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Abstract: In this article, the Grade Correspondence Analysis (GCA) with posterior clustering
and visualization is introduced and applied to extract important features to reveal households’
characteristics based on electricity usage data. The main goal of the analysis is to automatically
extract, in a non-intrusive way, number of socio-economic household properties including family
type, age of inhabitants, employment type, house type, and number of bedrooms. The knowledge
of specific properties enables energy utilities to develop targeted energy conservation tariffs and to
assure balanced operation management. In particular, classification of the households based on the
electricity usage delivers value added information to allow accurate demand planning with the goal
to enhance the overall efficiency of the network. The approach was evaluated by analyzing smart
meter data collected from 4182 households in Ireland over a period of 1.5 years. The analysis outcome
shows that revealing characteristics from smart meter data is feasible, and the proposed machine
learning methods were yielding for an accuracy of approx. 90% and Area Under Receiver Operating
Curve (AUC) of 0.82.

Keywords: smart metering; Grade Correspondence Analysis; machine learning

1. Introduction

Electricity providers are currently driving deployment of smart electricity meters in a number
of households worldwide to collect fine-grained electricity usage data. The changes taking place in
the electricity industry require effective methods to provide end users with the feedback on electricity
usage which is in turn used by the network operators for formulating pricing strategies, constructing
tariffs and undertaking actions to improve the efficiency and reliability of the distribution grid. With
high expectations towards smart metering adoption and its influence on households notwithstanding,
it is observed that utilization of the information from fine-grained consumption profiles is in its initial
stage. This is due to the fact that consumption patterns of individual residential customers vary a
lot which is the function of the number of inhabitants, their activity, age and lifestyle [1]. Various
techniques for customer classification are discussed in the literature, with the focus on electricity usage
behavior of the customers [2–5]. These works contribute to higher energy awareness by providing
the input for demand response systems in homes and supporting accurate usage forecasting on the
household level [6–8].

Recently, a new relevant research stream may be distinguished with the underlying idea to identify
important household characteristics and leverage it for energy efficiency. It is focused on the application
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of supervised machine learning techniques for inferring such household properties as number of
inhabitants including children, family type, size of the house, and many other characteristics [9,10].
In particular, this work relies upon the works of Beckel et al. and Hopf et al. and further it is supposed
to enhance the approach by extending the methodology for features selection. Therefore, this paper
applies the GCA segmentation approach to derive important features describing electricity usage
patterns of the households. The knowledge of the load profiles captured by smart meters might be
helpful to reveal relevant household characteristics. These customer insights can be further utilized to
optimize the energy efficiency programs in many ways, including with the introduction of flexible
tariff plans and enhanced feedback loop [11,12]. The later one applies to feedback programs that
engage households in energy saving behaviors, and helps to recognize what actions inhabitants are
undertaking to bring the feedback into energy savings [13].

In particular, the proposed paper enhances methodology for customer classification taking into
account historical electricity consumption data captured by a large set of 91 attributes, tailored specially
to describe various aspects of behaviors typical for different type of households. Therefore, the scope
of the paper is threefold:

(1) Extraction of the comprehensive set of the behavioral features to capture different aspects of
household characteristics;

(2) Application of grade cluster analysis to identify important attributes to detect distinct
consumption patterns of the customers and further, using only a subset of relevant features
for classification, to reveal socio-demographic characteristics of the households;

(3) Classification of households’ properties using three machine learning algorithms and three feature
selection techniques.

The proposed research fits into the attempt focused on leveraging smart meter data to support
energy efficiency on the individual user level. This gives novel research challenges in monitoring
usage, data gathering, and inferring from data in a non-intrusive way since customer classification
and profiling is methodically sound and offers a variety of potentials for application within the
energy industry [14–16]. In the attempt to reduce electricity consumption in buildings, identification
of important features responsible for specific patterns of energy consumption at different customer
groups is a key to improving efficiency of available energy usage.

In this context, the proposed approach is, to some extent, similar to non-intrusive load
monitoring (NILM) or non-intrusive appliance load monitoring (NIALM) [17–19]. However,
the difference is that our goal is to extract high-level household characteristics from the electricity
consumption instead of disaggregating the consumption of individual appliances. Nevertheless, both
approaches—NILM/NIALM and the proposed approach for detecting households’ characteristics—are
delivering interesting knowledge that has implications for households and utility providers. It may
help them to understand the key drivers responsible for the electricity consumption and, finally, the
costs associated with this.

In the following sections we characterize the data used in the experiments and introduce the
idea of grade analysis. Subsequently, we describe the technical and methodological realization of the
classification as well as the evaluation of the results. The final section provides a summary and an
outlook on further application scenarios.

2. Smart Meter Data Used

2.1. The CER Data Set

This research is conducted based on the Irish Commission for Energy Regulation (CER) data set.
The CER initiated a Smart Metering Project in 2007 with the purpose of undertaking trials to assess
the performance of Smart Meters and their impact on consumer behavior. It contains measurements
of electricity consumption gathered from 4182 households between July 2009 and December 2010
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(75 weeks in total with 30 min data granularity). Each participating household was asked to fill
out a questionnaire before and after the study. The questionnaire contained inquiries regarding the
consumption behavior of the occupants, the household’s socio-economic status, properties of the
dwelling and appliance stock [20].

Some characteristics of the underlying data are presented in Figure 1, where the normalized
consumption observed at different aggregation levels is visualized. Aggregation reduces the variability
in electricity consumption resulting in increasingly smooth load shapes when at least 100 households
are considered.
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Figure 1. Hourly electricity consumption for various aggregation levels.

The CER data set, to the best of our knowledge, does not account for energy that is consumed by
heating and cooling systems. The heating systems of the participating households either use oil or gas
as a source of energy or their consumption is measured by a separate electricity meter. The households
registered in the project were reported to have no cooling system installed [20].

2.2. Features

The definition of features vector is crucial to the success of any classifier based on a machine
learning algorithm. To make the high-volume time series data applicable to the classification problem,
they have to be transformed into a number of representative variables. As suggested in [10,20], features
can be divided in four groups: consumption features, ratios, temporal features, and statistics. This set of
features especially considers the relation between the consumption on weekdays and on the weekend,
parameters of seasonal and trend decomposition, estimation of the base load and some statistical
features (please refer to Table 1). Altogether the attributes describe consumption characteristics (such
as mean consumption at different times of the day and on different days), ratios (e.g., daytime-ratios
and ratios between different days), statistical aspects (e.g., the variance, the auto-correlation and
other statistical numbers) and finally different temporal aspects (such as consumption levels, peaks,
important moments, temporal deviations, values of time series analysis) [10,20].

All attributes were created based on time series, so we did not apply any dimensionality reduction
techniques e.g., Principal Component Analysis in order not to reduce interpretability of a particular
variable and to prevent information loss. After the feature extraction, the values are normalized.
To evaluate algorithms, we have separated the data into training and testing dataset at a 70%:30% ratio.
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Table 1. List of 91 features used in the analysis.

Consumption Ratios Statistical Temporal

c_week r_night_day s_variance t_above_base
c_weekday r_morning_noon s_cor_wd t_above_1kw
c_weekend r_evening_noon s_num_peaks t_above_2kw
c_evening r_mean_max s_diff t_above_mean
c_morning r_min_mean s_q1 t_daily_max

c_night r_evening_wd_we s_q2 t_daily_min
c_noon r_night_wd_we s_q3 ts_acf_mean3h
c_min r_morning_wd_we s_min_avg ts_acf_mean3h_weekday
c_max r_noon_wd_we s_max_avg ts_stl_varRem

c_we_max r_afternoon_wd_we s_var_we b_day_diff
c_we_evening r_min_wd_we s_var_wd b_day_weak
c_wd_evening r_max_wd_we s_cor_wd_we wide_peaks

c_we_night r_var_wd_we s_cor_we width_peaks
c_wd_night r_we_night_day n_d_diff sm_variety

c_we_morning r_wd_night_day number_zeros bg_variety
c_wd_morning r_we_morning_noon time_above_base2

c_we_noon r_wd_morning_noon percent_above_base
c_wd_noon r_we_evening_noon value_above_base

c_we_afternoon r_wd_evening_noon const_time
c_wd_afternoon r_mean_max_no_min value_min_guess

c_afternoon r_evening_noon_no_min first_above_base
c_we_min r_morning_noon_no_min number_big_peaks
c_wd_max r_day_night_no_min number_small_peaks
c_wd_min dist_big_v
c_sm_max

c_evening_no_min
c_morning_no_min

c_night_no_min
c_noon_no_min

3. Grade Data Analysis

In the following lines, Grade Data Analysis is presented. It is an interesting technique that works
on variables measured on any scale, including categorical. The method uses dissimilarity measures
including concentration curves and the measure of monotonic dependence. The framework is based
on grade transformation proposed by [21], and developed by [22]. The general idea is to transform any
distribution of two variables into a structure that enables to capture the underlying dependencies of the
so-called grade distribution. In practical applications, the grade data approach consists of analyzing
the two-way table with rows/columns, which is preceded by proper recoding of variable values and
providing the values of monotone dependence measures like Spearman’s ρ∗ and Kendall’s τ.

The main component of the grade methods is Grade Correspondence Analysis (GCA), which
stems from classical correspondence analysis. Importantly, Grade Data Analysis is going significantly
beyond the correspondence approach, thanks to the means of grade transformation. An important
feature of GCA is that it does not create a new measure but takes into account the original structure of
the underlying phenomenon. GCA performs multiple ordering iterations on both the columns and
the rows of the table, in such a way that neighboring rows are more similar than those further apart,
and at the same time, neighboring columns are more similar than those that are further apart. Once
the optimal structure is found, it is possible to combine neighboring rows and neighboring columns,
and therefore, to build the clusters representing similar distributions. The Spearman ρ∗ was originally
proposed for continuous distributions, however it may be defined also as Pearson’s correlation applied
to the distribution after the grade transformation. Importantly, the grade distribution is applicable for
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discrete distribution too, and it is possible to calculate Spearman ρ∗ for the probability table P with m
rows and k columns, where pis is the probability of i-th row in s-th column:

ρ∗(P) = 3
m

∑
i=1

k

∑
s=0

(
pis

(
2Srow(i) − 1

)(
2Scol(s) − 1

))
, (1)

where

Srow(i) =

(
i−1

∑
j=1

pj+

)
+

1
2

pi+, Scol(s) =

(
s−1

∑
t=1

p+t

)
+

1
2

p+s (2)

and pj+ and p+t are marginal sums defined as: pj+ = ∑k
s=1 pjs, p+t = ∑m

t=1 pts.
GCA is supposed to maximize ρ∗ by ordering the columns and the rows taking into account their

grade regression value, which represents the gravity center for each column or each row. The grade
regression for the rows is defined as:

regrrow(i) =
∑k

s=1 pisScol(s)

pi+
(3)

and, similarly, for the columns:

regrcol(s) =
∑m

i=1 pisSrow(i)

p+s
. (4)

The idea behind the algorithm is to measure the grade regression for columns and to sort the
columns by its values, which results in an increase of the regression for columns. At the same time,
the regression for rows changes as well. Similarly, if the regression for rows is sorted then regression
for columns changes. As evidenced in [23], each sorting iteration with respect to grade regression
values, in fact, increases the value of Spearman ρ∗. The number of possible combinations with rows
and columns permutations is finite and it is equal to k!m!. With the increasing value of Spearman ρ∗,
the last sorting iteration produces the largest ρ∗, called local maximum of Spearman ρ∗.

In consecutive steps, GCA randomly permutes rows and columns and reorders them so local
maximum can be achieved. In practical application, when the data volume and dimension is huge, the
search over the all possible combinations of rows and columns is a computationally demanding and
long-lasting process. Therefore, in order to find a global maximum of ρ∗, Monte Carlo simulations
are used. To achieve it, the algorithm is iteratively searching for such a representation where ρ∗

reaches local maximum, starting from randomly ordered rows and columns. From the whole set of
local maxima, the highest value of ρ∗ is chosen and it is assumed to be close to the global maximum,
which usually happens after 100 iterations of the algorithm. Importantly, the calculation of grade
regression requires non-zero sum for each and every row and column in a table, so this requirement is
applicable also to the GCA. A more detailed description on grade transformation mechanics can be
found in [22,24].

As far as grade cluster analysis (GCCA) is concerned, its framework is based on optimal
permutations provided by the GCA. The following assumptions are associated with the cluster analysis:
the number of clusters is provided, and the rows and columns of the data table (variables, say X and
Y) are optimally aggregated. The respective, aggregated probabilities in the table for cluster analysis,
are derived from the sums of component probabilities which are found in initial, optimally ordered
table, and number of rows in the aggregated table equals the specified number of clusters. The optimal
clustering is supposed to be achieved when ρ∗(X, Y) is maximal in the set of aggregated rows and/or
columns, which are adjacent in optimal permutations. The rows and the columns may be combined
either separately–by maximizing ρ∗ for aggregated X and non-aggregated Y, or for non-aggregated X
and aggregated Y, or simultaneously. Details of the maximization procedure can be found in [23].

Finally, the grade analysis is highly supported by visualizations using over-representation maps.
The maps are acting as a very convenient tool for plotting both source and transformed data structures
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where the idea is to show the various structures in the data with respect to the average values. Every
cell in the data table is covered by the respective rectangle in [0, 1]× [0, 1] space and it is visualized
using shades of grey, which corresponds to the level of the randomized grade density. The scale of
grade density is divided into several intervals and respective colors represent particular intervals, with
black corresponding to the highest values and white corresponding to the lowest. With the grade
density used to measure the deviation from independence of variables X and Y, the dark colors indicate
overrepresentation while the white ones show underrepresentation.

4. GCA Clustering Experiments

The starting point for the experiments was to prepare the initial matrix with normalized features
(xi −min(x))/(max(x)−min(x)) in the columns and the rows representing each of the households.
The structure of the dataset is presented in Table 2.

Table 2. The sample matrix with the features extracted for each of the households.

Household Feature_1 Feature_2 . . . Feature_91

1 0.23 0.57 . . . 0.85
2 0.64 0.77 . . . 0.27

. . . . . . . . . . . . . . .
4182 0.51 0.73 . . . 0.63

The data structure presented in Table 2 has been analyzed using GradeStat software [25], which is
the tool that was developed in the Institute of Computer Science Polish Academy of Science.

The next step was to compute over-representation ratios for each field (cell) of the table with
households and the attributes describing them. For a given m× k data matrix with non-negative values,
a visualization using over-representation map is possible, in the same way as a contingency table.
However, instead of frequency nij the value of j-th feature for i-th household is used. Subsequently,
it is compared in a contingency table with the corresponding neutral or fair representation of
ni• × n•j/ ∑ ∑ nij where ni• = ∑j nij, n•j = ∑i nij. The ratio of the expression is called the
over-representation. An over-representation surface over a unit square is then divided into m× k
cells situated in m rows and k columns, and the area of cells placed in row i and column j is assumed
to be equal to fair representation of normalized nij. Based on the over-representation ratios, the
over-representation map for the initial raw data can be constructed. The color intensity of each cell
in the map is the result of the comparison between two values: (1) the real value of the measure
connected to the underlying cell; (2) the expected value of the measure. In Figure 2 there is an initial
over-representation map for the analyzed data presented. The colors of the cells in the map are grouped
into three classes representing different properties:

• gray–the feature for the element (household) is neutral (ranging between the 0.99–1.01) which
means that the real value of the feature is equal to its expected value;

• black or dark gray–the feature for the element (household) is over-represented (between 1.01 and
1.5 for weak over-representation and more than 1.5 for strong) which means that the real value of
the feature is greater than the expected one;

• light gray or white–the feature for the element (household) is under-represented (between 0.66
and 0.99 for weak under-representation and less than 0.66 for strong under-representation), which
means that the real value of feature is less than the expected one.
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Figure 2. The initial over-representation map.

Besides the differences in color’s scales on the map—its rows and columns could be of different
sizes. A row’s height depends on the evaluation of the element (household) in comparison to the entire
population, so the households with higher evaluation are represented by higher rows. A column’s
width depends on the evaluation of the element (feature) in comparison to the evaluation of all the
features from the set, so the features with higher evaluation are represented by wider columns.

In order to reveal the structural trends in data, the following step was to apply the grade analysis
to measure the dissimilarity between analyzed data distributions—households and feature dimensions.
The grade analysis was conducted based on Spearman’s ρ∗, used as the total diversity index. The value
of ρ∗ strongly depends on the mutual order of the rows and the columns and therefore, to calculate
ρ∗, the concentration indexes of differentiation between the distributions were used. The basic GCA
procedure is executed through permuting the rows and columns of a table in order to maximize the
value of ρ∗. After each sorting, the ρ∗ value increases and the map becomes more similar to the ideal
one. As presented on the maps, the darkest fields are placed in the upper-left and the lower-right
corners while the rest of the fields are assigned according to the following property: the farther from
the diagonal towards the two other map corners (the lower-left and the upper-right ones) the lighter
gray (or white) color the fields have.

The result of the GCA procedure is presented in Figure 3. The rows represent households and the
columns represent the features describing the households. The resulting order presents the structure
of underlying trends in data. The analysis of the map reveals that two groups of the features can be
distinguished: the features which non-differentiate the population of households (the middle columns
of the map) and those which differentiate the households (the most-left and the most-right columns).

Four vertical clusters were marked in Figure 3 (C1, C2, C3 and C4) and these show typical
behavior of the households in terms of the electricity usage characterized by the respective number of
features (in brackets).

Finally, the aggregation of some rows representing unique households was performed.
The optimal number of four clusters was obtained when the changes of the subsequent ρ∗ values
appeared to be irrelevant as referenced in [22]. In Figure 4, the chart with the ρ∗ values as a function
of the number of clusters is presented. The points on the OX axis correspond to the cluster numbers.
The OY axis is denoted by the values of ρ∗.

The proposed GCA method applied for the clustering enables identification of the features
describing different aspects of the consumption behaviors. The clusters are further utilized to select
representative features within each cluster to be used for revealing selected households’ characteristics.
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5. Classification of Selected Household Characteristics

5.1. Problem Statement

In the following lines we present and assess a classification system that applies supervised
machine learning algorithms to automatically reveal specific patterns or characteristics of the
households, having their aggregated electricity consumption as an input. The patterns/characteristics
are related to the socio-economic status of a particular household and its dwelling. In particular,
the following properties are explored:

• Family type;
• Number of bedrooms;
• Number of appliances;
• Employment;
• Floor area;
• House type;
• House age;
• Householder age.

Along with the detailed smart metering data, the data set provides information on the
characteristics of each household collected through the questionnaires. Such information delivers true
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output to classification to validate the proposed models. Table 3 presents eight questionnaire questions
that were used as the target features for classification (true outcome).

Table 3. Questionnaire questions and their corresponding category labels.

Category
Person’s Age Number of Appliances

What Age Were You on Your Last Birthday? Approximately How Many
Appliances Are in Your Home?

1 18–35 ≤8 appliances
2 36–65 between 9 and 11
3 65+ >11 appliances

Category
Number of Bedrooms Floor Area

How many bedrooms are in your home? Approximately what is the area of
your home?

1 ≤2 bedrooms Not available
2 3 bedrooms <100 m2

3 4 bedrooms between 100 m2 and 200 m2

4 ≥5 bedrooms >200 m2

Category
Employment Family type

What is the employment status of the chief
income earner in your household?

What best describes the people you
live with?

1 An employee, Self-employed (with employees),
Self-employed (with no employees) I live alone

2
Unemployed (actively seeking work),

Unemployed (not actively seeking work), Retired,
Carer: Looking after relative family

All people in my home are over 15
years of age, both adults and children
under 15 years of age live in my home

Category
House Age House Type

Approximately how old is your home? Which best describes your home?

1 ≤30 years Semi-detached house, Terraced house

2 >30 years Apartment, Detached house,
Bungalow

For classification of the households’ properties, three experimental feature setups were considered:

• All the variables (91) were used in the algorithms;
• Eight variables based on GCA and selected as representatives of each cluster having the highest

AUC measure (please refer to Appendix A, Table A1);
• Eight variables based on Boruta package which is the feature selection algorithm for finding

relevant variables [26].

5.2. Accuracy Measures

For the purpose of model evaluation, four performance measures were used, i.e., classification
accuracy, sensitivity, specificity and area under the ROC curve (AUC) [27]. For the binary classification
problem, i.e., having positive class and negative class, four possible outcomes exist, as shown in
Table 4.

Table 4. Confusion matrix for binary classification.

Predicted Value

Positive (P) Negative (N)

Real Value
Positive (P) True positive (TP) False negative (FN)

Negative (N) False positive (FP) True negative (TN)
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Based on Table 4, the accuracy (AC) measure can be computed, which is the proportion of the
total number of predictions that were correct:

AC =
TP + TN

TP + FP + TN + FN
. (5)

AUC estimation requires two indicators defined as: true positive rate Tpr = TP
TP+FN , and false

positive rate Fpr = FP
FP+TN = 1 − Tnr. These measures can be calculated for different decision

threshold values. An increase of the threshold from 0 to 1 will yield a series of points (Fpr, Tpr)
constructing the curve with Tpr and Fpr on the horizontal and vertical axes, respectively. In a general
form, the value of AUC is given by AUC =

∫ 1
0 ROC(u)du.

From another point of view, AUC can be understood as P
(
Xp > Xn

)
where Xp and Xn denote the

markers for positive and negative cases, which can be interpreted as the probability that in a randomly
drawn pair of positive and negative cases, the classifier probability is higher for the positive one.

5.3. Classification Algorithms

Building predictive models involves complex algorithms, therefore R-CRAN was used as the
computing environment. In this research, all the numerical calculations were performed on a personal
computer equipped with an Intel Core i5-2430M 2.4 GHz processor (2 CPU × 2 cores), 8 GB RAM and
the Ubuntu 16.04 LTS operating system. To achieve predictive models having good generalization
abilities, special learning process incorporating AUC measure was performed. Because of this, the
following maximized function assures the best parameters of each algorithm:

f (AUCT , AUCV) = −
1
2
|AUCT − AUCV |+

1
2

AUCV , (6)

where AUCT stands for the training accuracy, and AUCV stands for the validation accuracy.

5.3.1. Artificial Neural Networks

Artificial neural networks (ANN) are mathematical objects in the form of equations or systems
of equations, usually nonlinear, for analysis and data processing. The purpose of neural networks
is to convert input data into output data with a specific characteristic or to modify such systems
of equations to read useful information from their structure and parameters. On a statistical basis,
selected types of neural networks can be interpreted in general non-linear regression categories [28].

In studies related to forecasting in power engineering, multilayer, one-way artificial neural
networks with no feedback are most commonly used. Multilayer Perceptron networks (MLP) are one
of the most popular types of supervised neural networks. For example, the MLP network (3, 4, 1)
means a neural network with three inputs, four neurons in the hidden layer and one neuron in the
output layer. In general, the three-layer MLP neural network (P, M, K) is described by the expression:

f (xi, w) = h2(W2[h1(W1xi + b1)] + b2), (7)

where xi =
(
x1, . . . , xp

)T represents the input data, W1 is the matrix of the first layer weights with
dimensions M× P, W2 is the matrix of the second layer weights with dimensions K×M, hi(u) and
bi are nonlinearities (functions of neuron activation e.g., logistic function) and constant values in
subsequent layers respectively [28].

The goal of supervised learning of the neural network is to search for such network parameters
that minimize the error between the desired values Li and received at the output of the network Pi.
The most frequently minimized error function is the sum of the squares of differences between the
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actual value of the explained variable and its theoretical value determined by the model, with the
values of the synaptic weight vector set:

E(w) =
1
2

K

∑
k=1

e(k) =
1
2

K

∑
k=1

(
n

∑
i=1

(
P(k)

i − L(k)
i

)2
)

, (8)

where n is the number of the training sample, P(k)
i and L(k)

i are predicted and reference value and K is
the number of training epochs of the neural network [28].

The neural network learning process involves the iterative modification of the values of the
synaptic weight vector w (all weights are set in one vector), in iteration k + 1:

wk+1 = wk + ηkpk, (9)

where pk is the direction of the minimization of the function E(w) and η is the magnitude of the
learning error. The most popular optimization methods are undoubtedly gradient methods, which are
based on the knowledge of the function gradient:

pk = −[H(wk)]
−1g(wk), (10)

where g and H denote the gradient and the hesian of the last known solution wk, respectively [28].
In the practical implementations of the algorithm, the exact determination of hesian H(wk) is

abandoned, and its approximation G(wk) is used instead. One of the most popular methods of learning
neural networks is the algorithm of variable metrics. In this method, the hesian (or its reversal) in each
step is modified from the previous step by some correction. If by ck and rk the increments of the vector
w and the gradient g in two successive iterative steps are marked, ck = wk −wk−1, rk = gk − gk−1, and
by Vk the inverse matrix of the approximate hessian Vk = [G(wk)]

−1, Vk−1 = [G(wk−1)]
−1, according

to the most effective formula of Broyden-Fletcher-Goldfarb-Shanno (BFGS), the process of updating
the value of the Vk matrix is described by the recursive relationship:

Vk = Vk−1 +

(
1 +

rT
k Vk−1rk

cT
k rk

)
ckcT

k
cT

k rk
−

ckrT
k Vk−1 + Vk−1rkcT

k
cT

k rk
. (11)

As a starting value V0 = 1 is usually assumed, and the first iteration is carried out in accordance
with the algorithm of the largest slope [28].

Artificial neural networks are often used to estimate or approximate functions that can depend
on a large number of inputs. In contrast to the other machine learning algorithms considered
in these experiments, the ANN required the input data to be specially prepared. The vector of
continuous variables was standardized, whereas the binary variables were converted such that 0 s
were transformed into values of −1 [3,5,29].

To train the neural networks, we used the BFGS algorithm implemented in the nnet library.
The network had an input layer with 91 neurons and a hidden layer with 1, 2, 3, . . . , 15 neurons.
A logistic function was used to activate all of the neurons in the network. To achieve robust
estimation of the neural networks error, 10 different neural networks were learned with different
initial weights vector. Final estimation of the error was computed as the average value over 10 neural
networks [3,5,29].

In each experiment, 15 neural networks were learned with various parameters (the number of
neurons in the hidden layer). To avoid overfitting, after each learning iteration had finished (with a
maximum of 50 iterations), the models were checked using the measure defined in (6). Finally, out of
the 15 learned networks, that with the highest value was chosen as the best for prediction [3,5,29].
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5.3.2. K-Nearest Neighbors Classification

The k-nearest neighbors (KNN) regression [30] is a non-parametric method, which means that no
assumptions are made regarding the model that generates the data. Its main advantage is the simplicity
of the design and low computational complexity. The prediction of the value of the explained variable
Li on the basis of the vector of explanatory variables xi is determined as:

Pi =
∑K

k=1 Lk I(xi, xk)

K
, (12)

where:

I(xi, xk) =

{
1, i f xk is one of the k nearest neighbors xi

0, otherwise
, (13)

whereas xk is one of the k-nearest neighbors xi, in the case where the distance d(xi, xk) belongs to k, the
smallest distance between the observations from the set X and xk. The most commonly used distance
is the Euclid distance [3,5,29,30].

To improve the algorithm, we normalized the explanatory variables (standardization for
quantitative variables and replacement of 0 by−1 for binary variables). The normalization ensures that
all dimensions for which the Euclidean distance is calculated have the same importance. Otherwise, a
single dimension could dominate the other dimensions [3,5,29].

The algorithm was trained with knn implemented in the caret library. Different values of k were
investigated in the experiments: {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300}. The optimal value, and thus the final form of
the model, was determined as that giving the maximum value according to (6) [3,5,29].

5.3.3. Support Vector Classification

Support Vector learning is based on simple ideas which originated in statistical learning
theory [31]. The simplicity comes from the fact that Support Vector Machines (SVMs) apply a simple
linear method to the data but in a high-dimensional feature space non-linearly related to the input
space. Moreover, even though we can think of SVMs as a linear algorithm in a high-dimensional space,
in practice, it does not involve any computations in that high-dimensional space [28].

SVMs use an implicit mapping Φ of the input data into a high-dimensional feature space defined
by a kernel function, i.e., a function returning the inner product 〈Φ(xi), Φ

(
x′i
)
〉 between the images

of two data points xi, x′i in the feature space. The learning then takes place in the feature space, and
the data points only appear inside dot products with other points [32]. More precisely, if a projection
Φ : X→ H is used, the dot product 〈Φ(xi), Φ

(
x′i
)
〉 can be represented by a kernel function k which is

computationally simpler than explicitly projecting xi and x′i into the feature space H [28].
Training an SVM involves solving a quadratic optimization problem. Using a standard quadratic

problem solver for training an SVM would involve solving a big QP problem even for a moderately
sized data set, including the computation of an n× n matrix in memory (n number of training points).
In general, predictions correspond to the decision function:

Pi = sign(〈w, Φ(xi)〉), (14)

where solution w has an expansion w = αi ∑i Φ(xi) in terms of a subset of training patterns that lie on
the margin [25].

In the case of the L2-norm soft margin classification, the primal optimization problem takes the
form:

minimize (t, w) =
1
2
||w||2 + C

n

n

∑
i=1

(ξi), (15)
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subject to Li(〈Φ(xi), w〉+ b) ≤ 1− ξ∗i
ξi ≥ 0 (i = 1, . . . , n)

, (16)

where n is the number of training patterns, and Li ∓ 1, C is the cost parameter that controls the penalty
paid by the SVM for misclassifying a training point and thus the complexity of the prediction function.
A high cost value C will force the SVM to create a complex enough prediction function to misclassify as
few training points as possible, while a lower cost parameter will lead to a simpler prediction function.

To construct the support vector machine model, C-SVR from the kernlab library with sequential
minimal optimization (SMO) was used to solve the quadratic programming problem. A linear,
polynomial (of degree 1, 2 and 3) and radial (γ from 0.1 to 1 by 0.2) kernel function were used, and
ε (which defines the margin width for which the error function is zero) was arbitrarily taken from
the following set {0.1, 0.3, 0.5, 0.7, 0.9}. The regularized parameter C that controls overfitting was
arbitrarily set to one of the following values {0, 0.2, 0.4, 0.6, 0.8, 1}. Finally, as in all previous cases,
the model that maximized the function (6) was chosen [29].

5.4. Classification Results

This section refers to application of classification algorithms mentioned in Section 5.3. For the sake
of clarity and synthesis, the results are visualized and provided for the testing dataset only. However,
in the appendix section the detailed results for each algorithm and for three feature sets are presented
(Appendix B).

Additionally, in Appendix C the final set of independent variables used in classification models
and for each dependent variable was provided.

As far as summary results are concerned, Figure 5 shows the accuracy achieved by the
algorithms–KNN, NNET and SVM with break down into three feature selection techniques—All
variables, 8 GCA, 8 Boruta. From the left to the right are the results for family type, number of
bedrooms, employment type, floor area, house type, number of appliances, householder age and house
age. The whiskers represent standard deviations.

It can be observed that the methods achieve approx. 90% accuracy for classification of appliances
and age of the house, regardless of the classification algorithm. Family type is classified with nearly
75% accuracy. On the other hand, the most difficult characteristic to be discovered by algorithms is
number of bedrooms, with the accuracy reaching only 50%.

In terms of different approaches for features selection, it was observed that proposed GCA
algorithm (8-GCA), used for clustering variables and selecting only two representatives of the clusters,
worked well and can be considered as a technique for feature selection. Broader set of all variables
was relevant for classification of floor area only.

The next figure, Figure 6, illustrates the AUC values for the classifiers. The range of AUC values
between analyzed households’ characteristics vary from 0.52 (for age of the house and using KNN) to
0.82 (for family type, regardless classification algorithm). Overall, all variables are necessary to result
in high AUC only for classification of main inhabitant’s age and floor area. For other characteristics,
using 8 variables, either GCA or Boruta, resulted in equally good classification measured by AUC.

In general, the results indicate that the choice of a classification model should depend on the
specific target application. In the experiment it was observed that SVM and NNET stand out as the
classifiers that allow to achieve the best performance. However, the results may vary taking into
account variable selection mechanism.
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6. Conclusions

The approach presented in this paper shows that classification of households’ socio-demographic
and dwelling characteristics based on the electricity consumption is feasible and gives the opportunity
to derive additional knowledge about the customers.

In practice, such knowledge can motivate electricity providers to offer new and more
customer-oriented energy services. With growing liberalization of the energy market, premium
and non-standard services may represent a competitive advantage to both existing customers and
new ones.

The experimental results reported in Section 5 show that selected classification algorithms can
reveal household characteristics from electricity consumption data with fair accuracy. In general,
the choice of a particular classifier should depend on the specific target application. In the experiment,
it was observed that SVM and NNET delivered equally good performance, however the results varied
depending on the variable selection procedure. For six out of eight household characteristics, using
only eight variables, either GCA or Boruta resulted in a satisfactory level of accuracy.

The GCA proposed in this article allowed for quickly grasping general trends in data, and then
to cluster the attributes, taking into account historical electricity usage. It is worth underlining that
the method was competitive with the Boruta algorithm, having its roots in random forest algorithms.
The results obtained by grade analysis might be the basis not only for feature selection but also for the
customers’ segmentation.

Since the results are promising, we aim, as an extension to this research, to focus on a broader
set of variables including external factors like weather information (including humidity, temperature,
sunrises and sunsets) as well as holidays and observances (including school holidays). The other
direction for future research may involve application of selected segmentation algorithms to extract
homogeneous groups of customers and to look for specific socio-demographic characteristics within
the clusters.
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manuscript; M.S. wrote the 2nd section of the manuscript; T.Z. coordinated the main theme of the research and
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Appendix A

Table A1. AUC values for variables grouped into four clusters.

Cluster: 1

Variable Family Bedrooms Age_Person Employ House_Type Age_House Appliances Floor_Area

r_var_wd_we 0.467 0.495 0.495 0.482 0.508 0.488 0.468 0.498
number_zeros 0.513 0.506 0.506 0.482 0.508 0.503 0.49 0.5

r_morning_noon_no_min 0.566 0.539 0.539 0.509 0.485 0.517 0.538 0.555
r_wd_morning_noon 0.568 0.52 0.52 0.608 0.487 0.523 0.542 0.546
r_wd_evening_noon 0.49 0.499 0.499 0.595 0.505 0.546 0.526 0.521

r_evening_noon_no_min 0.525 0.51 0.51 0.638 0.493 0.54 0.513 0.519
r_we_morning_noon 0.61 0.518 0.518 0.644 0.549 0.517 0.495 0.533

width_peaks 0.514 0.538 0.538 0.521 0.577 0.47 0.419 0.514
r_max_wd_we 0.53 0.508 0.508 0.513 0.523 0.501 0.491 0.522

r_morning_noon 0.589 0.52 0.52 0.494 0.527 0.521 0.538 0.552
const_time 0.547 0.542 0.542 0.562 0.511 0.541 0.557 0.537

r_evening_noon 0.496 0.501 0.501 0.53 0.508 0.509 0.53 0.52
r_min_mean 0.513 0.553 0.553 0.633 0.528 0.487 0.581 0.537

r_we_evening_noon 0.515 0.495 0.495 0.484 0.506 0.512 0.518 0.487
r_mean_max_no_min 0.554 0.579 0.579 0.566 0.572 0.546 0.562 0.536

r_wd_night_day 0.584 0.519 0.519 0.55 0.557 0.521 0.631 0.514
value_min_guess 0.481 0.533 0.533 0.502 0.579 0.516 0.577 0.509
first_above_base 0.535 0.515 0.515 0.531 0.524 0.568 0.552 0.522

r_night_day 0.588 0.52 0.52 0.499 0.559 0.519 0.566 0.521
dist_big_v 0.544 0.526 0.526 0.502 0.518 0.512 0.54 0.522

r_noon_wd_we 0.512 0.502 0.502 0.514 0.495 0.496 0.537 0.536
r_we_night_day 0.574 0.518 0.518 0.565 0.55 0.515 0.569 0.542

r_afternoon_wd_we 0.508 0.495 0.495 0.501 0.502 0.505 0.537 0.485
time_above_base2 0.51 0.523 0.523 0.557 0.551 0.538 0.567 0.547
number_big_peaks 0.618 0.541 0.541 0.504 0.51 0.533 0.481 0.512
r_evening_wd_we 0.478 0.508 0.508 0.5 0.511 0.5 0.506 0.537

r_night_wd_we 0.504 0.5 0.5 0.508 0.533 0.503 0.488 0.554
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Table A1. Cont.

Cluster: 2

Variable Family Bedrooms Age_Person Employ House_Type Age_House Appliances Floor_Area

number_small_peaks 0.569 0.546 0.546 0.522 0.516 0.527 0.526 0.508
s_num_peaks 0.569 0.546 0.546 0.522 0.516 0.527 0.526 0.508
r_min_wd_we 0.508 0.51 0.51 0.511 0.552 0.512 0.503 0.537

r_morning_wd_we 0.567 0.483 0.483 0.579 0.544 0.509 0.467 0.499
t_daily_max 0.502 0.506 0.506 0.494 0.507 0.523 0.516 0.55

s_cor_we 0.525 0.519 0.519 0.533 0.506 0.523 0.54 0.515
s_cor_wd_we 0.548 0.541 0.541 0.562 0.511 0.503 0.544 0.542

percent_above_base 0.63 0.585 0.585 0.499 0.542 0.511 0.571 0.547
s_cor_wd 0.549 0.545 0.545 0.55 0.522 0.521 0.584 0.517

t_above_mean 0.569 0.556 0.556 0.558 0.523 0.541 0.542 0.516
ts_acf_mean3h 0.547 0.561 0.561 0.518 0.561 0.52 0.565 0.527

t_daily_min 0.544 0.549 0.549 0.53 0.535 0.507 0.555 0.548
ts_acf_mean3h_weekday 0.589 0.565 0.565 0.497 0.52 0.51 0.574 0.526

Cluster: 3

Variable Family Bedrooms Age_Person Employ House_Type Age_House Appliances Floor_Area

r_mean_max 0.57 0.59 0.59 0.527 0.587 0.528 0.598 0.539
t_above_base 0.718 0.584 0.584 0.519 0.502 0.516 0.552 0.528

r_day_night_no_min 0.582 0.529 0.529 0.553 0.512 0.539 0.568 0.506
wide_peaks 0.457 0.541 0.541 0.497 0.577 0.508 0.588 0.515

c_max 0.758 0.635 0.635 0.636 0.545 0.546 0.634 0.557
c_wd_max 0.757 0.63 0.63 0.642 0.538 0.557 0.629 0.544
c_we_max 0.746 0.634 0.634 0.623 0.546 0.538 0.616 0.541
s_max_avg 0.783 0.647 0.647 0.65 0.551 0.549 0.652 0.543

value_above_base 0.779 0.65 0.65 0.609 0.55 0.559 0.632 0.54
c_sm_max 0.766 0.646 0.646 0.639 0.564 0.551 0.653 0.551

c_min 0.658 0.641 0.641 0.574 0.578 0.52 0.635 0.533
sm_variety 0.731 0.631 0.631 0.584 0.575 0.517 0.612 0.56

Cluster: 4

Variable Family Bedrooms Age_Person Employ House_Type Age_House Appliances Floor_Area

c_wd_min 0.661 0.647 0.647 0.572 0.585 0.519 0.661 0.514
c_we_evening 0.737 0.649 0.649 0.63 0.573 0.541 0.619 0.554
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Table A1. Cont.

c_evening 0.764 0.661 0.661 0.645 0.583 0.541 0.645 0.557
c_wd_evening 0.765 0.657 0.657 0.645 0.581 0.541 0.641 0.553

c_evening_no_min 0.761 0.65 0.65 0.645 0.571 0.542 0.624 0.548
b_day_diff 0.744 0.64 0.64 0.61 0.566 0.545 0.647 0.552
c_wd_night 0.661 0.633 0.633 0.576 0.611 0.505 0.654 0.54
c_afternoon 0.654 0.633 0.633 0.578 0.615 0.5 0.652 0.522

c_night 0.654 0.633 0.633 0.578 0.615 0.5 0.652 0.522
b_day_weak 0.714 0.631 0.631 0.605 0.565 0.543 0.63 0.557

c_wd_morning 0.684 0.628 0.628 0.599 0.587 0.498 0.622 0.55
c_morning 0.673 0.629 0.629 0.585 0.601 0.498 0.624 0.55
c_weekend 0.742 0.657 0.657 0.603 0.597 0.489 0.641 0.528

c_we_morning 0.627 0.617 0.617 0.541 0.615 0.504 0.612 0.535
c_we_min 0.648 0.64 0.64 0.572 0.606 0.49 0.629 0.549

c_we_night 0.639 0.628 0.628 0.579 0.606 0.494 0.638 0.494
c_we_afternoon 0.749 0.635 0.635 0.603 0.559 0.535 0.611 0.529

s_min_avg 0.665 0.655 0.655 0.575 0.617 0.492 0.659 0.526
c_week 0.761 0.669 0.669 0.603 0.599 0.496 0.67 0.555

c_night_no_min 0.638 0.606 0.606 0.566 0.594 0.512 0.623 0.521
s_diff 0.765 0.668 0.668 0.6 0.594 0.499 0.668 0.554

c_weekday 0.765 0.668 0.668 0.6 0.594 0.499 0.668 0.554
bg_variety 0.806 0.657 0.657 0.603 0.561 0.525 0.631 0.546
n_d_diff 0.636 0.603 0.603 0.567 0.59 0.507 0.624 0.512

c_morning_no_min 0.676 0.612 0.612 0.581 0.578 0.501 0.59 0.548
s_q1 0.715 0.665 0.665 0.573 0.612 0.498 0.657 0.515

c_we_noon 0.71 0.625 0.625 0.557 0.571 0.517 0.61 0.541
c_wd_afternoon 0.766 0.646 0.646 0.574 0.562 0.541 0.648 0.553

s_q3 0.743 0.662 0.662 0.588 0.6 0.494 0.66 0.554
c_noon 0.73 0.644 0.644 0.536 0.581 0.505 0.63 0.538

s_q2 0.759 0.662 0.662 0.565 0.589 0.486 0.651 0.532
c_wd_noon 0.717 0.636 0.636 0.518 0.573 0.5 0.622 0.532

c_noon_no_min 0.715 0.624 0.624 0.513 0.557 0.498 0.604 0.528
ts_stl_varRem 0.748 0.632 0.632 0.646 0.556 0.494 0.616 0.541

s_var_we 0.735 0.635 0.635 0.623 0.553 0.491 0.61 0.535
t_above_1kw 0.74 0.655 0.655 0.605 0.595 0.499 0.668 0.549

s_variance 0.75 0.641 0.641 0.635 0.563 0.499 0.645 0.545
s_var_wd 0.752 0.637 0.637 0.634 0.559 0.504 0.644 0.545

t_above_2kw 0.745 0.651 0.651 0.632 0.573 0.496 0.657 0.53
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Appendix B

Table A2. Classification results for each dependent variable.

Training/Validation Sample

AC AUC

Model for family

All variables
ANN (iteration = 17, neurons = 9) 0.766 (±0.015)/0.731 (±0.025) 0.854 (±0.016)/0.822 (±0.029)

KNN (k = 260) 0.722 (±0.017)/0.701 (±0.026) 0.806 (±0.019)/0.787 (±0.031)
SVM (kernel = polynomial, degree = 1, C = 0.3, gamma = 0.1) 0.778 (±0.016)/0.735 (±0.026) 0.825 (±0.017)/0.808 (±0.033)

8 best variables based on AUC
and GCA

ANN (iteration = 28, neurons = 7) 0.755 (±0.016)/0.736 (±0.025) 0.834 (±0.019)/0.812 (±0.031)
KNN (k = 280) 0.776 (±0.016)/0.759 (±0.025) 0.831 (±0.019)/0.811 (±0.033)

SVM (kernel = sigmoid, degree = 1, C = 0.9, gamma = 0.1) 0.673 (±0.018)/0.668 (±0.027) 0.798 (±0.019)/0.794 (±0.025)

8 best variables based on Boruta
ANN (iteration = 28, neurons = 14) 0.769 (±0.016)/0.740 (±0.025) 0.847 (±0.016)/0.817 (±0.031)

KNN (k = 160) 0.754 (±0.016)/0.737 (±0.025) 0.833 (±0.017)/0.803 (±0.031)
SVM (kernel = sigmoid, degree = 1, C = 0.3, gamma = 0.1) 0.761 (±0.016)/0.750 (±0.025) 0.826 (±0.018)/0.800 (±0.032)

Training/Validation Sample

AC AUC

Model for bedrooms

All variables
ANN (iteration = 2217, neurons = 4) 0.493 (±0.018)/0.509 (±0.028) 0.700 (±0.013)/0.674 (±0.024)

KNN (k = 250) 0.494 (±0.019)/0.496 (±0.028) 0.668 (±0.012)/0.660 (±0.024)
SVM (kernel = sigmoid, degree = 1, C = 0.1, gamma = 0.1) 0.494 (±0.018)/0.508 (±0.028) 0.674 (±0.014)/0.656 (±0.023)

8 best variables based on AUC
and GCA

ANN (iteration = 19, neurons = 6) 0.482 (±0.019)/0.492 (±0.028) 0.683 (±0.013)/0.669 (±0.025)
KNN (k = 300) 0.491 (±0.018)/0.505 (±0.028) 0.685 (±0.013)/0.657 (±0.025)

SVM (kernel = polynomial, degree = 1, C = 0.9, gamma = 0.9) 0.490 (±0.018)/0.504 (±0.028) 0.667 (±0.012)/0.664 (±0.025)

8 best variables based on Boruta
ANN (iteration = 26, neurons = 9) 0.494 (±0.018)/0.507 (±0.028) 0.683 (±0.013)/0.665 (±0.025)

KNN (k = 300) 0.492 (±0.019)/0.514 (±0.028) 0.687 (±0.013)/0.667 (±0.024)
SVM (kernel = polynomial, degree = 3, C = 0.7, gamma = 0.7) 0.486 (±0.018)/0.512 (±0.028) 0.679 (±0.011)/0.667 (±0.021)

Training/Validation Sample

AC AUC

Model for age_person

All variables
ANN (iteration = 16, neurons = 3) 0.678 (±0.017)/0.683 (±0.027) 0.708 (±0.016)/0.690 (±0.026)

KNN (k = 90) 0.670 (±0.017)/0.670 (±0.027) 0.713 (±0.017)/0.673 (±0.028)
SVM (kernel = polynomial, degree = 1, C = 0.1, gamma = 0.9) 0.674 (±0.017)/0.678 (±0.027) 0.726 (±0.013)/0.691 (±0.023)

8 best variables based on AUC
and GCA

ANN (iteration = 27, neurons = 4) 0.666 (±0.017)/0.674 (±0.027) 0.666 (±0.019)/0.625 (±0.029)
KNN (k = 260) 0.665 (±0.018)/0.680 (±0.026) 0.663 (±0.021)/0.614 (±0.030)

SVM (kernel = polynomial, degree = 2, C = 0.93, gamma = 0.1) 0.666 (±0.018)/0.680 (±0.027) 0.639 (±0.023)/0.613 (±0.036)

8 best variables based on Boruta
ANN (iteration = 23, neurons = 9) 0.666 (±0.017)/0.669 (±0.027) 0.699 (±0.017)/0.670 (±0.028)

KNN (k = 300) 0.665 (±0.017)/0.671 (±0.027) 0.698 (±0.019)/0.660 (±0.025)
SVM (kernel = polynomial, degree = 3, C = 0.5, gamma = 0.1) 0.662 (±0.017)/0.671 (±0.027) 0.659 (±0.016)/0.658 (±0.025)
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Table A2. Cont.

Training/Validation Sample

AC AUC

Model for employ

All variables
ANN (iteration = 13, neurons = 8) 0.696 (±0.017)/0.676 (±0.027) 0.754 (±0.017)/0.732 (±0.027)

KNN (k = 140) 0.674 (±0.017)/0.655 (±0.027) 0.734 (±0.017)/0.711 (±0.025)
SVM (kernel = linear, degree = 1, C = 1, gamma = 1) 0.703 (±0.017)/0.663 (±0.027) 0.758 (±0.018)/0.728 (±0.034)

8 best variables based on AUC
and GCA

ANN (iteration = 6, neurons = 11) 0.678 (±0.018)/0.671 (±0.027) 0.713 (±0.018)/0.712 (±0.030)
KNN (k = 260) 0.682 (±0.018)/0.671 (±0.027) 0.734 (±0.018)/0.713 (±0.027)

SVM (kernel = polynomial, degree = 3, C = 0.1, gamma = 0.5) 0.672 (±0.017)/0.663 (±0.027) 0.726 (±0.020)/0.713 (±0.031)

8 best variables based on Boruta
ANN (iteration = 5, neurons = 13) 0.652 (±0.018)/0.655 (±0.027) 0.704 (±0.018)/0.702 (±0.030)

KNN (k = 300) 0.677 (±0.017)/0.662 (±0.027) 0.723 (±0.019)/0.703 (±0.031)
SVM (kernel = sigmoid, degree = 1, C = 0.9, gamma = 0.9) 0.678 (±0.017)/0.666 (±0.027) 0.718 (±0.021)/0.704 (±0.030)

Training/Validation Sample

AC AUC

Model for floor_area

All variables
ANN (iteration = 17, neurons = 9) 0.622 (±0.018)/0.587 (±0.028) 0.604 (±0.033)/0.594 (±0.038)

KNN (k = 260) 0.598 (±0.018)/0.585 (±0.028) 0.681 (±0.031)/0.573 (±0.055)
SVM (kernel = sigmoid, degree = 1, C = 0.7, gamma = 0.1) 0.609 (±0.018)/0.598 (±0.028) 0.587 (±0.053)/0.627 (±0.057)

8 best variables based on AUC
and GCA

ANN (iteration = 28, neurons = 7) 0.613 (±0.018)/0.578 (±0.028) 0.580 (±0.033)/0.566 (±0.063)
KNN (k = 280) 0.585 (±0.018)/0.571 (±0.028) 0.692 (±0.026)/0.560 (±0.064)

SVM (kernel = polynomial, degree = 1, C = 0.9, gamma = 0.1) 0.599 (±0.018)/0.583 (±0.028) 0.574 (±0.044)/0.575 (±0.061)

8 best variables based on Boruta
ANN (iteration = 28, neurons = 14) 0.603 (±0.017)/0.592 (±0.027) 0.583 (±0.034)/0.583 (±0.049)

KNN (k = 160) 0.591 (±0.018)/0.571 (±0.028) 0.625 (±0.032)/0.576 (±0.083)
SVM (kernel = polynomial, degree = 1, C = 0.9, gamma = 0.5) 0.593 (±0.018)/0.586 (±0.027) 0.579 (±0.032)/0.584 (±0.055)

Training/Validation Sample

AC AUC

Model for appliances

All variables
ANN (iteration = 19, neurons = 1) 0.908 (±0.011)/0.905 (±0.017) 0.686 (±0.048)/0.566 (±0.088)

KNN (k = 40) 0.908 (±0.011)/0.905 (±0.017) 0.784 (±0.023)/0.591 (±0.126)
SVM (kernel = polynomial, degree = 1, C = 0.3, gamma = 0.9) 0.908 (±0.011)/0.905 (±0.017) 0.596 (±0.060)/0.616 (±0.078)

8 best variables based on AUC
and GCA

ANN (iteration = 12, neurons = 2) 0.908 (±0.011)/0.905 (±0.017) 0.605 (±0.055)/0.566 (±0.111)
KNN (k = 70) 0.908 (±0.011)/0.905 (±0.017) 0.766 (±0.022)/0.606 (±0.125)

SVM (kernel = polynomial, degree = 1, C = 0.5, gamma = 0.3) 0.908 (±0.011)/0.905 (±0.017) 0.659 (±0.049)/0.654 (±0.099)

8 best variables based on Boruta
ANN (iteration = 11, neurons = 7) 0.908 (±0.011)/0.905 (±0.017) 0.650 (±0.056)/0.607 (±0.080)

KNN (k = 120) 0.908 (±0.011)/0.905 (±0.017) 0.740 (±0.024)/0.594 (±0.092)
SVM (kernel = radial, degree = 1, C = 1, gamma = 0.9) 0.908 (±0.011)/0.905 (±0.017) 0.666 (±0.068)/0.667 (±0.041)
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Table A2. Cont.

Training/Validation Sample

AC AUC

Model for age_house

All variables
ANN (iteration = 17, neurons = 9) 0.900 (±0.011)/0.899 (±0.018) 0.563 (±0.029)/0.564 (±0.042)

KNN (k = 260) 0.876 (±0.012)/0.870 (±0.020) 0.616 (±0.035)/0.525 (±0.047)
SVM (kernel = sigmoid, degree = 1, C = 0.3, gamma = 0.5) 0.900 (±0.011)/0.899 (±0.018) 0.548 (±0.033)/0.558 (±0.038)

8 best variables based on AUC
and GCA

ANN (iteration = 28, neurons = 15) 0.900 (±0.011)/0.899 (±0.018) 0.593 (±0.032)/0.575 (±0.045)
KNN (k = 280) 0.871 (±0.013)/0.878 (±0.019) 0.625 (±0.030)/0.570 (±0.046)

SVM (kernel = polynomial, degree = 3, C = 0.3, gamma = 0.5) 0.900 (±0.011)/0.899 (±0.018) 0.586 (±0.029)/0.583 (±0.049)

8 best variables based on Boruta
ANN (iteration = 28, neurons = 2) 0.900 (±0.011)/0.899 (±0.018) 0.581 (±0.033)/0.568 (±0.045)

KNN (k = 160) 0.873 (±0.013)/0.865 (±0.021) 0.606 (±0.029)/0.561 (±0.051)
SVM (kernel = polynomial, degree = 1, C = 0.1, gamma = 0.1) 0.900 (±0.011)/0.899 (±0.018) 0.558 (±0.028)/0.563 (±0.047)

Training/Validation Sample

AC AUC

Model for house_type

All variables
ANN (iteration = 10, neurons = 13) 0.611 (±0.017)/0.606 (±0.028) 0.650 (±0.020)/0.616 (±0.029)

KNN (k = 300) 0.598 (±0.018)/0.559 (±0.027) 0.626 (±0.020)/0.587 (±0.032)
SVM (kernel = sigmoid, degree = 1, C = 0.1, gamma = 0.5) 0.590 (±0.018)/0.597 (±0.028) 0.606 (±0.020)/0.596 (±0.038)

8 best variables based on AUC
and GCA

ANN (iteration = 13, neurons = 7) 0.600 (±0.018)/0.596 (±0.028) 0.632 (±0.019)/0.604 (±0.029)
KNN (k = 210) 0.602 (±0.018)/0.590 (±0.027) 0.628 (±0.023)/0.597 (±0.031)

SVM (kernel = polynomial, degree = 3, C = 0.1, gamma = 0.5) 0.615 (±0.018)/0.620 (±0.028) 0.679 (±0.025)/0.648 (±0.031)

8 best variables based on Boruta
ANN (iteration = 25, neurons = 2) 0.603 (±0.018)/0.590 (±0.028) 0.628 (±0.021)/0.595 (±0.030)

KNN (k = 240) 0.602 (±0.018)/0.590 (±0.028) 0.627 (±0.019)/0.600 (±0.027)
SVM (kernel = sigmoid, degree = 1, C = 0.5, gamma = 0.7) 0.599 (±0.018)/0.590 (±0.027) 0.619 (±0.021)/0.585 (±0.034)
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Appendix C

Table A3. Final set of independent variables for classification models for each dependent variable.

Family Bedrooms

Variable AUC Cluster Variable AUC Cluster

number_big_peaks 0.618 1 r_mean_max_no_min 0.578 1
r_we_morning_noon 0.609 1 r_min_mean 0.553 1
percent_above_base 0.630 2 percent_above_base 0.584 2

ts_acf_mean3h_weekday 0.58 2 ts_acf_mean3h_weekday 0.565 2
s_max_avg 0.782 3 value_above_base 0.649 3

c_min 0.658 3 c_min 0.640 3
bg_variety 0.806 4 c_week 0.668 4
c_wd_min 0.660 4 c_wd_min 0.646 4

Age_Person Employ

Variable AUC Cluster Variable AUC Cluster

r_mean_max_no_min 0.578 1 r_evening_noon_no_min 0.643 1
r_min_mean 0.553 1 r_wd_morning_noon 0.595 1

percent_above_base 0.584 2 r_morning_wd_we 0.578 2
ts_acf_mean3h_weekday 0.565 2 s_cor_wd_we 0.562 2

value_above_base 0.649 3 s_max_avg 0.649 3
c_min 0.640 3 sm_variety 0.583 3

c_week 0.668 4 ts_stl_varRem 0.646 4
c_wd_min 0.646 4 c_wd_morning 0.598 4

House_Type Age_House

Variable AUC Cluster Variable AUC Cluster

value_min_guess 0.578 1 first_above_base 0.567 1
width_peaks 0.577 1 r_wd_evening_noon 0.546 1

ts_acf_mean3h 0.561 2 t_above_mean 0.540 2
r_min_wd_we 0.552 2 number_small_peaks 0.527 2
r_mean_max 0.586 3 value_above_base 0.559 3

c_min 0.578 3 r_day_night_no_min 0.539 3
s_min_avg 0.616 4 b_day_diff 0.544 4

s_q3 0.600 4 c_we_evening 0.540 4

Appliances Floor_Area

Variable AUC Cluster Variable AUC Cluster

r_wd_night_day 0.631 1 r_morning_noon_no_min 0.55 1
r_min_mean 0.580 1 time_above_base2 0.54 1

s_cor_wd 0.584 2 t_daily_max 0.549 2
percent_above_base 0.571 2 t_daily_min 0.548 2

c_sm_max 0.653 3 sm_variety 0.560 3
c_min 0.634 3 c_max 0.556 3

c_week 0.669 4 c_evening 0.557 4
c_wd_min 0.661 4 c_wd_morning 0.549 4
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