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Abstract
Random Forests (RFs) are a machine learning (ML) technique widely used across industries. The interpretation of a given RF
usually relies on the analysis of statistical values and is often only possible for data analytics experts. To make RFs accessible to
experts with no data analytics background, we present RfX, a Visual Analytics (VA) system for the analysis of a RF’s decision-
making process. RfX allows to interactively analyse the properties of a forest and to explore and compare multiple trees in a RF.
Thus, its users can identify relationships within a RF’s feature subspace and detect hidden patterns in the model’s underlying
data. We contribute a design study in collaboration with an automotive company. A formative evaluation of RFX was carried
out with two domain experts and a summative evaluation in the form of a field study with five domain experts. In this context,
new hidden patterns such as increased eccentricities in an engine’s rotor by observing secondary excitations of its bearings were
detected using analyses made with RfX. Rules derived from analyses with the system led to a change in the company’s testing
procedures for electrical engines, which resulted in 80% reduced testing time for over 30% of all components.

Keywords: human–computer interfaces, interaction, visual analytics, visualization

CCS Concepts: • Human-centred computing → Visual analytics; Systems and tools for interaction design; Graphical user
interfaces

1. Introduction

In this paper, we contribute a design study on the use of Random
Forest (RF) visualization for analysing data from test stations in a
manufacturing process of the automotive industry. We address the
problem of detecting faulty electrical vehicle parts that do not meet
the quality requirements and thus need to be excluded from theman-
ufacturing process. With the fast up-ramping of new assembly lines
for electric vehicles across the globe [HKB*19], this problem has
gained much attention across industries recently. To detect faulty
parts, engineers typically rely on recording and analysing signal
measurements, as widely used in many other engineering domains
[SMF*20, EJS*20].

Traditionally, engineers analyse one measurement at a time and
compare it to a ground truth baseline measurement. However, with
the advent of new technologies, this one-at-a-time approach does

not scale anymore. For testing modern electrical engines, for in-
stance, engineers in our design study need to analyse more than
20 partially dependent signals within a single test procedure. Apart
from the large burden of increasing manual work, it is also not pos-
sible to understand more complex patterns in the measurement data.
At the moment, interaction effects between multiple measurements
are completely left out. Without detecting issues stemming from
such more holistic problems, however, faulty parts might not be de-
tected (false negatives) or a high number of correct parts might be
incorrectly labelled as faulty (false positives).

An apparent solution to deal with such situations is to leverage
machine learning (ML)-based classification approaches. With these
models, one can automatically explore many different combinations
of measurements and see which combinations led to errors. This
approach works specifically well if the objectives that define an
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error are well-defined and when the user is knowledgeable about
ML [SMM12]. Both assumptions do neither apply to the users of
our design study nor other design studies outside our application do-
main, for example in clinical research [BBJ*17] or music classifica-
tion [RAZ*18]. Past examples in our application domain [SIB*11]
have already shown that error detection is inherently ill-defined and
needs the tacit knowledge of domain experts to be spotted. Simi-
larly, this target audience usually comprises a high degree of domain
knowledge, while dedicated expertise in data analysis might not be
available [ACKK14, Via13].

Our design study focuses on a specificML technique, RF [Bre01],
which are among the more popular ML methods [HH15]. RF is
an ensemble learning method that usually includes hundreds of in-
dependent Decision Trees (DTs). RFs are relatively easy to imple-
ment, less prone to overfitting than similar approaches such as DTs,
and well-suited to detect dependencies in their feature subspace.
They also serve well to find combinations of features from mea-
surements that improve part testing, making them a good choice
for our target domain [EJS*20, PBLG19]. However, without proper
visual interfaces, RFs can be hard to interpret for users, specifi-
cally, for those who have little or no ML background. Efforts were
made that sought to make RFs more interpretable through visual-
ization [HH15, HWWH19, BBM*15, YXZC12]. As none of the
existing approaches have been tested within a real-world scenario
yet, our design study is meant to add ecological validity to this de-
sign space.

As a result, we present RfX (Random Forest Explorer), a vi-
sual analytics (VA) system that resulted from a design study
project [SMM12] with automotive engineers at BMW. RfX aids do-
main experts with no data advanced analytics background, such as
ML model building, in the interactive analysis of RF models. The
system allows identifying DTs that contain themost promisingmea-
surement combinations for new test procedures, while users are able
to interactively explore, compare and enhance DTs in light of their
domain knowledge. In this context, we aim to find a solution to the
following problem ‘How can optimal rules be derived from an RF
by domain experts with no background in advanced data analyt-
ics?’ In summary, our contributions are as follows: (1) the problem
characterization and abstraction of our use case; (2) RfX, a VA sys-
tem for the interactive visualization of an RFs decision-making pro-
cess and (3) a field evaluation of our approach with five automotive
engineers.

2. Related Work

In this section, we present approaches to visualize RFs and DTs, and
present completed design studies in the automotive industry.

2.1. Random forest visualization

In a recent study, Hänsch et al. [HWWH19] distinguish between
four groups of classical RF visualizations. Abstract visualizations
show the model itself. Result-driven visualizations focus on the re-
sult of an RF [HH15] through the provision of graphical interpreta-
tions of the systems classifications. Data-driven visualizations map
model outputs to their input data [SJC08]. Parameter-driven visual-

izations show internal parameters, such as specific features or split
criteria [HH15]. Even though various works have aimed at visual-
izing RFs within or by combining the above-mentioned categories
[SJC08, KvdWVW01, BBM*15], barely any tool allows the inter-
active exploration of several RF’s properties, as well as the effects of
parameter changes on themodel’s structure and output [HWWH19].
Exceptions are provided by Hänsch and Hellwich [HH15] and Yanh
et al. [YXZC12], using a 3D representation to create a botani-
cally inspired forest. However, one drawback of 3D visualizations
are views that contain occlusion and perspective distortion effects
[CCF97]. To tackle this issue, Hänsch et al. [HWWH19] render in-
dividual trees in a 2D space in a follow-up research paper.

The above-mentioned studies can result in very complex visu-
alizations, especially when many DTs are used. Thus, other re-
searchers suggest identifying most representative regions within an
RF [WL19, BB17] and group similar DTs. This is important, be-
cause this means that it is not necessary to analyse ever tree in de-
tail. Instead, only trees that represent a group of trees should be con-
sidered. Bakirli et al. [BB17] summarize recent studies on estimat-
ing tree similarities into the two categories: semantic and structural
similarities. Semantic similarity [NKT08, ZJ12] measures internal
tree properties, such as common feature subspaces between DTs
for particular decision classes. In turn, structural similarity (also re-
ferred to as syntactic similarity [WL19,MS04]) compares structural
tree attributes such as nodes, branches or number of leaves [Per11,
Per13]. In this regard, Bremm et al. [BLH*11] develop a similar-
ity score by combining leaf-, element- and edge-based measures.
Dogra and Kobti[DK13] provide a method for finding similarities
between knowledge represented by different DTs. Miglio and Sof-
fritti [MS04] created an algorithm for tree similarity that combines
tree structure information with agreement percentages on the testing
set. Weinberg and Last [WL19] select the most representative DT
from ensembles of DTs in big data environments. All of the above-
mentioned approaches do either focus on the representation of the
entire forest or the grouping of multiple DTs. While the former of-
ten results in complicated visualizations whenmodels are very com-
plex, the latter does not consider any kind of visual support at all,
which makes an interpretation for domain experts with no analytics
background cumbersome or even impossible.

2.2. Decision tree visualization

As an integral part of an RF’s visualization, DTs must be visual-
ized in a thoroughly adequate way. In this regard, von Landesberger
et al. [LKS*11] give an overview of techniques that are appropri-
ate for displaying DTs (Node-link diagrams, treemaps and icicle
plots). Node-link techniques are probably the most well-known and
often used tree visualizations [WFH*01, XHC*07, EW11]. In these
approaches, nodes are represented as glyphs and relationships as
links from parent to child. These visualizations can lead to scalabil-
ity problems, especially when applied to large DTs. Thus, they are
often combined with other visualization techniques. For instance,
Bremm et al. [BLH*11] combine node-link diagrams with distance
matrices, Behrisch et al. [BKSS15] with scatterplot views and Elzen
et al. [EW11] with streamgraphs. As introduced by Schneiderman
[Shn92], Treemaps are rectangular shapes that recursively subdi-
vide rectangular spaces according to an underlying hierarchy. Even
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though they make good use of the available space, their nodes of-
ten overlap, which can lead to difficult distinctions of hierarchical
structures [LKS*11].

By contrast, icicle plots place child nodes next to their parent and
have been widely used to visualize DTs. For example, Ankerst et al.
[AEK00] and Liu and Salvendy [LS07] use icicle plots to visual-
ize DTs with continuous data. They also show class distributions
by colouring the bars according to class values. Even though ici-
cle plots do not make use of the entire available space, their ad-
vantage is that the parent nodes do not overlap with their children.
Von Landesberger et al. [LKS*11] point out that the combination of
node-link diagramswith icicle plots or treemaps increases the inter-
pretability of a DT and thus allows for flexible analysis. All of the
above-mentioned studies describe DTs outside the context of an RF.
In addition, none of them has been validated within a large industrial
setting or in our application domain.

2.3. Design studies in the automotive sector

Design studies in the automotive sector aremostly carried out for en-
gineering design and anomaly detection. In the case of engineering
design, efforts have been made to visualize in-car communication
networks [SIB*11, SFMB12] or the exploration of multi-criteria al-
ternatives for rotor designs [CMMK20]. Recent studies have been
carried out making use of anomaly detection to detect error-prone
produced parts in test stations of large-scale manufacturing pro-
cesses [SMF*20, EJS*20]. While some of the mentioned studies
acknowledge the need for interpretability of applied ML models
[EJS*20], considerably less work has been dedicated to the develop-
ment of systems that enable the analysis of such models. Grounded
on previous findings, we did build such a system, that visualizes the
decision-making process of an RF classifier.

3. Methodology

In this study, we primarily followed the nine-stage framework for
conducting design studies of Sedlmair et al. [SMM12]. Taking the
system design into consideration, we additionally used the Design
Triangle by Miksch and Aigner [MA14] and the Nested Model for
visualization design and validation byMunzner [Mun10]. As means
of gaining access to experts with domain knowledge and to better
comprehend the problem, we developed the system in close coop-
eration with two domain experts at BMW, who focus on the de-
velopment of testing procedures for electrical engines. Both have a
background in mechanical engineering and reported not being fa-
miliar with data advanced analytics methods, such as the training
of an RF. We carried out a formative evaluation, in which we dis-
cussed iterative prototypes with the experts, who guided us during
the development of RfX and provided us with feedback about and
relevant tasks. A summative evaluation of the system was carried
out with five domain experts from BMW. Methodological details
for this downstream evaluation are provided in Section 8.

4. Problem Characterization

We now analyse the domain problem, the underlying data charac-
teristics and relevant tasks.

4.1. Domain problem

The main problem we focus on is to support engineers in detect-
ing measurement errors in part testing. To ensure high-quality stan-
dards, each part is tested through test stations in serial manufactur-
ing processes, before it is allowed to be assembled into a car. Do-
main experts currently develop test procedures for automated testing
of produced parts during different product development stages. In
the early development stages, tests are developed in lab experiments
by evaluating sensors for measuring product behaviour in specific
circumstances. An example is torque behaviour during speed ramps
of an engine to test its durability. Recorded data mainly comprises
time series data that are analysed manually. Here, a manual analysis
is feasible since part numbers are very low.

When a test is capable of detecting a possible error, for exam-
ple a faulty gear of an engine, the test procedure is finished and de-
ployed to its respective test station. New errors may appear that were
not anticipated during product development phases, however, espe-
cially in the early stages of a test stations installation. In this stage,
it is hard to adjust the already assembled test stations (e.g. installing
new sensors is very costly), resulting in the need to use existing
sensor equipment to detect new errors. To address this problem, en-
gineers seek to detect new errors through analysing combinations of
existing signal measurements. Currently, this is done manually by
sequentially checking different combinations of signals, based on
hypotheses that the engineers derive from their domain knowledge.
Due to the high number of produced parts in this stage, however,
these analyses result in lengthy and tedious processes. For exam-
ple, one domain expert is responsible for the development of an end
of line test station for electrical engines. However, this station is
testing hundreds of engines per day, recording 1024 measurements
where each measurement is capable to detect an error.

The main idea behind our approach is to leverage ML to de-
tect more complex errors. ML naturally lends itself to this prob-
lem, since common ML techniques, such as RFs, are well-suited to
map multiple features: frommeasurements to detected errors. In the
course of discussions with our two lead users, however, it became
clear that they have little to no ML expertise at the moment. As one
user commented when we showed him classifier results ‘Can you
please explain to me why the model predicted this kind of error and
say exactly which were the most important factors for this decision’.
While training the users in ML might be a natural solution, this is
not always possible or realistic; we explore how far visual interfaces
can go towards making DTs more accessible to non-ML experts.
The goal lies in enhancing existing test procedures for the detection
of produced parts that do not meet quality requirements and go be-
yond simple baseline tests. Here, we aim to enable domain experts
to derive rules from an RF that are capable of enriching current test
procedures. A simplified rule can be: ‘If measurement A is greater
than a given threshold X, then evaluate measurement B as a next
step’. Here, an analysis of an RF does not necessarily need to result
in an optimized classifier that fits well to predict certain errors, but
‘good enough’ to enhance existing test procedures.

4.2. Data abstraction and sample datasets

As input data for our visualization we use a binary RF classifier, ac-
cording to Breiman [Bre01]. This model is appropriate because it is
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well-suited for the handling of high dimensional linear dependent
data and is comparatively less complex than other ML approaches.
Each RF consists of multiple DTs, whereby their number can be
specified manually when setting the hyperparameters for the for-
est. Each DT consists of nodes and edges, where in our case, each
node has always two children. An internal node consists of a fea-
ture from a measurement and a split threshold. Generally, it is hard
to find out the exact number of DTs of each RF or the maximum
depth of a DT in an RF since they depend on the properties of use
case-specific data. We thus adapted these parameters in collabora-
tion with our domain experts for the data sets we used in this design
study. In addition, our classifier was constructed with the following
hyperparameters:

First, we apply bootstrapping to overcome the common issue of
the bias-variance-tradeoff [MRS08], often resulting in misclassifi-
cations. The maximum number of features in a tree are limited to√
# f eatures of all available features. As a split criteria, we use the

Gini importance [LWSG13]. These hyperparameters are important
for the abstraction of an RF since they give a general structure of
tree behaviour. When using this hyperparameter set, each DT in the
RF chooses its features randomly, splits the classes according to the
Gini importance and at minimum five samples in a leaf. For an ini-
tial prototype of our system, we trained an RFwith thewine data set,
a widely used data set for ML use cases [ZF07, TD04]. We used this
prototype for first discussions with our two lead users to gather first
feedback on how to improve the visualization design. After our pro-
totype was completed, we applied it to two datasets from our man-
ufacturing setting. For each dataset, we analysed sensor data from
two different test stations. Each sensor records acoustic measure-
ments and comprises of multivariate time-series data. Detailed in-
formation about the feature extraction process can be found in Eirich
et al. [EJS*20]. The two datasets are briefly described in detail.

1. The first dataset contained an RF trainedwith 219 features from
electrical engines. An electrical engine is the final engine, which is
assembled into a car and contains an electrical machine, a gearbox
and an inverter. Features were extracted acoustic measurements of
900 randomly selected electrical engines produced between Febru-
ary 2020 and July 2020. Measurements were recorded at an end of
line test station and served to analyse eccentricities of the rotor of
an electrical engine. As an error class, 400 engines contained high
eccentricities. This dataset was used in the evaluation with our do-
main experts to evaluate the usability of our system and the validity
of our approach.

2. The second dataset contained an RF trained with 66 features
from electrical machines. An electrical machine contains a rotor and
a stator and is assembled into an electrical engine. Features were
extracted from acoustic measurements of 200 randomly selected
electrical machines produced between September 2020 and Decem-
ber 2020. Measurements were recorded at an inline test station and
served to analyse the behaviour of the bearing inside an engine. As
an error class, 100 electrical machines contained anomalies in the
A-Bearing. This dataset was used above all to add further ecolog-
ical validity to our approach with a second use case. We will also
use this dataset as a running example in this paper, where 60 test
samples from the initial dataset are visualized in Section 6.

4.3. Tasks

We began with the task characterization by observing our domain
experts first using the prototypes and later the finished system. We
focus on tasks to derive rules from promising feature combinations
of multiple DTs. To derive relevant tasks, we used the taxonomies of
Brehmer and Munzner [BM13] and Sedlmair et al. [SHB*14]. The
former is appropriate because it forms the bridge between high- and
low-level tasks, which is particularly helpful to embed them into
the daily routines of the domain experts. The latter is well-suited
because it particularly considers tasks that are relevant for ensem-
ble modelling approaches such as RFs. Following the experts, we
identified the following tasks (T):

T1 Partition RF: To derive a rule from an RF, each analysis starts
with the partitioning to find one single cluster of similar DTs or to
find and compare multiple clusters of similar DTs within the RF.
It includes an inspection of clustered DTs and their properties to
answer questions like ‘Are there visible groups of similar DTs in the
RF visualization?’. The task is also about gaining a first overview
of the data space to answer questions such as ‘How many groups of
DTs exist?’or ‘How many DTs are within each group?’

T2 Identify individual representative DT: Next, the decision to se-
lect a DT that is representative for a cluster within the RF is made.
This task includes two sub-tasks. First, browsing (T2.1) through al-
ternative similar DTs within a selected cluster and inspecting their
high-level attributes, such as accuracy or number of nodes, allows
identifying a subset of trees of special interest. For example, the ac-
curacy of a DT can lead to the decision to select or skip a DT. This is
followed by a comparison phase T2.2, where users primarily judge
the superiority of one DT over other identified trees. Of course, the
execution of (T2) involves going back and forth between the sub-
tasks.

T3 Explore individual DT: When an interesting DT is selected,
its low-level attributes, such as split thresholds or feature names are
analysed in detail. For example, the name of a node and its child
together with the split threshold can be directly mapped to a rule
expressed as the statement: ‘If measurement A > X, then evaluate
measurement B’. The resulting rule can be verified by reviewing the
distribution of the classes in each node. This task is related to Un-
certainty [SHB*14] since it involves the evaluation of the reliability
of the model output mapped to the real data instances.

T4 Optimize DT: The split thresholds can be adapted in the
light of previous domain knowledge. Thus, a suggested rule from
a DT can be iteratively refined until all split thresholds are prop-
erly adapted. We are aware of the fact that individually optimized
DTs might result in overfitted models. Thus, each rule that contains
adapted thresholds has to be tested with new training data.

5. Data Aggregation for the Visualization

Our approach is closely related to ensemble pruning[TPV09,
GRF00, DSM16, ZZY17]. In this method, an ensemble size of
classifiers is reduced to increase model efficiency and predictive
performance [BBSH14]. While efficiency and performance are
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undeniably important aspects of model creation, the interactive ex-
ploration of individual ensembles in the context of an RF remains
the focus of this work. Our approach does not aim to exclude anyDT
from an RF. Instead, we provide an approach for clustering similar
DTs within an RF, allowing the user to explore multiple DTs. Many
previous studies showed that a combination of semantic and struc-
tural similarities resulted in an efficient grouping of similar DTs
[WL17, WL19, BB17, MS04]. We build on this existing knowl-
edge and combine semantic and structural tree similarity scores.
The commensurate score of the DTs (Ti and Tj) is computed via
a convex combination in Equation (1). To group similar trees, we
cluster the resulting matrix. As input data for RfX, the matrix with
the highest cluster accuracies, that lead to an optimal parameter λ∗

in Equation (1), is selected, as outlined in Section 5.3. Instead of
other metrics mentioned in the literature (Section 2.1), our metric
specifically considers the context of an RF. This is important since
ensemble-based DTs differ from DTs in an RF. For example, DTs
from an ensemble are generally deeper and thus more susceptible to
overfitting.

Sim
(
Ti, Tj

)
:= (1− λ) Simstru

(
Ti, Tj

) + λ Simsem

(
Ti, Tj

)
, (1)

5.1. Semantic dissimilarity

As one possible score to compute semantic similarity, Weinberg and
Last [WL19] measure how often different DTs agree on the test data
and assign a similarity score based on the result. Instead of other
semantic similarity measurements to compare DTs, such as the Jac-
card Index [FI18], Weinberg and Last [WL17, WL19] showed in
various studies that agreement of DTs is a valid similarity score.
Hence, we consider their approach as appropriate for our use case.
When evaluating this approach, however, our users reported that
they were confused to find that high scores represent DTs that are
close to each other. Thus, we inverted the similarity score of Wein-
berg and Last to a dissimilarity score so that the disagreements are
counted in Equation (2), where a low score is assigned to a pair of
DTs if they often agree and therefore close to each other. For Equa-
tion (2), DTest is the set of test samples and �{Ti (x)}(·) is the indicator
function of the set {Ti(x)}.

∑
x∈DTest

(
1 − �{Ti (x)}

(
Tj(x)

))
(2)

To compare both structural and semantic scores, we include a
scaling interval. Thus, dissimilarities are scaled to the interval [0,1].
To do this, the semantic score of each pair of trees is divided by the
maximum score of two trees within the RF. These values are stored
in a dissimilarity matrix Simsem := (Sim(i, j)

sem )
N
i, j=1, with

Sim(i, j)
sem := Simsem

(
Ti, Tj

)

:=
∑

x∈DTest
(
1 − �{Ti (x)}

(
Tj(x)

))

maxp,q∈{1,2,...,N}
∑

x∈DTest

(
1− �{Tp(x)}

(
Tq(x)

)) .
(3)

5.2. Structural dissimilarity

Furthermore, we build on the work of Bakirli et al. [BB17] to group
paths in a tree by their output labels and transform these groups into

respective sequences. To be consistent with Equation (2), we refer to
this score as structural dissimilarity instead of similarity. We use the
Levenshtein distance [Lev66] to measure the dissimilarity between
each sequence, which is a popular character-based metric and mea-
sures the minimum number of single-character edits between two
words. This fits in well with our approach because branches of DTs
can be reduced to bitstrings, which is a perfect basis for interpreting
the differences as dissimilarities.

For each tree Ti, we extract its branches and group them according
to the output-labels. This assigns each tree Ti a representation as two
tree sequences (TS)s. Each tree sequence TSi,l consists of mi,l ∈ N,
the number of paths in the DT Ti that end with the label l, branch
sequences (BS)s. The branch sequences are representations of the
paths within the tree and written as (sk + 2)-tuples, where sk ∈ N

denotes the length of the kth branch, excluding root and leaf-nodes.
The root of tree Ti is denoted as ri and fi,k,n is the feature of the
splitting node n of the kth branch of the respective tree sequence
TSi,l .

The root and the features are coded as elements of the alphabet,
whichwe extend byAA, AB, AC and so on if needed, corresponding
to their feature names in the training data. A BS terminates with the
corresponding label l ∈ {0, 1} that gives the output of this branch in
the DT. We order the BSs of the same label within a DT from the
left to the right. For example, a branch can have the sequence A-C-
E-1, where 1 represents the class and A-C-E the features splitting
the nodes. Next, we concatenate all of the branches for every tree
with the same label along our ordering from the left to the right.
This gives us two sequences, each of which is equivalent to its cor-
responding TS. These new sequences have the form

TSi,l :=
(
ri, fi,1,1, . . . , l, ri, fi,mi, j ,1, . . . , l, fi,mi, j ,smi, j , l

)
. (4)

Analogously to Section 5.1, two trees have a small dissimilar-
ity score, if they are similar and a high score if they are not sim-
ilar. We also scale the structural dissimilarity matrix, by maxi-
mum scaling, to the interval [0, 1]. This implies that the final dis-
similarity matrix (see Equation 1), as a convex combination of
the two specialized matrices, is also scaled in the interval [0, 1].
Since the semantic and structural matrices are symmetric, the re-
sulting dissimilarity matrix as input for our visualization is also
symmetric.

5.3. Clustering and two-dimensional representation

With both dissimilarity matrices available, we cluster similar DTs.
Since these matrices depend on the parameter λ, the content of this
section is always dependent on this parameter. However, we sup-
press the dependency in the following notations. The optimal pa-
rameter λ∗ for Equation (1) is computed at the end of this section.
We choose a clustering approach, where the number of clusters is
automatically determined. A widely used method for this is a com-
bination of k-means [Mac67] for clustering and an evaluation of the
optimal number of clusters by Silhouette Coefficients [KLKR90].
This is an appropriate choice over other clustering approaches, such
as clustering with DBSCAN, which needs an extensive analysis of
the parameters to achieve a good cluster structure. We name the re-
sulting clusters C1, . . . ,Ck. Each DT Ti is represented as a vector
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ti ∈ R
N , where ti is the ith row of the dissimilaritymatrix andN is the

number of DTs in the RF. With that, each DT in the RF is assigned
a cluster-label. Next, we project our dissimilarity matrix into a 2D
space viaMultidimensional Scaling (MDS) [Pea01]. Since the accu-
racy (acci) of a tree is an important high-level attribute, we want to
take this measurement into account when analysing the clustering.
Thus, we expand the 2D representation of each ti by its accuracy to
be t̃i := (xi, yi, acci)T and compute the arithmetic means t̄u of every
cluster Cu such that

t̄u := (x̄u, ȳu, accu)
T := 1

|Cu|
∑
t̃∈Cu

t̃, (5)

with |Cu| being the cardinality of cluster Cu. The two-dimensional
visual representations of the cluster centres consider the accuracy
by weighting the vectors (x̄u, ȳu)T by accu. This gives us the centre
cu of cluster Cu in Equation (6).

cu :=
(
cxu, c

y
u

)T
:= (x̄u · accu, ȳu · accu)T (6)

With the 2D projections of the DTs, we then find for each cluster
Cu the DT that is closest to the theoretical centre cu as

t∗u := argmin
t̃∈Cu

√(
x− cxu

)2 + (
y− cyu

)2
. (7)

In order to obtainmore detailed information, we repeat these clus-
tering steps on every individual cluster to get sub-clusters with their
representative trees. Here, the number of sub-clusters of each Cu
is also automatically determined by evaluating Silhouette Coeffi-
cients. Thus, the RF is divided into clusters and each cluster into
sub-clusters. When we define S as a set of trees, then its classifi-
cation output lS,x ∈ {0, 1} for a test sample x is computed in Equa-
tion (8). With this, the accuracy accC of a cluster C is defined in
Equation (9), where �{lx}(·) is the indicator function of the set that
consists only of the sample x’s label lx. Thus, each cluster can be
seen as little RF within the RF.

lS,x := argmax
l∈{0,1}

|{T ∈ S|T (x) = l}|. (8)

accC := 1

|DTest |
∑

x∈DTest
�{lx}

(
lC,x

)
, (9)

We use Equation 9 to determine the parameter-value λ∗ whose
resulting dissimilarity matrix is input to RfX. This value is chosen
among the values {0, 0.1, . . . , 1} to have the highestmean-accuracy
of the clusters that is

λ∗ := argmax
λ∈{0,0.1,...,1}

∑
C⊂RF,C cluster accC

|{C|C ⊂ RF,C cluster}| . (10)

6. RfX’s Visualization Components

Our visualization design is shown in Figure 1 and comprises six
components labelled from (a) to (f). In general, the workflow of the
system is closely related to a multiattribute choice as defined by

Dimara et al. [KLKR90]. In our case, it can be described as find-
ing one or multiple good-performing DTs among a finite number of
other DTs and comparing them with each other. This is achieved by
inspecting several high- and low-level tree attributes (Views (a)–(d))
of each selected DT. When a DT is considered relevant for the user,
one or multiple rules can be derived, verified, and enhanced by the
user (Views (e) and (f)_). For the entire demonstration of our visu-
alization, we use the 60 test samples from the second test dataset
from Section 4.2 as a running example.

6.1. Random forest view

The scatterplot in (a) helps to partition an RF (T1) by providing a
big-picture of all available DTs and represents an entry point into
an analysis. We use a planar projection, which is a common anal-
ysis start to get an initial overview over high-level relationships
[SZS*16, JSM*17]. Each DT is represented by a single dot, while
the size is increased for highly accurate trees and decreased accord-
ingly. The cluster id and the accuracy are displayed in additional
rectangles for each cluster. By hovering over a tree, its low-level
attributes are displayed (e.g. accuracy).

6.2. Icicle plot and table view

To facilitate the identification of individual representative trees
within clusters (T2), we encode them as small multiples [Tuf90].
Representative trees are identified as outlined in Section 5.3 and
shown as icicle plot in (b). This view allows the inspection of in-
dividual high-level tree attributes (e.g. decision paths), where addi-
tional attributes can be inspected via hovering over each icicle plot
(e.g. observations in classes 1 and 2). Each row is mapped to the
parent cluster via rectangles with the same colours as the clusters
in panel (a). Rows are sorted according to the accuracy of all clus-
ters and columns to the accuracy of DTs within a cluster. The class
distribution in each rectangle is shown on a divergent colour scale
between red (Class 1) and blue (Class 2).

Some users preferred tables over icicle plots. Hence, we added
table views for all clusters in (d) and all trees in a cluster in (c). As
well as (b), the tables have the purpose to identify a relevant DT
(T2). Tables are sorted according to their accuracies. The selection
of a cluster in (d) and a DT in (c) results in their highlighting in (b)
(see the background of clusters for a selected cluster and red dot for
selected DT).

6.3. Decision tree view

Each tree is displayed as a node-link diagram in (e), these diagrams
are widely used to visualize DTs [EW11, LKS*11, BLH*11]. As
high-level tree attributes the tree id, its accuracy, the number of in-
terior (non-leaf) nodes and its confusion matrix are displayed in
the upper left of (e). Each cell of a confusion matrix is represented
with two triangles, where the matrix rows represent the actual val-
ues and the columns the predicted values. To put focus on matrix
cells that contain non-zero values, we increase the transparency of
empty cells. This further facilitates the decision to select or skip
a DT out of multiple DTs. Each node of the node-link diagram is
shown as a confusion matrix, which represents—as another small
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308 J. Eirich et al. / Interactive Random Forest Exploration

Figure 1: Screenshot of RfX with 400 DTs from our second use case data-set as described in Section 4.2. (a) Visualizes the projection of our
combined dissimilarity matrices. (b) Shows most representative tress of each cluster, represented as an icicle plot. Each cluster of similar trees
is additionally visualized with a table representation, where (d) shows each cluster and (c) each tree within a cluster. A DT and its properties
are shown as a node-link diagram in (e) and the class distribution of a feature as a histogram in (f).

multiple [Tuf90]—the quality of the split criteria for the distribution
inside the node. In addition to the icicle plots, edges are coloured in
accordance with the same colour scheme, while split thresholds are
displayed on the edges. The name of a feature is displayed under a
node. Where previous views help to find appropriate DTs in the RF,
the node-link diagram serves as the heart of the system to derive a
rule from the DT (T3).

6.4. Histogram view

In the histogram in (f), users can review the actual class distribution
where classes are marked with the same colours as in (e) and (b).
The number of bins depends on the length of the input data vector.
Since in our case, the test data contains 60 samples, we also use 60
bins in the histogram. A histogram is displayed by selecting a node
in the node-link diagram. If tree splits are not optimal, users can
adapt thresholds individually by dragging the blue rectangle in (f)
(T4). Thus, a promising rule discovered in (f) can be iteratively re-
fined, while threshold changes are always mapped to all confusion
matrices in the node-link diagram. Furthermore, adapting thresholds
supports users in the interactive analysis of the decision-making pro-
cess of the RF, which can result in new insights and knowledge for
domain experts [SSS*14].

Figure 2: Evolution of the icicle plots to represent a DT. In a first
attempt in (1), we used a treemap, which we changed in (2) to an
icicle plot with a qualitative colour scale. In (3), we used a diver-
gent colour scale, which we changed in (4) to account for colour
deficiency.

7. Iterative Design Process

The design of RfX was carried out in four main iterations in collab-
oration with the domain experts. After each iteration, we gathered
feedback and adapted our visualization design.

Figure 2 shows the evolution of the icicle plot representation.
First, we experimented with treemaps in (1). However, domain ex-
perts reported that it was hard to follow single branches of a tree
since nodes overlapped on the horizontal axis. Therefore in (2), we
used icicle plots, because these allow users to better identify and an-
alyze single branches of DTs [LKS*11]. In a first attempt, we used
a categorical colour scale to distinguish between two classes. Here,
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Figure 3: Evolution of the node-link diagram to represent DTs. In
(1), we use a simple node-link diagram. (2) Contains confusion ma-
trices for each node and (3) colours for the edges to account for
dominant classes in each split. In (4), we changed the colour to ac-
count for colour-blindness and represent each matrix cell as with
two triangles (column for prediction and row for real value).

domain experts reported that they are more interested in an efficient
way to analyse the performance of a DT. They also found it difficult
to evaluate the split quality of individual nodes in a DT. It was not
always clear what the dominant class in a node was, especially in
small rectangles with few samples. We thus used a divergent colour
scale in (3). With such a colour scale, the dominant class in each
node stands out. To ease the evaluation of DTs, we scaled the height
of each icicle plot according to its accuracy. Since the colours in (3)
did not account for colour deficiency, we adapted the colour scale
to tackle this issue in (4).

Figure 3 shows the evolution of the tree views. In (1), we repre-
sented all nodes as ellipses. Although this is a common approach to
represent DTs [SS18, LKS*11, BLH*11], experts found it hard to
evaluate the distribution of samples inside each node. Thus, in (2),
we introduced confusion matrices for each node where only false
positives and negatives were coloured red. To show the distribution
of class splits, we coloured the edges in (3) with the same diver-
gent colour scale as we outlined above. To facilitate the analysis of
each confusion matrix, we encoded each cell with two triangles as
demonstrated in Section 6.3. Furthermore, we changed to a colour
scale that accounts for colour-blindness. These changes allow ex-
perts to easily identify false positives, and negatives in a DT and
analyse their distributions.

8. Evaluation

In this section, we introduce our evaluation methodology and
demonstrate the usability of our system together with the applica-
tion of found rules to a real-world scenario.

8.1. Methodology

Our evaluation aims at validating the usefulness of the proposed
technical considerations (Section 5) and the resulting visualization
(Section 6) in terms of effectiveness and problem-solving charac-
teristics for domain experts within their daily routines. We present
the results of an expert study, embodying qualitative coding of user
feedback in combination with a quantitative usability scale.

Participants: We conducted the study with five domain experts
from BMW, responsible for the development of testing procedures
for the serial manufacturing of electrical vehicles. They were all
male between 23 and 33 years old and had a mean working expe-

rience of 2 years in the problem domain. Every expert had a back-
ground in mechanical engineering, electrical engineering or physics
and hence a higher education. Each of the five also reported being
unfamiliar with advanced data analytics methods.

Data: For the evaluation, we used the first dataset as described
in Section 4.2. The measurements of the data were recorded to de-
tect engines with increased eccentricities of the rotor. The testing
method is split into a general noise vibration part and a dedicated
eccentricitymeasurement. To detect engines with high eccentricities
within the first phase, labels from the second testing phasewere used
to train themodel. Due to non-disclosure agreements with BMW,we
cannot mention the absolute error rates or the cycle times for each
testing procedure.

Task: The following task was given to each user: ‘Derive a rule
from a feature combination that you found in a DT’. During the de-
velopment with our lead users, we observed that tasks generally
were carried out according to the workflow ‘overview first—then
details on demand’ as described in Section 6. Thereby, an example
of an execution can be as follows: first, select a cluster either with
the scatterplot view or from the cluster list that seems relevant. Next,
select a tree from the cluster either via the icicle plots, the scatter-
plot, or the tree list. Then, explore the DT, by clicking on its nodes
to review the class distributions. Finally, interactively change the
thresholds if class splits are not optimal. The expected outcome is a
rule from a combination of features and thresholds that can improve
a current test procedure.

Procedure: The study was conducted in the form of a think-aloud
study [SBS94] with one observer taking notes. Each session took on
average 90min and involved a detailed and prescribed walk-through
of the system, open-ended questions [Sau20] about its usage and a
usability questionnaire. Since the task of the domain experts and
the visualization design are both relatively complex, we made sure
that both the concept of our combined dissimilarity matrix and each
view of RfX was understood well before starting the think-aloud
study. All interviews were performed online, where each partici-
pant executed the same predefined task. The notes taken during the
think-aloud study were analysed using a qualitative coding method-
ology [Cha06]. To quantitatively assess the usability of our system,
we applied the System Usability Scale (SUS) [Sau20]. This scale is
composed of ten statements rated on a Likert scale. The qualitative
coding scheme and the quantitative (SUS) provide a comprehensive
picture of our tool’s deployment readiness level.

8.2. Findings from the think-aloud study

After coding and sorting the participants’ comments and our ob-
servations, we were able to derive insights about the usability of
the system. Four of five users first used the scatter plot to get an
overview of the distribution of the clusters and the closeness of trees
within each cluster. The remaining user reported that sufficient in-
formation was visualized in the list views. Next, users selected a
cluster because it either contained an overall high accuracy (three
users) or a comparable high accuracy but fewer DTs (two users).
After each user selected a cluster, we identified two workflows that
were then carried out. First, three users used the table view instead
of the icicle plots to select trees with a low number of nodes and
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310 J. Eirich et al. / Interactive Random Forest Exploration

Table 1: Results of the System Usability Scale [Sau20] with five domain
experts responsible for electrical engines.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total

Expert 1 7.5 10 10 10 10 10 10 10 7.5 10 95
Expert 2 10 7.5 10 7.5 7.5 10 10 10 10 7.5 90
Expert 3 10 7.5 7.5 10 10 10 5 7.5 7.5 10 85
Expert 4 7.5 10 7.5 5 7.5 10 7.5 7.5 7.5 10 80
Expert 5 7.5 7.5 7.5 10 7.5 10 7.5 7.5 7.5 7.5 80
Avg. 8.5 8.5 8.5 8.5 8.5 10 8.0 8.5 8.0 9.0 86

a high accuracy and compared them to trees inside and outside the
cluster. They then used the meta information of each tree, such as
the confusion matrix to find trees with low false negative rates. The
remaining two users used the icicle plots to select a tree. Here, the
first user selected the top left DT because it was the most accurate
one, while the second user discovered a rule that he thought was
interesting in the left DT of the second cluster and thus decided to
analyse this DT in detail. For both workflows, a tree was reported
as relevant, if it either contained a new rule that had not been no-
ticed by the users before or had a low number of false negatives in
the confusion matrix.When asked why some users considered icicle
plots and others the tree lists as relevant for their choice to select a
DT, the users reported that they either generally preferred lists over
visual abstractions or vice versa.

After a tree was identified, all users reviewed the names of each
node to evaluate if their connection to other nodes made sense for
them, where one expert noted ‘I expected to find signals that I know,
but in fact did find signals, which I did not expect at all. This is good
because it makes me think of new relevant relationships within the
data’. Here, the icicle plots, confusion matrices for each node and
colours and thickness of each edge were noted as especially helpful
(‘It is good to see where the main path inside the tree lies to get a
general overview of its behaviour and to evaluate how it separates
the classes’). After selecting relevant nodes, all experts revised the
histogram and adapted split thresholds, when they thought that bet-
ter splits in terms of DT accuracy could be achieved. This resulted
in better classification results of the selected DT. All users reported
that it was important to explore different types of DTs, which all
represented different rule sets. Many of the newly discovered rules
were interesting because they showed relationships between signals
that users had not thought of previously and which helped them to
better understand eccentricities of the rotor.

8.3. Findings from the system usability scale

Taking the quantitative results of the usability survey into account,
our system provides good usability according to the adjective equiv-
alent of the achieved SUS score [BKM09]. With a score of 86, our
system is well above the average score of 68 [Sau20]. The individual
scores are outlined in Table 1. RfX scores highest on low inconsis-
tencies (Q6) and lowest on the quick learning of the system (Q7)
and confidence in system usage (Q9). A possible explanation for
the results from Q7 and Q9 is that interpreting ML models without
prior knowledge is by no means a simple task. However, we are not

Table 2: Comparison of confusion matrices and model accuracies of a RF,
a DT, and a derived ruleset. All modelling approaches were built with new
sensor data from new electrical engines, which were produced after the ones
we used in our study. 5% of the data contained an error.

RF pred. DT pred. Rule pred.

OK NOK OK NOK OK NOK

Real value Ok 0.93 0.07 0.91 0.09 0.91 0.13
NOK 0.00 1.00 0.09 0.91 0.00 0.94

Accuracy 0.956 0.911 0.922

able to draw a final conclusion on this observation, because of the
low number of participants involved.

8.4. Anecdotal evidence

Asmentioned in Section 8.1, the detection of electrical engineswith
high eccentricities is divided into two phases. The first phase mea-
sures general noise vibrations and the second detects dedicated ec-
centricities. During the think-aloud study, eight promising feature
combinations from five DTs were detected by the domain experts
with RfX and translated into rules. Each rule was tested on new sen-
sor data from completely new electrical engines, which were pro-
duced after the ones we used in our study, where 5% contained an
error in the rotor system. Due to non-disclosure agreements, we are
not able to mention absolute error rates of engines. The low num-
ber of faulty engines is because the production quality at our indus-
trial partner is very high and only very few engines are produced
that have an error. After testing each rule on this new sensor data,
we found that two rules from two different DTs described how in-
creased eccentricities in the rotor system can be detected by observ-
ing secondary excitations of its bearings. When combined with the
existing testing procedure, over 30% of all engines with high ec-
centricities were detectable during the first testing phase. Thus, for
these engines, the second longer testing phase can be skipped in fu-
ture, reducing the testing time for engines that do not meet quality
criteria by 80%. Furthermore, we wanted to know if these results
could also be achieved with a simpler yet intrinsically interpretable
model. Thus, we used the same dataset to train a DT as an inter-
pretable model and an RF as a more complex model and compared
the results in Table 2. Here, the RF did achieve the best accuracy, the
derived rule-set the second best and the DT the lowest. Thus, the de-
rived rule-set outperforms an intrinsically interpretable DT but not
a more complex RF.

9. Discussion

In today’s highly automatedmanufacturing processes, the extraction
of relevant and meaningful information from high-dimensional data
remains a challenging problem [BKSS15, EBJ*21]. In this regard,
the cooperation between human experts and ML techniques has of-
ten proved to be a promising solution by combining the strengths
of both worlds [SMF*20, JFSK15]. We contribute to this challenge
with a design study and present the system RfX.
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RfX provides interactive visual means for identifying relevant
DTs within an RF, thus enabling the user to discover relationships
and detect hidden patterns. Since identifying relevant DTs is a dif-
ficult task for users who do not have an advanced analytics back-
ground, the set of visual components we have introduced follows a
dynamic analysis process. Here, users can interact with our visu-
alization in different ways to explore the decision-making process
of an RF and to gain new knowledge. For instance, the user can
choose between an exploratory and a target-driven analysis of the
DTs, based on the visual component they choose as an entry point.

The planar projection provides the exploratory entry point into
the analysis. An overview of this kind enables the user to choose a
cluster with high accuracy (e.g. by inspecting the rectangles contain-
ing additional information in Figure 1(a)) and trees that are located
close to each other. The icicle plots then allow the user to immedi-
ately determine decision paths in each tree and to compare them to
similar trees within the same cluster.

By contrast, the cluster table supports an efficient, target-driven
analysis. The cluster table is sorted by the accuracy of each clus-
ter and lets the user select a DT cluster that performs relatively
well but contains fewer DTs. The user then selects DTs from the
tree table to identify a DT with the lowest possible number of false
negatives while minimizing false positives. Here, a DT may con-
tain many false positives but still be relevant, since it contains fewer
false negatives. This is especially relevant inmanufacturing contexts
where further assembly of false negative results in overall faulty
parts [EJS*20]. Despite the fact that both analyses have the goal
of selecting the most relevant DT, they follow different workflows,
in which both address a multivariate choice [DBD17].

The challenge of achieving an optimal trade-off between false
positives and negatives is also relevant for the adaptation of split
thresholds. While some might argue that this kind of task is best
addressed completely automatically, we argue that human domain
knowledge is a valuable resource [ACKK14, Via13] that serves
well to optimize ML techniques. For example, users might prefer to
adapt thresholds, which on the one hand produce a higher number
of false positives, but on the other hand, provide a solid threshold
that minimized false negatives. In contrast, other users might want
to optimize thresholds that both result in minimal false positive
and negative rates but are prone to overfitting. In this regard,
we also acknowledge that thresholds could be adopted without
manual intervention during training by including suitable loss and
regularization techniques. Furthermore, we want to stress the fact
that an important aspect of our approach is also about newly gained
knowledge of domain experts from the interactive exploration of
the decision-making process of the RF. New knowledge is difficult
to measure [EJS*20], which is why we believe that providing an
interactive means to understand complex ML models is important
and we are confident that our approach addresses this issue. Even
though the main goal of our approach is not to optimize an ML
classifier the most efficient way, we showed that human domain
knowledge can be an important aspect in better understanding an
ML classifier. This is demonstrated by the fact that the derived
rule-set from the domain experts outperformed a simple DT in
terms of accuracy (see Table 2).

Figure 4: Examples of a confusion matrix (left) and an icicle plot
(right) for a multi-class prediction task using a qualitative colour
scale.

While similar systems of various different types so far have been
proposed for exploring the decision-making process of ML classi-
fiers, RfX differs from them in some important aspects. For example,
Ming et al. [MQB19] provide the system (RuleMatrix) to derive a
list of rules out of a neural network. However, their approach aims
at approximating and analysing a single DT, whereas our approach
groups similar DTs, leaving the possibility to explore, analyse and
compare multiple DTs. Furthermore, RuleMatrix uses only flat rep-
resentations (e.g. list views) and is not evaluated within a real-world
context. In turn, RfX combines hierarchical (e.g. icicle plots) and flat
(e.g. table views) representation and evaluates their interplay within
a real-world scenario.

We acknowledge that our study has some limitations, which can
be addressed in future research. First, our solution is a specific use
case, designed and implemented for a specific problem in a spe-
cific company. Furthermore, our evaluation only involves five do-
main experts. This is a relatively common situation in design stud-
ies, where the presented visualizations often tackle very specific
problems, which can be addressed by only a few experts [BSKR19,
CMMK20, SIB*11, SFMB12, SMF*20]. A second limitation is that
we only use a binary classifier. Even though many classification
problems can be solved with binary classifiers a multi-class clas-
sifier leaves different challenges. To address this issue from a vi-
sualization perspective, the icicle plots could be enhanced with a
qualitative colour scale to account for more than two classes. Us-
ing a qualitative colour scale for multi-class problems would also
address the problem of imbalanced data. Here, classes with small
sample sizes would still be visible in rectangles in the icicle plots.
In the context of the representation of our confusion matrix, more
classes could easily be added by also using a qualitative colour scale.
An example of how a qualitative colour scale could address a multi-
class problem for confusion matrices and icicle plots is provided in
Figure 4.

Third, the experts also recommended one system improvement.
The experts requested the inclusion of help buttons in the sys-
tem (e.g. a detailed explanation of the icicle plots). Finally, neither
the single concepts of our dissimilarity score (e.g. semantic dis-
similarity) nor the visualization components (e.g. icicle plots) are
novel as such. However, to the best of our knowledge, neither a
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combination of dissimilarity scores has been combined with well-
established visualization components nor have similar approaches
been tested within a real-world scenario. Thus, we regard this work
as an exploratory step towards explainableML inmanufacturing set-
tings and plan to further extend and validate the idea of exploring
groups of similar DTs in an RF with interactive systems.

10. Conclusion and Future Work

In this paper, we present a design study for the system RfX, which
allows the deriving of rules from an RF’s decision-making process
for users with no background in ML. To achieve this goal, we first
build on existing work to develop a combined score for semantic
and structural tree similarities that enable the grouping of similar
DTs within an RF. Guided by previous work on the visualization of
RFs [HH15, HWWH19] and by using state of the art visualization
techniques to visualize DTs [LKS*11, EW11], users can partition
an RF, identify relevant DTs within an RF, explore each tree individ-
ually and adapt tree thresholds in light of their domain knowledge.
A validation through a field study with five domain experts from
BMW backed our technical considerations and design choices. In
addition, as a result of RfX’s use, a derived rule improved the overall
manufacturing process to detect electrical engines with high eccen-
tricities and resulted in a reduced testing time of 80% for over 30%
of engines that did not meet quality criteria from the analysed orga-
nization.

Fuelled by the positive feedback from our users and the improve-
ment of the analysed manufacturing processes, future research ef-
forts will build on this foundation. One possible extension of RfX
will be to add another component to extract and represent features
from the data space. Our intention here, is to develop a method that
automatically maps important features of a trained model to the ex-
isting visualization. One way to achieve this objective could for ex-
ample, be to use the RF feature importance score or features that
often appear in highly accurate trees.
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