic tangent activation and 30 
units in each layer and a binary classification output layer with SoftMax activation. 
The regressor contains two bi-directional LSTM layers with hyperbolic tangent ac-
tivation with 128 units each and a single output node, which returns 412.5 millisec-
onds forecast of the strain gauge sensory data. Figure 3 shows the confusion matrix 
corresponding to the evaluation of the classifier’s performance in the test data set 
which contained 665 strokes in total. The classifier reached an F1 score of 0.9686, 
indicating a good classification performance despite the strong unbalance of both 
classes. 

 
Figure 4: Schematic illustration of the data analysis workflow to forecast the occurrence of cracks 

in the manufactured metal sheets 
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Figure 5 shows two examples for the prediction of the learning models. The model 
accurately forecasts the ime series of the strain gauge signals allowing to reliably 
estimate whether a stroke is likely going to produce a good sheet or a cracked sheet. 

Figure 5: Two exemplary prediction results of the LSTM model. First: a good stroke. Second: a bad 
stroke, which caused a crack in the metal sheet. The occurrence of the crack is correctly predict-

ed by the regression model. 

3 Use Case: Windshield Production for Automobiles 

The production of windshields for automobiles is a multi-step production process 
that comprises highly different and complex processes such as glass pre-processing 
(e.g. cutting, grinding), glass forming in a high temperature furnace, and the assem-
bly of windshields. The very last step involves the quality control procedure where 
process experts manually measure quality-related criteria such as geometry devia-
tions or optical reflection of the windshields. Due to the complex nature of the pro-
duction process and the fact that quality criteria are measured at the end of the pro-
cess, quality assurance is a challenging factor in the windshield production. In addi-
tion, the domain is facing constantly increasing requirements: latest trends such as 
Head-Up-Displays (HUD) require both higher qualities and lower manufacturing 
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tolerances. In order to meet these challenges, we present a state-of-the-art machine 
learning based solution to support the control of the windshield forming process. 
Based on data gathered by sensors in the process (e.g. furnace temperatures), pre-
diction models are used to identify correlations between process variables and to 
make inline predictions of the much later windshield quality (here: geometry devia-
tions) while the windshields are being produced. 

The presented approach lies in the field of predictive analytics, which aims at creat-
ing empirical predictions by means of statistical or empirical models (Galit, Kop-
pius, 2001). In the field of production and manufacturing, predictive models are 
gaining increasing attention and related work has shown their effectiveness when 
applied to machining processes (Seung-Jun et al., 2014). One application domain of 
predictive modeling is predictive quality, where the aim is to use data driven meth-
ods for the prediction and optimization of processes with respect to certain quality 
related criteria (Siam et al., 2013). While most of the state-of-the-art solutions lie in 
the field of control engineering and optimal control theory, new techniques based on 
machine learning are arising. Especially supervised machine learning models such 
as decision trees, support vector machines or artificial neural networks have been 
proven successful to predict quality criteria of manufacturing processes based on 
process parameters (Choudhary et al., 2009; Hansson et al., 2016; Tercan et al., 
2017). In the following, we present a similar approach for predictive quality based 
on sensory and control data in a windshield forming process. 

3.1 Methods and Results 

We aimed to predict geometry deviations of windshields (measured at the end of the 
forming process) during the bending phase based on sensory and control data. For 
this purpose, at first the data of over 40 quantities relating to the quality of the 
windshield in an unknown fashion are collected, cleaned and aggregated. These 
quantities include measured temperatures (furnace chambers, shop floor), parame-
terizations of the process (pressure settings, cycle times) as well as the windshield 
temperature in the furnace (measured by an infrared thermal line-scanner). Addi-
tionally, we collected geometry deviation measurements of hundreds of windshields 
during several production campaigns over the course of a month. Figure 6 shows 
the geometry deviations for two selected campaigns in a box plot, each with approx. 
250 windshields. 
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Figure 6: Box plot of geometry deviations from two production campaigns 

A significant difference in the distribution of the collected data between the cam-
paigns (positive vs. negative deviations) is evident. One of the main questions is 
whether this variation between windshields can be depicted in the process data as 
well. Thus, we subsequently conducted correlation analyses (pearson correlation) to 
identify relationships between process and quality data. Figure 7 depicts scatterplots 
between four selected variables that are highly correlated to the geometry deviation. 
It clearly shows basic principles and phenomena of the glass forming process: the 
higher the temperature of the windshield in the furnace becomes the more it bends 
(positive deviation). Based on these findings, uncorrelated variables are removed 
from the data basis, whereas the most correlated ones serve as the basis for predic-
tion. 

Since the target variable geometry deviation is a numerical measurement, we make 
use of supervised machine learning in terms of regression models. The models are 
trained on approximately 400 data records, each representing a windshield with 
twelve variables (e.g. chamber temperature, the windshield temperature). The eval-
uated methods are: an artificial neural network (Nasrabadi, 2007), a 3rd degree 
Bayesian polynomial regression (James et al., 2013), a random forest (Liaw, Wie-
ner, 2002) and a gradient boosted regression tree (Tianqi, Guestrin, 2016). All 
methods are evaluated with 10-fold-cross-validation by calculating the coefficient 
of determination (R²) from their predictions. 
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Figure 7: Scatterplots with linear regression curve of different process variables (chamber tempera-
ture, glass temperature in furnace, outdoor temperature and humidity) with corresponding geom-

etry deviations. The plots represent windshields over a single campaign 

R² is defined as follows (Tianqi, Guestrin, 2016): 

𝑅ଶ ൌ 1 െ  
∑ ሺ𝑦௜ െ  𝑦ොሻଶ௡

௜ୀଵ

∑ ሺ𝑦௜ െ  𝑦തሻଶ௡
௜ୀଵ

where n is the number of observations in the test set, y the real output value (geome-
try deviation) of an observation, 𝑦ത the mean of these values, and 𝑦ො the predicted 
output from a model. The best possible score is 1.0, whereas negative values can 
also occur. 
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Table 2 shows that the predictions of the geometry deviations yield high accuracies. 

Model R²-Score 

Artificial Neural Network 0.932 
Bayesian Regression 0.924 
Random Forest 0.919 
Boosted Tree 0.916 

Table 1: Comparison of different prediction models with respect to the final test score. 

The best performing model is a neural network that consists of one hidden layer 
with 50 neurons with the hyperbolic tangent activation function. It obtains a R²-
Score of 0.932, which shows that the network can predict the (future) geometry de-
viations of windshields based on the process data. In fact, the high score as well as 
Figure 6 indicate that the model captures the geometric variations very well. The 
figure illustrates the predictions by comparing the real geometry deviations as well 
as the predicted ones in a test set of 75 randomly selected windshields. Interestingly, 
there exist also some major false predictions (e.g. test data point 38 in Figure 6) 
where the model itself predicts an overbending (positive deviation) of the wind-
shield while the real outcome was just the opposite. The correct prediction of the 
bending direction is critical, since the prediction itself founds the basis for an auto-
mated control in later process phases. Nonetheless, in 95 % of all cases the model 
correctly predicts this direction. 

We conclude that the quality of automotive windshields can be predicted within the 
production process by means of supervised machine learning models (i.e. artificial 
neural networks). The results provide a basis for an autonomous online regulation of 
the process, i.e. the predictions will be fed back to the regulation system automati-
cally, which can react to predicted failures and immediately compensate fluctua-
tions by adjusting process parameters such as furnace temperatures to minimize up-
coming quality deviations in a targeted manner. 

4 Use Case: Soft Sensors for Series Production Vehicles 

Modern car prototypes are equipped with a large number of sensors that acquire 
data during various test runs under different test conditions and on different test 
tracks. The acquired data yields information about the state of the car during its op-
eration and specifically about the strain on particular components that are enhanced 
with e.g. strain gauge sensors. The live data bears great potential and extends the 
accessibility of information during the lifecycle of specific components from peri-
odic maintenance appointments to their daily use. However, due to the large number 
of single components in modern cars, transferring this approach to series production 
vehicles would require considerable changes of the production lines with new pro-
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duction steps and additional quality control measures. In order to harness the poten-
tial of such sensors and avoid additional hardware in series production vehicles at 
the same time, we propose to replace the real sensors with virtual sensors or soft 
sensors that reconstruct the real-world signals from the internal control units. 

4.1 State of the Art 

The concept of soft sensors is widely used in chemical industrial scenarios where 
their most frequent case of application is due to the lack of possibility to place real 
sensors within some area of interest of an experimental setup, e.g. within a tank 
filled with acid liquid. For similar reasons, soft sensors are also widely used for the 
system control of combustion processes in power plants (Kugler et al., 2014). A 
domain closer to the domain of mechanical engineering is the domain of plastics 
processing, where soft sensors based on artificial neural networks are used for 
online adjustment of process parameters to improve energy consumption, and prod-
uct quality (Kugler et al., 2013; Kugler et al., 2012). To the best of our knowledge, 
there is no realization of soft sensors to acquire live data from prototype vehicles to 
gain more detailed insights about the lifecycle of specific kinematic components 
and how these components are stressed during the use of the vehicle. 

4.2 Methods and Results 

We propose an approach that reconstructs the sensor signals from internal control 
units that are installed in every series production vehicle. We utilize extreme gradi-
ent boosting (XGBoost) (Liaw, Wiener, 2002), a popular machine learning algo-
rithm that has been proven to be an excellent solution for many learning problems 
winning a number of highly decorated Kaggle challenges, to reconstruct the force 
and the torque that is exerted on specific components of a vehicle’s axle kinematics. 
Figure 9 shows the sensory time series data that poses the basis for the learning 
problem. The black signals stem from different internal control units while the blue 
signal is an example of an external signal that needs to be reconstructed. All 
timeseries are plotted on the same time scale and in most cases show a periodic 
course, which comes from the periodicity of the test track on which the data was 
acquired. The darker grey areas correspond to the first five rounds on the test track 
and are used as training data while the lighter dark area is the test data, i.e. the 
learning model is supposed to learn from five rounds on the test track how the 
torque on the drive shaft in the sixth round unfolds. The prototype vehicle with 
which the data was acquired provided 79 internal control units, which form the ba-
sis for the reconstruction task. Figure 8 shows a schematic illustration of the analy-
sis workflow. 
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Figure 8: Schematic illustration of the data analysis workflow. 

Figure 9: Illustration of the sensory data that is the basis for the learning problem. 
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In a first step, we selected a subset of these 79 signals based on the significance of 
the correlation between the internal signals and the external signal. Furthermore, we 
considered temporal delay between the signals by calculating the cross-correlation 
and removing any possible time lag. Thus, every external signal is reconstructed 
from a specifically chosen subset of internal signals. In a second step, the data was 
cleaned from electrical noise in order to extract frequency components in the data 
relating to oscillations of the vehicle’s chassis. Figure 10 shows an example of the 
model’s prediction for two different test tracks. While the overall trend and most of 
the different frequency components of the original signal can be reconstructed relia-
bly, there are some minor features contained that are not properly fit by the learning 
model. This is likely due to the lack of information contained in the correlation be-
tween the original control unit signals and the external sensor signal that is recon-
structed. 

 
Figure 10: Two exemplary prediction results on two different test tracks. 

5 Summary and Conclusion 

The advanced state of the digitization in the automotive industry poses great poten-
tial for data driven approaches utilizing AI and ML methods to tackle typical prob-
lems of modern production scenarios. We presented three exemplary use cases from 
different domains demonstrating the transferability of such methods. 

In the first use case, we forecasted sensory time series signals acquired during the 
deep drawing of car body parts for process failure prediction. The timely prediction 
of such a failure, a cracked meta sheet, allows to preemptively react and stop the 
process to protect the deep drawing tool from potentially critical damage. The inten-
tion to forecast time series data to predict the further course of production processes 
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is highly desirable many other scenarios. The utilized architecture of LSTM net-
works is easily transferable to such scenarios after the adaptation of the prepro-
cessing steps and the model’s hyperparameters according to the scenario specific 
data. 

In the second use case, we predicted the quality of automotive windshields by 
means of machine learning models based on data gathered in previous process steps. 
We found that the collection and aggregation of relevant process data such as the 
glass temperature is critical for the success and the predictive performance of the 
models. The work represents a successful data driven predictive quality approach 
that complements the manual quality control at the end of the production line. It 
serves as a basis for an autonomous AI-based predictive regulation of this multi-
step production process. 

In the third use case, we reconstructed sensory time series signals from internal con-
trol units in prototype vehicles to replace these hardware sensors by soft sensors in 
the series production vehicles. We found that the best reconstruction performance 
for different sensors was dependent on the choice of control unit signals as input for 
the regression model. The intention of harnessing the potential of sensory data ex-
ploiting complex patterns of correlations between single sensors to create a soft sen-
sor is highly desirable in scenarios in which a hardware sensor cannot be installed 
due to environmental reasons such as extreme temperatures in furnaces or very 
high/low pH-values in liquids, due to economic considerations or simply is not de-
sirable to be installed to avoid increased maintenance efforts. 

Although the benefits of artificial intelligence are evident in the use cases and be-
yond, the introduction and eventual sustainable use of such systems is still rare ra-
ther than standard. The reasons for this are manifold and are not only of a technical 
nature. For instance, despite the advanced state of digitization, the automotive in-
dustry suffers from a continuous struggle to overcome traditional habits of past de-
velopments in the industry that made it as successful as it is nowadays. The sustain-
able implementation of new technologies such as AI and ML requires the adaptation 
of traditional roles and established structures as well as the acceptance of such new 
technologies on a technical and organizational level. At the same time, the high 
standards in terms of quality and efficiency that were a major factor for the past de-
velopments of the industry need to be maintained. Besides technical and organiza-
tional aspects, acceptance of new technologies and trust in their benefits rather than 
fear of the consequences of their adoption needs to be gained on a human level es-
pecially when the debate in science and the media are so diverse as is the case for 
artificial intelligence. 
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