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Abstract

A growing body of literature reports evidence of social interaction effects
in survey expectations. In this note, we argue that evidence in favor of social
interaction effects should be treated with caution, or could even be spurious.
Utilizing a parsimonious stochastic model of expectation formation and dy-
namics, we show that the existing sample sizes of survey expectations are
about two orders of magnitude too small to reasonably distinguish between
noise and interaction effects. Moreover, we argue that the problem is com-
pounded by the fact that highly correlated responses among agents might
not be caused by interaction effects at all, but instead by model-consistent
beliefs. Ultimately, these results suggest that existing survey data cannot
facilitate our understanding of the process of expectations formation.
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1 Introduction

Expectations play a central role in economic theory, yet we know rather little about

the actual process of expectation formation. A growing body of literature empha-

sizes the importance of social interactions in the process of expectation formation,

and mostly finds empirical support for interaction effects in reported survey data.

These survey expectations typically consist of several hundred monthly responses

by several hundred agents. Here we consider a generic stochastic model of expecta-

tion dynamics that contains both a social interaction component and an exogenous

signal that represents model-consistent beliefs. The purpose of this note is to show

that it is essentially not possible to disentangle the two effects in survey data, and

that even if social interactions were present, the required sample size to identify

interaction effects is about two orders of magnitude larger than existing sample

sizes. Even if we are willing to make strong assumptions about the structure of

multidimensional responses, existing survey data will probably remain a very frag-

ile source for the identification of interaction effects or model-consistent beliefs.

Modern macroeconomics assumes that agents know the ‘true’ model underlying

the macroeconomic laws of motion, and that their predictions of the future are on

average correct. In their extensive review, Pesaran and Weale (2006) find little if

any evidence that survey expectations are model-consistent in this strong sense,

which is hardly surprising given the complexity of our macroscopic environment.

Weaker forms of macroeconomic rationality acknowledge that agents face model

uncertainty and instead focus on learning (see, e.g., Evans and Honkapohja, 2001;

Milani, 2010), informational rigidities (see, e.g., Mankiw and Reis, 2002; Mankiw

et al., 2004; Coibion and Gorodnichenko, 2008), imperfect information (see, e.g.,

Woodford, 2001; Del Negro and Eusepi, 2009), and ‘rational inattention’ (see, e.g.,

Sims, 2003). While details of the forward-looking behavior of agents are crucial

for the qualitative differences among these approaches, neither of them considers

the actual process of expectations formation.

Recent econometric approaches are discussing the existence of heterogeneity in

the updating behavior of forecasters (see, e.g., Clements, 2010), and laboratory

experiments equally indicate heterogeneity in expectations (see, e.g., Hommes,

2010). The focus on heterogeneity intersects with another strand of research that
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emphasizes the importance of social interactions in the process of expectations for-

mation. Empirical work on social interactions has traditionally employed discrete

choice frameworks that allow for social spillovers in agents’ utility (see, e.g., Brock

and Durlauf, 2001), but this approach has been rather static in the sense that

cross-sectional configurations are viewed as self-consistent equilibria. The discrete

choice framework has also been investigated in the context of macroeconomic ex-

pectations formation, for instance by positing that agents choose between forming

extrapolative expectations and (costly) rational expectations (see, e.g., Lines and

Westerhoff, 2010), which can lead to endogenous fluctuations in macroeconomic

variables.

Carroll (2003) suggests an alternative route to social interactions, hypothesiz-

ing that the diffusion of news from professional forecasters to the rest of the public

leads to ‘stickyness’ in aggregate expectations. The diffusion of expectations is

also a defining characteristic in several recent contributions that place greater em-

phasis on social interactions than on individual concepts of rationality in their

study of (survey) expectations. These probabilistic approaches by and large aim

for positive models of expectations formation, but yield mixed results so far. Bow-

den and McDonald (2008) study the diffusion of information in various network

structures and find a trade-off between volatility in aggregate expectations and the

speed at which agents learn the correct state of the world. Secondly, they argue

that certain network structures can lead to information cascades. This would be

consistent with the empirical results of Flieth and Foster (2002), who find that

survey expectations are characterized with protracted periods of inertia punctu-

ated by occasional switches from aggregate optimism to pessimism or vice versa.

They also calibrate a model of ‘interactive expectations’ with multiple probabilis-

tic equilibria from the data, which indicates that social interactions would have

become less important over time. Lux (2009) confirms the empirical quality of

survey expectations, with their pronounced swings in aggregate opinions, but he

claims evidence in favor of strong interaction effects. Since both consider German

survey expectations and utilize similar probabilistic formalizations of the expecta-

tions process, the question why they find conflicting results on the importance of

interaction effects warrants some attention.

The source of the different findings might, at least in part, be due to the de-
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tails of the probabilistic processes that the authors employ to model expectations

formation. Both approaches formalize changes in expectations through transition

probabilities that additively combine an autonomous and an interactive element.

Flieth and Foster (2002) use a three-state model that can only be solved numer-

ically, while Lux (2009) uses a two-state model that exploits well-known results

in Markov chain theory and allows for closed-form solutions not only of the limit-

ing distribution but, in principle, of the entire time evolution of the expectations

process. Yet irrespective of a model’s probabilistic details, we want to argue here

that these differences are likely to originate from size limitations of existing sur-

veys, because even if we knew the details of the interaction mechanism, including

the exact parameterization of the expectations process and the network structure

among agents, we would still not be capable of distinguishing between interaction

effects and essentially random correlations in survey responses, nor would we be

able to distinguish model-consistent beliefs from social interactions.

We place a premium on analytical tractability and thus conduct our investiga-

tion in the probabilistic tradition employed by Lux (2009). A number of results

are known in this parsimonious modeling tradition, including (statistical) equilib-

rium properties for a wide range of model parameters and the time evolution of

the probability density of beliefs. Understanding how the qualitative nature of

the model changes with the parameters permits us to isolate the behavioral de-

tails of the expectations process from the question whether it is feasible to detect

interaction and network effects from existing survey data.

2 Stochastic Model of Expectation Dynamics

The model utilized by Lux (2009) traces back to earlier contributions by Weidlich

and Haag (1983) and Weidlich (2006), and is very similar, both formally and

qualitatively, to the herding model of Kirman (1991, 1993). A prototypical setup

in this tradition considers a population of agents of size N that is divided into two

groups, say, X and Y of sizes n and N − n, respectively. In the context of survey

expectations, the two groups would correspond to agents who have optimistic or

pessimistic beliefs regarding the future state of an economic or financial indicator.

The basic idea is that agents change state (i) because they follow an exogenous
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signal, corresponding for instance to model-consistent beliefs, or (ii) because of

the social interaction with their neighbors, i.e. agents they are communicating

with during a given time period. The transition rate for an agent i to switch from

state X to state Y is

ρi(X → Y ) = ai + λi
∑
j 6=i

DY (i, j), (1)

where ai governs the possibility of self-conversion caused by model-consistent be-

liefs, and the sum captures the influence of the neighbors. The parameter λi

governs the interaction strength between i and its neighbors, indexed by j, while

DY (i, j) is an indicator function serving to count the number of i’s neighbors that

are in state Y ,

DY (i, j) =

{
1 if j is a Y-neighbor of i,

0 otherwise.

Analogously the transition rates in the opposite direction, from a pessimistic to

an optimistic state, are given by

ρi(Y → X) = ai + λi
∑
j 6=i

DX(i, j) . (2)

Defining nY (i,J) =
∑

j 6=iDY (i, j) and nX(i,J) =
∑

j 6=iDX(i, j), where J denotes

particular configurations of the neighbors, and using shorthands π−i = ρi(X → Y )

and π+
i = ρi(Y → X), equations (1) and (2) can be written more compactly as

π−i = ai + λinY (i,J), (3)

π+
i = ai + λinX(i,J). (4)

As a consequence of the interactions between neighboring agents, the rates π±i
still depend on the particular configurations of neighbors J, making it difficult to

handle (3) and (4) analytically, but we can employ a mean-field approximation

in order to simplify the problem from a many-agent system to one with a sum of

agents who are independently acting in an “external field” (see, e.g., Chap. 5 in

Aoki, 1998) created by the opinions of other agents. In other words, we assume
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that individual agents are influenced by the average opinion of their neighbors, and

that their behavioral parameters can be aggregated by averaging over all agents.

On the individual level, the instantaneous probability for agent i to switch

from X to Y is given by (3). When the attitudes of i’s neighbors fluctuate, π−i
fluctuates around its mean

〈
π−i
〉

= ai + λi 〈nY (i)〉 , (5)

where the dependence on J gets lost if we assume that inhomogeneities among

the different configurations of neighbors are solely due to the fluctuations. Then

we can replace the number of Y -neighbors around each agent i with the average

number of neighbors that agents are linked to, say, D and 〈nY (i)〉 = DPY , with PY

being the probability that an i-neighbor is in state Y , which we can approximate

with the unconditional fraction (N − n)/N of agents in state Y , yielding

〈
π−i
〉

= ai + λiD
N − n
N

, (6)

and the quantity
〈
π−i
〉

becomes independent of the particular configuration of

neighbors. Symmetrically, the expression for agents currently in state Y becomes

〈
π+
i

〉
= ai + λiD

n

N
. (7)

Basically, the mean-field approximation reduces a complex system of heterogeneous

interacting agents to a collection of independent agents who are acting “in the field”

that is created by other agents’ beliefs and their average behavior.

On the aggregate level, we are interested in the probability of observing a single

switch on the system-wide level during some time interval ∆t, hence we have to

sum (7) over all agents in state Y in order to find the aggregate probability that

an agent is switching from state Y to state X during ∆t, assuming that ∆t is

small enough to constrain the switch to a single agent. Summing (7), which is

permissible since the agents are now independent, we obtain

π+ = (N − n)

(
a+

λD

N
n

)
, (8)
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for a switch from Y to X, and

π− = n

(
a+

λD

N
(N − n)

)
, (9)

for the reverse switch, where a, b are the mean values of ai, bi averaged over all

agents. It turns out that replacement of behavioral parameters by their ensemble

averages is only sensible if the network structure observes some regularity condi-

tions and if the fraction of agents with strictly positive bi is very large, i.e. as long

as the fraction of isolated nodes in the agent network is very small (see Alfarano

and Milaković, 2009, for details). We will return to the implications of this point

in the final scenario of Section 3.

For notational convenience, we set

b ≡ λD/N, (10)

while setting c ≡ λD would recover the original formulation of Kirman’s ant

model.1 The equilibrium concept associated with the generic transition rates (8)

and (9) is a statistical equilibrium outcome: at any time, the state of the system

refers to the concentration of agents in one of the two states. We define the state

of the system through the concentration z = n/N of agents that are in state X.

For large N , the concentration can be treated as a continuous variable. Notice

that none of the possible states of z ∈ [0, 1] is an equilibrium in itself, nor are

there multiple equilibria in the usual economic meaning of the term.

The notion of equilibrium instead refers to a statistical distribution that de-

scribes the proportion of time the system spends in each state. Utilizing the

Fokker-Planck equation, we can show that for large N the equilibrium distribu-

tion of z is a beta distribution (see Alfarano et al., 2008, for details)

pe(z) =
1

B(ε, ε)
zε−1(1− z)ε−1, (11)

1It is well-known that the original formulation of the ant model suffers from the problem of
N -dependence (or ‘self-averaging’ in the jargon of Aoki), i.e. the fact that the system converges
to a unimodal equilibrium when the number of agents is enlarged while keeping the number of
neighbors constant.
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where B(ε, ε) = Γ(ε)2/Γ(2ε) is Euler’s beta function, while the shape parameter of

the distribution is given by

ε = a/b = aN/λD. (12)

Since ε is a ratio of quantities that depend (i) on the time scale at which the process

operates (1/a and 1/λ), and (ii) on the spatial characteristics of the underlying

network (D and N), the parameter of the equilibrium distribution is a well-defined

dimensionless quantity. If ε < 1 the distribution is bimodal, with probability

mass having maxima at z = 0 and z = 1. Conversely, if ε > 1 the distribution

is unimodal, and in the “knife-edge” scenario ε = 1 the distribution becomes

uniform. The mean value of z, E[z] = 1/2, is independent of ε, and intuitively

follows from the difference of the transition rates (8) and (9), a(N − 2n), showing

that in equilibrium the system approaches n = N/2.

Notice, nevertheless, that the system exhibits very different characteristics de-

pending on the modality of the distribution. In the bimodal case, the system

spends least of the time around the mean, mostly exhibiting very pronounced

herding in either of the extreme states, while mild fluctuations around the mean

characterize the unimodal case. The bimodal case is apparently in line with the

empirical finding of protracted periods of inertia with sudden switches in aggregate

opinion. Since in that case ε < 1 implies b > a, the model would seem to suggest

that social interactions on average carry greater weight than idiosyncratic factors

in the expectations formation of agents. The model can also be extended to ac-

count for asymmetries in the average aggregate state with the following transition

rates

π+ = (N − n)(a1 + bn) and π− = n(a2 + b(N − n)), (13)

where the constants a1 and a2 now allow agents to have a ‘bias’ towards either state,

for instance if a1 > a2 they will exhibit more optimistic than pessimistic beliefs

on average. In this case (see Alfarano et al., 2005, for details), the corresponding

equilibrium distribution is the beta distribution

qe(z) =
1

B(ε1, ε2)
zε1−1 (1− z)ε2−1 , (14)
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Figure 1: Beta distribution for various parameter combinations.

where B(ε1, ε2) = Γ(ε1)Γ(ε2)/Γ(ε1 + ε2) is again the beta function, while the shape

parameters are now given by

ε1 = a1/b and ε2 = a2/b. (15)

Figure 1 illustrates the flexibility in the shape of the beta distribution, with

unimodal and bimodal cases similar to the symmetric case (11) in the top panel

(a,b), but also including monotonically increasing or decreasing cases in situations

where agents have a strong idiosyncratic signal in one direction, yet still exhibit a

relatively pronounced herding tendency relative to the other state, i.e. a1/b < 1 <

a2/b or vice versa, as shown in the bottom panel (c,d).

In summary, the model provides quite a generic description of a stochastic ex-

pectations formation process that contains only a few behavioral parameters a1, a2,

and b, yet allows for a large degree of agent heterogeneity. Despite its parsimony,

the model produces a wide range of qualitatively different statistical equilibria,
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including endogenous cycles in expectations caused by herding or imitation, but

also equilibria where the vast majority of agents ‘learns a correct state’ in spite

of being surrounded by noise that is created through the social interaction with

neighboring agents. The qualitative features of the process are also parsimoniously

summarized by the ratios (12) or (15), putting us in a position to isolate behavioral

aspects from the question whether it is feasible to identify the communication or

network structure among agents from survey data.

In the next section we argue that an ‘omniscient modeler’, endowed with per-

fect knowledge of the behavioral parameters and network structure among agents,

would not be able to reliably recover this network structure based merely on the

correlations in survey responses. Perhaps more troubling, if our knowledge is

confined to the time evolution of survey responses, we will not even be able to

reliably detect whether survey correlations originate from social interactions or

model-consistent beliefs.

3 Random Benchmark and Simulation

We start with a thought experiment, putting ourselves in the position of an om-

niscient modeler (OM) who chooses a particular behavioral setup and network

structure for the model in Section 2. Utilizing the individual transition rates (1)

and (2), the OM simulates and records the time evolution of beliefs for all N

agents in the system. Afterwards, the OM presents us with data on the individual

histories of agents’ beliefs (or output for short), from which we have to determine

the network structure among agents based on correlations in the time evolution of

their beliefs.

In actual data on survey expectations, with typically two to three hundred

agents reporting monthly beliefs over roughly two hundred periods, we have no

intrinsic knowledge of the network structure whatsoever. So to make life easier

for us, the OM even informs us of the exact number Di of neighbors for each

agent i = 1, . . . , N . We then compute the Di highest correlations for each agent

from the output and report it back to the OM as our best guess of the network

structure in the output. In return, the OM checks our guesses against the actual

identity of neighbors and reveals the fraction of correctly identified neighbors to
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us. The central question is: how many of the Di neighbors do we expect to guess

correctly by pure chance, i.e. irrespective of the correlation among responses?

This establishes a random benchmark against which we have to judge the success

of correlation-based procedures.2

In order to explain the random benchmark, it is instructive to consider a simple

urn model. Let us draw d (read: Di) colored balls without replacement from an

urn containing a total of N balls, m of which are white (read: the true neighbors

of agent i). The probability of drawing k ≤ m white balls in d draws from a total

of N balls is given by the hypergeometric distribution

P (k) =

(
m
k

)(
N−m
d−k

)(
N
d

) , (16)

where the notation on the right hand side refers to binomial coefficients. In other

words, (16) characterizes the distribution of the number of white balls drawn from

the urn in d extractions. The mean value of the hypergeometric distribution is

E[k] =
dm

N
, (17)

from which we can compute the random benchmark since d = m in our OM setup.3

The standard deviation of the hypergeometric distribution is

σ[k] =

√
dm(N −m)(N − d)

(N − 1)N2
. (18)

To keep our simulations in line with available survey data (for instance from

the ZEW for German ‘financial experts’, or from the FRB Philadelphia for US

‘professional forecasters’), we set the number of agents to N = 250; the available

length of periods for individual agent IDs is on average between one and two

hundred, while the number of questions per survey is typically between thirty and

2Instead of considering the time t correlation, we have conducted the subsequent analysis
with various sums of leads and lags in the autocorrelations of responses, yet the results remain
virtually unchanged.

3Notice that choosing a different number of extractions does not change any of the qualita-
tive features in the following results, yet the approach immediately translates into quantitative
prescriptions for measuring different benchmarks.
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sixty. It will be a sobering experience to recall these figures when we present the

simulation results.

3.1 Simulation setup

Regarding the network structure in our simulations, we consider three proto-typical

setups: random graphs in the Erdös-Renyi tradition, scale-free networks in the

Barabasi-Albert tradition, and regular lattice structures.4 To keep matters sim-

ple, we set the number of neighbors equal to twenty in the lattice, and tune the

parameters of the scale-free and random networks such that we obtain adjacency

matrices with an average number of twenty neighbors as well.5 Given these num-

bers and (17) and (18), it is straightforward to compute that the fraction of cor-

rect answers we would expect purely by chance corresponds to E[k] = 1.6 with

σ[k] = 1.16, or normalized with respect to the number of extractions E[k]/d = 0.08

and σ[k]/d = 0.058.

In the subsequent figures, we use the mean plus one standard deviation, E[k]+

σ[k] = 2.76, to illustrate the statistical significance of the OM experiment. We

can compute the probability of such an event from the cumulative hypergeometric

distribution: since the hypergeometric distribution is defined for positive integer

values of k, we have to consider P (k ≤ 2) = 0.79 and P (k ≤ 3) = 0.94. Hence

the range 0 < E[k] + σ[k] < 3 delivers a rather conservative confidence interval in

accord with the usual econometric standards.

In line with (1), (2) and (13), the OM implements the transition probabilities

φi for each agent i as

φ
(±)
i = ρ

(±)
i ∆t = [a(1,2) + bD

(∓)
i ] ∆t with ∆t = 1/(amax + bN), (19)

where the notation D
(∓)
i refers to the number of i-neighbors that are in the opposite

state, and amax = max{a1, a2}. The choice of ∆t ensures both that 0 < φi ≤ 1

4The review article by Newman (2003) provides the historical background and a comprehen-
sive summary of the many mathematical details of these graphs.

5It turns out that changing the number of neighbors in the OM setup has virtually no influence
on the subsequent results. We chose twenty neighbors because this figure does not appear to
be entirely unrealistic. If anything, the communication with twenty neighbors already takes
considerable time and effort in most professions.
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and that all agents act on the same time scale.

The OM then confronts us with the output of the N time series of agents’

beliefs, from which we compute N(N − 1)/2 correlation coefficients. For every

i, the OM also informs us of the actual number Di of neighbors, and in turn

we extract the Di highest correlation coefficients from the output. Intuitively

assuming that the highest correlation coefficients correspond to the neighbors of

agent i, we construct the adjacency matrix of the agent network and report it to

the OM who compares it with the actual adjacency matrix, and informs us of the

fraction of correctly identified neighbors for each i. To aggregate and visualize the

results for each of the following three scenarios, we average the correctly identified

percentages for each agent over the entire pool of agents.

The following scenarios basically consider in how far we can recover the correct

network structure (i) depending on the length of agent histories and (ii) depending

on the number of simultaneous survey answers per agent, i.e. the volume of survey

coverage. The final scenario (iii) takes up a more fundamental issue and examines

what happens when correlation clusters are caused by model-consistent beliefs in-

stead of social interactions. Put differently, is a correlation-based approach capable

of distinguishing between clusters that are caused by either behavioral extreme?

3.2 Scenario I: Single indicator histories

Suppose when agents answer questions regarding rather distant areas of expertise

(e.g. international equity indices vs bonds vs GDP growth vs inflation etc.), they

utilize different networks to form their expectations. So if we use histories for a

single indicator in the OM experiment, what is the required number of observations

per agent (or sample size for short) that is necessary to discriminate between some

genuine network structure and random noise?

We consider both a bi- and a unimodal setup to control for behavioral biases,

and display summary results under different network structures in Figures 2 and 3.

The figures illustrate that there is little difference between random and scale-free

setups, while it is easier to identify neighbors when they are all arranged in a

regular lattice. Regular networks, however, are the least suitable representation of

observed social networks, which tend to interpolate between random and scale-free

14



Figure 2: Average fraction of correctly identified neighbors vs length of individual
agents’ time series for a single question. We chose a bimodal simulation setup with
parameters ε1 = ε2 = .5 and b = 1, i.e. a strong behavioral component relative to
symmetric exogenous signals in either direction.

structures (see, e.g., Newman, 2003, and the references therein). This is also the

reason why we focus our attention on random graphs in the coming scenarios.

As one would intuitively suspect, the identification of interaction effects is

somewhat facilitated in the bimodal case, i.e. when herding or imitation dominate

the expectations formation process. According to Figures 2 and 3, however, this

aspect has merely second-order effects. Up to a sample size of around one thousand

periods, we are not able to distinguish between noise and network effects if our

knowledge is restricted to the time evolution of univariate histories. Hence this

also implies that we do not have a sufficient number of empirical survey data at our

disposal to reliably identify the social interaction component. Viewed from this

perspective, any cluster we identify based on the cross-correlations of answers is

15



Figure 3: Average fraction of correctly identified neighbors vs length of individual
agents’ time series for a single question. Here we chose a unimodal simulation
setup with parameters ε1 = ε2 = 2 and b = 1, i.e. a relatively strong exogenous
signal compared to the behavioral component.

essentially pure noise. If we consider the confidence interval in Figures 2 and 3, the

first scenario suggests that it is entirely unrealistic to identify even a rudimentary

communication structure unless we increase the frequency of survey responses by

one order of magnitude, i.e. from monthly to roughly twice per week. In addition,

if we are indeed facing irregular network structures, the length of single indicator

histories that is necessary to correctly identify about half the neighbors turns out

to be two orders of magnitude larger than empirical sample sizes.6
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Figure 4: Increasing the number of questions and averaging over them improves
the identification of interaction effects compared to the previous univariate sce-
nario. The model parameterizations remain the same as before, and we utilize a
random network whose structure remains fixed as well. The underlying univariate
responses have a length of two hundred periods.

3.3 Scenario II: Multiple indicator histories

Can we improve the identification of communication structures if we make the

strong assumption that behavioral parameters in the expectations formation pro-

cess of agents do not change across multiple questions, and that their network

structure remains unchanged as well? And how many questions would be nec-

essary in that case? To tackle this issue, we keep the parameterizations of the

previous scenario and simulate the expectations formation process on a random

network, fixing the length of single question histories to two hundred while suc-

cessively increasing the number of questions. Essentially, this means that the

6Simulation results upon request.
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correlation coefficients are averaged both over agents and over questions. To op-

erationalize this procedure, we fix the parameterization and underlying network

structure of social interactions and run K independent simulations of the model

for two hundred periods. For each single run of length two hundred, we perform

the estimation procedure outlined in the previous scenario, and then average over

the K questions.

The results both for uni- and bimodal setups, along with the random bench-

mark, are displayed in Figure 4 and show that a multivariate correlation-based

procedure performs better than in the previous univariate scenario. As expected,

a bimodal environment with strong interactions again somewhat facilitates the

identification of the network structure, but the more appealing feature of this sce-

nario is that the rate at which we discover actual links is markedly higher than

in the univariate case. On the downside, however, the overall accuracy of the

correlation-based procedure remains low. Keeping in mind that the empirical vol-

ume of survey coverage includes roughly thirty to sixty questions, correlation-based

estimates of the interaction structure are almost not significantly different from

pure noise, and certainly very low to begin with: we recover merely twenty percent

of the actual network structure, and the fraction of correctly identified neighbors

increases very slowly with the number of questions.

3.4 Scenario III: Exogenously switching signal

In both of the preceding scenarios we have assumed that all agents have a strictly

positive interaction parameter, which we conveniently set to b = 1. But what

happens if some agents are not socially interacting at all (b = 0) and instead

form model-consistent beliefs from exogenous signals a1, a2 that we can think of

as transmitting the correct state of the world? In principle, these ‘rational’ agents

should exhibit highly correlated responses over time if the exogenous signal is

sufficiently strong relative to the interaction parameter. If the state of the world

does not change over time, the rational agents will all converge to the correct state,

making it almost trivial to identify them from correlation-based procedures. In

order to maintain an empirically more relevant scenario, we thus assume that the

correct state of the world changes every now and then, i.e. the parameters a1, a2
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Figure 5: Fraction of correctly identified rational agents who follow a time-varying
exogenous signal that is increasingly biased in either direction (denoted by an
increasing value of amax) vs their interaction strength b. At low values of b, the
identification generally performs very well, while higher values of b might prevent
a reliable detection, depending on the relative value of amax.

are no longer constant but change over time.7

In this scenario, we keep the total number of agents at N = 250 in our sim-

ulations, and the underlying network remains a random graph with an average

degree of twenty neighbors. The values of ã1 = ã2 = b̃ = 1 are constant over

time for the majority Ñ = 200 of agents, while a smaller group of fifty ‘rational’

agents exhibits time-varying idiosyncratic coefficients, say a1(t) and a2(t), which

essentially measure the speed at which rational agents learn the true state of the

world. The time-varying coefficients take on values in the set {1, amax}, where

amax = max{a1(t), a2(t)}. Suppose for instance that amax = 10 and that the

7From a mathematical point of view, this would correspond to a so-called switching diffusion
process.
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currently ‘true’ state is such that a1(0) = 1 and a2(0) = 10, i.e. we are in an

optimistic regime today. When the true state changes to pessimism, say in period

τ , the parameters change to a1(τ) = 10 and a2(τ) = 1. As far as the switch-

ing probability in our simulations is concerned, we assume that the probability

to switch is five percent, drawn randomly from a uniform distribution. In other

words, an exogenous switch in the signal occurs on average every twenty months

in our simulations.

The matter in question now concerns the fraction of rational agents that we can

correctly identify if the true state of the world changes over time, as it certainly

does in reality. (Notice that we have to adapt the error band since now d = m =

50.) None the less, we would expect the value of b to also have an influence on

our ability to identify the rational agents: when b increases, the noise generated

through the social interactions with the other agents should make it more difficult

to identify rational agents correctly. On the other hand, when rational agents

are not part of the social network (b = 0), and thus do not take possibly non-

rational opinons into account, it should become easier to correctly identify them

with correlation-based procedures.

Figure 5 plots the fraction of correctly identified rational agents for a given

amax when the interaction parameter b takes on values in [0, 1]. The different plots

in Figure 5 refer to increasing values of amax in the simulations. As expected,

our ability to correctly identify the group of rational agents depends inversely on

their interaction parameter b, possibly approaching the noise level as b approaches

the value common to the other Ñ agents. On the other hand, when b approaches

zero, we are in an increasingly comfortable position regarding the identification of

rational agents. Finally, the faster the signal processing ability amax, the easier it

becomes to correctly identify the group of rational agents, asymptotically reaching

the value of one hundred percent independently of b.

4 Discussion and Conclusions

All computations in the preceding scenarios have been performed under the as-

sumption that the OM informs us of the actual number Di of neighbors for each

agent. Clearly, this is a most unrealistic assumption in the context of empirical
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applications to survey data, where we simply have no way of knowing whether

agents interact socially in the first place, much less to whom they are linked to

in case they do. Viewed from this perspective, our results are if anything overly

optimistic to begin with.

Yet the third scenario delivers maybe the most fatal blow to any hopes that

survey data could settle the question whether interaction effects are present in

the expectations formation process of respondents or not. Our preferred way to

read Figure 5 is that we can achieve any desired accuracy in the identification of

network structure through an appropriate combination of b and a time-varying

exogenous signal amax. The other side of that coin is that we have no way of

distinguishing between interaction effects and model-consistent beliefs, even if we

identify relatively strong patterns in the correlations of a subset of agents.

Ultimately, these results suggest that existing survey data cannot facilitate

our understanding of the process of expectations formation, which is particularly

troubling in light of its central importance for modern macroeconomic theory. To

end on a more constructive note, we would like to point out once more that our

thought experiment presumed that we merely have data on the time evolution

of agents’ beliefs. In order to investigate whether interaction effects are indeed

present in the data, it would be enormously helpful if surveys contained questions

that refer directly to the presence of interaction effects.
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S. Alfarano and M. Milaković. Network structure and N -dependence in agent-

based herding models. Journal of Economic Dynamics and Control, 33:78–92,

2009.

S. Alfarano, T. Lux, and F. Wagner. Estimation of agent-based models: The case

of an asymmetric herding model. Computational Economics, 26:19–49, 2005.

S. Alfarano, T. Lux, and F. Wagner. Time-variation of higher moments in a

financial market with heterogeneous agents: An analytical approach. Journal of

Economic Dynamics and Control, 32:101–136, 2008.

21



M. Aoki. New Approaches to Macroeconomic Modeling. Cambridge University

Press, Cambridge, UK, 1998.

M. Bowden and S. McDonald. The impact of interaction and social learning on

aggregate expectations. Computational Economics, 31(3):289–306, 2008.

W. A. Brock and S. N. Durlauf. Discrete choice with social interactions. Review

of Economic Studies, 68(2):235–60, 2001.

C. D. Carroll. Macroeconomic expectations of households and professional fore-

casters. Quarterly Journal of Economics, 118(1):269–298, 2003.

M. P. Clements. Explanations of the inconsistencies in survey respondents’ fore-

casts. European Economic Review, 54(4):536–549, 2010.

O. Coibion and Y. Gorodnichenko. What can survey forecasts tell us about infor-

mational rigidities? NBER Working Paper 14586, National Bureau of Economic

Research, December 2008.

M. Del Negro and S. Eusepi. Modeling observed inflation expectations. mimeo,

Federal Reserve Bank of New York, 2009.

G. Evans and S. Honkapohja. Learning and Expectations in Macroeconomics.

Princeton University Press, Princeton, 2001.

B. Flieth and J. Foster. Interactive expectations. Journal of Evolutionary Eco-

nomics, 12(4):375–395, 2002.

C. H. Hommes. The heterogeneous expectations hypothesis: Some evidence from

the lab. mimeo, University of Amsterdam, Netherlands, 2010.

A. Kirman. Epidemics of opinion and speculative bubbles in financial markets. In

M. P. Taylor, editor, Money and Financial Markets, pages 354–368. Blackwell,

Cambridge, 1991.

A. Kirman. Ants, rationality, and recruitment. Quarterly Journal of Economics,

108:137–156, 1993.

22



M. Lines and F. Westerhoff. Inflation expectations and macroeconomic dynamics:

The case of rational versus extrapolative expectations. Journal of Economic

Dynamics and Control, 34:246–257, 2010.

T. Lux. Rational forecasts or social opinion dynamics? Identification of inter-

action effects in a business climate survey. Journal of Economic Behavior and

Organization, 72(2):638–655, 2009.

N. G. Mankiw and R. Reis. Sticky information versus sticky prices: A proposal

to replace the New Keynesian Phillips curve. Quarterly Journal of Economics,

117(4):1295–1328, 2002.

N. G. Mankiw, R. Reis, and J. Wolfers. Disagreement about inflation expectations.

In NBER Macroeconomics Annual 2003, volume 18, pages 209–270, Cambridge,

July 2004. MIT Press.

F. Milani. Expectation shocks and learning as drivers of the business cycle. CEPR

Discussion Paper 7743, Centre for Economic Policy Research, March 2010.

M. Newman. The structure and function of complex networks. SIAM Review, 45:

167–256, 2003.

M. H. Pesaran and M. Weale. Survey expectations. In G. Elliott, C. Granger,

and A. Timmermann, editors, Handbook of Economic Forecasting, volume 1,

chapter 14, pages 715–776. Elsevier, 2006.

C. A. Sims. Implications of rational inattention. Journal of Monetary Economics,

50(3):665–690, 2003.

W. Weidlich. Sociodynamics: A Systemic Approach to Mathematical Modelling in

the Social Sciences. Dover, New York, 2006.

W. Weidlich and G. Haag. Concepts and Methods of a Quantitative Sociology.

Springer, Berlin, 1983.

M. Woodford. Imperfect common knowledge and the effects of monetary policy.

In Knowledge, Information, and Expectations in Modern Macroeconomics: In

23



Honor of Edmund S. Phelps, chapter 1, pages 25–58. Princeton University Press,

Princeton, 2001.

24



BERG Working Paper Series on Government and Growth 
 

1 Mikko Puhakka and Jennifer P. Wissink, Multiple Equilibria and Coordination Failure 
in Cournot Competition, December 1993 

2 Matthias Wrede, Steuerhinterziehung und endogenes Wachstum, December 1993 

3 Mikko Puhakka, Borrowing Constraints and the Limits of Fiscal Policies, May 1994 

4 Gerhard Illing, Indexierung der Staatsschuld und die Glaubwürdigkeit der Zentralbank in 
einer Währungsunion, June 1994 

5 Bernd Hayo, Testing Wagner`s Law for Germany from 1960 to 1993, July 1994 

6 Peter Meister and Heinz-Dieter Wenzel, Budgetfinanzierung in einem föderalen System, 
October 1994 

7 Bernd Hayo and Matthias Wrede, Fiscal Policy in a Keynesian Model of a Closed 
Monetary Union, October 1994 

8 Michael Betten, Heinz-Dieter Wenzel, and Matthias Wrede, Why Income Taxation 
Need Not Harm Growth, October 1994 

9 Heinz-Dieter Wenzel (Editor), Problems and Perspectives of the Transformation Process 
in Eastern Europe, August 1995 

10 Gerhard Illing, Arbeitslosigkeit aus Sicht der neuen Keynesianischen Makroökonom ie, 
September 1995 

11 Matthias Wrede, Vertical and horizontal tax competition: Will uncoordinated Leviathans 
end up on the wrong side of the Laffer curve? December 1995 

12 Heinz-Dieter Wenzel and Bernd Hayo, Are the fiscal Flows of the European Union 
Budget explainable by Distributional Criteria? June 1996 

13 Natascha Kuhn, Finanzausgleich in Estland: Anal yse der bestehenden Struktur und Ü-
berlegungen für eine Reform, June 1996 

14 Heinz-Dieter Wenzel, Wirtschaftliche Entwicklungsperspektiven Turkm enistans, July 
1996 

15 Matthias Wrede, Öffentliche Verschuldung in einem föderalen Staat; Stabilität, vertikale 
Zuweisungen und Verschuldungsgrenzen, August 1996 

16 Matthias Wrede, Shared Tax Sources and Public Expenditures, December 1996 



17 Heinz-Dieter Wenzel and Bernd Hayo, Budget and Financial Planning in Germany, Feb-
ruary 1997 

18 Heinz-Dieter Wenzel, Turkmenistan: Die ökonomische Situation und Perspektiven wirt-
schaftlicher Entwicklung, February 1997 

19 Michael Nusser, Lohnstückkosten und internationale W ettbewerbsfähigkeit: Eine kriti-
sche Würdigung, April 1997 

20 Matthias Wrede, The Competition and Federalism - The Underprovision of Local Public 
Goods, September 1997 

21 Matthias Wrede, Spillovers, Tax Competition, and Tax Earmarking, September 1997 

22 Manfred Dauses, Arsène Verny, Jiri Zemánek, Allgemeine Methodik der Rechtsanglei-
chung an das EU-Recht am Beispiel der Tschechischen Republik, September 1997 

23 Niklas Oldiges, Lohnt sich der Blick über den Atlan tik? Neue Perspektiven für die aktu-
elle Reformdiskussion an deutschen Hochschulen, February 1998 

24 Matthias Wrede, Global Environmental Problems and Actions Taken by Coalitions, May 
1998 

25 Alfred Maußner, Außengeld in berechenbaren Konjunkturm odellen – Modellstrukturen 
und numerische Eigenschaften, June 1998 

26 Michael Nusser, The Implications of Innovations and W age Structure Rigidity on Eco-
nomic Growth and Unem ployment: A Schumpetrian Approach to Endogenous Growth 
Theory, October 1998 

27 Matthias Wrede, Pareto Efficiency of the Pay-as-you-go Pension System  in a Three-
Period-OLG Modell, December 1998 

28 Michael Nusser, The Implications of Wage Structure Rigidity on Hum an Capital Accu-
mulation, Economic Growth and Unem ployment: A Schum peterian Approach to En-
dogenous Growth Theory, March 1999 

29 Volker Treier, Unemployment in Reforming Countries: Causes, Fiscal Im pacts and the 
Success of Transformation, July 1999 

30 Matthias Wrede, A Note on Reliefs for Traveling Expenses to Work, July 1999 

31 Andreas Billmeier, The Early Years of Inflation Targeting – Review and Outlook –, Au-
gust 1999 

32 Jana Kremer, Arbeitslosigkeit und Steuerpolitik, August 1999 



33 Matthias Wrede, Mobility and Reliefs for Traveling Expenses to Work, September 1999 

34 Heinz-Dieter Wenzel (Herausgeber), Aktuelle Fragen der Finanzwissenschaft, February 
2000 

35 Michael Betten, Household Size and Household Utility  in Intertemporal Choice, April 
2000 

36 Volker Treier, Steuerwettbewerb in Mittel- und Os teuropa: Eine Einschätzung anhand 
der Messung effektiver Grenzsteuersätze, April 2001 

37 Jörg Lackenbauer und Heinz-Dieter Wenzel, Zum Stand von Transformations- und EU-
Beitrittsprozess in Mittel- und Osteuropa – eine komparative Analyse, May 2001 

38 Bernd Hayo und Matthias Wrede, Fiscal Equalisation: Principles and an Application to 
the European Union, December 2001 

39  Irena Dh. Bogdani, Public Expenditure Planning in Albania, August 2002 

40  Tineke Haensgen, Das Kyoto Protokoll: Eine ökonom ische Analyse unter besonderer 
Berücksichtigung der flexiblen Mechanismen, August 2002 

41  Arben Malaj and Fatmir Mema, Strategic Privatisation, its Achievem ents and Chal-
lenges, Januar 2003 

42 Borbála Szüle 2003, Inside financial conglom erates, Effects in the Hungarian pension 
fund market, January 2003 

43 Heinz-Dieter Wenzel und Stefan Hopp (Herausgeber), Seminar Volume of the Second 
European Doctoral Seminar (EDS), February 2003 

44 Nicolas Henrik Schwarze, Ein Modell für Finanzkrisen bei Moral Hazard und Überin-
vestition, April 2003 

45 Holger Kächelein, Fiscal Competition on the Local Level – May commuting be a source 
of fiscal crises?, April 2003 

46 Sibylle Wagener, Fiskalischer Föderalismus – Theoretische Grundlagen und Studie Un-
garns, August 2003 

47 Stefan Hopp, J.-B. Say’s 1803 Treatise and the Coordination of Economic Activity, July 
2004 

48 Julia Bersch, AK-Modell mit Staatsverschuldung und fixer Defizitquote, July 2004 

49 Elke Thiel, European Integration of Albania: Economic Aspects, November 2004 



50 Heinz-Dieter Wenzel, Jörg Lackenbauer, and Klaus J. Brösamle, Public Debt and the 
Future of the EU's Stability and Growth Pact, December 2004 

51 Holger Kächelein, Capital Tax Competition and Partial Cooperation: Welfare Enhancing 
or not? December 2004 

52 Kurt A. Hafner, Agglomeration, Migration and Tax Competition, January 2005 

53 Felix Stübben, Jörg Lackenbauer und Heinz-Dieter Wenzel, Eine Dekade wirtschaftli-
cher Transformation in den Westbalkanstaaten: Ein Überblick, November 2005 

54 Arben Malaj, Fatmir Mema and Sybi Hida, Albania, Financial Management in the Edu-
cation System: Higher Education, December 2005 

55 Osmat Azzam, Sotiraq Dhamo and Tonin Kola, Introducing National Health Accounts 
in Albania, December 2005 

56  Michael Teig, Fiskalische Transparenz und ökonom ische Entwicklung: Der Fall Bos-
nien-Hercegovina, März 2006 

57  Heinz-Dieter Wenzel (Herausgeber), Der Kaspische Raum : Ausgewählte Them en zu 
Politik und Wirtschaft, Juli 2007 

58  Tonin Kola and Elida Liko, An Em pirical Assessment of Alternative Exchange Rate 
Regimes in Medium Term in Albania, Januar 2008 

59  Felix Stübben, Europäische Energieversorgung: Status quo und Perspektiven, Juni 2008 
60  Holger Kächelein, Drini Imami and Endrit Lami, A new view into Political Business 

Cycles: Household Expenditures in Albania, July 2008 

61  Frank Westerhoff, A simple agent-based financial market model: direct interactions and 
comparisons of trading profits, January 2009 

62  Roberto Dieci and Frank Westerhoff, A simple model of a speculative housing m arket, 
February 2009 

63  Carsten Eckel, International Trade and Retailing, April 2009 

64  Björn-Christopher Witte, Temporal information gaps and market efficiency: a dynam ic 
behavioral analysis, April 2009 

65  Patrícia Miklós-Somogyi and László Balogh, The relationship between public balance 
and inflation in Europe (1999-2007), June 2009 



66  H.-Dieter Wenzel und Jürgen Jilke, Der Europäische Gerichtshof EuGH als Brem sklotz 
einer effizienten und koordinierten Unternehm ensbesteuerung in Europa? , November 
2009 

67  György Jenei, A Post-accession Crisis? Political Developm ents and Public Sector Mod-
ernization in Hungary, December 2009 

68  Marji Lines and Frank Westerhoff, Effects of inflation exp ectations on macroeconomic 
dynamics: extrapolative versus regressive expectations, December 2009 

69  Stevan Gaber, Economic Implications from Deficit Finance, January 2010 

70  Abdulmenaf Bexheti, Anti-Crisis Measures in the Republic of Macedonia and their Ef-
fects – Are they Sufficient?, March 2010 

71  Holger Kächelein, Endrit Lami and Drini Imami, Elections Related Cycles in Publicly 
Supplied Goods in Albania, April 2010 

72  Annamaria Pfeffer, Staatliche Zinssubvention und Au slandsverschuldung: Eine Mittel-
wert-Varianz-Analyse am Beispiel Ungarn, April 2010 

73  Arjan Tushaj, Market concentration in the banking sector: Evidence from Albania, April 
2010 

74  Pál Gervai, László Trautmann and Attila Wieszt, The mission and culture of the corpo-
ration, October 2010 

75  Simone Alfarano and Mishael Milaković, Identification of Interaction Effects in Survey 
Expectations: A Cautionary Note, October 2010 

 
 
 

 

 


