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Cleveland’s (1984) introduction of the dot plot to the scientific community dates 
back more than 30 years. Its clarity, flexibility, and efficiency make it a useful 
tool that is applicable to a wide range of descriptive and inferential analyses. Yet, 
this graph type has not gained the currency it deserves; in fact, it appears to be 
unknown to most researchers (Jacoby 2006; Keen 2010). This paper presents the 
dot plot and brings together various extensions that have emerged over the last 
30 years. Advantages over alternative chart types are illustrated and design 
options and recommendations for the display of more complex data sets are 
discussed. The application of dot plots to quantitative data in linguistics is 
demonstrated, focusing on examples from corpus linguistics, meta-analysis and 
statistical modeling. The final sections reflect on important limitations of this 
display type and refer the reader to software for the implementation of dot plots. 
An online appendix provides a brief R tutorial as well as templates for Microsoft 
Excel, which allow for easy production of dot plots by entering data into 
spreadsheet templates. 

1. Introduction

Graphs are indispensable tools in quantitative research since they reveal 
structure in the data in an effective and accessible way. A functional 
distinction is often made between graphs for data analysis and data 
presentation (Fienberg 1979; Schmid 1983). Graphing in data analysis 
serves to communicate between researcher and data. It is an iterative 
process and involves drawing many displays to gain different perspecti-
ves on a data set (Unwin 2015). Presentation graphs, on the other hand, 
aim to effectively communicate findings to an audience. To this end, 
principles of visual perception should guide the choice of graph type and 
graphical parameter settings to obtain an effective display.  

This paper introduces the dot plot (Cleveland 1984), a display method 
suitable for both data analysis and presentation. It is an (unjustly) 
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underutilized graph type that appears to be unfamiliar to most researchers 
(Jacoby 2006; Keen 2010). Its conceptual simplicity, however, makes it a 
versatile tool for many types of statistical analyses. The design of the dot 
plot is inspired by insights gained from research on visual perception, the 
aim being an optimization of the decoding of quantitative information. 
There are also several practical advantages compared to other more 
widely used chart types, such as the bar chart. It is the aim of this paper 
to demonstrate the usefulness and added value of the dot plot and argue 
for its routine usage in quantitative research (for examples of their applica-
tion in linguistic research see Werner & Fuchs 2016; Krug et al. 2016; 
Schützler forthcoming). 

After an outline of the theoretical background on graphs in scientific 
research, Section 3 introduces the simple dot plot, including the relevant 
terminology and a number of extensions for more complex data sets. 
Next, advantages over alternative chart types are summarized and il-
lustrated. Section 5 discusses design options and gives recommenda-
tions on the construction of dot plots. Applications to linguistic data 
analysis are demonstrated in Section 6, including usage in simple meta-
analyses and in the investigation of binary and frequency outcomes in 
corpus linguistics. The final sections reflect on the limitations of dot 
plots and discuss their implementation in R and Microsoft Excel. An 
online appendix includes brief tutorials for dot plots in R and spread-
sheets for their implementation in Excel. 

2. Theoretical background

The discussion and comparative evaluation of graph types can build on 
theoretical insights gained across a wide range of disciplines. These 
include exploratory data analysis (Tukey 1977), experimental research on 
graphical perception (Cleveland 1993), psychology (Wertheimer 1938) and 
neuroscience (Kosslyn 2006). This section aims to lay a conceptual and 
terminological foundation and elaborates on four aspects: (i) the purpose 
of statistical graphs, (ii) the active process of decoding information from a 
graph, (iii) a model of graphical perception, and (iv) psychological 
principles of graph perception and design. Key terms are italicized 
throughout the paper. 
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The purpose of graphs 
Tukey (1993: 2) concisely states the “true” purpose of graphs: first, 
graphs are not meant to communicate precise values, but are rather 
semi-quantitative; exact numbers should be provided in tables. Second, 
graphs are for comparisons. As pointed out by Tufte, “at the heart of 
quantitative reasoning is a single question: Compared to what?” (1990: 
67, emphasis in original). Third, graphs are for impact on the viewer – 
important information must be easily discernible. In short, the purpose 
of a graph is to “force” the viewer to make key comparisons of interest in 
a semi-quantitative manner. According to Tukey (1993: 3), such semi-
quantitative comparisons yield statements like “is way above”, “is above”, 
“is a little above”, “is almost equal to/is almost on”, “is a little below”, “is 
below”, “is way below”. 

Decoding information from a graph 
In order for such semi-quantitative comparisons to be made, the viewer 
must formulate a conceptual question, a piece of information to be 
extracted from the graph (Pinker 1990: 94). In other words, not every 
piece of information can be forced upon the viewer; rather, he or she 
plays an active role in decoding information from a display. This 
operation can be conceived of as a two-step process (Ware 2013: 139). 
First, a visual query is formulated, which identifies the problem to be 
solved or question to be answered. The second step is the visual search, 
the decoding of the display in response to the query, whereby the viewer 
identifies relevant patterns in the display. The success of a visual display 
thus also depends on the viewer (and data analyst), who must know 
where to look and what to look for.  

A model for graphical perception 
The visual search is an active process guided by principles of visual per-
ception. Based on experimental research, Cleveland (1993) proposed a 
model for graphical perception. It introduces a number of useful terms 
for the description of displays and the mental operations involved in 
decoding information. Graphs encode quantitative and/or categorical 
variables. Quantitative variables yield values or measurements; categori-
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cal variables (binary, nominal and ordinal) assign observations to diffe-
rent groups or categories. The displayed content of a graph can be divi-
ded into physical and scale information. Physical information refers to the 
ink (or pixels) shown, excluding numeric and category labels (i.e. num-
bers on the axes and labels in the key). Such labels provide scale informa-
tion and assign numbers (in the case of quantitative variables) and labels 
(for categorical variables) to the physical information in the display. Ac-
cording to Cleveland’s (1993) model, graphical perception involves two 
mental operations: (i) pattern perception, which refers to the decoding of 
physical information, and (ii) table look-up, which refers to the decoding 
of scale information. Pattern perception in turn involves three visual oper-
ations: (i) detection, the recognition of physical elements, (ii) assembly, the 
grouping of elements belonging to the same category, and (iii) estima-
tion, the comparison of visual elements.  

Psychological principles 
Pattern perception is governed by general principles of cognition; these 
help explain how humans decode visual information and thus inform 
graph construction. Kosslyn (2006) formulates eight psychological 
principles of effective graph design. These include the audience-oriented 
principles of relevance (show only relevant information) and appropriate 
knowledge (take into consideration the prior knowledge of the audience). 
Concerned with the visual appearance of the graph are the principles of 
salience (prominent elements receive more attention), discriminability (el-
ements have to be sufficiently different to be distinguishable) and   percep-
tual organization. The last set of Kosslyn’s principles focuses on commu-
nication and includes the principles of compatibility (form must match 
content), informative changes (changes in form must signal changes in 
content) and capacity limitations (do not overload your audience’s working 
memory). Of particular importance is the principle of perceptual   organi-
zation, which includes the notion of pre-attentive attributes of stimuli, 
which affect detection and discriminability, and Gestalt laws of perception 
(Wertheimer 1938; Ware 2013: 181–199). The latter facilitate assembly – 
that is, the selective perception of entities belonging to the same group. 
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Gestalt laws include the law of similarity (similar elements will be grouped 
together), proximity (close elements will be grouped), good form (regular or 
symmetric shapes are perceived as single units) and connectedness (linked 
elements will be grouped; Palmer & Rock 1994).  

Theoretical insights into graph design and perception provide a useful 
foundation for the informed application of statistical graphs in quantita-
tive research. As such, they can guide the choice between different graph 
types and design options for the display of a particular data set.  

3. The dot plot

The dot plot was introduced by Cleveland (1984) as a graphical display of 
labeled data. Figure 1 shows a simple dot plot of the relative frequency of 
the 10 most frequent nouns in the British National Corpus (BNC; Leech et 
al. 2001). The horizontal scale encodes a quantitative variable (frequency), 
the vertical scale a categorical variable (noun); light horizontal lines 
connect the data points with their labels. Labeled data – that is, numeric 
values with labels – are common in data analysis. They occur in the form 
of raw data (e.g. individual measurements or counts in a corpus), sum-
mary statistics (e.g. measures of central tendency/location and dispersion/ 
spread, percentages or other effect sizes) and model parameters (e.g. re-
gression coefficients and information criteria). Dot plots can therefore be 
put to use in a wide range of descriptive and inferential analyses.  

Figure 1. A simple dot plot showing the relative frequency of the 10 most 
frequent nouns in the BNC; data from Leech et al. (2001) 



106 

Simple dot plots can be extended. Figure 2 illustrates a number of addi-
tional features and defines the relevant terminology (largely borrowed 
from Cleveland 1994: 21–22). The data are from a study comparing British 
(BrE) and American English (AmE) newspaper texts regarding the prefer-
ence for (orthographically) regular verb forms (e.g. learned vs. learnt) in 
simple past and past participle contexts (Levin 2009). 

The main panel compares two groups (BrE vs. AmE) using different 
plotting symbols. These are superposed – that is, plotted on the same line – 
and labeled in the key at the top (arranged to match the major pattern in 
the plot). Data labels on the vertical scale list the verbs, which are ordered 
by relative frequency in BrE, increasing from bottom to top. The (optio-
nal) appended panel on the right expresses the comparison between BrE 
and AmE directly by plotting the differences. A reference line marks zero, 
which signals no difference, a relevant reference value. Tick marks point 
outward and are also drawn at the top to facilitate table look-up. Differ-
ence estimates are indicated by filled circles and include error bars  show-
ing 95% confidence intervals as a measure of statistical uncertainty. 
Error bars are explained in the scale label.  

Figure 2. Elements of the dot plot: Terminology and style of presentation borrow 
heavily from Cleveland (1994); data from Levin (2009) 
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4. Advantages

The most common graphical display of labeled data is the bar chart, 
which has three variants: the simple, grouped, and stacked bar chart. It 
can be replaced by the dot plot in many of its established uses, which 
often produces a more effective display. This section discusses ad-
vantages of dot plots over bar charts.  

Aesthetic minimalism 
One of the principles of graphical design outlined by Tufte (2001) is the 
minimization of redundant visual information. Redundancy is expressed 
with the data-ink ratio, the ratio of “the non-erasable core of a graphic” to 
“the total ink used to print the graphic” (2001: 93). Using a single pro-
minent symbol to show the data, the dot plot avoids superfluous visual 
elements. While there is no empirical evidence for the superiority of a 
high data-ink ratio (Spence 1990; Gillan & Richman 1994; Siegrist 1996), 
eliminating redundant ink yields a less cluttered graph and thus clear 
vision. Especially in multivariate displays this is an advantage over 
grouped or stacked bar charts. Figure 3 shows two variants of a grouped 
bar chart of Levin’s (2009) results, both of which produce a more clut-
tered display compared to Figure 2. 

Horizontal format 
By convention, quantities are often plotted vertically. A horizontal orien-
tation, however, yields four practical advantages: (i) the data labels are 
shown horizontally and are thus easy to read; (ii) long data labels do not 
require abbreviations or rotation (cf. Figure 3), which may slow down or 
even interfere with the decoding of information; (iii) the display can be 
extended comfortably to show a large number of data points (cf. Figure 
9); (iv) the amount of (vertical) space needed for the graph can be re-
duced without affecting the resolution of the display. The horizontal 
format, however, yields a number of important limitations of this display 
method (see Section 7).  
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Figure 3. The data from the main panel in Figure 2 shown as a horizontal and 
vertical grouped bar chart 

Resolution 
Dot plots offer several benefits in terms of resolution. The issue of axis 
scaling – that is, whether scaling to zero is necessary – has received much 
attention in the literature. In science, there appears to be consensus that 
excluding zero from the scale is often desirable. “Zooming in” by 
rescaling can greatly enhance the resolution of a display and thus facili-
tate perception of the variation in the data (Tukey 1977: 51; Cleveland 
1994: 92; Wainer 1997, 2009). On the other hand, it has also been argued 
that such rescaling is inherently misleading (e.g. Huff 1954; Krämer 
2001). However, this partly depends on the type of display chosen 
(Robbins 2005). Bar charts use position (end of bar) as well as size 
(length and area) to encode numeric values. Without a baseline of mea-
surement, the length of a bar encodes meaningless information and 
indeed provides misleading visual cues by exaggerating actual differences. 
Dot plots only use position; the distance to the left side of the graph is 
further de-emphasized by drawing light horizontal lines across the graph. 

The resolution of a graph can be greatly affected by skew, where – due 
to a few outliers – most data points are crammed into a small part of the 
graph. Two remedies are data transformation and the use of a scale break. 
In contrast to conventional scale breaks (i.e. two short parallel lines inter-
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secting the axis), a full scale break divides the graph into two panels, each 
with a full frame and its own scale (Cleveland 1984). The visually salient 
discontinuity arguably discourages pattern or continuity perception across 
the break. The more frequently applied strategy, however, is data trans-
formation. Logarithms are a particularly useful tool when the data are 
skewed towards large values or when relative differences are of interest. 
When graphing on a logarithmic scale, dots should be used; the length of 
bars would provide meaningless information since a log scale has no logi-
cal baseline or origin. Figure 4 illustrates the use of a full scale break and a 
logarithmic transformation to the display of the 10 most frequent verbs in 
the BNC (Leech et al. 2001). Due to the dominance of the primary verbs 
(be, do, have), even the log transformation does not contribute much to our 
assessment of the variability among the lower-frequency verbs. In this 
case, the use of a full scale break helps. 

Figure 4. The 10 most frequent verbs in the BNC shown on the original scale, a 
log2 scale and using a full scale break; data from Leech et al. (2001) 

Error bars 
In many cases it is useful for point estimates to include information on 
statistical variation (Wilkinson & Task Force on Statistical Inference 
1999). Such measures are typically indicated with error bars, which may 
denote different types of information (e.g. standard deviations, standard 
errors, a confidence interval or a percentile interval). An advantage of dot 
plots over bar charts is the fact that they produce a more effective 
presentation of error bars (Cleveland & McGill 1984; Schnell 1994; 
Wainer 2009). Figure 5 provides three displays of the difference scores 
that are shown in the appended panel of Figure 2. The principle of 
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discriminability and the Gestalt law of similarity facilitate detection and 
assembly in the plot on the left. Point and interval estimates are visually 
discriminable, which makes it easy to focus on one type of estimate 
while mentally muting the other. In bar charts this is more difficult 
due to the similarity of geometric elements (right-angled linear seg-
ments with the same orientation). Minimization of ink adds salience to 
error bars and point estimates, which further facilitates comparison and 
assessment of the variability between verbs. The estimates for each verb 
are also more easily perceived as a single visual unit due to their point 
and axis symmetry (Gestalt law of good form). 

Figure 5. Error bars: Dot plot vs. horizontal and vertical bar chart 

Interval scales 
Quantitative variables are divided into interval- and ratio-scaled measures, 
depending on whether there is an absolute zero. While ratio variables 
only take on non-negative numbers, an interval scale allows positive and 
negative quantities (e.g. difference scores and correlation coefficients). 
Bar charts are ill-suited for interval scales, especially if positive and nega-
tive values occur in the same plot (cf. Figure 5). As pointed out by 
McElreath (2016: 203), the only information added by bars – at the ex-
pense of a more cluttered display – is “which way to zero”. Moreover, 
error bars extending beyond zero yield an odd appearance (cf. Figure 5). 
The lengths of bars also encourage ratio comparisons (“A is about twice 
as large as B”), which may not be warranted on interval scales (e.g. in the 
case of correlation coefficients).  
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Pattern perception 
When the plotted categories are grouped, the dot plot usually out-
performs the divided and grouped bar chart. A comparison of Figures 2 
and 3 shows that grouped bar charts quickly become cluttered, which 
interferes with pattern perception (Robbins 2005). In dot plots, successful 
superposition facilitates Gestalt-like perception of the groups – that is 
,they can be visually assembled while mentally filtering out the other 
elements (Cleveland 1994). Bertin (1983: 67) calls this “selective percep-
tion”, noting that “[t]he eye must be able to isolate all the elements of [a] 
category, disregard all the other signs, and perceive the image formed by 
the given category”. 

Estimation 
Experimental research into graphical perception has identified a number 
of elementary perceptual tasks that are used to visually extract quantita-
tive information from a display. Examples of such tasks are position, 
length, angle and area judgments. The visual decoding of dot plots in-
volves position judgments along a common scale. This elementary per-
ceptual task produces more accurate estimation than length or angle 
judgments, which are used in decoding bar charts and pie charts, respec-
tively (Cleveland & McGill 1984). However, performance differences 
between position, length and angle judgments may be relatively small 
(Carswell 1992). 

In sum, several arguments suggest that the widely used bar chart can 
in many cases be constructively replaced by a dot plot. 

5. Design

There are different options for the design and extension of dot plots. 
This section illustrates a number of add-ons and discusses construction 
principles aiming to optimize the resulting display. While such fine-
tuning is particularly important for presentation graphs, most of the 
following considerations are also relevant for the use of dot plots in data 
analysis.  
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Order 
Location in the two-dimensional space is a powerful visual cue and can 
be attended to easily and selectively (Kubovy 1981). Dot plots should thus 
make use of the vertical dimension by (re-)ordering categories or groups 
in specific ways. If the categories have no logical arrangement, data-
based ordering (often according to value or size) facilitates information 
processing and reveals additional structure in the data (Bertin 1983; 
Schmid 1983; Wainer 1997). This also applies to multipanel displays and 
the use of superposition, where different options for ordering exist. Or-
dered symbols are more easily perceived as belonging to the same group 
(Gestalt law of proximity and good form). The data analyst should try dif-
ferent arrangements to foreground different gestalts and comparisons, 
which is likely to uncover different aspects and patterns in the data. 

Multipanel conditioning and superposition 
Additional categorical variables can be incorporated into dot plots by 
means of superposition or juxtaposition. In essence, these are different 
plotting strategies for the comparison of (sub-)groups. While superposed 
groups are shown in the same panel (cf. Figure 2), juxtaposition involves 
the use of multiple panels to plot subsets of the data (cf. Figure 11). In 
general, multipanel conditioning is a powerful method for the display of 
multivariate data sets (Becker et al. 1996). It is important to note that the 
two strategies are complementary approaches to the display of multivari-
ate data sets. In general, however, superposition facilitates comparisons 
between groups; juxtaposition, on the other hand, strives for clear vision 
and allows for better comparison within groups. When the number of 
groups is small, superposition may be more effective than multipanel 
conditioning (Sarkar 2008).  

Plotting symbols 
The choice of plotting symbols should allow for good visual detection 
and assembly. In a simple dot plot, filled circles (●) are recommended 
since they are salient and combine well with error bars. If two groups are 
compared in the same panel, the choice of plotting symbols depends on 
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whether overplotting occurs. When there is no overplotting, filled and 
empty circles (● ○) are a good choice. In the case of overplotting, empty 
circles and crosses (○ +) allow for better pattern perception (Cleveland 
1994). Their distinct pre-attentive attributes ensure excellent texture 
discrimination (Malik & Perona 1990). Ease of detection and assembly 
allow the viewer to focus on one group while backgrounding the other. 
Moreover, salient filled circles (●) can then be used in appended panels 
to directly show key comparisons (cf. Figure 2). Empty circles and cros-
ses (○ +) may also serve as iconic symbols, signaling presence/absence 
of a certain attribute (cf. Figure 8). In addition, other symbols may make 
sense. Letters, for instance, make it easier to remember the groups or 
categories shown, saving time that would otherwise have been spent 
looking back and forth between key and data (cf. Figure 8). However, the 
set of symbols should still be sufficiently discriminable (on the discri-
minability of graphemes see Lewandowsky & Spence 1989).  

Appended panels 
A particularly useful add-on for dot plots are appended panels (cf. Amit 
et al. 2008; see also Heiberger & Holland 2015: 566). Despite its superfi-
cial similarity, this plotting strategy is conceptually different from multi-
panel conditioning. Appended panels do not display a different subset of 
the data, but rather add more information on the data set plotted in the 
main panel. While there are many possible uses for appended panels, 
they seem particularly valuable for directly showing focused compari-
sons between two groups in the main panel. Such comparisons can be 
expressed using various types of effect sizes such as difference or ratio 
measures. Alignment along a common scale makes it much easier to 
compare effects across categories on the y-axis (e.g. the different verbs in 
Figure 2). Since different effect size measures may offer different per-
spectives on the same comparison, it may make sense to append more 
than one panel (cf. Figure 8). Inferential information can be added to 
effect size estimates in the form of confidence intervals, which indicate 
the degree of uncertainty associated with the estimates shown (see 
Figures 2, 9 and 10). 



114 

Error bars 
Several options exist for the design of error bars, differing in the way 
interval limits are marked and as to how many intervals are shown for 
each point estimate. Figure 6 shows several variants. The most widely 
used type of error bar is single-tiered with the upper and lower limit 
marked by crossbars. The use of crossbars has met with criticism since it 
draws attention to the endpoints of the interval. At any rate it appears 
reasonable to limit crossbar length to the diameter of the plotting sym-
bol of the point estimates. Error bars may also display several intervals 
for the same estimate. Cleveland (1994), for instance, suggested two-
tiered error bars for showing different confidence levels. Outer tiers may 
also be used to add interval limits that are adjusted for multiple compa-
risons (Tukey 1993; cf. Figure 9). As illustrated in Figure 6, inner inter-
vals can be delimited using crossbars (cf. Cleveland 1985: 226), line 
width (cf. Gelman & Hill 2007: 497) or shading (cf. Harrell 2015: 282). 
While this appears to be a matter of taste, the use of different line types 
(more specifically, solid and dashed lines) should be avoided as dash 
patterns may lead to minor inaccuracies in the boundary locations of the 
inner and outer tiers (see Kastellec & Leoni 2007: 759 for an example). 

Figure 6. Design options for one-tiered and two-tiered error bars 

Dodging 
When adding error bars to panels with superposed plotting symbols, 
overlap is an issue. A simple strategy is to use vertical displacement (see 
middle panel of Figure 11). In Wickham’s (2013) ggplot2 package for R, 
this strategy is called “dodging”. Plotting symbols and error bars are 
relocated above and below the light horizontal line, which avoids error 
bar overlap while still preserving assembly and pattern perception.  
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Logarithms 
Logarithms are a very useful tool for data analysis and visualization. 
Plotting on a log scale shows relative rather than absolute differences. 
While logarithms can be expressed using different log bases, it is im-
portant to note that the choice of base does not affect the physical infor-
mation in the plot: the same pattern occurs regardless of whether log 
base 2, e or 10 is used (these are typical choices). What changes is the 
scale information, that is, the tick mark labels. The base should be cho-
sen to facilitate table look-up. This includes recovering the original values 
of the points plotted and, more importantly, making comparisons, that 
is, estimating the relative difference between two points plotted. The view-
er can be assisted in making these judgments by adding original units to 
the tick marks at the top (cf. Figure 9).  

Lines and color 
If more than two groups are superposed in the same panel, it becomes 
increasingly difficult for the viewer to detect and assemble groups. Pattern 
perception may then be facilitated by using color or linking the points 
with lines (Gestalt law of connectedness). With the addition of lines, the 
graphical display approaches the fuzzy category boundary to parallel 
coordinate plots (see Unwin 2015: 99–130) and line plots (sometimes 
called interaction plots). The use of lines is further discussed in Section 7. 

6. Applications

This section will illustrate the application of dot plots to different types 
of descriptive and inferential analyses of linguistic data, demonstrating 
most of the design options discussed above. 

Meta-analysis 
The term meta-analysis refers to a set of techniques for combining evi-
dence from different studies on the same or similar issues (Cumming 
2012). Graphs play an important role in meta-analysis. A frequently 
employed display type is the forest plot (Lewis & Clarke 2001), which 
allows the researcher to visually assess effect estimates and confidence 
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intervals reported in the literature. It thus provides a graphical synthesis 
of the empirical evidence available (see Borenstein et al. 2009 for many 
examples). Proper meta-analyses also condense the evidence into a single 
effect size estimate with a (usually much narrower) confidence interval. 
A simple visual summary, however, is a useful starting point since it 
allows for a contextualization of new findings, yielding a more solid basis 
for their interpretation (recall Tufte’s quote on quantitative reasoning; 
Section 2). Forest plots are in fact very similar to dot plots but include a 
few additional features such as the variation of the size of plotting symbols 
to signal the degree of uncertainty associated with a particular point 
estimate (see Lewis & Clarke 2001; Cumming 2012).  

Figure 7. A visual summary and comparison of the results from different studies 
on the same phenomenon (PVD effect in American English) 

Figure 7 summarizes empirical estimates of the PVD (preceding vowel 
duration) effect in American English. Minimal pairs differing in final 
obstruent voicing (e.g. bad-bat, peas-peace) are primarily distinguished by 
the duration of the preceding vowel, which is longer before voiced obs-
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truents (bad, peas). This PVD effect can be expressed as a duration ratio. 
Figure 7 shows the estimates obtained in 23 studies in increasing order 
from bottom to top. A boxplot has been added to show the distribution of 
the values. The literature is in fairly good agreement that the ratio ranges 
somewhere between 1.4 and 1.5. A few studies have reported particularly 
high or low values, which would prompt us to study their methods sec-
tion in more detail to identify possible confounding variables.  

Figure 8 shows another application of the dot plot to a simple re-
search synthesis. It gives an overview of the empirical evidence on the 
voice onset time (VOT) of voiced and voiceless stops in American Eng-
lish. VOT, the duration of the interval between stop release and onset 
of voicing, is an acoustic correlate of the voicing distinction in initial 
stops. The main panel shows the measurements reported in each study, 
ordered by the overall average VOT, increasing from bottom to top. 
Letters (more precisely: IPA symbols) serve as plotting symbols, which 
facilitates table look-up. A reference line is included at zero, an important 
reference value for these data. The box plots above the main panel com-
pare the distribution of voiced and voiceless consonants. While there is 
little variation across studies regarding voiced stops, VOT measurements 
for voiceless stops differ drastically. Further, it is obvious that VOT vari-
es systematically with place of articulation: velar stops /k,ɡ/ show the 
largest, bilabial stops /p,b/ the smallest values.  

Figure 8. A visual summary of the results of different studies on the same 
phenomenon (VOT in American English stops) 
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Three appended panels provide different perspectives on the data in the 
main panel. The second panel shows the average VOT for voiced and 
voiceless stops. The plotting symbols indicate the presence (+) or absence 
(○) of voicing (i.e. the feature [±voice]). The difference in variability 
between the two categories is even more apparent in this display. To 
directly express the effect of [±voice] on VOT, difference or ratio scores 
may be used. These facilitate the comparison across studies and are 
shown in the appended panels further on the right. To increase resolution, 
the x-axis does not include zero in these two rightmost panels. It is clear 
that difference measures covary with overall average VOT, which in turn 
mostly reflects the VOT in voiceless stops. Ratio measures appear to 
somewhat control for this effect and may thus be the preferred measure 
for comparing results across studies. The panels on the right also force the 
viewer to note that one study clearly sticks out – a finding in need of an 
explanation. 

Corpus data analysis 
There are two types of data that frequently arise in corpus linguistics: 
binary and frequency outcomes. While frequency data reflect the num-
ber of occurrences of an event (e.g. word) during a period of observation 
(e.g. a text or a corpus), binary data stem from variables comprising two 
categories (or levels), such as regular vs. irregular verb form. Charac-
teristically, corpus-based studies involve two types of comparisons. 
Commonly, researchers contrast (sub-)corpora representing different 
varieties of language (such as spoken vs. written) or populations of spea-
kers (e.g. native vs. non-native). On the other hand, it is also typical to 
investigate several items (lexemes or constructions of any kind). We may 
therefore distinguish between the comparison of groups and items. 

Figure 9 shows an application of the dot plot to the analysis of corpus 
frequencies (counts). The data are from Granger & Paquot (2008), a 
study on verb usage in learner and expert academic writing. Counts 
from two corpora representing non-native and native speaker academic 
writing were compared. The plot shows the “top 50 underused” verbs in 
learner academic writing, which were selected based on the likelihood 
ratio test statistic. There are two types of comparisons: between groups 
(learners vs. experts) and items (verbs).  
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Figure 9. Corpus frequencies: Underrepresented verbs in learner academic 
writing; data from Granger & Paquot (2008). Inner error bars show individual 
95% CIs; outer error bars show 95% CIs adjusted for multiple comparisons 

The main panel shows the relative frequency estimates (per million 
words) for the verbs, which are ordered by their frequency in expert 
academic writing. Frequency is shown on a log2 scale, which ranges 
from 0 (20 = 1 pmw) to about 9 (29 = 512 pmw). The appended panel 
shows the log2 frequency ratio (more precisely: the logarithm (to base 2) 
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of the ratio of the absolute frequencies), which expresses the degree of 
underuse in learner writing. These ratio scores are shown on a loga-
rithmic scale, and also translated to the original ratio measures by 
adding the respective tick mark labels at the top. Most verbs are around 
2 to 8 times more likely to occur in native speaker expert writing. A 
handful of verbs are severely underrepresented in learner writing (e.g. 
collide, outline, consent). Information on statistical uncertainty is added in 
the form of two-tiered error bars. While the inner tiers (delimited by 
crossbars) show individual 95% confidence intervals, the outer tiers 
show 95% CIs adjusted for multiple comparisons using the Bonferroni 
procedure (i.e., showing 1 – α/50 = 99.9% CIs). The likelihood ratio test 
statistics, which are added at the right margin of the plot, show that 
comparisons based on such measures may miss important information 
in the data (such as the underrepresentation of collide, outline and con-
sent, which have relatively low test statistics due their sparse occurrence, 
especially in learner writing).  

Figure 10 shows an application of the dot plot to the analysis of 
binary outcomes. The data are from a study by Mondorf (2009) on the 
variation between synthetic and analytic comparative forms of adjectives 
in British and American English newspaper writing. Adjectives may 
form the comparative synthetically with an inflectional suffix (prouder, 
purer) or analytically with more (more proud, more pure). Mondorf (2009) 
investigated differences between the varieties in the preference for a 
particular formation strategy in a number of monosyllabic adjectives. 
This study thus also involves two types of comparison: between groups 
(BrE vs. AmE) and items (adjectives).  

The results for 15 adjectives are shown in Figure 10. The main panel 
plots the percentage of analytic comparatives; items are ordered by their 
relative frequency in AmE, increasing from bottom to top. The appended 
panel shows the difference in relative frequency between AmE and BrE. 
There appears to be a bipartition into adjectives with predominantly 
analytic comparatives (at the top) and those preferring a synthetic form 
(towards the bottom). Except for free and true, AmE always shows a 
stronger tendency towards analytic comparatives. The absolute diffe-
rence in relative frequency typically ranges from 0 to 20%, with sour 



121 

being a notable outlier (a difference of almost 60% in absolute terms). 
Reference lines mark the limits of 0 and 100 in the main panel and the 
reference value of 0 in the appended panel, which denotes equal distri-
bution of synthetic/analytic forms in the two varieties.  

Figure 10. Analysis of a binary outcome: Synthetic vs. analytic comparatives in 
British vs. American English; data from Mondorf (2009) 

P-values from corresponding likelihood ratio tests are added at the right 
margin; they are in good agreement with the 95% confidence intervals 
shown in the appended panel. The p-values have been rounded up to one 
significant digit, which produces a semi-graphic representation similar to 
a stem-and-leaf display (Tukey 1977). Note the unusually large difference 
between British and American English for sour. This extreme divergence 
is not directly reflected in its p-value since this type of measure conflates 
effect magnitude and sample size. The absolute counts for each adjective 
are shown to the right of the plot. These correlate with the widths of the 
confidence interval. Clearly, the corpus contained relatively few tokens of 
sourer/more sour. Thus, while p-values collapse effect and sample size into 
a single measure, effect sizes with confidence intervals allow the re-
searchers to compare and interpret both measures, effect magnitude and 
statistical uncertainty. This is a strong argument for the preference of 
confidence intervals over p-values (see also Gardner & Altman 2000).  
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Application in statistical modeling 
Graphical methods play an important role in statistical modeling. Espe-
cially in multivariate models, it is difficult for the analyst (as well as the 
audience) to make sense of tables of coefficients, which are the default 
output of most statistical software. Indeed, as noted by McElreath, statis-
tical models have “terrible people skills” (2016: 232). Among many other 
graph types, dot plots have emerged as a particularly suitable aid in mo-
del understanding and comparison. As such, model-derived quantities 
that are translated into graphical form include regression coefficients, 
test statistics and information criteria. Rather than discuss particular 
examples of dot plots in statistical modeling, this section will hint at a 
range of applications and include textbook references for further study.  

One strategy is to plot regression coefficients with their associated 
measures of statistical uncertainty (see Kastellec & Leoni 2007: 765; 
McElreath 2016: 375, 401). This strategy foregrounds the effect of the 
predictor and prompts the viewer to compare coefficients rather than 
p-values (or asterisks). If input variables differ in level of measurement 
and scale, this raises the issue of comparability. For least squares regres-
sion, corrective actions include the standardization of regression coeffi-
cients (Fox 2016: 100–102; see also Gelman 2008). In logistic regression 
models, dot plots can be applied for the comparison of predictors based 
on regression coefficients (Gelman & Hill 2007: 306), odds ratios 
(Harrell 2015: 282), test statistics (Harrell 2015: 280), and average predic-
tive comparisons (Gelman & Hill 2007: 466–473). 

Further comparisons in statistical modeling involve quantities de-
rived from different models for the same data. Such differences may 
arise from the number of predictors included (Gelman et al. 2013: 423; 
McElreath 2016: 202) or the fitting of mathematically and/or conceptual-
ly different models (Gelman & Hill 2007: 202, 473; Gelman et al. 2013: 
400). Further, graphical displays may be used to compare subgroups 
(Gelman & Hill 2007: 338) or serve as an aid to model comparison using 
information criteria (McElreath 2016: 199). 
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7. Limitations

Like other graph types, dot plots have limitations that need to be consid-
ered when choosing between different chart types.  

Unfamiliarity 
One obstacle the dot plot faces is its unfamiliarity to most viewers, which 
may violate the principle of appropriate knowledge. Recognition of the 
graph type is a critical step in the processing and comprehension of a 
graphical display. As Kosslyn (1985: 507) notes, “if one has never seen a 
display type before, it is a problem to be solved – not a display to be 
read”. While the use of dots to encode numerical values in simple dis-
plays should pose no problems, more elaborate constructions including 
superposition and multipanel conditioning may be more demanding for 
certain audiences. The use of dot plots thus requires reflection on the 
“graphicacy” (Keen 2010) of the intended audience as well as the time 
available for graph comprehension (principle of capacity limitations). The 
limitation of unfamiliarity, however, does not apply to the application of 
dot plots in data analysis. 

Cognitive fit 
A limitation that applies to the application of the dot plot in data analysis 
and presentation is the issue of cognitive fit between graph and data 
(Vessey 1991): the type of display chosen should be compatible with the 
type of information shown (principle of compatibility). Since dot plots 
show categories on the vertical axis, they are ill-suited for depicting in-
dependent variables that are by convention shown on a horizontal axis. 
Examples are time series and quasi-time differences, such as time trends 
or variables reflecting age groups, developmental stages or pre- and post-
test scores. Figure 11 shows results from an experimental study on 
plural overregularization in English children’s production of irregular 
plural nouns, for instance *mouses instead of mice (Ramscar et al. 2013). 
The researchers hypothesized that training on regular plurals would lead 
to an increase in overregularization in younger children, but to a de-
crease in older children. The degree of overregularization was measured 
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before (pretest) and after training (posttest) on a scale from -1 (no over-
regularization) to 1 (overregularization). The bar chart in Figure 11 (left 
panel) resembles the graph used by the authors to display their results. 
Due to the interval scale, a bar chart is less suitable (the origin at -0.6 is 
arbitrary). The dot plot in the middle is a first attempt at producing a 
more satisfactory display (Sönning 2014) but fails to clearly communica-
te the experimental results. Since these data involve change over time (as 
a result of training), the two time points (pretest and posttest) should 
be shown on the horizontal axis (principle of compatibility), which could 
be conveniently achieved by a line plot, for instance (see right panel of 
Figure 11). Line plots have a further advantage over other chart types: 
assembly can be greatly assisted by the use of lines (Gestalt law of    con-
nectedness) and table look-up is facilitated by direct labeling of these lines 
(Gestalt law of proximity). As a result, there is no need for a key, which 
accelerates the decoding of information (Milroy & Poulton 1978; Parker 
1983, cited in Pinker 1990: 114). 

Figure 11. Graph types and cognitive fit: Pretest and posttest scores in two age 
groups (under 5 vs. over 5) and two tests (color vs. regular plural) shown as a 
grouped bar chart, a dot plot and a line plot; data from Ramscar et al. (2013) 

8. Software

The plots in this paper were drawn in R (R Core Development Team 
2016) using the packages lattice (Sarkar 2008) and latticeExtra (Sarkar & 
Andrews 2016). There is a short tutorial on the construction of dot plots 
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using lattice in the online appendix (www.bit.ly/malt-dotplot-lattice). 
This appendix also includes dot plot templates for Microsoft Excel, 
which enable the user to easily construct dot plots (including the use of 
superposition and appended panels) by copy-and-pasting their data into 
spreadsheet templates (www.bit.ly/malt-dotplot-excel). Of course, using 
a template means that there are fewer design options than in R. A short 
instruction manual is also provided online (www.bit.ly/excel-dotplot-
instructions).  

9. Conclusion

In this contribution, I have argued that the dot plot is a flexible tool for 
visualizing different types of numeric values with descriptive labels: raw 
data, frequencies, descriptive measures and model parameters. It is able 
to replace the bar chart in most of its established uses and likely to pro-
duce a more effective display of the data. This paper has demonstrated 
advantages of the dot plot, illustrated principles for its design and exten-
sion to multivariate data sets and exemplified their application to quanti-
tative data in linguistics. Dot plots are a useful tool for data visualization. 
They should be used more often. 
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