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Chapter 1

Introduction

In recent years exchange traded natural gas contracts have gained great
importance. This especially applies to continental Europe where increased
liberalization and transparency are now on the agenda. One fact underpin-
ning the rising interest in standardized contracts is the recent start of gas
trading at several energy exchanges in this region. In July 2007 the Ger-
man EEX (European Energy Exchange) launched its gas trading platform.
In May and November 2008, respectively, the Scandinavian Nord Pool and
the French Powernext followed suit. Finally, in December 2009 and 2010,
respectively, Central European Gas Hub launched the Gas Spot and Gas
Futures segments at Wiener Börse. Further support can be found by look-
ing at the exchange traded volumes at the more established continental
hubs: APX-ENDEX recently reported a year-on-year volume increase of
130% in gas trading at the Dutch TTF to 210 TWh in 2010 and a 22%
increase for the Belgian hub Zeebrugge to 203 MWh in 2010.1

Along with the importance of exchange traded gas grows the necessity
to �nd accurate pricing models for the di¤erent contract types and this

1Cf. APX-ENDEX (2011), p. 20.
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2 INTRODUCTION

regularly requires a future spot price. That said, one notable di¤erence
between commodities and stocks or bonds is that the current spot price
is not directly observable in the market. During the last few decades a
number of general commodity pricing models have been developed and
tested. However, the application to natural gas pricing was predominantly
tested using reduced-form models such as the well-known two-factor mod-
els by Gibson and Schwartz (1990), Schwartz (1997) and Schwartz and
Smith (2000). As opposed to structural models, these models build on an
exogenously speci�ed stochastic process rather than supply and demand
conditions founded in microeconomic theory. They are mostly uncomplex
and also capture typical phenomena of the forward curve (e.g. the Samuel-
son e¤ect2), but they do not o¤er fundamental economic explanations for
the predicted prices.

The lack of insight into the real price drivers is a downside of pure
reduced-form models because the risk of misspeci�cation is high and the
out-of-sample performance can be poor. With respect to the Schwartz and
Smith model, Carlson et al. (2007) show that given frictional production
adjustments in the oil and gas market the model will systematically over-
estimate the prices for oil and gas options. Similarly, Ribeiro and Hodges
(2004) �nd that �. . . the use of current reduced-form models in the litera-
ture to price energy contingent claims has not been e¤ective. In particular,
the convenience yield process seems to be misspeci�ed since its speci�ca-
tion ignores some crucial properties of commodity price behavior such as
the dependency of prices�variability on inventory levels�(p. 3).

Beyond the general criticism of reduced-form commodity price models,
the latter statement points at di¢ culties caused by a speci�c price com-

2The Samuelson e¤ect describes the fact that the volatility of forward prices increases
with decreasing time to maturity and is due to the mean reverting property of many
commodity spot prices.
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ponent: the convenience yield. The concept of convenience yield originates
from Kaldor (1939), the groundwork of the �theory of storage�. Kaldor
states that goods in stock which are not yet sold forward have an unob-
servable �exibility yield because market participants owning these goods
have the �convenience� to make use of them whenever wanted.3 For this
reason, according to Kaldor, the observable cost of carry of a stored com-
modity, that is foregone interest and the outlay on physical storage, must
be reduced by this availability premium. Brennan (1958) and Telser (1958)
have further established that this premium varies with the level of storage
in the economy. The concept of convenience yield is explained in detail in
chapter 5.

The idea that such an availability premium impacts the spot price has
also been implemented in a number of reduced-form commodity models.
However, Schwartz and Smith (2000) abandon the concept of convenience
yield in their generalized two-factor model and simply use a �long-term�
and a �short-term�price component, one reason being that �[...] many �nd
the notion of convenience yield elusive [. . . ]�(p. 894). Given that the basic
theory of the convenience yield is widely accepted, it seems questionable to
neglect this variable in up-to-date pricing models since it contains funda-
mental economic information. Apparently, economists are simply lacking
considerable knowledge about the dynamic behavior of the convenience
yield in speci�c markets. Possession of such information would enable the
economist to generate fundamental forecasts and to integrate them into a
reduced-form model as an exogenous component. This could help to reduce
the uncertainty in spot price forecasting signi�cantly. At the same time, it

3This �exibility is of value since contrary to the owner of shares or bonds a commodity
owner can put this good to additional use, for exapmle in industrial production. If there
is uncertainty about the time when the input factor is needed, the producing company
is more �exible by holding the commodity upfront than by entering a long postion in a
forward contract with a �xed delivery date.
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might constitute a viable compromise between the complexity of structural
models and the danger of misspeci�cation in reduced-form approaches.

The following study is based on this motivation and the aforementioned
increase in demand for exchange-traded risk management instruments in
the natural gas market, particularly in continental Europe. Therefore, in
the �rst half of the main part, we present an econometric analysis of the
drivers of convenience yield for natural gas. As a �rst contribution, it is
shown that, in addition to national gas storage levels, air temperature is a
highly relevant and robust determinant of the convenience yield. Moreover,
a regime-switching model, although not optimal for predictions, makes
explicit that basis variability in gas markets rises with inventories as long as
the average observed inventory is su¢ ciently high. This contrasts �ndings
of Fama and French (1987) for non-energy commodities, and it will be
argued that the opposing behavior is due to the capacity constraints of
underground gas storage. Kogan et al. (2009) document similar �ndings for
crude oil futures prices. In addition, to the best of our knowledge, we are the
�rst to investigate the robustness of a convenience yield model for pricing
applications. A forecasting exercise, which identi�es the squared storage
model as the most appropriate speci�cation, is presented afterwards. It is
shown that the model keeps its explanatory power when the measurement
interval is varied.

In the second half of the main part, we use the convenience yield model
to develop a new model for the gas spot price based on the stochastic con-
venience yield model (SCY model) of Schwartz (1997). First, to estimate
this extended model, futures prices are netted of those deviations from
the equilibrium price which are explained by the fundamental variables
above. Next, the model is estimated with the "netted" prices. Then, the
prediction results are compared to those generated with the unmodi�ed
futures price data. It is shown that the extended model improves the out-
of-sample forecast as the forecast horizon increases. At the same time, the
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in-sample and the cross-sectional �t are at least as good as for the bench-
mark. Nevertheless, conceptual and also numerical reasons lead to the fact
that, irrespective of the model version, parameter stability along the cross-
section of futures contracts leaves room for further amendments. For this
reason, the study concludes with an in-depth analysis of alternative es-
timation methods. Yet, we �nd that these alternatives are not favorable
to the standard method, i.e. a maximum likelihood estimation with the
Kalman �lter. Since the gas market is regionally fragmented4 and for some
additional reasons5, the �rst part of the study is conducted on the liberal-
ized UK gas market. Additionally, the scope is then extended to cover the
US market.

The structure of the thesis is as follows: Firstly, in chapter 2, we explain
why increased demand for �nancial risk management products has been
arising in the gas market for a number of years. It is argued that this
makes it worthwhile and necessary to �nd accurate pricing models for
these emerging �nancial instruments. Next, the study discusses why gas
needs to be studied separately from other commodities that have already
received more research attention. It is also addressed why the UK and the
US are suitable markets to study. The chapter closes with an overview of
the most important risk management products for natural gas and leads
over to the reason for the particular importance of the future spot price
(and hence spot price models) in risk management. Chapter 3 elaborates
on the two most important analytical methods for derivative pricing in
�nancial theory and gives a brief overview of more advanced techniques.
Chapter 4 presents and classi�es existing models of spot (and forward)

4Geman (2006), for instance, distinguishes between the 3 regional markets: America,
Europe and Asia.
5One practical advantage over the even more developed US market is that climate con-
ditions are su¢ ciently uniform within this market which facilitates our econometric
analysis. Further details are provided during the course of the study.
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prices for energy commodities. The models are brie�y evaluated according
to a set of de�ned requirements. In addition, we explain why we choose
the SCY model as the starting point for our model extension. In the main
part, the determinants of convenience yield (chapter 5) and a hybrid spot
price model with fundamental convenience yield forecasts (chapter 6) are
investigated. The last chapter concludes.



Chapter 2

The natural gas market

In this chapter we illustrate, �rst of all, why �nancial risk management
in natural gas has become an interesting and relevant �eld of research.
Next, we explain why natural gas has to be modelled individually, i.e.
why the existing research on the pricing of energy derivatives is not su¢ -
cient to build a reliable gas price model. Afterwards, we show that the gas
markets of the UK and the US are most suitable for an empirical study.
More precisely, we illustrate the di¤erence of trading in liberalized vs. non-
liberalized markets and classify both the British and the American market
as rather liberalized. The last section of this chapter gives an overview
about the derivatives which are actually traded in the natural gas mar-
ket. It will be concluded that their payo¤s regularly depend (directly or
indirectly) on the future spot price. This is the ultimate reason for our
objective to search for the most adequate spot price model.

7



8 CHAPTER 2. THE NATURAL GAS MARKET

2.1 Liberalization of natural gas markets

Open access to the distribution and sales segment of the US gas market
was e¤ectuated by the FERC orders 436 and 500 in 1985. They allowed
end customers to buy directly from producers by reserving capacity on in-
terstate pipelines. In the aftermath, di¤erent tari¤ structures and service
levels evolved, such as �rm and interruptible service of di¤erent degrees. In
1992, FERC �nal order 636 enforced the unbundling of pipeline services.
It was now permitted to transfer unused �rm transportation capacity to a
third party. These orders together are responsible for the strong increase
in business activity during the 1990s (cf. Figure 2.1).1 In the years after
the collapse of Enron in late 2001, US gas trading volumes entered into a
phase of stagnation. However, since 2006, the massive in�ux of capital from
�nancial investors, notably hedge funds, has led to a tripling of turnover
and a corresponding push in market liquidity until today. In fact, this re-
cent development in the world�s biggest natural gas market best illustrates
the rising importance of the commodity.

In Europe, the UK started deregulation in the mid-eighties. The Nat-
ural Gas Act of 1986 lead to the privatization of the formerly state-owned
British Gas. The tari¤ market, the market segment for small-scale con-
sumers, became regulated through a price cap while the contract market
for large-scale clients remained, in fact, a monopoly until the mid-nineties.
In 1995, the reform of the Natural Gas Act opened the whole residential
market for competition until 1998. The threshold consumption quantity
for clients�access to the contract market was gradually lowered until 1997,
squeezing out the monopolistic tari¤ segment. The milestone of the liberal-
ization process was the ultimate unwinding of transportation (BG Transco)

1Cf. Sturm (1997), ch. 1.
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Figure 2.1: Daily volumes of natural gas month futures traded at the
NYMEX (monthly averages, front month contract).

and storage from the exploration business (Centrica) in 1997.2

Deregulation in Continental Europe has been lagging behind. In 1998
the European Parliament and Council formulated the Directive on the In-
ternal Market in Natural Gas I (1998/30/EC), but the speed with which
member states promoted the national market opening varied considerably.
Italy, the Netherlands and Spain, for instance, had already shown pro-
gressive developments until the publication of the second benchmarking
report in October 2002, whereas Germany had not implemented the above
Directive even by mid-year 2003. The second directive (2003/55/EC) and
Regulation 1775/2003 set more ambitious targets in many respects. Free
choice of supplier had to be established for all B2B customers by mid-year
2004 and for residential customers by mid-year 2007 in all member states.

2Cf. Price (1997).
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Unused capacity had to be o¤ered to third parties. Integrated gas under-
takings had to legally and organizationally separate their transportation
and distribution from their exploration and production businesses. How-
ever, legal unbundling of the distribution system has still been subject
to a postponement option. For this reason, the liberalization process has
continued to progress with di¤erent speed in the member states.3

On a macroeconomic level, market structures in Continental Europe
remain ine¢ cient to date. One reason is that roughly 90% of volumes
contracted in these markets are long-term take-or-pay contracts. Hence,
short-term volume and price risk might not always be optimally distributed
between supply and demand at present. Yet, it is envisioned by a number
of experts that long-term contracts will loose some importance and that
a greater fraction of gas will soon be traded on exchanges. For instance,
Neumann and von Hirschhausen (2004) point out that �[. . . ] the empirical
evidence from the US and the UK suggests an inverse relationship between
gas sector liberalization and contract length, although long-term contracts
do not entirely disappear with market liberalization� (p. 177). The demand
for risk management in Continental Europe will hence continue to rise
and e¤orts to deepen the understanding of the underlying price risk may
constitute an important research contribution.

2.2 Properties of gas as a commodity

According to the IEA, natural gas accounted for 21% of global primary
energy demand in 2008, and its share will increase to 25% by 2035, while
oil is projected to drop from 33% to 27% in the same period. The most
important rise in gas consumption in absolute terms will come from elec-

3Cf. Haase (2008).
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tricity generation, whose share will increase from 21% of total gas demand
in 2008 to 24% in 2035.4 The main drivers of the projected growth are
global climate concerns and the corresponding national commitments to
reduce greenhouse gas emissions. Since gas-�red power plants operate with
much lower CO2 emissions than coal plants, some important CO2 produc-
ers like China plan to replace an important part of their current generation
capacity.

Natural gas is a very speci�c commodity. As opposed to many other
energy carriers, pipelines are the predominant medium for transportation.
Long-distance transportation necessitates repressurizing the gas after a
certain distance which is an energy-intensive process. This adds to the
maintenance of metering stations and pipelines such that the total trans-
portation cost per unit of calori�c value is �ve times higher than for oil.
Since the pipeline system has a limited reach and supply and demand cen-
ters are not evenly distributed over the world, regional markets instead of
a single world market have developed. This is contrary to the oil market, in
which transportation by tankers is an economical alternative to pipelines
and a single contract per sort is traded worldwide.5. Geman (2006) dis-
tinguishes three di¤erent demand regions for gas: North America, Europe
and Asia. Even within one of these markets, prices can di¤er substantially
depending on the capacity to transport gas to the location of maximum
scarcity. This can lead to persistent demand-supply imbalances and hence
to intra-regional price di¤erences.

The gas price re�ects these facts in di¤erent forms. If short-term im-
balances in the intra-regional �ows of gas occur, price jumps or spikes are
a common consequence. They can especially be observed on an intraday
basis. This type of imbalance is mainly due to the prominent role of gas in

4Cf. IEA (2011), GAS scenario.
5Cf. Geman (2006), p. 236, Shively and Ferrare (2007), ch. 4.
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power generation, but can also be caused by disruptions in production or
pipeline operations.6 Medium-term intra-regional price imbalances last for
a day or longer and can be due to insu¢ cient pipeline capacity between
di¤erent market areas in the considered region. A prominent example is
the price di¤erence between gas at the National Balancing Point (NBP),
the main hub in UK, and the hub Zeebrugge (Belgium). Such a situation
can be due to overbooking of the interconnector pipeline which links the
two regions. Maintenance operations and time lags in the process of re-
versing the �ow direction do also play an important role. Figure 2.2 shows
the daily price di¤erential between the two market areas in percent of
the mean of the two prices. As can be seen, the di¤erential is substantial
overall. Moreover, the daily di¤erentials are obviously not independently
and symmetrically distributed, but skewed with clustered volatility. These
ine¢ ciencies are due to the grid-boundedness of the commodity.

Apart from intra-regional disequilibria, there are repeating patterns
of price changes caused by annual seasonality in demand. In the winter,
space heating demand drives up prices. In the US, prices also rise in the
summer due to the prominent role of air conditioning which increases gas
demand from power stations. Figure 2.3 shows the daily quotes of the UK
3-month ahead (M3) gas future traded on the Intercontinental Exchange
(ICE). One can observe an annual price peak at the beginning of the winter
season when the deliveries for the coldest months (January and February)
are traded.

Furthermore, storage does not even out the seasonality and short-term
�uctuations signi�cantly. In fact, storage technologies in the industry are
very speci�c because gas is stored underground. Since this is very costly,
it takes a considerable intertemporal price di¤erence to have agents use

6The works of Douglas and Popova (2008) and Routledge et al. (2001) look at the price
relationship between gas and power in detail.
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Figure 2.2: Daily price di¤erential of day-ahead gas along the interconnec-
tor (Bacton - Zeebrugge) in % of the mean price.
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Figure 2.3: Daily prices of the 3-month ahead future in UK.
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storage. In addition, the exploration of new storage space can take a long
time, and the required amount of capital can be substantial. The geological
formations which are commonly exploited for gas storage are depleted gas
and oil �elds, salt caverns and aquifers. The �rst type of formation is nor-
mally the largest and the least costly to develop. However, the storage cycle
time is the lowest such that these facilities can only o¤er seasonal storage.
Aquifers have higher deliverability rates and gas can be cycled more than
once per season. However, they have high base gas requirements7 and bear
a high degree of geological risk. Salt caverns, in turn, have very low base
gas requirements, an even higher deliverability and almost no geological
risk. In turn, the exploration cost is extremely high.8 Brie�y, the high
investment and operating expenses of gas storage can lead to structural
shortages of available storage space in the market. If the growth of a mar-
ket�s storage capacity does not keep pace with the growth of demand, price
volatility will increase. The same will happen if supply uncertainty rises
for which the UK market is a prominent example.9

To summarize, this section has shown that gas is an economically rele-
vant commodity and that some of its fundamental properties suggest an in-
dividual modelling. The most important properties in comparison to other
energy carriers are the grid-boundedness, the pronounced daily and sea-
sonal �uctuations of demand and prices as well as the costly storage tech-
nology. Next, it is explained how trading in gas markets works in order to
justify the choice of markets for the empirical analysis.

7The gas which remains in a storage facility to keep pressure at a su¢ cient level (also
called cushion gas).
8Cf. Dietert and Pursell (2000).
9See section 5.3, p. 64 for details on the case of the UK.
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2.3 Trading in liberalized vs. regulated markets

A �commodity�in the sense of �nancial theory is not only de�ned by the
nature of the good and its time of delivery, but also by its quality and
delivery location. The last mentioned aspect is especially relevant for grid-
bound commodities such as natural gas. This means that, for instance,
natural gas somewhere in California is a di¤erent commodity than natural
gas in New York City. Regarding quality, a given volume of natural gas
can have a varying chemical composition. In Western Europe, there are
currently two di¤erent networks for gas with high calori�c value (H-gas)
and low calori�c value (L-gas). In the US, there is no such distinction. In
addition to these properties, natural gas is sold for delivery over a period
of time rather than at a point in time. This is due to the fact that the
possibility of storing gas at the location of demand is usually very limited.
These features are relevant for any type of supply contract presented in
the following.

Given the importance of the delivery location, it becomes immediately
clear that standardized and e¢ cient trading operations are only possible
if the commodity is priced with respect to a single reference point. In the
natural gas market, the so-called hubs, i.e. interconnects of a number of
long-distance pipelines, serve as such point. The reason for this is that,
in any case, most of the gas traded in the respective region or market
area has to pass the hub in order to be shipped from the supplier to the
customer. Hubs do not necessarily exist physically, but can be virtual as
well. A virtual hub is an area rather than a speci�c point in the network.
Henry Hub in Louisiana is an example of a physical gas hub whereas the
NBP in the UK is a virtual hub.

The mentioned hubs are examples from liberalized markets in which
network access to deliver gas to the hub is non-discriminatory and non-
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frictional. Non-discriminatory means that every market agent who wants
to o¤er gas is allowed and able to book pipeline capacity from any entry
point of the pipeline system to the hub. Non-frictional means that the
cost of shipping is not excessive. The following example illustrates this
criterion: Until 2007, the German transportation system was fragmented
into multiple pipeline sections. The owners of these sections each required
a separate shipping contract for capacity booking (called transportation
path model). The high coordination e¤ort in this system prevented the
establishment of (a limited number of) hubs with su¢ cient liquidity. On
the contrary, shippers in the current UK transportation system only close
one contract for entry and/or exit from the whole long-distance network,
hence network access in the UK can be characterized as non-frictional in
contrast to the former German model.

In this study, we consider both the US and the UK as liberalized mar-
kets from which we can, with some limitations, draw conclusions about the
prospective economic relationships driving a reference gas price in conti-
nental European markets.

2.4 Traded products

In this section, it is demonstrated why gas spot price models are important
for the pricing of derivatives. It is shown that the common feature of all
introduced products is their (at least indirect) dependence on the gas spot
price estimate. In stock and bond markets the spot product is regularly
the most frequently traded contract. Opposingly, virtually no commodity
is delivered immediately after purchase and a true spot price does not
exist. This makes the empirical exercise of pricing commodity derivatives
especially challenging. Regarding natural gas, the shortest-term (standard-
ized) product available is the so-called Within-Day contract which delivers
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a speci�ed calori�c amount of gas per hour for the remainder of the cur-
rent gas day.10 Its speci�cation details can vary greatly, but one common
feature is that it does not start to deliver immediately after purchase. For
example, the EEX o¤ers Within-Day gas contracts delivering from three
hours after trading until the end of the gas day. Such a contract is, in fact,
a futures contract, a tradable document which stipulates delivery of a given
quantity of gas at a future point in time to the holder of the contract.

However, even in liberalized markets the majority of trades is currently
closed over the counter (OTC). One reason for this is the fact that the era
of liberalized markets is still young and liquidity in many speci�c con-
tracts is insu¢ cient for exchanges to be pro�table with these products.
Yet, exchanges frequently o¤er the clearing of contracts which are traded
OTC. Hence, OTC contracts in energy markets are not necessarily free
from margin requirements. Moreover, in contrast to electricity markets,
there is a similar expiry speci�cation for forwards and futures contracts in
gas markets. Both contract types cease trading before the delivery period.
Instead, within-day and balance-of-the-month (BOM) futures are traded
as separate contracts equivalent to the already delivering futures. For this
reason, the study does not make an explicit distinction between forwards
and futures unless otherwise stated.11

Month, quarter and BOM contracts are those contracts most common
on exchange. They all deliver a prede�ned daily quantity over the respec-
tive contract period. In terms of traded volumes, month contracts are the
most important products. In fact, the highest volumes are recorded in the
last week of the month, the so-called �bid week�. In this time, market

10A gas day is di¤erent from a calendar day and is commonly de�ned from 6 a.m. on the
same calendar day to 6 a.m. on the following day.

11This simpli�cation requires the assumption of deterministic interest rates (cf. Hull (2009)
for details).
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participants trade the majority of their gas requirements or available vol-
umes for the next month on a �rm basis. The payo¤ of a month future (or
forward) with start of delivery on day T1 and end of delivery on day T2 is

Payo¤Future =
1

T2 � T1

T2X
t=T1

(St � F ): (2.1)

wherein F stands for the preagreed futures (or forward) price and St for
the spot price.12 Contracts with �nancial as well as physical settlement
exist.

Additional gas derivatives are day contracts, basis swaps, index swaps
or di¤erent options such as futures options, calendar spread options and
swing options. Compared to month contracts, these products are less often
traded on exchange. Day contracts are single day strips of a month futures
or forward contract. A very common swap contract in the US is the fu-
tures look-alike swap (or simply �futures swap�). It exchanges a �oating
price shortly before expiry of the front-month future contract (e.g. simple
average of the last three days� futures settlement prices, L3D) against a
�xed price which is similar to the �xed price to pay for the front-month
future. The only di¤erence to the futures contract is that the settlement
takes place �nancially, not physically (i.e. by delivering the underlying). A
buyer in a (�xed-�oat) futures swap pays the �xed price and receives the
�oating price. To calculate the buyer�s payo¤, (2.1) has to be modi�ed by
replacing St above by L3D. The payo¤ received during the delivery period
is, hence, known up-front, after the L3D price has been computed.13

A basis swap in natural gas markets means to exchange the value of

12Cf. Marckho¤ and Muck (2008).
13Cf. Sturm (1997), p. 43¤.
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gas at two di¤erent delivery points. Thus, one could also call this product
a �locational swap�. Usual delivery is taken or made monthly and payo¤s
can be replicated by a long position in one location�s contract and a short
position in the other location�s contract (both monthly with �nancial set-
tlement). Given that the �nal settlement prices of the two forwards are
�xed, only the di¤erence D between them (the basis di¤erential for the
month) remains in the payo¤ equation:

Payo¤Basis Swap =
1

T1 � T2

T2X
t=T1

(SAt � SBt ) +D: (2.2)

SAt denotes the spot price at location A and S
B
t the spot price at location

B. Since there may be many possible smaller trading points in a network
or market area with centralized trading, liquidity in many of these single
products is often not su¢ cient to allow for exchange trading.

Fixed-�oat index swaps (or simply index swaps) are a combination of
futures swaps and basis swaps. An index is an indicative �xed price for gas
in the current delivery month published at the start of the month. Usually
it is the median price at which the contract traded during the bid week. The
buyer of an index swap receives the index price of a certain location and
pays a �xed price to the counterparty. The �xed price is usually negotiated
in such a way that the initial value of the swap agreement is zero. Buying a
futures swap gives exposure to the risk of the month contract at the main
hub and buying a basis swap in addition hedges the price di¤erential risk
to the regional trading point under consideration.

In contrast to swaps (standard) options are instruments which entitle
but do not oblige the owner to buy or sell a prede�ned quantity of the
underlying at an agreed-upon price at a future point of time (European
option) or until that point of time (American option). The underlying in
a futures option is the futures contract for a particular month. The payo¤
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of this contract at execution time t is

Payo¤FuturesOption = max fFt �K; 0g

with K denoting the strike price of the option and Ft the month future�s
price at the execution date. Natural gas futures options are traded on ex-
change in the US (NYMEX, American style options), but not in Europe.
A common application is the insurance of �xed price risk for industrial
clients. Being long in a futures call option agents can still participate in
favorable decreases of the monthly futures price while capping the appre-
ciation risk.

Calendar spread and swing options are exotic contracts. Intuitively, a
calendar spread option permits the holder to exchange gas in one month
(e.g. the front month, M1) with gas in a later month (e.g. the 4th next
month ahead, M4). This is especially of relevance in markets which have
strong seasonality such as the natural gas market. The payo¤ for a calendar
spread option is

Payo¤Calendar SpreadOption = max
n
F T1t � F T2t ; 0

o
:

F T1t denotes the time t-price of the future with delivery in the more recent
period T1 (M1 in the above example) whereas F

T2
t denotes the one with

longer term (e.g. M4). Hence, the payo¤ of this product is again dependent
on the futures price.

Swing options are special in that they ensure volume �exibility for
the holder in addition to an agreed-upon price. These options are, for
instance, implied in the long-term take-or-pay (TOP) contracts between
gas marketers and producers. On each day or in each month during the
lifetime of the option, the holder has the right to recall a quantity qt with
m � qt � M . m and M are the minimum and the maximum quantity
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respectively. The total quantity withdrawn during the option�s lifetime
is often bounded by a lower limit A and an upper limit B. If the total
quantity withdrawn turns out to be below A, a penalty has to be paid
to the producer. The entire option payo¤ depends on an optimal path
which de�nes what quantities should be withdrawn each following day
until maturity. Since the optimal path is contingent on the path of the
underlying spot price, the valuation of such a contract is cumbersome.
The interested reader is referred to Jaillet et al. (2004) for an illustrative
example.

Looking at the entirety of the above presented contracts, one sees that
the payo¤ of many of them directly depends on the expected future spot
price. Yet, even those which depend on the futures price of the commod-
ity can be valued up-front by de�ning this futures price in terms of the
expected spot price. Details on this methodology will be provided in the
following chapter on valuation models. For now, the point to make is that
the future spot price plays a central role in valuing virtually all the deriv-
ative contracts in the natural gas market. In this respect, the gas market
is similar to other commodity markets such as the one for crude oil, for
example. Together with the increasing importance of risk management in
liberalized gas markets this shows that investigating the robustness and
forecasting quality of gas spot price models is an important research topic.



Chapter 3

Contingent claim valuation

This chapter explains why the spot price of a commodity has an essential
role for the pricing of the derivatives presented in the previous chapter.
This explanation is necessary to understand the intention of the following
analysis, which aims to �nd the most appropriate spot price model for
natural gas.1 In addition, this chapter explains how pricing formulas for
derivatives are linked to the spot price to obtain an analytical solution
where possible. This is one of the basics to understand the setup of any
closed-form pricing formula for derivatives which is discussed throughout
this study.

Derivatives on storable assets, such as natural gas, can be valued by
building a replicating portfolio with the same payo¤ structure as the claim
and known price dynamics. This portfolio normally contains the (spot)
asset, i.e. the underlying. For instance, a replicating strategy for a long

1A discussion of what "appropriate" means in this context is part of the next chapter.
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position in a forward contract is to lend the money needed to invest in the
asset today and buy it on the spot market. After the expected price change
over time, this portfolio must have the same value as the position in the
forward contract.2 The amount to be lent for this strategy today is the
current market price of the forward contract discounted by the riskless in-
terest rate: Ft;T e�r(T�t). T �t denotes the time to maturity of the forward.
The amount required to invest into the asset depends on the expectation
of the future spot price at T and the risk-adjusted return k. The total
amount to be invested in order to have one unit of the asset at expiry is
hence E(ST )e�k(T�t). If the market is e¢ cient, current costs and bene�ts
of the replication are equal, i.e.

E(ST )e
�k(T�t) = Ft;T e

�r(T�t): (3.1)

To determine the present value of the forward contract one needs to re-
arrange the equation to

Ft;T = Et(ST )e
(r�k)(T�t): (3.2)

The forward price has now been replicated in terms of the expected future
spot price and a money market account (MMA). Hence, the importance
of the spot price for the valuation of derivatives is based on the fact that
its dynamics are known or easier to conceive than those of the derivative
itself.3 These dynamics are "hidden behind" the expectation operator of
the future spot price. To be able to calculate the futures price, we there-
fore need to solve the right hand side of equation (3.2) given the known
or assumed dynamics of the spot price. In fact, there are two di¤erent ba-

2Since forward and futures prices are equal if interest rates are deterministic (cf. Hull
(2009), p. 109f.), the distinction between the two prices will not matter in the following
as long as this is not explicitly stated.
3Cf. Seppi (2002), p. 9 and Hull (2009), p. 120f.
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sic methods to obtain an analytical solution for a derivative price. These
methods are presented in the following two sections of the chapter. Finally,
in the last section, we give an overview of more advanced methods and the
associated literature.

3.1 Risk-neutral valuation method

The risk neutral valuation principle (or martingale method) goes back to
Cox and Ross (1976). It changes the dynamics of the underlying such that
the discounted spot price becomes a martingale under a new probability
measure. This new probability measure is used to price any contingent
claim. We now illustrate this method in more detail in a continuous time
framework. In the example above, the risk-adjusted required return k of
an investor depends on the amount of systematic risk of the asset and
the individual risk attitude of the investors. This means that an objective
value cannot be determined from this formula right away. However, the
risk-neutral valuation principle makes it possible to value any derivative
by pretending that investors be risk-neutral. That is, their individual risk
attitude does not matter.

Let us assume the spot price S in the example above is driven by a
one-factor stochastic process as suggested by Schwartz (1997) (one-factor
model):

dS = �(�� lnS)Sdt+ �SdW: (3.3)

This is a trend-stationary process wherein � denotes the speed of mean re-
version to trend �: The deterministic drift of this process is �(�� lnS)dt.
Furthermore, dW is the increment of a Brownian motion and � the volatil-
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ity. Applying Ito�s Lemma and setting X = lnS yields4

dX = �(��X)dt+ �dW (3.4)

� = �� �2

2�
:

Parameter � now plays the role of the mean-reversion level of the asset�s
log-return. To value a derivative on this asset with the risk-neutral ap-
proach, the expected log-return � has to be reduced by the market risk
premium �. This means that the asset price only grows with log-return
�� = � � �; which is equal to the riskless interest rate. In compensation
for this reduction of drift in the deterministic part, one has to apply Gir-
sanov�s transformation to the stochastic part of the process: Firstly, the
risk premium is added again in the stochastic part such that the underly-
ing process remains the same. The new process is d ~W = �

�dt+ dW , which
contains a drift. Secondly, one applies a di¤erent probability measure un-
der which the new process ~W becomes driftless again. The probability
measure which satis�es this condition is often called the Q-measure as
opposed to the empirical measure P. Harrison and Kreps (1979) and Har-
rison and Pliska (1981) have shown that in an arbitrage-free market at
least one risk-neutral measure Q exists. Q can be obtained from P by the
Radon-Nikodym derivative. Formally, for the new stochastic increment, it
holds that EQ(d ~W ) = 0 as opposed to EP(d ~W ) = �

�dt. In other words,
the measure change simply relocates the probability mass such that d ~W
becomes a martingale and ~W a standard Brownian motion under Q. The
Q-measure can then be applied to the pricing of contingent claims without
explicit knowledge of the investors�risk attitude and their required return
k and all future cash �ows can be discounted by the risk-free interest rate.

Once the risk-neutral measure is known, it is easy to derive a price

4See e.g. Wiersema (2008), p. 110f. for a detailed derivation of this solution.
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for the forward contract (3.2), given the assumptions about the spot price
dynamics (3.3). Under the risk-neutral measure, the required return k will
be equal to the risk-free rate. The exponent in (3.2) therefore cancels out
so the forward price must simply equal the expected spot price under Q,
i.e.

Ft;T = EQt (ST ):

Since the mean-reversion process (3.4) is de�ned for the log-spot price, one
obtains

EQt (ST ) = EQt
�
eXT

�
= eE

Q
t (XT )+

1
2
V arQt (XT ):

Now, only the �rst two moments of the log-spot price under the risk-neutral
measure are required. The change of measure does not a¤ect the variance.
This means that the variance is the same under P and Q. Mean and
variance of the stochastic di¤erential equation (SDE) with mean reversion
are known5 to be

EQt (XT ) = e��(T�t)Xt + (1� e��(T�t))�� (3.5a)

V art(XT ) =
�2

2�
(1� e�2�(T�t)): (3.5b)

Therefore, the value of the forward contract results as follows:

Ft;T = exp

�
e��(T�t)Xt + (1� e��(T�t))�� +

�2

4�
(1� e�2�(T�t))

�
: (3.6)

3.2 Partial di¤erential equation method

This method was developed by Black and Scholes (1973), using key insights
by Merton (1973). For this method Ito�s Lemma is directly applied to the

5For the derivation see Wiersema (2008), p. 110f.
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SDE of the contingent claim. The general idea is that the claim and the
underlying on which it is written must depend on the same risk factors.
The result is a partial di¤erential equation (PDE) which has to be solved
to obtain the claim�s price in closed form.

Assuming again that spot prices follow process (3.3), the change in the
forward price results from changes in time and in the spot price and can,
hence, be written as

dF =
@F

@t
dt+

@F

@S
dS +

1

2

@2F

@S2
(dS)2: (3.7)

By substituting dS and dS2 one obtains the SDE

dF =

�
@F

@t
+
@F

@S
[�(�� lnS)S] + 1

2

@2F

@S2
�2S2

�
dt+

@F

@S
�SdW (3.8)

wherein �� can be interpreted as the total asset return and � lnS as an
"external" yield component, which does not result in a price appreciation
of the asset.6 Furthermore, we know that borrowing on the MMA and
investing in the asset simultaneously can be used as a hedging strategy for
the forward position. This information can be used to derive the PDE. Let
B be the value of the MMA with

Bt = exp

�Z t

0
rsds

�
(3.9)

and � as well as  portfolio weights. Since, by assumption, the external

6The "external" yield can be, for instance, a convenience yield (explained in chapter 5)
or a dividend yield.
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yield can be reinvested, the value change of portfolio P is given by

dP = �dS +  dB (3.10)

= � [�(�� lnS)Sdt+ �SdW + � lnSSdt] +  rBdt:

The initial net investment of the replication strategy equals zero, i.e. �S+

 B
!
= 0. Therefore, we can substitute  = ��S

B and simplify (3.10) to

dP = �[��S � rS]dt+ ��SdW:

The replicating portfolio must have the same deterministic and stochastic
components as the forward contract, i.e.

�[��S � rS] =
@F

@t
+
@F

@S
�(�� lnS)S (3.11a)

+
1

2

@2F

@S2
�2S2

��SdW =
@F

@S
�SdW (3.11b)

Substituting � = @F
@S from (3.11b) into (3.11a) yields the following PDE:

@F

@t
+
@F

@S
(r � � lnS)S + 1

2

@2F

@S2
�2S2 = 0: (3.12)

This is the fundamental PDE of the forward price, which can be solved
with the boundary condition FT;T = S to obtain the closed-form price
formula (3.6). Yet in general, solving PDEs is only possible under restric-
tive conditions and there is no comprehensive solution scheme available.
Solutions for some common types of PDEs, including (3.12), can be found
in Evans (1998).

We have now presented two standard analytical methods to derive a
closed-form pricing formula for a derivative contract. More advanced meth-
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ods are not discussed here in detail, since they are not of immediate rele-
vance for the main analysis. Nevertheless, the following �nal section of the
chapter gives a brief overview of them and names sources for more detailed
information.

3.3 Advanced techniques

Only a limited number of models can be solved by the standard methods
described in the previous two sections. Especially when more complicated
(e.g. non-linear, path-dependent) derivatives are to be priced or coupled
SDEs are involved, these techniques are often insu¢ cient to yield a solu-
tion. A more general analytical method for a¢ ne models is described in
Du¢ e et al. (2000). It is somewhat more involved since it makes use of
Fourier transforms. The idea is to transform the expectation, compute the
transform function explicitly and apply an inversion formula in which only
a single integral has to be computed numerically. For an intuitive descrip-
tion of the method and an application to option pricing, we refer to Muck
(2006).

If an analytical solution is ine¢ cient or impossible, one has to revert
to numerical methods. One possibility is to use Monte Carlo Simulation,
pioneered for this purpose by Boyle (1977) and later applied, among oth-
ers, by Johnson and Shanno (1987), Hull and White (1987) and Du¢ e and
Glynn (1996). The idea is to simulate paths of the risk-factors which deter-
mine the payo¤ of the derivative contract under the risk-neutral measure.
From the realizations one can then compute the corresponding payo¤s at
maturity. In the simplest case, the expected payo¤ under the risk-neutral
measure is simply the unweighted arithmetic mean of all payo¤ realiza-
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tions.7 From this quantity the price is easily computed by discounting by
the risk-free interest rate where applicable.

Another possible numerical method is �nite di¤erences. This method is
applied to the pricing of options, for instance, by Schwartz (1977), Brennan
and Schwartz (1978) and Courtadon (1982). It makes use of the partial
di¤erential equation of the model, e.g. (3.12), and of the corresponding
terminal condition, e.g. FT;T = S. A grid with as many dimensions as
risk factors and the time dimension is set up. Starting from the nodes of
the terminal point in time, the value of the derivative at each node of
the grid is computed by working backwards in time. The information set
to do so contains the values of the derivative one time-step ahead and
the di¤erence quotients of the partial derivatives at the current node. By
letting the di¤erences become very small, i.e. by subdividing the mesh,
the price at the current state of the derivative will approach the analytical
solution.

Finally, binomial or multinomial trees can be used. They have been
�rst studied by Cox et al. (1979) and Boyle (1986) for derivative pricing.
The process of the underlying is described by a tree consisting of nodes
and branches. Nodes are pricing points as in the �nite-di¤erence schemes.
Branches describe the dynamics of the underlying over time. Figure 3.1
shows the simplest form, a binomial tree with recombining branches. With
the risk-neutral probabilities (here: p and 1�p) and the possible payo¤s at
maturity on the lowest line of nodes, one can recursively determine prices
at antecedent nodes until the upmost node is reached and the current price
is known. Again, by letting the time steps become very small, the discrete
distribution of the risk-factor approaches the dynamics of the continuous
process. Applications of (trinomial) tree procedures are found, for example,

7More recent studies such as Avellaneda et al. (2001) and Glasserman and Yu (2005) also
allow to weight the paths (Weighted Monte Carlo) which o¤ers more �exibility.
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in Hull and White (1994a), Hull and White (1994b) and Muck and Rudolf
(2005).

p 1 − p

p 1 − p p 1 − p

p 1 − p p 1 − p p 1 − p

Figure 3.1: Binomial tree scheme.

Brie�y, a number of advanced techniques exists to circumvent compli-
cations arising with the methods described in the previous sections. For
more detailed information on these numerical methods we recommend,
among others, Hull (2009), chapter 19 and Epps (2007), chapter 8.

In this chapter, we have demonstrated the importance of the expected
future spot price and the spot price dynamics for the valuation of (com-
modity and other) derivatives. Previously, in chapter 2, we have explained
that natural gas is a commodity which deserves individual attention for
modelling. Consequently, the following chapter describes the existing spot
price models which might be used for natural gas. It also explains the
choice of the particular model which will be adapted to the gas market.



Chapter 4

Models of spot and forward
prices

Numerous models for commodity prices can already be found in literature.
Therefore, the �rst objective in this chapter is to set out criteria for an
appropriate model. Next, existing models are classi�ed according to these
criteria and the most in�uential models are reviewed, whereby the research
gap regarding gas spot price models becomes evident. Finally, conclusions
from this review for the appropriate design of a gas price model are drawn
which lays the groundwork for the main part, i.e. chapters 5 and 6.

4.1 Requirements for an appropriate model

We start the analysis of existing models by de�ning a list of model selec-
tion criteria. The aim is to capture the most important points to consider

32
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whenever a pricing model has to be chosen for valuation purposes. The
�rst criterion is the completeness of information input. That is, a model
should take account of existing insights into the price-building mechanism
from previous work. For example, it has been established that the price
of a �ow commodity depends negatively on the rate of production. If a
model takes account of such an economic relationship, it is less likely to
attribute a price movement to the wrong cause and, thereby, less prone
to misspeci�cation. Another important quality feature is the (in-sample)
goodness of �t. A model should always be able to adequately reproduce
observable patterns in historical prices. For example, the price volatility of
futures contracts on storable commodities is negatively related to the time
to maturity of the future which is known as the "Samuelson e¤ect".

Furthermore, an important model requirement is robustness. This means
that the model has to perform well in forecasting exercises, possibly over
di¤erent time horizons (e.g. from one to three periods ahead). Robust also
means that the �t remains viable if the frequency of input data is altered.
Data frequency for model estimation can range from daily to monthly or
even yearly time periods. Eventually, the insensitivity to outliers or stress
scenarios is another desirable aspect of robustness. The last criterion for an
appropriate model is just as important as robustness: The ease of imple-
mentation. Very complex models have the disadvantage of causing numeri-
cal estimation problems ("curse of dimensionality") and long computation
times. Evidently, a model has to be updated regularly to take account
of the most recent market information. If the applicable estimation algo-
rithm consumes excessively much time or even breaks down, new forecasts
cannot be produced in due time. Besides estimation time, another critical
issue can be that the produced estimates are not su¢ ciently reliable due
to numerical inaccuracy.

These criteria, besides of their possible incompleteness, are naturally
interrelated. For instance, the ease of implementation is often negatively
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related to completeness and positively related to robustness. Nevertheless,
we believe that they constitute a �rst guideline for the clari�cation of the
most important strengths and weaknesses of the existing pricing models.
These models will be presented in the remainder of the chapter.

4.2 Classi�cation of existing models

Econometric models can be distinguished along two dimensions. The �rst
one de�nes the formal layout: Some models are derived directly from micro-
economic quantities such as the supply and demand of individual agents.
These models are called structural-form models. In contrast, reduced-form
models state relationships between the variables of interest directly. The
simplest model of the latter type is a linear regression, formally given by
y = Xb with X denoting the data matrix and b the coe¢ cient vector.1

The main advantage of structural models is their comprehensive picture of
the economy which reduces the risk of misspeci�cation. In turn, reduced-
form models tend to be less complex and, thereby, easier to calibrate with
empirical data. In fact, certain structural models can be converted to the
reduced form.2

The second dimension determines the implied assumption about the
e¢ ciency of markets. The �rst type, which is called equilibrium model,
borrows ideas from Neokeynesian theory. Market equilibrium conditions in
the model, but short-run deviations from equilibrium due to temporary
shocks and frictional readjustments are allowed. Due to this possibility the
model does not necessarily need to be in equilibrium at current market

1A linear regression is a particular case in which the model is not only reduced, but also
solved, i.e. no derivatives of the endogenous variables remain in the model.
2Seppi (2002), p.48f.
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prices, which is considered as a disadvantage by some practitioners.3 The
second type is known as no-arbitrage model. It enforces consistency with
current market prices by using them as an input for parameter estimation.
These models revert to neoclassical theory by assuming frictionless and
e¢ cient markets. Equilibrium deviations are corrected by market forces
instantaneously. Again, some simple equilibrium models can be converted
to no-arbitrage models by including a function of time into the stochas-
tic process for the uncertain economic quantity (e.g. for the instantaneous
market interest rate). Yet, enforcing �t to current prices comes at the cost
of time inconsistency. That is, if the model is recalibrated, the new para-
meter estimates might signi�cantly di¤er from the previous ones. Another
inherent risk is the enforcement of �t to contaminated current prices.

The following presentation of commodity spot price models will distin-
guish along the �rst dimension and present the relevant models in their
order of complexity. It has to be noted that applying the following models
to the gas market might necessitate certain adjustments, such as removing
seasonality (or possibly jumps) in prices up-front. In how far this applies
depends on the type of contract and the frequency of observations consid-
ered. Details are provided later on in the analysis.

4.3 Reduced-form models

The earliest reduced-form commodity price model was designed for con-
tingent claims on futures by Black (1976). It is conceptually similar to
the well-known model for stock options by Black and Scholes (1973), but
speci�es a process for the futures price, not the spot price (under the P-

3Cf. Hull (2009), p. 678.
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measure):
dFt;T
Ft;T

= (�� r)dt+ �dWt; t 6 T: (4.1)

Ft;T denotes the futures price at time t with maturity in T . � de�nes the
total required return for an investment in the asset.4 dW is the increment
of a Wiener process and � a scaling factor. The above process is called a
geometric Brownian motion (GBM), since price changes are always pro-
portional to the level the price. The model is not limited to applications in
commodity markets, but has also been used for bond prices, for instance.
As can be seen from the process equation, the change in the futures price
is modelled as a geometric Brownian motion:The problem is that under
this assumption the volatility of futures returns converges to in�nity with
increasing time to maturity. This feature is inconsistent with empirical ob-
servations of many commodities including natural gas. While it is possible
to adjust the portfolio growth rate for a constant convenience yield5, fu-
tures and spot price movements are assumed to be perfectly correlated and
only a single maturity of futures is considered. Therefore, the model has a
particular weakness with respect to the goodness-of-�t criterion.

Brennan and Schwartz (1985) develop a model for extractable resources
which contains an explicit relationship between futures and spot prices.
They also introduce the convenience yield as an additional model para-
meter to explain changes in the basis, i.e. di¤erential of futures and spot
prices. The general relationship between the futures price F and the spot
price S originates from Ross (1978):

F (S; T � t) = Se(r��)(T�t): (4.2)

4This convention is kept throughout the thesis. Note that in the discussed papers �
sometimes denotes the required return net of the implicit convenience yield !
5A convenience yield would be conceptionally identical to a dividend yield as in Ross
(1978).
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r is the constant riskless interest rate of an investor and � is the constant
(net) convenience yield in % of the spot price which accrues to the holder
of the commodity. The proportional relationship of the (absolute) conve-
nience yield to S is a shortcut to the assumption that this availability
premium depends negatively on inventories and that the spot price will
be high whenever inventories are low.6 The stochastic process for the spot
price is a geometric Brownian motion:

dS

S
= (�� �)dt+ �1dW1: (4.3)

According to the risk neutral valuation principle, the log-futures price can
be derived in closed-form:

lnFt;T = lnSt + (r � � +
1

2
�21)(T � t): (4.4)

However, no closed-form solution for any contingent claim is given by the
authors. Despite the enhancement of this model concerning the relationship
of spot and forward prices, the term structure of futures volatilities is again
misspeci�ed as in Black (1976). In addition, changes in the curvature of
the term structure are still not re�ected in the model.

These issues are resolved in Gibson and Schwartz (1990) who develop
a valuation model for crude oil investments. The convenience yield in this
model is mean-reverting and stochastic. Therefore, it is referred to as the
stochastic convenience yield model (SCY model). The authors illustrate
that the convenience yield empirically has a mean-reverting pattern, most
likely because inventories in�uence the value of convenience.7 The spot

6See e.g. Brennan (1958). More information on the convenience yield�s relationship to
inventories is provided later in the analysis.
7Details on the theory of storage are provided in chapter 5.
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price dynamics are taken from (4.3) and the convenience yield therein is
speci�ed as an Ornstein-Uhlenbeck process:

d� = �(�� �)dt+ �2dW2: (4.5)

� denotes the mean-reversion speed, � the mean-reversion level and �2
the scale factor of Brownian increment dW2. The increment is correlated
with the spot price increment with coe¢ cient of correlation �. Despite the
greater �exibility of this model compared to the previous one, the simplify-
ing assumption of a constant market price of risk for the convenience yield
still constitutes a restriction in the proper pricing of energy futures such as
crude oil as shown by the authors. While the model �ts short-term futures
prices well, pronounced mispricing occurs for long-term maturities. Never-
theless, it seems to o¤er a reasonable trade-o¤ between the goodness-of-�t
and the robustness criterion established above.

Schwartz (1997) provides the closed-form solution for the valuation of
futures contracts in this two-factor model. He also shows that futures price
volatility returns in this model converges to a �nite value with increasing
time to maturity. The model is estimated for datasets of crude oil, copper
and gold futures. Estimation problems appear regarding the market pre-
mium for convenience yield risk and the empirical drift of the spot price.
These parameters cannot be properly identi�ed since only the risk-neutral
dynamics are directly observed. That is, the empirical parameters can only
be estimated implicitly from futures prices. Another problem speci�c to the
oil futures data is the high (estimated) correlation of the stochastic incre-
ments dW1 and dW2 of the spot price and the convenience yield. Relating
this fact to our model selection criteria shows that the trade-o¤ between
goodness of �t and robustness in the SCY model should be enhanced.

For this reason, the model is restated in a more general mathematical
form by Schwartz and Smith (2000). This version does not use coupled
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SDEs, but two independent additive stochastic components for the (log-
)spot price:

lnSt = �t + �t (4.6)

d� = ��dt+ ��dW�

d� = ���+ ��dW�:

� denotes the long-term drift component whereas � denotes the short-term
mean reverting component of the spot price. This model is mathematically
equivalent to the Schwartz (1997) model, but has one parameter less. The
authors also provide a closed-form solution for European options on futures
contracts. In the empirical part of the paper, it can be shown that the
correlation of the stochastic increments is lower than in the SCY model
with the same oil futures dataset. However, the parameter identi�cation
problems turn out to be the same as before. The authors admit that this
will a¤ect the quality of price forecasts. It is explained that whether or
not the convenience yield is explicitly speci�ed, it takes very long time
series of futures prices to get reliable estimates for the empirical dynamics
of the spot price. The authors propose a di¤erent estimation method to
deal with this problem. We will return to this issue during the course of
our study. Furthermore, both the Schwartz (1997) and the Schwartz and
Smith (2000) model have been criticized for overpricing the value of option
contracts with long maturities systematically (see, for instance, Carlson
et al. (2007)). According to the critics, the reason for this overpricing is
that, in reality, price volatility is not proportional to the spot price but
conditional on a number of fundamental variables.

Models with stochastic volatility respond, among other things, to this
criticism. For instance, Eydeland and Geman (1999) combine a one-factor
mean-reversion model discussed in Schwartz (1997) with the Heston (1993)
model to create the following two-factor model for gas and electricity prices:
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dS = �(�� lnS)Sdt+
p
V SdW1 (4.7a)

dV = b(� � V )dt+ �V
p
V dW2; E(dW1dW2) = �dt: (4.7b)

Again, the spot price reverts to level � with speed �. However, stronger
movements in the spot price will be re�ected in the stochastic volatil-
ity term

p
V . The volatility itself is a mean reverting stochastic process

and the Feller condition ensures that V > 0 in (4.7b). Yet, mathemati-
cally, square root di¤usion processes are complicated to handle since V is
no longer normally distributed. An even more serious concern is, again,
the incompleteness of certain energy markets. Liquid options to hedge the
volatility risk are not always available. For example, natural gas futures
options are exchange-traded only in the US, and liquidity in longer-term
contracts is often insu¢ cient. Another problem is the negligence of funda-
mental information on the futures basis. As shown by Fama and French
(1987, 1988) and others, there is a strong relationship between the level of
volatility and the size of the basis. Brie�y, the model might perform well
in-sample due to its high �exibility, but the completeness criterion might
not be su¢ ciently met to ensure reliable estimates of the volatility risk
premium.

Yet a di¤erent source of randomness has been considered already a
long time before by Merton (1976). The author introduces jumps in the
stochastic process:

dS

S
= �dt+ �dW + UdN: (4.8)

This famous jump-di¤usion model features random price jumps with Pois-
son intensity �P . Whenever the Poisson increment dNt takes the value
of 1, a jump with size Ut occurs. The latter variable is normally distrib-
uted such that jumps can be positive as well as negative. The model was
originally designed for the stock market only, but jumps also occur in elec-
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tricity and gas prices in the intraday and day market (cf. chapter 2). Yet,
apart from the above mentioned problems of the GBM process for energy
markets, a key problem of this model is the necessary assumption of risk
neutrality with respect to jump risk. In Merton�s setting, jump risk can-
not be hedged because the stock and a risk-free bond are the only traded
assets. In fact, empirical evidence is not in line with the assumption of
risk neutrality. An additional problem is that all jumps in the model are
followed by a pure di¤usion period. Frequently in reality though, up-jumps
are immediately followed by reverse jumps, a phenomenon which is called
a spike. More recent models along the same strand of literature account
for this phenomenon, but these models are again more complicated such
that robustness becomes an even more critical issue. Whether or not it
pays to include jumps into the stochastic process will generally depend
on the desired data frequency, since many commodity prices revert fairly
quickly after a jump. In the gas market, the majority of currently traded
derivatives has monthly delivery periods such that especially intradaily
time series are less frequently needed for model calibration. Therefore, the
modelling of jumps is not in the primary focus of this study. For further
information on this strand, the reader is referred to recent studies for the
electricity market, e.g. by Huisman and Mahieu (2003), Geman and Ron-
coroni (2006), Seifert and Uhrig-Homburg (2007) and Marckho¤ and Muck
(2009), as well as to a bond market study by, among others, Björk et al.
(1997).

Extensions to the two-factor models are presented, among others, by
Cortazar and Schwartz (2003). The authors develop a three-factor model
which is an upgrade to the SCY model with the trend factor as the third
stochastic variable. The trend also has mean-reversion properties and a
mean value ��. Its contemporaneous value in is related to the total required
asset return � of the SCY model by ~� = � � � with � as the equilib-
rium convenience yield. In compensation, the modi�ed convenience yield
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variable ~� reverts to zero (~� = � � � ).

dS = (~�� ~�)Sdt+ �1SdW1 (4.9a)

d~� = ��~�dt+ �2dW2 (4.9b)

d~� = a(�� ~�)dt+ �3dW3 (4.9c)

The model parameters are estimated from the risk-neutral version of these
equations with further simplifying modi�cations in order to reduce the
number of parameters. The paper provides and compares in-sample and
out-of-sample estimates of the model. Interestingly, it is not benchmarked
against the simpler two-factor model hence it remains unclear whether
this more complicated version of the Schwartz (1997) model is also more
robust. What makes the study interesting instead is the simpli�ed esti-
mation algorithm, termed "implied methods" compared to the more elab-
orate Kalman �ltering procedure used in Schwartz (1997) and Schwartz
and Smith (2000). We will investigate both algorithms in more detail in
chapter 6.

Another three-factor model by Cassasus and Collin-Dufresne (2005) re-
leases the constraint of time-invariant risk-premia which is implied in the
two-factor models presented. The risk factors are the spot price, the con-
venience yield and the short rate. The short rate process is mean-reverting
as in Vasicek (1977) with mean-reversion speed a and equilibrium rate m:

dr = a(m� r)dt+ �3dW3: (4.10)

Empirically, the authors �nd a positive relationship of both the short rate
and the spot price to the convenience yield. Higher interest rates make stor-
age more costly which c.p. drives down inventories. The theory of storage,
discussed extensively in the next chapter, predicts that convenience yields
rise in this case. While a likelihood-ratio test shows that the coe¢ cients for
time variation in risk-premia and for the endogenous in�uence on conve-



4.3. REDUCED-FORM MODELS 43

nience yield are signi�cant, an explicit comparison of model performance
with the two-factor models is not provided. Model 3 in Schwartz (1997)
also includes the short rate as an additional stochastic factor. It is shown
that the improvement in goodness of �t compared to the two-factor model
is very small since convenience yield variation is much more important. In
turn, numerical implementation of these models is tedious and parameter
estimates are probably not very stable over time.

Finally, some reduced-form models also contain regime-switches of the
spot price. For instance, Ribeiro and Hodges (2004) implement a model
in which the spot price can follow two distinct processes depending on
the state of inventories. The key criticism of these authors towards the
Schwartz (1997) model is that it might temporarily violate the cost-of-
carry constraint because in a risk-neutral world the discounted futures
price net of carrying cost should always be smaller or equal to the current
spot price. In their model, they take this restriction into account: As long
as the drift of the spot price remains below a critical level S�, investors
buy and hold inventory and the spot price has a drift equal to the marginal
cost of carry, r + c:

dSt = (r + c)Stdt+ �StdW; St 6 S�: (4.11)

Once the price surpasses the critical level, all inventory is sold and the
price starts to follow a mean reverting pattern which is equivalent to the
one-factor model in Schwartz (1997)

dSt = �(�� lnSt)Stdt+ �StdW; St > S�: (4.12)

The model is implemented with a trinomial-tree procedure. It turns out
that some of the stylized facts of commodity forward curves are more
accurately represented by this model than by a one-factor model. One
of these facts is the high kurtosis in spot price distributions. However
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the authors admit that some misspeci�cations become apparent as well.
For instance, when the initial spot price is very low and the market is in
contango8, it takes an excessively long time until the market price reaches
the equilibrium long-run price (in the mean-reverting regime). The reason
for this is the cap imposed on the growth rate in the GBM regime. Another
problem is that the model produces left-skewed price distributions which
is contrary to empirical observations for most commodities.

Other regime-switching models are usually more complicated and are
used in the gas market mainly if storage decisions are the major focus of
the exercise such as in storage facility valuation problems.9

4.4 Structural models

Structural models give a micro-founded picture of the economy and derive
commodity prices from the relevant supply and demand conditions. Early
structural commodity models are developed by, among others, Williams
and Wright (1991), Deaton and Laroque (1992), Chambers and Bailey
(1996) and Deaton and Laroque (1996). Unlike most reduced-form models,
these models take into account the role of inventory levels in determining
the convenience yield and specify the latter one as an endogenous variable.
This allows for a non-linear relationship of inventories to spot and forward
prices and also to the basis, such that inventory changes become the driver
for heteroscedastic price variations, which are empirically observed.

For example, in Deaton and Laroque (1992), the economy is charac-

8A market is in contango whenever the term structure of futures prices is increasing in
the time to maturity whereas it is in backwardation when the term structure is falling.
9Cf. e.g. Chen and Forsyth (2006).
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terized by two regimes: one in which contemporaneous stock levels It are
greater than zero and one in which there is a stockout:

It > 0; if
1

1 + r
(1� 
)Et(St+1) = St (4.13a)

It = 0; if
1

1 + r
(1� 
)Et(St+1) < St: (4.13b)

r denotes the risk-free interest rate, 
 the rate of storage depreciation
(or equivalently storage cost) in percent of the stock levels It and Et the
expectation operator for time t:Hence, inventories are non-empty whenever
the discounted expected value of the stored commodity equals the current
spot price. While It is endogenous, production quantity Zt is stochastic.
The state variable which determines the current equilibrium price is the
"amount on hand" Xt = Zt + (1 � 
)It�1.10 Under rational expectations,
it must hold that

St = f(Xt) = max

�
1

1 + r
(1� 
)Et [f(Xt+1)] (St+1); P (xt)

�
(4.14)

where P is the inverse demand function. Prices are then asymmetrically
distributed due to the maximum function. A particular disadvantage of
these early models is that they are speci�c to agricultural commodities
which are harvested once a period. In addition, the model is not able to give
account of term structure dynamics. Moreover, the high autocorrelation in
empirical data cannot be explained.

Routledge et al. (2000) formulate a generalized model of this kind with
the same basic model setup. An extension is the introduction of a forward
price curve. Forward prices are assumed to revert to a long-run level, i.e.

10The market clearing condition enforces an intertemporal restriction on It. Precisely,
current demand D(St) must always be met by net supply: Zt+(1�
)It�1+It = D(St):
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long maturities are independent of the current demand state. While the
above reduced-form models with mean reversion imply that the Samuelson
e¤ect holds irrespective of the economic conditions, violations of this e¤ect
can occur in Routledge et al. (2000). This is the case whenever the storage
level is very high such that any demand or supply shock can be o¤set by
storage reactions. In this situation, spot price volatility can be lower than
futures price volatility. This conforms to empirical observations of many
commodity prices.11 That said, the empirical performance of this model
with oil price data is mixed. In particular, the market is twice as often
in backwardation as the model predicts. In fact, a study by Litzenberger
and Rabinowitz (1995) shows that the frequent backwardation scenarios
are a systematic pattern of the crude oil market (or, more generally, of
commodities which serve as an input to production rather than an asset).
Hence, the negligence of such a fact clearly constitutes a drawback.

Cassasus et al. (2005), among others, address this problem in a speci�c
oil market model which de�nes an economy with oil supply and production
of a consumption good (the numeraire). Another major change with respect
to the previous models is that agents are assumed to be risk-averse instead
of risk-neutral. Therefore, market risk premia of oil and their variation can
be studied in the model. The production technology of the consumption
good requires both the consumption good c itself and the commodity o as
inputs. The (isoelastic) production function is

f(o; c) = �onc1�n: (4.15)

Consumption demand is endogenous and the supply of oil is modelled as
a resource extraction problem with costly and discretionary investments
in additional extraction capacity. The dynamics of the stock of (explored)

11 It is demonstrated later that this line of reasoning only holds for commodities for which
the total storage capacity in the economy does not have a strict upper bound.
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oil Ot and the amount of the consumption good Ct available at t are
characterized by

dOt = �(�{+ 
)Otdt+ �OOtdWO;t +XtdNt (4.16a)

dCt = (f(�{Ot; Ct)� Ct)dt+ �CCtdWC;t � �dNt: (4.16b)

�{ denotes consumption, 
 the depreciation rate of the oil stock and Nt a
Poisson process such that dNt = 1 when an investment occurs at time
t and dNt = 0 otherwise. Furthermore, Xt is the amount of oil explored
when an investment is made at t and �(Xt; Ot; Ct) is the cost incurred for
an investment, measured in units of the consumption good. Variables �O
and �C are standard deviations.

Two factors characterize the forward price term structure: the contem-
poraneous spot price and the "investment regime". The equilibrium spot
price for oil St is determined by the ratio of the marginal value of oil wells
to the marginal value of the consumption good

St =
@J=@O

@J=@C
: (4.17)

Ot denotes the stock of explored oil and Ct the amount of the consumption
good available at t. J(t; C;O) = supC;AEt

�R1
t e�r(s�t)U(Cs)ds

�
is the

aggregate value function of the economy - the supremum of the present
value of future utility over a set of allowable consumption policies C and
admissible investment strategies A. Each time, an investment in additional
oil wells is undertaken, the marginal value of oil @J=@O drops and, thereby,
the spot price does as well. Discretionary investments in new wells are
undertaken whenever the relation of explored oil to consumption good
undershoots a certain threshold.

The second factor which impacts on the term structure of forward
prices is the "investment regime". When the economy is in the "far-from-
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investment regime", the market expects the oil price to rise in the near
future, since ongoing consumption will lower the available reserves of oil
through production (contango or hump-shaped structure). In turn, when
the economy is in the "near-investment regime", the market expects the
price to drop soon, due to the opening of new wells (backwardation or
trough-shaped structure).

The most important merit of the model is that it can be calibrated
such that it features long backwardation periods as they are observed in
the market. The authors also show that time-variation in the market risk
premium of oil returns can be partly explained by the above mentioned
investment regimes. However, the econometric performance is di¢ cult to
evaluate since the data are aggregated to quarterly frequency which is not
useful for many practical risk management applications. In addition, only
a subset of the parameters is estimated due to the computational burden of
the chosen method (simulated method of moments and a numerical tech-
nique to solve a Hamilton-Jacobi-Bellman di¤erential equation). Therefore,
the model�s practical applicability is limited.

Finally, a more recent structural model is presented by Carlson et al.
(2007). One di¤erence to the aforementioned study is that the assumption
of unlimited resource availability is relaxed. Instead, the model applies
the Hotelling (1931) rule for extraction of exhaustible resources, i.e. in
equilibrium the resource is depleted such that prices grow with the risk-
free interest rate. The economy has four state variables: demand, reserves,
marginal extraction cost and historic production rate and one continuous
choice variable, the current production rate. The paper analyses settings
with di¤erent types of demand and technology innovations. The key fea-
ture, however, is the inclusion of a production adjustment cost. Due to this
cost, small demand shocks are not followed by production adjustments.
These shocks will subsequently die o¤ with a time lag due to mean rever-
sion in demand. If a shock is large, in turn, the production reaction will
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overshoot in order to keep adjustment costs small. This will dampen the
e¤ect of the shock on prices such that large temporary price shocks occur
less frequently. The authors demonstrate empirically that the non-linear
price sensitivity to demand is more realistic than the constant sensitiv-
ity which is understated, for instance, in the Schwartz and Smith (2000)
reduced-form model. The e¤ect is especially relevant for long-term deriv-
atives which depend on price volatility. In fact, the authors show that
long-term options are signi�cantly overpriced if the Schwartz and Smith
(2000) model is used. In turn, the computational burden of implementing
such a multidimensional model for short-term applications does most likely
not pay o¤.

4.5 Summary of review and contribution

The main insights from the survey of reduced-form and structural mod-
els can be summarized as follows: Early reduced-form models are easy to
implement, but they make unrealistic assumptions concerning the sensi-
tivity of the long-run price expectations to price changes at the short end
of the term structure. The consequence is that these models will strongly
misprice long-term derivatives whose value depends on the volatility of the
underlying. More recent models, especially those with two risk factors, are
more �exible, but it was found that the assumption of a constant market
price of risk made in these models is still restrictive and long-term (real
option-type) investments are still priced inaccurately. Models incorporat-
ing jumps are more complicated to derive and estimate. The right type of
discontinuity of the model (jump with or without mean reversion or spike)
might be crucial for the appropriateness. However, this type of model is
primarily useful if the commodity is grid-bound and the price series consid-
ered has an intradaily or daily frequency of observations. Models with more
than two risk factors regularly have even better in-sample results due to
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the greater �exibility they o¤er. In turn, their out-of-sample performance
(robustness) is seldom superior to that of a two-factor model.

Structural models provide microeconomic justi�cations for the empir-
ically observed price dynamics. They also relax some of the assumptions
made in reduced-form models that are inconsistent with economic theory.
In general, the completeness-of-information criterion suggested above is
met to a higher extent in these models. The contrary holds, in turn, for
the ease-of-implementation criterion. In fact, the speci�cation of supply
and demand functions is sometimes arbitrary since they are unobservable
and the coe¢ cients of in�uential factors cannot be estimated explicitly.

We have shown that no speci�c commodity price model for natural gas
has been developed to date. In addition, a trade-o¤ between the strengths
of reduced-form and structural models has to be found. Reduced-form
models tend to neglect some important fundamental properties of the
commodity under consideration while structural models are often rather
complex. It has been demonstrated above that one parameter appears in
both reduced-form and structural models: the convenience yield. It builds
a link between the �nancial and physical markets of an economy and is
driven by fundamental factors. In addition, it has already received much
research attention and is, hence, well founded in economic theory. Criti-
cism about the high correlation between estimated convenience yields and
spot prices in reduced-form models might be partly due to an incomplete
model setting and the fact that the convenience yield has not been deter-
mined independently from empirical data. Additionally, we recall that we
are not interested in �nding the best model to �t a particular set of fu-
tures prices, but a model for the spot price that will ultimately serve for the
pricing of a variety of derivatives in the natural gas market. The contribu-
tion of this thesis is, �rstly, the identi�cation of fundamental convenience
yield drivers and, secondly, their incorporation into the SCY model which
permits us to benchmark empirical results against those generated by the
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conventional SCY model. These two aspects is each dedicated one of the
following chapters.



Chapter 5

Fundamental convenience
yield model�

In the previous chapters of this thesis, we pointed out the economic im-
portance of natural gas as a resource and the necessity to have a spot
price model speci�cally for the gas market. The last chapter, in particular,
looked at existing commodity models, taking account of their strengths and
shortcomings. It turned out that no speci�c model has yet been proposed
for natural gas. In addition, no study has attempted, so far, to combine
the advantages of structural and reduced-form models in a hybrid model
framework. In fact, the convenience yield links the �nancial market and
the goods market and it appears in both model classes.

Therefore, this chapter analyses the fundamental drivers of convenience
yield, with the ultimate objective to combine a fundamental convenience

�This chapter is based on Volmer (2011).
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yield forecast with a reduced form model (see chapter 6). The �rst section
of the chapter is a recap of the theory of storage. In the following sections,
existing empirical �ndings for the convenience yield in the gas market are
reviewed before testable additional drivers are discussed. Next, the data
is described and prepared and, �nally, the empirical results are presented
and evaluated.

5.1 The theory of storage

As mentioned in the introduction, the seminal work for the theory of stor-
age is Kaldor (1939). It says that due to the double role of many commodi-
ties as both a consumption good and an asset, the holder of a commod-
ity can pro�t from the �exibility to put the commodity to use whenever
needed. Since buying on the spot market and selling forward must be a
riskless deal, a �cash-and-carry trade�, the marginal cost of carry net of
the convenience yield must be equal to the di¤erence between the forward
price F and the spot price S

F � S = R+ C �Q: (5.1)

R, C and Q stand for the marginal cost of capital, the marginal cost of stor-
age (incl. wastage) and the marginal convenience yield respectively. Now,
intuition suggests that abundance of storage should lower the premium for
immediate availability. This would imply a positive relationship between
the marginal convenience yield and the spot price because stocks will be
abundant when the commodity is cheaply available. This indirect relation-
ship between the spot price and the convenience yield works, according to
Brennan (1958), through the demand and supply in the market for stor-
age. Brennan proposes an equilibrium model for commodity inventories in
which the marginal convenience value of a good is a decreasing function
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of the aggregate stocks held in the economy. The demand for storage is
implicitly given by

St+1 � St = ft+1(Dt+1)� ft(Dt) (5.2)

= ft+1(It + Zt+1 � It+1)� ft(It�1 + Zt � It):

St denotes the spot price and Dt consumption demand at time t. ft(Dt)
is the inverse demand function, It the commodity�s inventory carried over
to the next period t+ 1 and Zt the exogenous production level. The price
spread on the left-hand side is a decreasing function of It. The equilibrium
condition in the economy is that the marginal revenue of storage u

0
t equals

the marginal cost m
0
t

u
0
t(It) = m

0
t(It): (5.3)

In an atomistic competition, u
0
t must equal the expected change in price

given by (5.2). The net marginal cost of storage is given by

m
0
t(It) = Ct(It)�Qt(It) + Pt(It) (5.4)

where in addition to the quantities de�ned above P denotes the marginal
inventory risk premium which is discussed later in the analysis. For now,
note that C

0
t(It) � 0; i.e. the marginal convenience yield is assumed to be

decreasing in the storage levels. This means that the �rst unit of inventory
should have a very high convenience yield, but the yield will diminish for
every additional unit.

A formal but intuitive illustration of this concept is found in a recent
model by Ribeiro and Hodges (2004), which accentuates the bu¤ering func-
tion of storage in the process of equating supply with demand. The authors
assume an Ornstein-Uhlenbeck stochastic process for the production rate
of a commodity and analyze both a monopolistic and a competitive market
for storage. In this market stock owners buy up the whole production and
decide what fraction to store and to sell later and what fraction to sell
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immediately to consumers. This decision depends on an optimal stocking
plan which is updated dynamically at every point in time and wherein the
new optimum depends on the current rate of production. The aim of this
plan is to smooth the e¤ective supply in order to maximize intertempo-
ral pro�ts from storage. Since the Gaussian supply process implies that
higher deviations from the expectation become more and more unlikely
the greater the deviation, the �rst few units of stock will be used much
more frequently than the remainder. In result, every additional unit of
stock must, in fact, have a decreasing convenience yield. Another insight
from the paper is that shocks to production should generally be absorbed
by the storage facilities, a fact that will also be relevant for this study.

The relationship of convenience yield to stock levels has been veri�ed
in numerous commodity markets since Brennan�s article was published.
A natural question is how these studies deal with the fact that the con-
venience yield is not directly observable, but implicitly results from the
cost-of-carry equation. In addition, the marginal physical stocking cost is
regularly not known for any storage level. In fact, it is most often assumed
that C simply is linearly proportional to the asset�s price S such that
Ct;T = ct;TS(T � t) with storage duration T � t. Similarly, one can de�ne
qt;T to be the rate of convenience yield, a percentage of the asset price.
Therefore, since Fama and French (1988) many econometric studies have
used an equivalent of

ct;T � qt;T =
Ft;T � St

St
� rt;T (5.5)

or its negative to analyze the variation in convenience yield. (5.5) is simply
(5.1) rearranged and restated with respect to a particular current date t
and a maturity of the forward contract T . rt;T is the applicable percent-
age cost of capital (i.e. the interest rate). ct;T � qt;T then denote what
is commonly labeled the �net storage cost� in percent of the spot price.
and is computed from the observable variables on the right hand side, the
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�interest adjusted basis� (IAB).

When we di¤erentiate the body of empirical convenience yield literature
by the type of commodity analyzed, we �nd that natural gas has so far
received little attention. This is important to note since comparable studies
for other commodities are only of limited value for the gas market. This
is due to the unique characteristics of gas outlined in section 2.1, even in
comparison to other energy commodities such as oil, coal or electricity.
Hence, the insights of convenience yield studies in other industries are not
directly transferable to the gas market .12

The determination of basis and convenience yield in the gas market is
analyzed, with more or less focus, in Dincerler et al. (2005), Modjtahedi
and Movassagh (2005), Wei and Zhu (2006), Cartea and Williams (2008),
Ha¤ et al. (2008) and Stronzik et al. (2008). Yet, these papers do not go
beyond the traditional theory of storage outlined above. Dincerler et al.
�nd that the convenience yield falls at a decreasing rate as national gas
inventory levels rise. Similarly, Modjtahedi and Movassagh (2005) discover
a positive relationship between gas storage levels and the futures� basis
which is the main source of variation in the interest adjusted basis. The
curvature of this functional relationship is not consistent over all the ma-
turities analyzed. Wei and Zhu (2006) test whether deviations from 5-year
average storage levels can explain changes in the convenience yield and
�nd a moderate signi�cance. In addition, spot price shocks turn out highly
signi�cant in explaining convenience yield so that the R2-values of their
model are strikingly high. However, this model is probably not apt for
forecasting since the spot price shock is measured as the residual from an
ARMA-process of the log spot price and this residual will be di¢ cult to
project. Moreover, we believe that the signi�cant in�uence of the shock is

12Those who are interested will �nd a comprehensive list of these studies in Gao and Wang
(2005).
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not overly surprising because the spot price also entered into the calcula-
tion of the explained convenience yield variable itself.

Cartea and Williams (2008) price multiple interruptible supply con-
tracts in the UK gas market with the Schwartz and Smith (2000) model.
They present a short qualitative analysis of what drives the short-term
price component of Schwartz and Smith which is directly related to the
convenience yield. The focus of the paper is on the contract valuation,
however. Ha¤ et al. (2008) test the in�uence of storage levels and interest
rates on the basis of forward contracts along the lines of Modjtahedi and
Movassagh (2005). The paper con�rms a positive in�uence of storage levels
on the basis. Yet, we �nd some of their various model speci�cations not
su¢ ciently founded on economic intuition and the authors do not state
a clear preference for any of them. Besides this, the spot prices used to
compute the basis of the futures contracts seem to con�ict with the cash-
and-carry strategy. The use of survey-based price estimates and a relatively
short time series could be additional minor problems.

Finally, a study by Stronzik et al. (2008) investigates the validity of the
cost-of-carry relationship in (5.1) with a methodology originally applied
in Fama and French (1987). The actual drivers of q are not studied. The
authors �nd that the seasonality of the basis is not entirely consistent with
their expectation, and that the basis does not vary one for one with the
nominal interest rate, which is contradictory to the theory of storage. In
fact, two conceptual problems should have impacted on the result: Firstly,
the study uses the 6-month and 12-month futures contract for the basis,
where the latter one is extremely illiquid in the UK. A second problem is
that daily observations of the basis are calculated with monthly maturing
futures contracts whereby convenience yields of di¤erent maturities are
mixed up in one sample. Even if the term structure of the convenience
yield was �at, this procedure could not be absolutely accurate because the
convenience yield used is actually not annualized, but speci�c to the time
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to maturity as is the interest adjusted basis in equation (5.5).

Overall, the existing studies in the gas market consider storage levels an
important determinant and do also provide mixed evidence for a non-linear
dependence of the convenience yield on this variable. Evidence for other
fundamental drivers or for the robustness of the proposed relationship has
not been looked at yet. This should make apparent that the mentioned
contribution in the �rst part of this study clearly goes beyond the existing
body of literature. We will continue by justifying the choice of variables
for the following econometric analysis.

5.2 Testable drivers

The previous section already pointed out the empirical importance of stock
levels as a determinant of the convenience yield. Hence, this driver should
doubtlessly be part of a convenience yield model for gas, in particular due
to the strong seasonality of gas demand. However, recently made assump-
tions about the precise way in which stock levels reveal information about
the convenience yield are debatable. Ribeiro and Hodges (2004) and also
Cartea and Williams (2008) assume that there is some dynamically up-
dated optimal stocking policy made by the owner(s) of storage, coupled
with the ability to smooth the marginal convenience value over time. In
consequence, Cartea and Williams (2008) argue that the convenience yield
will not react in response to the absolute storage level but only to devia-
tions from the expected seasonal level because seasonal changes in stocks
are already incorporated in the optimal plan. Capacity restrictions on stock
in�ow and out�ow is the only mentioned reason for deviations from the
plan and for the resulting �uctuations in convenience yield.

We argue against this assertion. Even with unconstrained operational
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capacity the storage owners do not have full control over the market price
at the central hub. One should consider, for instance, that the decisions of
all owners of inventory are made independently and that there is a time
lag from withdrawal to delivery as well. In addition, not only in�ow and
out�ow capacity but also the total storage capacity is restricted. This holds
especially true in the UK where, until recently, stocking capacity only cov-
ered 14 days of average winter demand.13 In whatever way the convenience
yield will react when storage facilities become completely replenished or
depleted: One should try to take account of these further restrictions which
is not possible using deseasonalized data. For these reasons, our study �rst
reverts to the more established theoretical work and uses absolute (not
deseasonalized) stock levels in the main part of the analysis. We expect
a negative relationship between convenience yield and stocks as it was
already found in previous studies.

While storage impacts on the convenience value by a¤ecting the ag-
gregate supply, the scarcity of a good is a relative measure and is also in-
�uenced by demand changes. If short term demand rises, the convenience
value of the gas in stock must increase because production rate is sticky
in the short-run and the additional demand must be met from stock to
keep the market in equilibrium. However, to the best of our knowledge, no
study has yet tested any variable that immediately relates to gas demand.
Instead, one has been contented to use indirect variables for the short term
imbalance of supply and demand such as the spot price shock in Wei and
Zhu (2006).

Therefore, we point out that heating accounts for the largest fraction
of gas consumption in many countries. The most important share usually
comes from domestic and commercial space heating activity. In the UK
for example, this share accounts for roughly 40% of demand on a yearly

13Cf. POST (2004).
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average (cf. Appendix 1). The high fraction of heating consumption makes
aggregate demand highly seasonal and sensitive to temperature. Therefore,
temperature should be among the most important variables in�uencing
the convenience yield because a fall in temperature - from below a certain
level - means increased heating demand. In US based studies, it has be-
come common to measure this in�uence with the so-called heating degree
days (HDDs). They represent the di¤erence between a comfortable room
temperature, e.g. 20�C, and the prevailing outside temperature on a daily
basis. The opposite indicator, cooling degree days, also play a role in the US
due to the widespread use of air-conditioners. They increase, particularly
in the summer, the demand from gas power stations.14 In the UK mar-
ket, average day temperature does rarely surpass this threshold, so plain
temperature observations will lead to the same result. For the econometric
test of this temperature-convenience yield relationship, we exclusively look
at the UK data at the outset. The hypothesis is that the relationship is
negative since an increasing demand will increase the scarcity of gas in the
short run before any production adjustment can ease the situation again.

Finally, an interesting question is whether the crude oil price or conve-
nience yield should have a bearing on the convenience yield of gas. On the
one hand, this might be considered especially because a recent cointegra-
tion study by Panagiotidis and Rutledge (2007) for UK crude oil and gas
has shown that the two price series did not decouple after the UK gas mar-
ket liberalization. In addition, Cassasus et al. (2009) �nd co-movements of
convenience yields with the price of a related commodity in pairs of oil
products. Hence, it is possible that this relationship includes natural gas.
Bailey and Chan (1993) document common elements in the basis variabil-
ity of di¤erent commodities other than gas, due to a shared sensitivity to
stock and bond markets. On the other hand, the conclusion that a short

14Cf. Shively and Ferrare (2007), p. 27.
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run relationship for natural gas exists is not directly possible. Empirical
observations in the UK market, e.g. by ILEX (2004), show that the gas
price has historically reacted to oil price changes with a time lag of about 9
months. Besides this, Panagiotidis and Rutledge (2007) cannot �nd a sig-
ni�cant impulse response of the gas price on oil price shocks in a simulation
exercise. In addition, the crude oil price is not seasonal as is the gas price.
Finally, we do not look at the level of the gas price but at the (negative)
interest adjusted basis. We do actually not have a strong reason to assume
that the oil price should directly a¤ect the scarcity of gas in the short run.
Merely the demand from electricity plants might be substitutable on this
horizon, but crude oil itself is not the immediate substitute in this case.
Brie�y, there are arguments to both views on this question. Regressions
controlling for an impact of crude oil can help to verify whether or not such
an in�uence is present in the market. Our a priori expectation is that the
results will be negative and, hence, in line with the last two cited studies,
which have speci�cally looked at natural gas.

5.3 Data description and preparation

The study of convenience yield drivers is, at the outset, limited to the
UK market primarily because the generation of a representative "market
temperature" is rather involved for geographically extended markets such
as the US. We measure convenience yield as the negative of the interest
adjusted basis in (5.5). Since there is no real spot market price for gas, as
it is the case for many other commodities, the nearest-to-maturity futures
can be used which are usually contracts with a delivery period of a single
day (�day contracts�). The most liquid day contracts are traded in the On-
the-Day Commodity Market (OCM) for delivery at the National Balancing
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Point (NBP), the most active UK gas hub.15 This o¢ cial market segment
is run by APX-ENDEX who provided daily weighted average prices for
the NBP OCM Title Day contract for the time span between 04/00 and
12/07.16 The most liquid UK futures are the monthly contracts traded at
the Intercontinental Exchange (ICE). They stipulate constant daily de-
livery volumes of 1,000 therms deliverable at the NBP during a speci�ed
month. These contracts start trading up to one year ahead of delivery
and expire on the second last business day before the delivery month. We
choose this contract as the futures contract in the interest adjusted basis.

Moreover, the monthly contract immediately before expiry (the �front
month contract�) can be used as an additional proxy for the spot price. This
proxy is slightly less accurate than the OCM contract since it delivers gas
during the whole next month, but it o¤ers the possibility to extend our
econometric analysis to additional time series. Since the contract expires
at a monthly frequency, the sample time series will also have a monthly
frequency in order to generate a series of convenience yields with an equal
term. The data provided by the ICE extends from 01/97 to 01/08 and
consists of daily weighted average prices and volumes. We compute six
time series of the convenience yield wherein the OCM price serves as the
spot price and �ve more time series wherein the front month price is used
instead.

In October 1998 the Interconnector pipeline for gas exchange between
Bacton (UK) and Zeebrugge (B) was opened and several studies hypoth-

15The OCM market is mainly used by National Grid, the network operator, for settling
network balancing trades with the shippers of physical gas.

16The average is calculated per gas day. Each gas day (D) lasts from 6:00a.m. on the same
calendar day to 6:00a.m. on the following day. Contracts start trading at 12:00 noon on
the day before the start of delivery (D-1 or D1 ) and cease at 3:35a.m. on the calendar
day after the start of delivery. This implies that the daily average quote contains the
prices of 2 di¤erent contracts, the D-1 and the D contract.
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esize that this has led to a structural break in the market. Although we
expect the distortion caused in the basis to be small, we exclude observa-
tions before this date.17 To calculate monthly �spot�and forward prices,
we pick the last �ve trading days before the maturity of the front month
future. These days are considered as the �bid week�. It is well known that
the majority of gas trades occurs in the last week before the month-end,
so this procedure assures that quotes which enter into the monthly price
are backed by su¢ cient volume and contain less noise. We exclude all
monthly futures with maturities greater than the one of the 6th-month
ahead contract (M6) because of insu¢ cient volumes during the bid week.
For the remaining time series, we compute a volume weighted average of
the month contract prices and a simple average of the OCM prices. A full
history of daily volumes was not obtainable in the latter case.

To complete the data necessary to calculate the negative interest-
adjusted basis, sterling LIBOR interest rates with di¤erent maturities,
dating back to 10/98, are used. The data are available on the homepage
of the British Bankers Association. We recall from equation 5.1 that in-
terest in the cost-of-carry relationship accounts for the opportunity cost
of the tied-up capital. At the same time, we note that the cash-and-carry
trade implied in our convenience yield calculation is actually done with
a month future, meaning that an equal fraction of our invested capital is
unwound every day throughout the delivery month. Strictly speaking we
would, hence, need to account for this by calculating a di¤erent opportu-
nity cost for each day of delivery. Instead, we simplify the problem: We
compound interest for all delivery days of the monthly contract until the
middle of the month and use the LIBOR rate with maturity closest to
this date, in fact, the 1-month to 6-month rates. The error committed is
economically negligible since only the interest on interest within a single

17A further discussion on the potential impact of the interconnector on our study is found
in the concluding section of this chapter.
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month is a¤ected.

As for the inventory data, the International Energy Agency (IEA) pro-
vided monthly closing stock levels of working gas from 10/98 to 01/08.
Working gas is the fraction of total inventory which can e¤ectively be
released and delivered. As explained in the last section, we refrain from
deseasonalizing storage �gures for now. Our monthly temperature history
dates back to 10/98 and comes from the UK O¢ ce of Meteorology. In fact,
determining a meaningful frequency of temperature observations is critical
and involves a trade-o¤: On the one hand, the measured temperature on
the single day when someone enters into a cash-and-carry trade should be
the most relevant one for the spot gas demand and the convenience yield
on that day. On the other hand, temperature on a daily basis is more dif-
�cult to forecast far ahead in time which would, however, be a desirable
property of our explanatory variable. Monthly mean temperature observa-
tions spanning the start dates of the cash-and-carry trade explain demand
at that particular date less precisely and a larger part of the model �t is
explained seasonal variation. Yet, these values are certainly more stable
and are predictable farther into the future. Hence, we start our analysis
with monthly average temperature, i.e. the average in a certain month is
used to explain the convenience yield measured in that month. In this set-
up any seasonal variation in the convenience yield does not necessitate a
separate treatment since it is directly explained by its fundamental causes,
varying storage levels and temperature.

A preliminary look at the time series and unit root tests (augmented
Dickey-Fuller test, Phillips-Perron test) indicate that the computed con-
venience yield and the temperature are stationary time series, whereas the
stock levels have a linear time trend in addition to the expected seasonal-
ity pattern. This time trend is most likely due to a structural phenomenon
of the market: Namely, it is apparent that for several years the domestic
gas resources are shrinking and the UK is gradually becoming more de-
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pendent on imported gas. Since a market can react to a demand shock
more quickly by increased domestic production than by increased imports,
storage volumes need to grow over time if the share of home production in
total supply diminishes.18 This means that the annual increase in average
stock should not lead to a lower convenience value. To solve this problem,
we remove the linear trend from the series by an OLS regression of stock
levels on time. The residuals from this regression compose a stationary and
centered series which will be used in the analysis.

For a descriptive analysis of the convenience yield we select two of the
eleven time series. The �rst series we look at contains the price of the front
month contract (M1) as the future price and the OCM price as the spot
price. In the second series M1 is replaced by the 3rd-month future (M3).
The front month contract is the future which starts delivering right after
the turn of the month, whereas the latter one starts two months further
ahead. Both convenience yield series are shown in Figure 5.1. A look at
the graphs reveals that sharp drops have been somewhat more frequent
than strong increases. The annual seasonality pattern of convenience value
is more clearly visible in the second time series. This is because market
participants consider a fading of the spot price shocks within two month
plus a few days more likely than the fading within only the few days until
the M1-contract starts to deliver. Therefore, the M1 price moves more
closely together with the spot price such that the overall variability of the
shorter term convenience yield in Figure 5.1 is smaller.

Some of the most remarkable price reactions have been fostered by ex-
traordinary events: Operational problems of the interconnector pipeline are
likely to be responsible for the sharp decrease observable in July 2002. As

18This can be veri�ed by comparing the total gas storage capacity of countries with (for-
merly) autonomous gas supply (e.g. UK, NL) with the capacity of highly import depen-
dent countries (e.g. GER, FR, IT). See Appendix 2 for more details.
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Figure 5.1: Selected time series plots of the convenience yield in UK.
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the �ow direction had to be reversed during the course of a cleaning action,
gas was imported in the UK even though prices on the mainland had al-
ready been higher than in the UK. Consequently the UK spot price dipped
down. In 2006, a very warm September and October temporarily brought
the spot price under pressure. The pronounced drop in convenience yield
at that time occurred when the new Langeled pipeline bringing Norwegian
gas to the UK was tested at full capacity simultaneously.

The reason for the sharp rise in February 2005 does not seem to be
caused by any extraordinary event. It has already been discussed by Cartea
and Williams (2008) who observe an increased short-term risk premium at
this time. They argue that the winter had initially been very mild such
that the temperature drop in February came as a surprise. This meant
that stock levels had already been depleted too much compared to the sea-
sonal mean. Our data con�rm the observation with regard to temperature,
whereas the conclusion made for stock levels cannot be veri�ed. Evidently
though, in this situation as well as during the periods discussed before the
storage facilities did not absorb the shocks to the scarcity of gas. This is
visible from the remarkable reaction of the convenience yield. We will pick
up this phenomenon during the course of the following analysis.

5.4 Basic model

To test for the drivers of convenience yield, we start with an OLS regres-
sion of the negative IAB from (5.5), here labelled yt, on stock levels and
temperature. The estimation equation thus reads

yt = �cons + �stockxstock;t + �tempxtemp;t + �t (5.6)
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with xstock;t denoting the detrended stock levels as explained on p. 65
(originally in bcm19) and xtemp;t the monthly mean temperature, both
demeaned. This regression is run separately for each of the eleven di¤erent
bases. They are obtained by using the chosen futures contracts together
with the two di¤erent spot price proxies, the price from the OCM and the
front month future (M1).

The regression results are in Table 5.1. The column entitled "Basis" de-
notes the contracts used to compute the negative interest adjusted basis,
i.e. the convenience yield variable. For example, "M3-M1" means that yt is

given by �FM3
t �SM1

t

SM1
t

+ rt;t+ 2
12
: The middle columns present the point esti-

mates for the coe¢ cients in equation (5.6) as well as their t-statistics and
signi�cance levels in brackets. �, �� and ��� denote signi�cance at the 10%,
5% and 1% level respectively. Since the residuals are �rst-order autocor-
related and heteroscedastic, Newey-West standard errors have been used.
The second last column reports the p-value from White�s heteroscedastic-
ity test, and the last column shows the adjusted R2-statistic. The number
of observations is N = 93 in equations 1 to 6 and N = 112 in equations 7
to 11. Overall, the explanatory power of the model is strikingly high, and
the coe¢ cient values and their t-statistics are in line with the predictions.
The regression coe¢ cient for the stock variable has a negative sign, indi-
cating that the marginal convenience yield diminishes when storage levels
increase. As can be seen from the t-statistics, this relationship is strongest
when the respective futures contracts are close to maturity, while it de-
creases when the time to maturity becomes higher. The intuition for this
e¤ect is that storage can be replenished or depleted in the long run, so
current storage levels have a decreasing predictive power for the conve-
nience yield on a longer horizon. This also justi�es the insigni�cant �stock
in regressions 6 and 10, and only the signi�cantly positive coe¢ cient of

19Billion cubic meters.
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regression 11 remains unexplained. The absolute coe¢ cient values of this
variable start decreasing with longer maturities from regression 4 and 9
onwards. They increase from regressions 1 to 3 and from 7 to 8 because
we measure the maturity matching convenience yield instead of the annu-
alized one so the increase in the time dependent yield slightly counters the
e¤ect of diminishing predictive power of stocks over time.

The temperature coe¢ cient is also in line with the posited hypothe-
ses. The coe¢ cient has a negative sign in all regressions and its absolute
value increases when time to maturity becomes longer. The reasons for this
phenomenon are straightforward: Firstly, while current temperature has a
signi�cant and negative e¤ect on current demand and the spot price, its
indication of the temperature at the futures�maturity becomes weaker the
more the maturity date is ahead in time. To illustrate this e¤ect, let us
consider regression 1: Since the front month contract starts to deliver right
after the turn of the month under consideration, the front month price
reacts almost identically to temperature as does the spot price. Therefore,
the di¤erential between the two prices is not dependent on temperature
and the respective coe¢ cient is insigni�cant. Now compare this to the re-
action on temperature in regression 6. The OCM price will again react
negatively to a temperature increase, but the demand in 5 months plus
a few days should hardly be in�uenced by current weather conditions,
thereby making the M6 price insensitive to current temperature changes.
Hence, the di¤erential �(F�S)S will diminish when temperature increases.
Secondly, the maturity matching convenience yield leads again to more
pronounced absolute changes when the maturity of the considered futures
increases.

The intercept coe¢ cient is signi�cantly negative in all cases. In theory
the linear relationship of the convenience yield to both regressors separately
should have a positive intercept, considering that the convenience yield
itself is strictly positive. However, the stock coe¢ cient is only a residual
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term since we have made the series stationary and use also a demeaned
temperature coe¢ cient. Additionally, the cost of physical storage is still
�gured into the dependent variable yt, and we do not know how sizeable
it is compared to the convenience yield. Thus, the observed intercept is
not contradictory to theory. Based on the coe¢ cient of determination, the
model seems to be very powerful overall, but it performs weaker when the
short end of futures maturities is regarded and when OCM prices are used
for the spot price (regressions 1 to 3). The p-values from the White test
document the strong heteroscedasticity of the residuals. It is necessary to
further investigate its source.

The graphical analysis of the model residuals shows that a number of
severe outliers is present as could be expected from Figure 5.1 already.
These outliers are most likely the cause of the changing error variance and
can potentially bias parameter estimates. Interestingly, most of them occur
in the upper third of stock level observations as is visible from Figure 5.2.
Plotted against time, the residuals display the most remarkable outliers
between late summer and late autumn, one exception being the previously
mentioned incident in July 2002 (Figure 5.3). This is the period when
storage levels are highest each year, i.e. the time before the heating season
starts and stocks are withdrawn.

The simultaneous occurrence of high storage levels and drops in the
residual could be a misspeci�cation that arises from the simpli�ed mea-
surement of convenience yield according to equation (5.5). Taking a more
di¤erentiated view on the net storage cost, Brennan (1958) provides two
possible explanations for the observed phenomenon. Firstly, he hypothe-
sizes that the marginal outlay on physical storage might start increasing
once inventories are su¢ ciently close to the capacity limit of storage. That
is, the scarcity of available storage space can potentially drive up the net
storage cost. Secondly, Brennan suggests that besides the cost of physical
storage and convenience yield, a risk premium is �gured into the marginal
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Figure 5.2: Selected plots of residuals from basic convenience yield model
against detrended stock levels.
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Figure 5.3: Selected plots of residuals from basic convenience yield model
against time.
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cost of storage, and this premium increases strongly when inventories ap-
proach the capacity limit. It is interpreted as a compensation for the risk
of price depreciations of goods in stock.

In the natural gas market this storage risk premium can equally be re-
garded as a compensation for foregone arbitrage opportunities as already
noted by Cartea and Williams (2008). We recall that intertemporal arbi-
trage is done by buying at a low spot price and selling at a higher forward
price at the same time, thereby making use of available storage capacity
until the forward contract matures. Now, by putting the respective gas
into storage one will occupy some or all of the remaining capacity and
thus eliminate the possibility of even better arbitrage opportunities in the
future. Therefore, the risk premium which the owner of storage capacity
should earn starts to rise and does so at an increasing rate as soon as stor-
age levels approach the total capacity limit. Note that this interpretation
is economically similar to the cause of an increase of the physical storage
charge above. To illustrate the e¤ect of the two additional theoretical phe-
nomena, Figure 5.4 shows the total net storage cost and the convenience
yield as a function of the storage level. The net storage cost function also
contains the risk premium. The �gure tells us that if one observed data
points only in the lower range of possible stock levels, the convexity of
the convenience yield function leads to a concave shape of the net storage
cost. Conversely, if stock levels were in the upper range, the net storage cost
would appear as a convex increasing function of stocks since the storage
charge or the mentioned risk premium increase non-linearly. The lowest
storage level in our time series is observed in 04/00 when the remaining
volume was 1,550 mcm20, which is still far away from complete depletion.
Accordingly, since we use the negative of the net storage cost from Figure
5.4, we should observe a dependent variable which is a concave decreasing

20Million cubic meters.
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Figure 5.4: Theoretical shape of the marginal cost of storage (continuous
line) according to Figure 2 in Brennan (1958).

function of the stock levels. The marginal risk premium, denoted by �,
or the marginal storage charge c should be responsible for the concavity.
Our dependent variable yt, the negative net storage cost from (5.6), would,
hence, be composed of the marginal cost of physical storage, the marginal
risk premium and the marginal convenience yield:

yt := �(ct;T + �t;T � qt;T ): (5.7)

In other words, if there were excess gas on the market and stocks were
already �lled up to a certain extent, market participants would want the
basis to increase more strongly before they were willing to put additional
gas in stock. Consequently, we would see the negative net storage cost
plunging more strongly as well, and this cannot be captured by our basic
model with only a linear storage regressor.
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Unfortunately, we cannot measure the components of the negative net
storage cost individually. Both risk premium � and convenience yield q

are implicit. Moreover, measuring the cost of physical storage is di¢ cult
because cost data is regularly not available, but proprietary to the storage
operators. In the UK, APX-ENDEX and Centrica have recently launched
a secondary trading platform for storage capacity in the Rough reservoir.
Yet, a price index is not provided so far because of insu¢ cient liquidity in
this market. In Appendix 3, we explain brie�y the components of storage
cost and we also show the long-term development of season-ahead storage
prices. However, the yearly frequency of these data does not permit us to
include it in the econometric analysis.

This does not pose a general problem. Changes in the risk premium and
the cost of physical storage should be taken account of in a spot price model
as well so one can simply regard y reduced by a constant cost of storage
as the �net convenience yield�. In turn, whether variations in � or c can
explain most of the changing error variance remains an open question. This
means that we may need an additional heteroscedasticity correction. Two
of the extended model speci�cations in the following section are designed
to address this problem.

5.5 Extended Speci�cations

Based on Brennan (1958) and the previous residual analysis, we have found
that the basic model does not seem to be optimally speci�ed yet, and that
our convenience yield variable (the negative net storage cost) could be
falling in the stock levels at an increasing rate. The question is how we
could potentially capture this curvature and, hence, improve the model.
This will be dealt with in the �rst part of this section. In the second part,
we investigate whether the crude oil price can add further explanatory
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power to our model.

One possibility to deal with a non-linear relationship between the con-
venience yield and the storage levels is to include the squared storage ob-
servation as an additional regressor. Dincerler et al. (2005) and Modjtahedi
and Movassagh (2005) have already included such a squared term in their
models with ambiguous results. Findings of the former study correspond
to the left part of Figure 5.4 and, hence, provide support for a convex
decreasing convenience yield. The latter study �nds that the correspond-
ing coe¢ cients change sign: Those for the short maturities correspond to
the right end of the net storage cost curve, but the longer ones have an
opposing sign again. We also test a linear model with the square of stock
levels as an additional regressor (�squared stock model�) since this seems
economically justi�ed and since it could diminish the heteroscedasticity to
some extent. The corresponding regression equation is

yt = �cons + �stockxstock;t + �stock2xstock2;t + �tempxtemp;t + �t (5.8)

In addition, we test a switching regression model (Goldfeld and Quandt
(1972)) as an alternative speci�cation. This model will allow the conve-
nience yield to be governed by two di¤erent regimes while the storage
levels shall be the trigger for the regime switch in addition to its role as
a regressor. This model has three advantages: Firstly, we point out that
this speci�cation yields a regression which is piecewise linear in the storage
levels but keeps the time series properties of the data and endogenously
determines the cut-o¤ point between the �pieces�. This permits us to test
for a changing inventory risk premium or a changing storage charge with
a piecewise linear relationship instead of a quadratic one. Quadratic re-
gressors can make the model more sensitive to noise in the respective ex-
planatory variable, so a piecewise linear speci�cation might stabilize the
estimate. If one of the hypothesized e¤ects is present in the cost of storage,
the stock coe¢ cient will be more strongly negative in the second regime
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since we are trying to �t the negative of the curve in the right part of
Figure 4. Secondly, since the model is estimated with a smooth transition
between the two regimes, each observation will be attributed an individual
error variance. This means, a more acceptable weighting of observations
within the estimation is achieved. No simple transformation could do a
similar job in the single regime models.21 Thirdly, since the model implies
a separate error variance for each of the two regimes, we will be able to
test the theory established by Fama and French (1987), stating that the
variability of the basis will be relatively higher when stock levels are low
and vice versa.

It might also be asked whether a regression model with jumps could
be a more straightforward representation to account for the extreme val-
ues of residuals we have observed above. Indeed, jumps in the gas spot
price occur frequently on an intraday and interday basis, partly due to
the prominent role of gas in short term power generation. However, we
recall that we are using 5-day averages of the spot price and a monthly
interval of observations, so the outliers we observe cannot have the same
causes as the short term spot price movements. In addition, many of our
drops exhibit sluggishness, that is they regularly evolve and revert over an
interval of several observations. While it is probable that capacity restric-
tions similarly play a role in our case (e.g. with respect to operations and
space of the storage system), we have no single observable trigger variable
proposing a stable estimation of a jumping regression. Finally, the number
of extreme observations would most likely be too small.

The characteristic feature of our switching model, which Goldfeld and

21Log-transformation of the model is not possible due to the non-negativity constraint
for the observations. Conditioning the residual standard deviation on the square root
of stock levels through GLS is neither possible (for the same reason) nor a meaningful
representation of the observed heteroscedasticity pattern.



5.5. EXTENDED SPECIFICATIONS 79

Quandt labeled the �D-method�, is that the discontinuous step function
governing the change between two possible regimes is replaced by a con-
tinuous approximation through a standard normal integral, the D-value.
To estimate the model parameters, we have to maximize the following
log-likelihood function:

logL = �n
2
log 2� � 1

2

nX
t=2

log[�21(1�Dt)2 + �22D2
t ]

�1
2

nX
t=2

(yt � ft)2
�21(1�Dt)2 + �22D2

t

(5.9)

wherein the combined regression equation ft reads

ft = (1�Dt)(x1;t�1 + �1�1;t�1) +Dt(x2;t�2 + �2�2;t�1):

Dt denotes the weighting factor which lies between 0 and 1. The cut-o¤
point between the two regimes is contained in the expression of the D-
value (not shown for ease of exposition) and is determined endogenously
by the model. X1.and X2 are the data matrices for the two regimes, �1 and
�2 are the error variances, �1 and �2 are the vectors of partial regression
coe¢ cients and �1 and �2 are the coe¢ cients of �rst-order autocorrela-
tion. Finally, �1 and �2 are matrices of residuals. The last term of the
log-likelihood function (5.9) is the equivalent of a weighted least squares
expression. We have estimated the model parameters using the quadratic
hill-climbing algorithm (Goldfeld and Quandt (1972)).

The results obtained with the squared stock model (5.8) are displayed
in Table 5.2. We can see that the previously analyzed coe¢ cients are un-
changed with respect to sign and are still signi�cant overall. Only the
intercept becomes less signi�cant for short maturities now. The squared
stock coe¢ cient is statistically signi�cant, but it changes the sign in both
sets of regressions. For longer term futures contracts, i.e. regressions 6, 10
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and 11, the sign is not in line with Brennan�s theory. This �nding is similar
to that in Modjtahedi and Movassagh (2005) and can partly be attributed
to the di¤erent pricing of long term and short term storage service charge.
As the latter authors explain, capacity limits might put an increasing up-
ward pressure on the charge for short term storage, while the one for long
term storage should remain more or less constant. Indeed, storage facilities
tend to sell (primarily �rm) storage service once a year for the entire next
storage year, so well ahead in time. In turn, there is also trading for the
short term, either via the facility owner or another secondary market, and
the corresponding prices will most likely increase when storage space be-
comes scarce.22 This supports the view that changes in the cost of physical
storage are the main cause of the non-linearity in the net storage cost func-
tion. Unfortunately, the reduction in heteroscedasticity with respect to the
basic model is only moderate as shown by the p-values of the White-test.
An additional test for ARCH-e¤ects does not yield consistent results across
the time series so including such e¤ects does not seem to be meaningful
for monthly data. In turn, with respect to the explanatory power of the
model, the squared stock model seems to outperform the basic version at
the short end of maturities while being equally powerful at the long end.

The results of the switching model (5.9) are found in Table 5.3. The
subscripts denote the number of the regime and regime 2 contains those ob-
servations with higher stock levels. In addition to the parameter estimates
and their z-statistics, the F-test statistic for homogeneity of the standard
deviations of residuals and the number of observations in each regime are
displayed. The column labeled R2ML reports the generalized coe¢ cient of
determination as de�ned by Nagelkerke (1991). Overall the signi�cance of
the coe¢ cients is reduced compared to the single regime models. Neither

22Cf. e.g. the terms of purchase and the general information of Centrica Storage and
Scottisch Southern Energy. These are the operators of the largest UK storage facilities,
the Rough �eld and the Hornsea salt caverns.
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does the stock level coe¢ cient in regime 1 have any explanatory power
nor the constant term in regime 2. Even the constant in regime 1 is only
signi�cant in 5 of 11 cases. As we know from the previous analyses that a
constant does exist in the model, we assume that the number of parameters
is excessive. An additional problem might be that maximum likelihood es-
timation is a large sample method so signi�cance is evaluated based on the
asymptotic normal distribution. The number of observations per regime is
evenly distributed in most cases, but in regression 8, 10 and 11 the second
regime contains signi�cantly more observations. This is somewhat counter-
intuitive given the hypothesis that the storage charge or the risk premium
should not increase remarkably until storage levels are su¢ ciently close to
the capacity limit.

However, the model reveals that the residual standard deviation in
regime 2 is signi�cantly higher than in regime 1 as evidenced by the sig-
ni�cant F-statistics. This is in line with the residual plots in Figure 2
from the previous section. Fama and French (1987) have found for several
classes of commodities that the basis variability is declining in stock levels.
They argued that larger inventories mean extended possibilities to dampen
(positive) demand and (negative) supply shocks. The authors reason that
if inventories are depleted (or expected to be depleted shortly), spot price
variability decouples from futures price variability since any short term
demand or supply shock will transmit one for one to the spot price, but
not to the futures price. Yet, this theory about the behavior of the basis
variability cannot generally hold for the gas market, given that available
storage capacity is a tight restriction. In fact, storage space, which is mostly
underground, cannot be enlarged in the short run. Figure 5.5 demonstrates
this fact for the period from 10/05 to 01/08 for both long range and total
storage levels.23

23Long range storage as classi�ed by National Grid UK is based on the storage facility
used (Rough, North Sea). Unlike our notation �long term storage� it does not refer to
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Figure 5.5: Relation between residuals of basic model and remaining stor-
age space in UK.

It is apparent from the graph that capacity limits have been closely
approached in the winters during this time period. But since the upper
bound of the storage facilities is the binding one, we have an e¤ect inverse
to the one described by Fama and French. That is, spot price volatility
increases now because positive supply and negative demand shocks can no
longer be o¤set by storage injections. This e¤ect has not been documented
in the literature on the theory of storage so far. With respect to the overall
model �t though, we conclude that a switching model based on stock levels
does not enhance the explanatory power.

After having investigated alternative speci�cations with regard to the
storage variable, we now study the in�uence of the crude oil market as
suggested in the discussion of testable drivers in section 5.2. Two e¤ects of

the actual holding time.
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oil seem particularly meaningful to be tested. First, changes in the oil price
could directly in�uence the scarcity of gas through a substitution e¤ect in
the spirit of Cassasus et al. (2009). In this case, a drop in the price of
oil should (possibly by a change in the price of its chemical derivatives)
lead to a decrease of gas demand. We test for such a positive relationship
by including the front month contract of the brent future traded on the
ICE into the linear regression model. This time, the model is stated in
�rst-di¤erence form since the brent price series is integrated of order 1:

4yt = �cons + �4stock4xstock;t + �4(stock2)4xstock2;t (5.10)

+�4temp4xtemp;t + �4Poil4xPoil;t + �t:

As is clearly visible from Table 5.4, which shows the regression results,
the oil price itself does not have an impact on the determination of the
convenience yield in the gas market. The t-statistics of the corresponding
regressor is insigni�cant in all cases. Since the dependent variable has al-
ready been stationary in the level form, the regression constant has turned
insigni�cant now. The ratio of all other t-statistics remains nearly un-
changed compared to the results in Tables 5.1 and 5.2.

Second, it is possible that the convenience yields of crude oil and gas
are directly correlated because they share exposure to the same macroeco-
nomic factors as proposed by Bailey and Chan (1993). Therefore, we also
estimate a regression which includes the convenience yield of crude oil as
an additional regressor:

yt = �cons + �stockxstock;t + �stock2xstock2;t (5.11)

+�tempxtemp;t + �CYoilxCYoil;t + �t:

Table 5.5 shows the results of this regression. Since we use a front month
convenience yield for oil in all regressions, both convenience yields are
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annualized in order to match their maturities in all the regressions.24 Only
the coe¢ cients in regressions 5, 6 and 11, in which the gas convenience
yield has a long maturity, is in line with this expectation. Even here, the
gain in the adjusted R2 is in the order of 1% only. These results could
be due to the fact that the gas market reacts to changes on the crude oil
market with a precise time lag so we rerun both model speci�cations with
6-month and a 9-month lag for the oil price. The results remain basically
unchanged to the tabulated ones, however. Apparently, any direct link of
the gas convenience yield to the crude oil market does at best a¤ect the
longer maturity futures contracts. However, when projections for the very
long term are required and market liquidity in the respective contracts is
su¢ cient, it would be interesting to investigate this relationship again.

Based on the �ndings in this section, the basic linear model and the
squared stock model seem to be the most promising speci�cations to con-
tinue with. Therefore, we analyze the robustness of these two models in
the following.

24The formula for annualizing the data is based on discrete compounding (the tilde denotes
annualized values): eyt := eqt;T � ect;T � e�t;T = ert;T � 1

T�t (
Ft;T�St

St
)
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5.6 Robustness tests

To prove that our linear speci�cations are robust, we �rst test the models�
stability over time and their forecasting performance. Second, we show
that the model keeps explanatory power when data is deseasonalized. For
the �rst step we divide the time series used above in two subsamples, a
calibration period and a prediction period, and evaluate the goodness-of-
�t in the latter period compared to the earlier one. Since the model has
autocorrelated error terms in some cases, a dynamic forecast must be used,
and for the accuracy of estimation it is relevant to determine how many
periods we would like to predict the convenience yield. Under the prevailing
�rst order autocorrelation of the form ut = �ut�1+�t the k-period forecast
is

ŷt+k = �̂cons + �̂stockxstock;t+k + �̂tempxtemp;t+k + �
kût (5.12)

in the basic model (analogously in the squared stock model). The variance
of the forecast error is a concave increasing function of the number of lags
(cf. Appendix 4). We limit our robustness test to a one-period forecast. The
estimation period is set to six full years plus one lag for the estimation of
an autocorrelation coe¢ cient where necessary.

To evaluate the goodness-of-�t, we use the root mean squared error
(RMSE), the coe¢ cient of determination and coverage counts. The RMSE
is the estimated standard deviation of the residuals, which allows an ab-
solute pairwise comparison between the same regressions in the two models.
In turn, the R2-statistic serves as a relative measure of �t. This time we use
Feasible Generalized Least Squares (FGLS) to estimate the model in the
presence of autocorrelation. This permits us to directly compare the model
�t in the prediction and the corresponding calibration period based on the
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R2.25 The coverage counts measure the number of observations which lie
within the semi-standard deviation interval (CC:5�) and the one-standard
deviation interval (CC�) around the actual value of the dependent variable.
The standard deviation used is the RMSE from the calibration period. If
the fraction of covered observations is close to normal, this will con�rm the
stability of the model. In those regressions in which the autocorrelation co-
e¢ cient is not signi�cant on a 5% con�dence level the coe¢ cient is set to
zero and the model is reestimated in OLS form. In turn, all regression co-
e¢ cients were included in the forecast independently of their signi�cance
in the calibration period. The reason is that the R2-statistic in the predic-
tion period are not meaningful if intercepts are dropped, as long as their
point estimate is not close to zero in absolute terms. In addition, since
there is no reasonable heteroscedasticity correction the con�dence bounds
and signi�cance levels of the estimators should be regarded with caution.
Apart from this reasoning, the decision about whether to drop insigni�-
cant coe¢ cients should not produce a material economic di¤erence in the
results since these coe¢ cients could equally harm or bene�t the forecast.
The in-sample results obtained for the basic and the squared stock model
are presented in Tables 5.6 and 5.7 respectively.

Obs: denotes the number of observations in the calibration and predic-
tion period. Superscript � (in the header) indicates the FGLS-transformation
of the model and the corresponding coe¢ cient of autocorrelation is ��. Due
to the fact that some of the regressions have a nonzero coe¢ cient of au-
tocorrelation, the possibility of comparison to the full sample results in
Tables 5.1 and 5.2 is limited. In fact, the comparison only allows for a few
evaluative comments on the stability of the model: The majority of results

25Note that the prediction R2 can no longer be interpreted as the fraction of variance of
the dependent variable explained by the model variance and that its lower bound is not

zero, but -n(�
�
cons��y

�)2P
(y�t��y�)2

. However the R2 can still be used as a relative measure of the
goodness-of-�t in the above mentioned comparison.
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of the calibration period remains unchanged with respect to the signi�cance
of the parameters. In turn, some of the point estimates have changed even
in the regressions which were not transformed, i.e. those which did not
necessitate an autocorrelation correction. In regressions 2 to 5 of the basic
model (Table 5.6) the stock coe¢ cients have diminished by roughly 15%.
The constant in regression 7 is reduced by more than 20%. Given that the
most severe outliers observed in autumn 2006 are now contained in the
prediction period, we conclude that the intercept and the stock coe¢ cient
are more sensitive to outliers than the temperature variable. Nearly the
same observations can be made for the series of the squared-stock model
which have not been transformed (Table 5.7). The only other change is
that the squared stock coe¢ cient has slightly lost signi�cance. Neverthe-
less these changes are still fairly acceptable given the strong irregularities
in the residuals�distribution.

Moving on to the goodness-of-�t measures, the obtained results look
very satisfying in general in both Tables 5.6 and 5.7. Naturally, the re-
gression series 1 to 6 have a somewhat weaker explanatory power than the
remaining ones. Due to the shorter sample length of the forecast period
and the more pronounced irregularities in the OCM price compared to the
M1 series, a stable forecast is more di¢ cult to achieve in these series. Not
surprisingly, the regressions 1 to 3 are the weakest in terms of absolute R2

and they also lose a higher fraction of the calibration R2 in the forecast
period. While regression 11 is not strongly robust either, roughly 40% of
the convenience yield variance can still be explained. However, the squared
stock model performs at least equally well as does the basic model and is
especially ahead regarding the shorter maturities. More precisely, the fore-
cast is improved by 6.6%, 8.1% and 7.1% in regressions 1 to 3 and by 3.4%
and 4.1% in regressions 7 and 8 respectively when we compare the results
in both tables. The RMSE also favours the latter model as this statistic is
closely related to the R2.
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The coverage counts are not designed for a pairwise comparison since
the squared stock model has lower RMSE values in the calibration period
and, hence, tighter con�dence bounds. Due to the limited sample size of the
forecasts it is more meaningful to look at the counts in the aggregate: The
sum of all observations projected within the smaller con�dence bounds is
123 in both models. Applying the larger bounds the squared stock model
achieves a total of 203, which is only one more than does the basic model.
From these �gures both models appear equally stable with regard to the
calibration period. In addition, the simple average of the percentages cov-
ered in each of the 11 time series indicates that both models keep a roughly
normal error distribution: 39.3% and 65.7% are the respective distribution
values for the two intervals in the simple model, while 38.4% and 66.8% are
the corresponding values in the extended model. They are su¢ ciently close
to the corresponding normal values of 38.3% and 68.3%. To summarize,
while the coverage counts state that both models are generally stable, the
R2-statistic and the RMSE show that the squared stock model is slightly
more powerful and robust.

The in-sample test has already demonstrated the forecasting power of
our favored model, most notably by the strong R2�s which appear even
in the FGLS-transformed version. Next, we investigate the out-of-sample
forecast of this model. We use a naive prediction for the two explanatory
variables, monthly mean temperature and closing stock levels. We are well
aware that our prediction ignores any fundamental insight into meteorol-
ogy or the economics of storage, but this is not the primary focus of the
study. With a sinusoidal seasonality function for both variables and an
additional error correction term with one lag for the storage variable we
can obtain already a very acceptable explanatory power. The R2-values
for temperature are 95.0% and 94.8% respectively for the two di¤erent
73-month calibration periods. The corresponding (transformed) values for
the storage variable are 80.0% and 82.4%. We predict temperature and
storage levels during the forecast period and compute convenience yield
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No: Obs: RMSE� R2� CC:5� CC�

1 20 .25 16.1% 6 13
2 20 .42 23.1% 6 11
3 20 .55 28.7% 5 13
4 20 .58 32.2% 10 11
5 20 .54 37.5% 8 12
6 20 .51 42.0% 9 14

7 39 .14 40.2% 10 20
8 39 .18 46.2% 16 28
9 39 .20 48.8% 12 25
10 39 .27 48.0% 14 23
11 39 .33 40.8% 10 21

Table 5.8: Diagnostics for out-of-sample forecast of squared stock model
(5.8). The notation is in accordance with Table 5.7.

estimates based on those predictions. The corresponding regression statis-
tics are displayed in Table 5.8. Figure 5.6 graphs a set of the convenience
yield forecasts and their actual values in comparison.

As expected, the out-of-sample forecast has somewhat lower R2-values
than the in-sample counterpart due to slight inaccuracies of the forecast
of stocks and temperature. Yet, not many time series are strongly a¤ected
as is visible from comparing Tables 5.7 and 5.8. Only series 4, 5 and 6
have lost more than 6% of the R2. Their RMSE has increased by .04 to
.05 accordingly, quite in contrast to the very moderate increase of .01 in
most other series. The coverage counts of series 1 to 6 are rather stable in
the semi-standard deviation interval whereas the weakness of the former
3 series reappears, to some extend, in the one-standard deviation case.
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Figure 5.6: Selected plots of convenience yield forecasts out of the sample.
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The aggregate coverage counts decrease to 106 and 191 observations and
the average rates of coverage drop to 34.5% and 60.9% respectively. This
is below the desired level of a normally distributed variable. Having said
that, an inclusion of fundamental predictors of storage (e.g. derived from
a total market model) should ease this problem. Storage was deemed the
more sensitive in�uential variable in the above in-sample analysis and our
storage forecasts certainly leave some room for optimization. Apart from
the coverage counts the out-of-sample test documents an acceptable level
of explanatory power even under critical investigation which makes the
model usable for forecasting purposes.

Finally, we investigate how the favored squared stock model performs
with deseasonalized data in order to prove that it can well explain varia-
tion over and above seasonality.26 This makes it necessary to use a higher
data frequency. There are two practical bene�ts to this test regarding a
possible application of our model with current reduced-form spot price
models. Firstly, in spot price models we might want to work with daily
or weekly data intervals as well. Secondly, seasonality is typically removed
before estimating the parameters of the stochastic process so we can di-
rectly see if our model has additional explanatory power when combined
with a reduced-form model. To obtain a consistent daily time series of
convenience yields, we construct a complete futures term structure from
the daily observations of our ICE month futures contracts and the OCM
contract. This is done by �tting a cubic spline to the data based on time to
maturity. From the daily term structure curves we then compute a set of
interpolated futures prices with constant time to maturity for every daily
observation.27 The resulting convenience yield time series from these arti�-
cial futures prices accordingly has an equal term. Daily mean temperature

26We �nd very similar results for the basic linear model so they are not discussed.
27We choose to use the medium time to maturity of the six monthly contracts, i.e. 14, 45,
75, 106, 136 and 167 days respectively.
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(Central England) from 01/00 to 12/08 comes from the HadCET database
of the British Atmospheric Data Centre (BADC). The daily storage �gures
are closing levels from National Grid�s operational data which are available
since 10/05. This limits the number of observations to N = 568.

Storage �gures are detrended as described in section 5.3. Annual sea-
sonality is then removed from all data with a sinusoidal function of the
type

f(t) = b1 + b2sin(b3 + 2�t=obs: p:a:): (5.13)

The entire available length of each dataset is used for this to get the most
accurate estimates possible. Other patterns of seasonality could not be
detected. Prior to �tting the functions for the convenience yield series,
we annualize these data in order to make the parameters comparable to
existing estimation results for reduced-form models. For this purpose we
also use continuous compounding this time as these studies do. That is,
we compute the following annualized continuous time equivalent of the
negative of (5.5)

eqt;T � ect;T = ert;T � 1

T � t ln
�
Ft;T
St

�
: (5.14)

We also remove outliers with the procedure outlined in Benth et al. (2008)
(p. 130)28 and replace them by a linear interpolation between the neighbor-
ing data points. All seasonality coe¢ cients turn out signi�cant (at least at
a 95% con�dence level) except the b1-coe¢ cient of the storage data which
have already been demeaned before. The residuals of the regressions (not
shown) are highly autocorrelated (coe¢ cient values> 90%) despite the fact
that the convenience yield is stationary. We identify an AR(1)-structure
in the daily convenience yields and reestimate the model in �rst-di¤erence

28A maximum of 3.5% of the observations in one series is a¤ected which is in line with
their removal rate.
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form with the lagged dependent variable as an additional regressor. The
latter one will tell us the (negative) rate of mean reversion on a daily ba-
sis. Furthermore, all convenience yield series have signi�cant ARCH-e¤ects
of order 1 so we include such e¤ects in the reestimated model. The �nal
model equations are

yst = yt �
�
b1 + b2 sin

�
b3 +

2�t

obs: p:a:

��
(5.15a)

�yst = ��stock�x
s
stock;t + ��(stock2)�x

s
stock2;t (5.15b)

+��temp�x
s
temp;t + �yst�1y

s
t�1 + �t

�2�t = �cons + ��2t�1�
2
t�1 + ut; ut

i:i:d:� N (0; �2): (5.15c)

(5.15a) represents the seasonal adjustment, (5.15b) is the main equation
and (5.15c) the ARCH-equation. The results are given in Table 5.9. Since
all constants on the left as well as the right hand side have been removed
by the seasonality function, we estimate the model without a constant.
This is helpful to assure a proper estimation of the ARCH-model. In turn,
b̂1 reports the estimate of the intercept term in the seasonal function inde-
pendent of the regression itself. Here, it can be interpreted as the average
annualized spot convenience yield for the respective maturity. Since the
model parameters have been obtained by maximum likelihood estimation,
�gures in parentheses denote z-statistics.

From the z-statistics for �̂yst�1 one can see that the mean reversion pa-
rameter is signi�cant which supports an Ornstein-Uhlenbeck convenience
yield process as suggested in the reduced-form models by Gibson and
Schwartz (1990) and Schwartz (1997). If we annualize (the negative of)
these coe¢ cients and compare them to those for crude oil in the aforemen-
tioned studies, the speed of adjustment seems to be in a similar range. Our
annualized coe¢ cients are between 8.6 (regression 10) and 27.3 (regression
1) whereas Gibson and Schwartz (1990), for instance, obtain 16.1. Annu-
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alizing mean reversion speeds gives, of course, only an approximate idea
of the process dynamics. The intercept of the seasonal function, in turn,
points at a di¤erence to the estimation results for crude oil. Obviously, all
(net) convenience yield rates are strongly negative because the net storage
cost and the storage risk premium exceed the value of the gross conve-
nience yield. Gibson and Schwartz (1990) report a net convenience yield of
18.61%. The comparatively lower values for the short maturities are in line
with the reasoning from section 5.5. That is, storage is also more costly for
the short term than for the long term, provided that stock levels are often
close to the capacity limit.

The temperature coe¢ cient is strongly signi�cant in all regressions in
which the OCM price is used. The insigni�cance in regressions 8 to 11 is
reasonable since the monthly contract M1 is less driven by spontaneous
weather changes than the day-ahead price. Regression 7 could possibly
be incorrectly estimated since the coe¢ cients di¤er materially from those
found for the following series and the ARCH coe¢ cient signi�es an explod-
ing variance (�̂�2t�1 > 1). It can thus be said that temperature generally
contains signi�cantly more than seasonality to explain the convenience
yield. The storage variable does have slightly less explanatory power, but
is also signi�cant when the OCM spot price is used (1-6). As found in the
�rst part of this section, storage levels might be slightly more sensitive
to outliers in the data. Having said that, both variables clearly keep their
explanatory power on a daily basis and with deseasonalized data.

In sum, this section has demonstrated that the basic model and the
squared stock model (both linear in the parameters) qualify for forecast-
ing purposes since in-sample as well as out-of-sample forecasts have shown
a strong performance. In terms of explanatory power, the squared stock
model was slightly ahead. Analyzing data with shorter time intervals is
possible and the introduced additional explanatory variable, air temper-
ature, proves to be highly signi�cant even with deseasonalized data and
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is robust to a change in the data frequency. The traditional variable of
interest, storage, also keeps its signi�cance in this case, particularly for
the short term. Therefore, this model enhances the explanatory power of
reduced-form models when the fundamental convenience yield estimate is
incorporated.

5.7 Conclusion

The analysis presented in this chapter has advanced the modelling of the
convenience yield of natural gas. We have shown that, beyond the storage
level of gas, temperature is an important additional explanatory variable.
The reason is that a sizable fraction of demand reacts very sensitive to tem-
perature changes and, thereby, impacts on the current scarcity of gas. This
fraction consists, to a large extent, of heating demand from domestic and
commercial customers. In a linear two-variable model up to 75% of con-
venience yield variability could be explained in-sample. Furthermore, we
have presented two extensions of this basic model: A linear model with the
squared stock level as an additional explanatory variable and a (smooth-
transition) regime-switching model. We have also analyzed the in�uence
of the crude oil market.

The regime-switching model has not yielded an improved explanatory
power, but it has shown that the variability of the basis can also increase
rather than decrease with rising stock levels. This �nding is reasonable
for the gas market when stock levels are much closer to the capacity limit
than to complete depletion as was the case in our dataset. The squared
stock model has supported Brennan�s theory of an increase in the cost of
physical storage implied in the net storage cost when stock levels are high
and the storage horizon is su¢ ciently short. It has also slightly amended
the explanatory power of the model, especially with respect to short-term
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convenience yields. A strong link of convenience yields to the crude oil mar-
ket could not be established although long-term futures (and their bases)
might be in�uenced by the crude oil convenience yield to a certain de-
gree. This is in line with current literature where co-movements of gas and
crude oil prices are documented, but no short-term relationship is found.
We have shown that the slight superiority of the squared stock model holds
in a forecasting exercise so this model quali�es for forecasting. An analy-
sis of daily deseasonalized data has also demonstrated that integrating a
fundamental convenience yield forecast into the pricing of reduced-form
models could enhance the latter.

An implicit assumption of the analysis was that the established pipeline
connections to the European mainland (e.g. the Bacton-Zeebrugge Inter-
connector), only a¤ect the convenience yield in case of exogenous events.
In fact, gas contracts in continental Europe are still largely oil-indexed and
if prices on both sides of the canal (market based vs. oil price based) di¤er
by more than the transportation cost, gas will �ow to the market with the
higher price. While the level of UK prices is certainly in�uenced by this
arbitrage possibility, there is a priori no reason to assume a permanent
distortion of the interest-adjusted basis. This means that the di¤erence
between futures and spot prices in UK is assumed to remain unchanged as
long as the pipeline operates normally. In case of an extraordinary event
the e¤ect will be comparable to shocks to domestic production, which
our model captures in the form of storage reactions. While this seems
economically justi�ed, the ultimate proof of this assumption is certainly
complicated. It would hence be another interesting research question for
a separate study, especially since Stronzik et al. (2008) state that the UK
market for storage is not yet working e¢ ciently.

Furthermore, we have mentioned that an important motivation for this
study has been the liberalization of the continental European gas markets
and the necessity to �nd accurate spot price models to value derivative
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contracts emerging in these markets. However, the transferability of our
results to the European mainland also builds on an important assump-
tion: The UK, just as the US, has been relying on its largely autonomous
gas supply until recently. On the contrary, many other European countries
heavily rely on imports, and in the future these imports will concentrate on
an oligopoly of suppliers (Russia, Norway and Algeria to mention �rst).29

Hence, if we want to transfer our results to these countries, we need to
assume that this di¤ering supply situation has no impact on the choice of
variables determining the convenience value of gas in the mainland mar-
kets. While we believe that stock levels will rather gain importance in very
import-dependent countries, it is conceivable nonetheless that the conve-
nience yield process becomes more irregular. Possible reasons for this could
be more frequent supply disruptions and the limited operational capacity
of the storage system such as injection and withdrawal capacity. Therefore,
a fundamental model taking account of operational capacity limits would
similarly be an interesting idea for future research related to this topic.

29Cf. National Grid (2007), p. 45.



Chapter 6

Application to pricing

So far, we have shown that it is appropriate to model natural gas prices in-
dividually. Furthermore, it has been demonstrated that no spot price model
speci�c to the gas market has been proposed in literature so far. Therefore,
the motivation of this thesis is to derive and test such a model. Chapter 4
has pointed out that the convenience yield is a parameter which appears
in both structural and reduced-form models, and that it can be used to
include fundamental information into a reduced-form model framework.
Consequently, chapter 5 has analyzed the convenience yield dynamics in
the natural gas market in detail and has �nally proposed a customized
regression model to make fundamental predictions for this parameter.

The following chapter documents the development and testing of a
hybrid spot price model, i.e. a reduced-form framework including funda-
mental information, with empirical data from the UK and the US gas
markets. The �rst section is dedicated to the model conception. The basis
is the stochastic convenience yield (SCY) model by Gibson and Schwartz
(1990) and Schwartz (1997), whose closed-form solution for futures prices
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is derived below, before the model extension is explained. In the second
section, the empirical data is analyzed, and the hybrid model is estimated
and benchmarked against the SCY model. Di¤erent estimation methods
are presented together with the corresponding results. The last section of
the chapter concludes.

6.1 Model

In this section we show how one may accommodate the convenience yield
projection from the squared stock model (5.8) in a reduced-form model
of the spot price. In section 4.3, we have shown that among the models
with a convenience yield variable, the SCY model by Gibson and Schwartz
(1990) and Schwartz (1997) is uncomplex and �exible. The fact that the
model is widely applied in the energy trading practice supports our assess-
ment. Nevertheless, it does not take account of fundamental information
regarding the determination of convenience yields in the market. Hence,
we choose this model as the basis and extend it by including a convenience
yield forecast. The SCY model has two risk factors, the spot price S and
the convenience yield �, and their dynamics are characterized by (4.3) and
(4.5):

dS

S
= (�� �)dt+ �1dW1

d� = �(�� �)dt+ �2dW2:

Schwartz (1997) provides a closed-form solution for futures prices in the
model together with a recursive procedure to estimate the value of the un-
observable state variables from futures price data. We will adopt this way
of estimation since gas futures are the most liquid contracts traded on ex-
change. To do so, one has to know the model�s solution for the futures price
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upfront. The section starts with the derivation of the closed-form futures
price before we derive our extended model which includes the fundamental
convenience yield forecast.

6.1.1 Schwartz (1997) model

To �nd the futures price of the SCY model in closed form, one can apply
the PDE method explained in section 3.2. Let us state the change in the
futures price as a function of a change in the spot price and the convenience
yield with the help of Ito�s Lemma:

dF = �(F )dt+
@F

@S
�
1
SdW 1+

@F

@S
�2dW 2 (6.16)

�(F ) =
@F

@t
+
@F

@S
(�� �)S + 1

2

@2F

@S2
�21S

2 +
@F

@�
�(�� �)

+
1

2

@2F

@�2
�22 +

@2F

@S@�
��1�2S:

The replicating portfolio must contain not only stakes in the commodity
and the money market account (MMA), but also a position in a second
future which is sensitive to changes in the convenience yield. The reason
is that by owning the commodity the convenience yield risk cannot be
hedged. At the time of investment the value of the second future position
is zero so the replicating portfolio must have a value of zero as well:

P =  S + �B
!
= 0:

We can eliminate one weight and set

� = � S
B
:
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The changes in the replicating portfolio are therefore

dP =  dS �  S

B
dB + �d ~F ;

where � denotes the portfolio weight and d ~F the change of the second
future�s price as given by (6.16). Plugging in this relationship gives

dP =
h
 (�� r)S + ��( ~F )

i
dt+ ( + �

@ ~F

@S
)�1SdW1 + �

@ ~F

@�
�2dW2:

Equating the di¤usion parts of the future and the replicating portfolio
yields the following portfolio weights:

 =
@F

@S
� @F=@�

@ ~F=@�

@ ~F

@S

� =
@F=@�

@ ~F=@�
:

By equating the drift terms and substituting these portfolio weights, one
obtains

�(F ) =

 
@F

@S
� @F=@�

@ ~F=@�

@ ~F

@S

!
(�� r)S + @F=@�

@ ~F=@�
�( ~F );

which can be rearranged to represent a constant ratio of excess returns to
convenience yield sensitivity that holds for any two futures contracts:

�(F )� @F=@S(�� r)S
@F=@�

=
�( ~F )� @ ~F=@S(�� r)S

@ ~F=@�
= ��:

This ratio is interpreted as the risk premium for convenience yield risk
since it is the excess return for convenience yield risk divided by the "factor
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loading", i.e. the amount of convenience yield risk for one futures contract.1

In consequence, the total expected return of the futures contract must be

�(F ) =
@F

@S
�SS +

@F

@�
��

with �S = � � r: Setting this equal to the drift in (6.16) and rearranging
terms, one obtains the fundamental PDE of the stochastic convenience
yield model

@F

@t
+
@F

@S
(�� �S � �)S +

1

2

@2F

@S2
�21S

2

+
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@�
�[(�� �)� ��] +
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2

@2F

@�2
�22 +
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@S@�
��1�2S = 0:

The solution to this equation is rather involved. It is derived in Bjerksund
(1991) and adopted by Schwartz (1997):

lnFt;T = lnSt � �
1� e��(T�t)

�
+A(T � t) (6.17)

A(T � t) =

�
r � �� + 1

2

�22
�2
+
�1�2�

�

�
(T � t) (6.18)

+
1� e�2�T
4�3

�22 +

�
�̂+

�1�2�

�
� �22
�2

�
1� e��T

�

The solution shows, among other properties, the implications of the model
formulation for the term-structure of futures prices. The log-spot price
serves as a level factor which shifts all futures prices up or down. In turn,
the convenience yield impacts on the curvature of the term structure since

1Note that whenever it is referred to the term "convenience yield" in the model, it is to be
regarded net of storage cost since a storage cost parameter does not occur in the model.
The convenience yield variable may therefore become negative contrary to Brennan�s
de�nition.
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its coe¢ cient is non-linear in the time to maturity T � t. The model (6.17)
serves as a performance benchmark for the extended version which we
derive in the following subsection.

6.1.2 Extended model

As outlined in the introduction to this chapter, the SCY model does not
completely meet our requirements. Firstly, it has originally been devel-
oped for the crude oil market instead of the gas market. Secondly, Gib-
son and Schwartz (1990) and Schwartz (1997) assume that variation in
convenience yield can be purely explained by a mean-reverting stochastic
process. Chapter 5 has shown that this is a very simplifying and debat-
able assumption. Authors such as Pirrong (1998), Clewlow and Strickland
(2000) and Carlson et al. (2007) have also argued that the constant volatil-
ity parameter misspeci�es the true price dynamics due to a negligence of
fundamental factors which impact on volatility. For these reasons, we pro-
pose an extended model in which the convenience yield stems from two
sources, a fundamental component ys; driven primarily by national gas in-
ventories and air temperature, as well as a preference component ~�; which
stands for the speculation preferences of investors. Their attitude towards
speculation is in�uenced by an interplay of numerous macroeconomic fac-
tors (e.g. the current price and price expectation of substitute goods) which
cannot easily be modeled individually. Both components revert towards a
long-run mean in line with a Neokeynesian model setup.2 We allow for dif-
ferent mean-reversion speeds of the two variables. The total convenience

2Frictions in the spot market (e.g. pipeline capacity) lead to frequent temporary devia-
tions from the long-run path. Bessembinder et al. (1995) show that this is a common
phenomenon in commodity markets and that the market anticipates the readjustments
to a considerable degree.
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yield is de�ned as the sum of both components:

� = ~� + ys: (6.19)

In this way, we attempt to explain parts of the changing price volatility
without introducing an additional stochastic variable. More precisely, our
fundamental component is de�ned as the (seasonally adjusted) convenience
yield from (5.15b)3

4yst = ��stock4xsstock;t + ��(stock2)4xsstock2;t
+��temp4xstemp;t + �yst�1y

s
t�1 + �t:

In the following, unless stated otherwise, yst only stands for the instanta-
neous convenience yield proxied by the nearest maturity available in the
market. We assume that a continuous-time limit of this equation exists
since all explanatory variables are metrically scaled and can be measured
at any moment in time.4 In turn, the preference component ~�t follows the
mean-reversion process de�ned by Gibson and Schwartz (1990) in (4.5)

d~� = �(�� ~�)dt+ �2dW2: (6.20)

Unfortunately, incorporating the forecast into the spot price model is
slightly involved since yst is not known as an analytic function of time. We
recall that both storage levels and temperature are exogenous variables (or
forecasts). Therefore, including ys directly in the stochastic process of the
SCY model is not possible and we cannot obtain the resulting futures price
solution with standard Ito calculus. However, due to the deseasonalization

3The necessity of ARCH-coe¢ cients depends on the measurement interval and remains
to be explored.
4 In case of a one-period forecast, the prediction in levels is given by ŷst+1 = y

s
t +4ŷst+1,

where a hat denotes an estimate of the true variable.
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explanatory variables in (5.15b) as well as the levels of the dependent vari-
able yst have mean zero. In addition, y

s
t has a normal distribution, provided

that the explanatory variables are normal.5 Since they are residuals of a
seasonal function, this can be assumed. Hence, it is possible to maintain
the distributional assumptions of the SCY model even if we apply it on a
set of synthetic futures prices which we have "netted" from the in�uence of
the fundamental component. In particular, creating such a price set main-
tains the normality of the stochastic increments. The expected bene�t of
the "netting" is that the fundamental convenience yield will explain some
of the variability in convenience yields which cannot be explained through
an Ornstein-Uhlenbeck process. After the netting, the reduced-form model
and the implied spot prices are estimated with the synthetic futures. This
procedure is expected to yield less noisy parameter estimates. Figure 6.1
shows the relationship of the expected spot price drift in the SCY model
(called standard model in the following) and the extended model under
the risk-neutral and the empirical measure. ~S denotes the synthetic spot
price which corresponds to S in the standard model. Since we only need
two additional futures contracts in addition to the asset and the MMA to
trade in the "synthetic" asset, we assume that the market is complete. The
required assumption for the replication of the synthetic futures is, hence,
ful�lled.

Next, we investigate the e¤ect of the change of drift on the futures
price. Commodity returns derive from two sources, an expected spot price
drift which is given by EQt (�S;u) = r � EQt (�u) in the SCY model, and
an expected convenience yield EQ(�u) for any time u until maturity of
the future. If the convenience yield �u rises at time u , the futures con-
tract becomes less attractive compared to the asset such that its value
will immediately decrease and vice versa. Due to autocorrelation in the

5Any linear combination of independent normal distributions is normal itself.
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Figure 6.1: Components of spot price drifts: Standard vs. extended model.

(instantaneous) convenience yield, the change in the current convenience
yield also changes its future expectations until maturity.

To quantify the e¤ect on the futures price, we look at the discretized
equations of the stochastic processes (4.3) and (4.5) under the equivalent
martingale measure. Assume that the time steps are4t = T�t

n with n 2 N.
The approximate system equations become

4St = (r � ~�t�1)St�14t+ �1St�14WQ
1 (6.21a)

4~�t = �(�� � ~�t�1)4t+ �24WQ
2 : (6.21b)

�� represents the risk-neutral mean reversion level in the SCY model and
is related to � in (4.5) by �� = �� ��

� : Evidently, if the convenience yield
is at the mean level in t, its risk-neutral expectation is �at with

EQt (�u) = �� 8 u 2 [t; T ]: (6.22)

If either ~�t or yst are not at the mean level, the market expectation for the
future must be di¤erent due to serial correlation. By rearranging (6.21b)



114 CHAPTER 6. APPLICATION TO PRICING

to
~�t = ���4t+ (1� �4t)~�t�1 + �24WQ

2

one sees that CORR
h
~�t; ~�t�1

i
= 1��4t. However, the autocorrelation in

the fundamental component can be di¤erent. It is implicitly estimated in
(5.15b) since

CORR
�
yst ; y

s
t�1
�
= 1� �yst�1 :

Accordingly, the mean-reversion speed of ys can be de�ned as

�� � �
�yst�1
4t ; (6.23)

assuming that 4t equals the step length in the regression. Since the con-
venience yield is a single risk factor, all uncertainty of the fundamental
forecast is attributed to noise in the stochastic process such that the risk
premium of ys is zero. Given that the deseasonalized stock and temper-
ature variables have an expected value of zero, we can, hence, write the
risk-neutral conditional k-period forecast as

EQt (y
s
t+k4t) = Et(y

s
t+k4t) = (1� ��4t)kyst : (6.24)

To derive the immediate response of convenience yield changes in the fu-
tures price (i.e. the level change), let us assume that the convenience yield
has been at the steady state value ��, but the fundamental component in-
creases at t, expressed in a positive value of yst . Consequently, the current
period�s value of the future compared to the asset changes by

@ lnFt;T
@yst

= �
�
yst + E

Q
t (y

s
t+4t) + E

Q
t (y

s
t+24t) + :::+ E

Q
t (y

s
(n�2)4t)

+EQt (y
s
(n�1)4t)

�
4t:
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This can be simpli�ed to a geometric sum by inserting (6.24) such that

@Ft;T
@yst

= �
Xn�1

k=0
(1� ��4t)kyst4t = �

1� (1� ��4t)n
1� (1� ��4t) :

Then, by letting the number of steps in the time mesh n �! 1, we get
the continuous time limit

@ logFt;T
@yst

= �1� e
���(T�t)

��
:

Comparing this result to the convenience yield coe¢ cient in the futures
price solution (6.17) shows that in the extended model the sensitivity of
logFt;T w.r.t. to yst is identical to that of ~�t under the stated assumptions.

In sum, the extended model can be characterized by the new additive
convenience yield (6.19), the dynamics of the risk factors, i.e. the spot price
and the preference component of the convenience yield

d ~S = (r � ~�) ~Sdt+ �1 ~SdWQ
1 (6.25a)

d~� = �(�� � ~�)dt+ �2dWQ
2 ; (6.25b)

together with the continuous time equivalent of the fundamental conve-
nience yield dynamics (6.26a), the relationship between observed and syn-
thetic futures prices (6.26b) and the closed-form solution for synthetic
futures prices (6.26c)

dyst = �dstockdxstock;t + �d(stock2)dxstock2;t (6.26a)

+�dtempdxtemp;t + �yst y
s
t

ln ~Ft;T = lnF st;T + y
s
t

1� e���(T�t)
��

(6.26b)

ln ~Ft;T = ln ~St � ~�t
1� e��(T�t)

�
+A(T � t): (6.26c)
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The variable lnF st;T denotes the input of futures prices which have been

deseasonalized with the seasonal function (5.13), ln ~Ft;T denotes the result-
ing synthetic prices and A(T � t) is given by the expression in (6.18). The
following section estimates this model by following the order of the last
three equations. While in (6.26a) and (6.26b) the aim is to estimate the
left-hand side, in (6.26c) the synthetic spot prices will be estimated recur-
sively, given (6.25a) and (6.25b). The details of the estimation procedure
are also provided in the following section.

6.2 Empirical estimation

In the last section, we have shown the closed-form solution for futures
prices in the two-factor SCY model by Gibson and Schwartz (1990) and
Schwartz (1997). Furthermore, we have proposed an extended model with
additional systematic convenience yield changes, which are driven by fun-
damental variables. In this section, we explain and document the estima-
tion of the two models and compare the models�performance. The critical
question is whether spot price forecasts are more precise and parameter
estimates more robust for the extended model. We use US and UK gas
market data for the analysis. Firstly, we calculate convenience yield pro-
jections for the US market, since the focus in chapter 5 was on the UK
market only. We analyze the corresponding estimation results. Next, we
compute the synthetic futures prices net of the fundamental convenience
yield component and show that the resulting futures price innovations are
in line with the distributional assumptions made in the last section. There-
after, we cast (6.26c), (6.21a) and (6.21b) in state space form and explain
how to apply the Kalman �lter to estimate the spot price and the residual
convenience yield ~�: We continue by running simulations of the Kalman
�lter algorithm to choose the most accurate estimation routine and apply
this routine to the dataset at hand. Finally, standard and extended model
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are compared regarding the forecast errors produced.

6.2.1 Convenience yield projections

Fundamental convenience yields for the extended model are projected with
the discretized version of (6.26a) given by (5.15).Since the next month�s
contract (M1) has proved to be a rather inaccurate proxy for changes
in daily conditions, the convenience yield speci�cation applied here uses
the day-ahead price as a spot price proxy (i.e. the OCM contract for the
UK dataset). For reduced-form models of the spot price, data frequency
should be weekly or daily. The signi�cance of the ARCH-coe¢ cients in the
convenience yield model does actually not matter for the point estimate of
the forecast. However, due to the strong autocorrelation of the convenience
yield, deciding on the desired forecast horizon is a relevant issue. The in-
sample test of our model uses a one-period forecast since the same is used
for the estimation of the reduced-form model (see the following subsection).

As for the UK dataset, little further treatment of the data is needed.
We keep the daily frequency used in chapter 5 because of the short history
of storage data available. The resulting time series of 568 observations is
long enough such that the asymptotic properties of the estimation pro-
cedure will be ful�lled. Hence, the projection of the instantaneous UK
convenience yield is already available from the estimation reported in Ta-
ble 5.9 (line 1). Since we have only 6 liquid futures contracts available, an
out-of-sample test is di¢ cult to run with the existing dataset. Therefore,
an update of the OCM and ICE month futures time series until 04/09 has
been obtained. The number of additional observations is 339. Besides the
one-period forecast, a longer-term forecast is used as a stress test. That
is, we recursively generate a �ve-period dynamic forecast of the conve-
nience yield di¤erences. The following list sums up the steps to arrive at
the convenience yield projections:
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1. Compute days to maturity for futures contracts at each date

2. Apply spline to generate futures series with equal maturities

3. Calculate convenience yield time series according to (5.14)

4. Remove outliers and interpolate the respective observations

5. Deseasonalize convenience yields, stocks and temperature

6. Estimate convenience yield model in �rst di¤erences

7. Generate (recursive) forecasts of �rst di¤erences 4k�̂t+k and add
forecast to the last observation (�̂t+k = �t +4k�̂t+k)

The US dataset has a much longer history. Storage announcements,
provided by the EIA, are available since 1994. In turn, the reporting is
weekly (every Friday), not daily. Hence, we are obliged to use a weekly
frequency of observations for the US market. Monthly US natural gas fu-
tures traded on the NYMEX are available since 1990. Maturities range
from one month to several years. Market liquidity is very high at the short
end, but declines signi�cantly for longer terms. The o¢ cial daily settle-
ment quotes are obtained from Bloomberg. We choose to use all contracts
with maturities up to 18 months. The limiting factor of the history of con-
venience yields is the spot market index. This is the counterpart of the
OCM contract in UK. Both the ICE and Bloomberg provide such an in-
dex. The Bloomberg index is, in fact, available since 1991, but liquidity
was insu¢ cient in the �rst years. It is a volume-weighted price average of
all (reported) day-ahead trades in the OTC market for delivery at Henry
Hub during the last half hour before market closing at the NYMEX. The
ICE index is much younger with a history dating back to 04/2001. The
price di¤erences between these indices are negligible so we use a composite
index reported also by Bloomberg.

We choose a reasonable starting point for the sample by analyzing the
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historical price chart of the front month contract (cf. Figure 6.1). Most no-
tably, it displays a signi�cantly elevated volatility and a long-term upward
trend starting in 2000, such that the beginning of that year constitutes a
reasonable starting point. It roughly corresponds to the starting point of
the UK time series (04/00) as well. The resulting dataset has a length of
513 observations and ranges from 01/00 to 09/09.
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Figure 6.2: Historical weekly settlement prices of NYMEX front month
future (1994-2009).

The maturity-matching USD interest rates are taken again from the
BBA LIBOR database. However, the cumbersome part of the convenience
yield model for the US is the computation of a "market" temperature.
Two additional complications with regard to the UK counterpart occur.
The minor one is the fact that not only heating, but also cooling activity
in the economy will a¤ect the gas demand in this market. Air conditioners
are widely used, and air temperatures in many regions rise well above a
comfortable room temperature level in the summer. As gas-�red power
generation has a high importance in the US (cf. Appendix 5), gas demand
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will react to temperature increases above the threshold level. To account
for this fact we use the sum of Heating and Cooling Degree Days (HDDs
and CDDs) at each observation date to represent the temperature variable.
HDDs are the amount by which the current temperature undershoots the
comfortable room temperature level (set to 18�C for the US). CDDs are
the amount by which it overshoots this level. Minimum and maximum
daily temperatures instead of averages are used for the US to account for
the fact that both heating and cooling activity can occur at the same day
at di¤erent times or in di¤erent regions

HDD = max f18�C �min. daily temperature; 0g
CDD = max fmax. daily temperature� 18�C; 0g :

We keep denoting the sum of these two variables as the "temperature"
variable in the following. It is immediately clear that the expected sign of
the associated regression coe¢ cient is positive, since higher "temperature"
value in this case signi�es higher demand.

The major problem is the geographical extension of the market. While
the central England temperature is a viable proxy for the whole UK, the
US hosts a variety of climes. Since the temperature variable is a demand
proxy, the HDDs and CDDs of the entire US are approximated by a
population-weighted average of the maximum and minimum daily tem-
perature measured in the 15 most populated metropolitan areas of the
US which account for one third of the total population. The weights to
compute national HDDs and CDDs are also used by the National Climatic
Data Center (NCDC). However, data from this source is available only on
a monthly basis and until 1992. The population data is based on the year
2000 US census and is obtained from the National Bureau of Census. The
daily maximum and minimum air temperature series are extracted from
the MIDAS GL (Global Weather Observations) database of the BADC.
The weather stations closest to the center of each metropolitan area are
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selected. In the rare case in which no observation at all was recorded for
a particular day, a linear interpolation between the neighboring daily ob-
servations is used.

In the process of deseasonalization we follow the steps outlined in the
list above. Between 12 and 21 (out of 513) observations per series are iden-
ti�ed as outliers and replaced by a linear interpolation between neighboring
observation dates. Summary statistics for the levels of the deseasonalized
convenience yields (net of outliers) in comparison to the UK statistics are
given in Table 6.2. To investigate whether the convenience yield model
holds also in the US, we look at the whole term structure of convenience
yields for months 1 to 18. Regarding the US data on a stand-alone ba-
sis, the table shows that with respect to the normality assumption made
for the estimator �̂, the main concern is the excess kurtosis, which is 7.25
in the nearest-to-maturity convenience yield. It diminishes gradually with
rising maturity until it drops to an acceptable value of less than 1 for the
ten-month yield. We therefore check for a distorting e¤ect on the model
performance before estimating the reduced-form model. Besides this phe-
nomenon, the distributional assumptions are ful�lled to an acceptable ex-
tent. Particularly, the median does not lie far apart from the mean (of
zero) and the e¤ect of skewness and remaining outliers in levels (rather
than in �rst di¤erences) seems rather mild. We stress again that the ex-
treme observations in levels are not spikes, but they mostly evolve over a
number of periods. The observed pattern might be rather interpreted as a
combination of temporarily slow mean-reversion and strong heteroscedas-
ticity of the increments. Looking at the UK statistics (including now the
update until 04/09) we see that the excess kurtosis is slightly smaller,
but the standard deviation is higher which produces the absolutely higher
minimum and maximum values. Apart from this, there is no remarkable
di¤erence in the distributional properties.

Table 6.3 shows the �nal regression results of the �rst-di¤erence speci-



Basis Med Stdev Skew Kurt Max Min

US data

M1-D1 .0692 1.77 -1.75 10.25 5.54 -9.79
M2-D1 .0078 .77 -1.59 8.29 2.15 -4.06
M3-D1 .0237 .57 -1.07 7.03 2.17 -2.79
M4-D1 -.0070 .49 -.04 7.36 2.42 -2.02
M5-D1 .0064 .41 .04 6.37 1.92 -1.58
M6-D1 .0116 .36 -.04 5.22 1.53 -1.23
M7-D1 .0138 .32 .00 4.79 1.30 -1.09
M8-D1 .0125 .30 -.13 4.46 1.15 -1.02
M9-D1 .0044 .28 -.13 4.21 1.07 -.98
M10-D1 .0027 .26 -.11 3.98 1.01 -.92
M11-D1 .0054 .24 -.10 3.85 .93 -.84
M12-D1 .0045 .23 -.09 3.69 .86 -.76
M13-D1 .0103 .22 -.08 3.80 .83 -.72
M14-D1 .0132 .21 -.06 4.02 .84 -.69
M15-D1 .0071 .20 .00 4.19 .83 -.67
M16-D1 .0068 .20 .02 3.98 .76 -.63
M17-D1 .0087 .19 -.05 3.77 .70 -.59
M18-D1 .0125 .18 -.08 3.56 .66 -.55

UK data

M1-OCM .0589 2.66 -1.01 8.37 12.50 -14.46
M2-OCM .0381 1.57 -.63 6.45 7.50 -7.06
M3-OCM .0572 1.08 -.55 5.59 4.89 -4.71
M4-OCM .0124 .79 -.45 5.40 3.59 -3.52
M5-OCM .0550 .67 .01 5.95 2.90 -2.80
M6-OCM -.0003 .55 -.02 5.31 2.64 -2.46

Table 6.2: Summary statistics for annual deseasonalized spot convenience
yields.
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�cation (5.15b) for the US dataset (for the UK results see Table 5.9). The
regression results are overall consistent with those for the UK. Since the
convenience yield had to be slightly trend-corrected (stationarized) this
time, we report �y, its median before deseasonalization, instead of b̂1 as an
indicator for the average convenience yield. The temperature variable is
strongly signi�cant for all maturities. Mean-reversion speeds again tend
to decrease with maturity, meaning that autocorrelation is strongest in
long-term contracts. Here, the reversion speed computed with (6.23) lies
between 26.8 for the shortest and 4.4 for the longest maturity. The rea-
son for this phenomenon is that long-term contracts react less strongly to
any temporary shocks in supply, demand or operations. A slight di¤erence
to the UK data exists regarding the importance of the storage variable.
In the US market its signi�cance is less pronounced than in the UK. One
possible explanation is that supply is much more diversi�ed and, therefore,
potentially less volatile in the US.6 In turn, the irrelevance of the squared
storage term in this model speci�cation is found in both datasets. Nev-
ertheless, no misspeci�cation is apparent from the results so we can use
the fundamental component projected by the regression to compute the
synthetic futures prices as described above. This is the topic of the next
subsection.

6.2.2 Synthetic futures prices

In the following we describe the construction of the synthetic futures prices,
the input for estimating the reduced-form model parameters afterwards.
Let ~F et;T be the empirical counterpart of ~Ft;T ; and ��

e the estimator for ��,

6The UK�s supply primarily comes from the North Sea whereas the major US supply
regions currently are at the Gulf coast, Western Canada, Permian (Northern Texas),
San Juan (New Mexico) and the Rocky Mountains to name only a few.
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then following (6.26b) we have

~F et;T = F st;T + ŷ
s
t

1� e���e(T�t)
��e

8T 2 [t; Tmax]:

Variable ŷst denotes the estimate for the instantaneous fundamental conve-
nience yield component. To estimate the deseasonalized observed futures
prices F st;T ;we use the interpolated futures prices from above, take logs and
temporarily remove the time trend of each price series by linear regression.
The seasonality function (5.13) is then estimated for the futures price se-
ries. We verify the signi�cance of the seasonal parameters by looking at
the con�dence intervals and the functions��t to the price series. Doing so
unveils a di¤erence between futures prices in the UK and the US, i.e. US
prices show a less pronounced seasonality. Figure 6.3 shows the di¤erence
of seasonal in�uence for the futures contracts M1, M3 and M6 in both
markets.

It is visible that the �t of the (smooth) seasonality function in the
left charts is poorer. That is, a greater part of the dynamics of futures
cannot be explained by pure seasonality. We test whether the in�uence
of increased short-term power generation in the summer supports a half-
yearly seasonal function, but the �t in this case even deteriorates. From
an econometric perspective though, it does not matter whether or not we
identify a pronounced seasonality as long as the netted time series are free
of the deterministic e¤ect.

To prove the validity of the approximate normality assumption for the
futures price increments, we look at the histograms of the original (F ) and
the synthetic ( ~F ) futures price changes displayed in Figure 6.4.

It can be seen that the log-futures price changes are almost normally
distributed and, hence, also symmetric. Therefore, the synthetic prices do
not violate the model assumptions. In addition, the normal distribution
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Figure 6.3: Comparison of seasonal �tting for US and UK futures.
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of these increments is a prerequisite for the following reduced-form model
estimation procedure. We describe the setup and the procedure in the fol-
lowing two subsections and test the reliability of the procedure thereafter.
This is necessary to assure that estimates are not strongly in�uenced by
a wrong statistical setup or numerical inaccuracies. Then, we continue by
analyzing the empirical results.

6.2.3 State-space model

The empirical counterpart of the reduced-form model (6.26c) is a state-
space model whose parameters can be estimated with the (discrete-time)
Kalman �lter as proposed in Schwartz (1997). We now shortly present the
general idea of the Kalman �lter before we elaborate on the main problems
when estimating the state space model.

The Kalman �lter is a recursive algorithm to estimate a vector of latent
state variables of a time-series model. It iterates forward through the series.
At each time step (i.e. observation date) it �rst corrects projections of the
state variables ("measurement update") made at the last step before it
generates new projections for the next step ("time update"). The correction
uses information from the observable (or measurement) variables which are
linked to the state variables by the measurement equation of the model.
The general form of this equation (Harvey (1989), ch. 3) is

yt = Zt�t + dt + �t; (6.27)

in which yt is an N �n vector of observations and �t is an m� 1 vector of
state variables at time t: N corresponds to the length of the time series and
n to the number of observable variables. In our case, the latter corresponds
to the number of futures contracts used. The number of state variablesm is
2, the synthetic spot price and the preference component of the convenience
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yield. It is important that the observables are linearly dependent on the
state variables. This can be seen by the a¢ ne relationship created with
design matrix Zt and constant vector dt. Finally, �t is a serially uncorrelated
disturbance array with mean zero and covariance matrix Ht. In the SCY
model Zt = Z, dt = d and Ht = H, i.e. the elements of the measurement
equation are time-invariant. In addition, H is diagonal.

The prediction uses a transition equation which creates a one-step fore-
cast of the state variables conditional on their corrected values from the
current time step. The transition equation of a state space model in general
form is

�t = Tt�t�1 + ct +Rt�t: (6.28)

The variable Tt is an m �m time-dependent transition matrix which
creates a linear relationship between the values of the state variables in
successive periods, ct is a constant and Rt is an m� g matrix linking the
disturbance vector �t to the state variables. Just as �t, �t has mean zero
and its elements are possibly correlated in the cross section (covariance
matrix Qt), but uncorrelated serially. In our case the transition system
is time-independent, i.e. Tt = T , ct = c, Rt = R and Qt = Q. We net
the prices from the seasonal component before estimating the remaining
parameters. This limits the number of parameters to be estimated with the
rather involved Kalman �lter algorithm. For this reason, we can generally
adhere to the state space form of the standard SCY model. The following
equations show the state space form used in Schwartz (1997) adapted to
the notation of our extended model



130 CHAPTER 6. APPLICATION TO PRICING

Measurement equation system

yi;t = lnFt;Ti for i = 1; :::; n and t = 1; :::; N

Zi =
�
1 �1�e��(Ti�t)

�

�
for i = 1; :::; n

�t =

�
Xt
~�t

�
; Xt = ln ~St

di = A(Ti � t) for i = 1; :::; n

Transition equation system (�rst order approximation)7

T =

�
1 �4t
0 1� �4t

�
c =

�
(�� 1

2�
2
1)4t

��4t

�
R =

�
1 0

0 1

�
Q =

�
�214t ��1�24t

��1�24t �224t

�
:

The optimal parameter estimates are found by repeatedly running the
Kalman �lter over all observation dates N of the time series of futures
contracts. At each run, a likelihood value is calculated. It is maximized
by changing the parameter values by a superordinate optimization routine
(maximum likelihood estimation). The parameter set of this state space
formulation is 
 = fr; �; �; �; �; �; �1; �2; �g with � as the vector of stan-
dard deviations of measurement noise . The model as such is overde�ned

7To set up the state space form, note that the SDE for the synthetic spot price under the
empirical measure solves to dX = (�� 1

2
�21 � ~�)dt+ �1dW1 with X = lnS:
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since r and � are linearly interdependent. To solve this problem, Schwartz
(1997) sets parameter r to the average of the 3-month T-bill rate observed
during the estimation period. Here, � is replaced by r+�S and r�� is then
replaced by trend variable v�. The new parameter set contains one para-
meter less: ~
 = f�; �S ; �~�; �; �1; �2; v�; �g and the preference component
~� now reverts to zero as in (4.9b). The optimization applies the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm, a quasi-Newtonian routine
which is frequently used for large-scale optimization problems.8 The most
delicate issue in estimating the model, however, is the choice of the precise
Kalman �lter routine. For this reason, the following subsection is dedicated
to this problem.

6.2.4 Kalman �lter algorithms

An important prerequisite of the standard Kalman �lter algorithm is that
the transition equation is stationary. This is not the case whenever matrix
T has unit roots as is the case for the SCY model. A unit root induces
a stochastic trend in one or more state variables. This leads to problems
in the speci�cation of the initial conditions for the covariance matrix of
prediction errors. Generally speaking, this covariance matrix, labelled P ,
measures by how much, on average, the generated predictions deviate from
the measurement. It is estimated in parallel with the state variables and its
entries converge during the iteration over time steps. Its starting values are
given by the unconditional variances and covariances of the involved state
variables. However, for non-stationary variables the unconditional variance
is in�nite which applies, in our case, to the (log-)spot price.

8The applied Matlab routine is "csminwel" written by Christopher Sims. In several trial
procedures it has proven to be most robust against cli¤s in the likelihood function.
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There are two solutions to this problem. A pragmatic solution given
by Harvey (1989) is to initialize the prediction error covariance matrix, as
a block diagonal matrix in which the non-stationary variables take large
variances in the order of 107 and zero covariance with the stationary vari-
ables. This solution has several drawbacks. One general problem for any
size of the system is that the covariance matrix can lose positive de�-
niteness during the Kalman �lter iterations such that the optimization
breaks down. This problem is due to numerical inaccuracies caused by
computer round-o¤ and occurred regularly when the models for this study
were tested. So-called square-root Kalman �lters can be applied to circum-
vent this problem. They ensure positive de�niteness of P throughout the
iterations and diminish the rounding errors. The disadvantages of these
methods are higher implementation e¤orts and time-consuming additional
computation steps in the �lter (most importantly matrix orthogonaliza-
tions). Most recommended regarding this trade-o¤ is, for the majority of
applications, the Bierman-Thornton UD Filtering.9

Another solution is to use one of the algorithms developed by De Jong
(1991), Koopman (1997) and Koopman and Durbin (2003) for a truly
di¤use initialization of P . In this case, severe rounding errors during the
initial �ltering steps can be avoided and P will most likely remain positive
de�nite and converge as desired. The algorithms switch from an initial
di¤use mode into a non-di¤use mode after a certain number of steps. This
study uses the latter alternative, concretely the Koopman and Durbin
(2003) algorithm, since it is computationally more e¢ cient and directly
addresses the cause of �lter instability.

The computational steps are derived from the system of equations given
by 6.27 and 6.28. The one-step forecasts are also called prior or a priori
values whereas the corrected values are called posterior or a posteriori

9Cf. e.g. Grewal and Andrews (2001).
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values. Details about the general setup of the �ltering steps can be found
in Harvey (1989), ch. 3.2.1 and the applied �lter is described by Koopman
and Durbin (2003).

6.2.5 Simulations

We previously stated that one important model requirement is robustness
of the parameter values over time. However, robustness is not uniquely
determined by the analytical model, but also by the estimation procedure.
As the Kalman �lter has high implementation requirements and the maxi-
mum likelihood principle necessitates a large sample size to yield unbiased
estimates, we test the model in a simulation exercise with time series of 500
observations using a reasonable parameter con�guration10 and futures ma-
turities matching those available in our gas market dataset. We benchmark
our algorithm against an identical model implementation in Dynare, a pre-
processor and a set of Matlab routines to solve Dynamic Stochastic General
Equilibrium models (DSGEs). Dynare has the appealing advantage that it
is able to compute quasi-analytic derivatives of the model equations with
a set of �rst and second order Taylor approximations. Yet, maximum like-
lihood optimization in Dynare frequently terminates at points where the
negative of the Hessian (the information matrix ) is not positive de�nite.
This means that even though the point estimates might be very close to the
true optimal values, no reliable standard errors of the parameter estimates
are obtained. We use this model as a benchmark in the simulation exercise.
The simulation procedure is repeated 250 times and the mean and stan-
dard deviation of the resulting parameter estimates from each estimation
run are computed. They are shown in Table 6.4.

10The parameter values are those estimated in Gibson and Schwartz (1990) for their oil
futures data set.
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Numerical derivatives Analytical derivatives

actual mean rel. std. mean rel. std.
value est. dev. dev. est. dev. dev.

� 16.00 14.84 -7.2% 2.89 17.76 11.0% 5.20
�S .15 .16 4.7% .12 .85 465.8% 2.25
�� -1.80 -1.71 5.1% .96 -1.87 -3.8% 3.76
� .32 .08 -76.5% 2.30 .29 -6.8% 1.43
�1 .35 .38 8.8% .02 .82 133.5% 1.01
�2 1.12 .92 -17.7% .69 1.07 -4.9% 1.00
v� -.19 -.20 -4.9% .06 -.16 15.6% .17

�1 .020 .024 18.5% 1.9e-3 .020 0.0% 1.0e-3
�2 .025 .027 7.7% 1.4e-3 .025 0.0% .9e-3
�3 .030 .030 -1.7% 1.2e-3 .030 0.0% 1.1e-3
�4 .030 .030 -1.7% 1.1e-3 .030 0.0% 1.2e-3
�5 .030 .029 -1.9% 1.2e-3 .030 0.0% 1.1e-3

Table 6.4: Simulation results of the estimation routine for the reduced-form
model.

The second and third column of each result block show the deviation
of the mean point estimate relative to the actual parameter value and
the standard deviation of the point estimate over all estimation runs, re-
spectively. It is visible that both routines have identi�cation problems with
di¤erent parameters. Similar to the estimates obtained by Schwartz (1997)
and Schwartz and Smith (2000), the risk-premia for the spot price and the
convenience yield are estimated with considerable uncertainty when our
own routine (numerical derivatives) is used. However, both estimates have
a negligible mean bias. In turn, the coe¢ cient of correlation � is strongly



6.2. EMPIRICAL ESTIMATION 135

biased and has the highest standard deviation relative to its absolute value.
However, overall accuracy of this routine seems to be much higher than
that of the Dynare routine. Not only are the relative deviations smaller
in sum, but also the standard deviations, except for the coe¢ cient of cor-
relation of the structural shocks. Compared to another simulation study
for two-factor reduced-form models of interest rates by Bolder (2001), our
estimation seems to have roughly the same level of accuracy. Hence, de-
spite the bias visible from the table, it still seems reasonable to use this
estimation routine in the following.

6.2.6 Reduced-form model estimation and results

The presentation and analysis of the estimation results for the two markets
is done sequentially, i.e. we �rst show the in-sample and out-of-sample es-
timation results of both the standard and the extended model for the UK
market, before we proceed to the analysis for the US market. The UK
dataset is divided into an estimation and a forecast period as described in
subsection 6.2.1. Given that for the US the time series is shorter, but a
larger number of futures maturities is available, we use a di¤erent (quasi-
)out-of-sample test in this case. That is, we use only a subset of the futures
contracts to estimate the model and �lter the state variables. The remain-
ing contracts are then measured against the maturity-matching output
prices of the estimated model. For this application, a (static) one-period
convenience yield forecast is su¢ cient. Thereafter, we will test for parame-
ter stability with the US dataset by changing the futures contracts used
for estimation.

The parameter values generated by the Kalman �lter routine for the
original sample (until 12/07) are shown in Table 6.5. We realize that the
risk premia are again estimated with high standard errors. A negative pre-
mium for convenience yield risk means that it pays for the futures investor
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Extended model Standard model

point est. std. err. point est. std. err.

� 2.3070 (.289) 2.3279 (.297)
�S -.3532 (.628) -.7949 (.505)
�� -.7228 (1.817) -2.3919 (1.759)
v� .8868 (.806) 1.2618 (.736)
� .9004 (.016) .8306 (.025)
�1 1.0855 (.048) .8511 (.042)
�2 3.2461 (.266) 3.0926 (.259)
�1 .1016 (.003) .1444 (.005)
�2 .0137 (.002) .0075 (.002)
�3 .0480 (.001) .0594 (.002)
�4 .0145 (.001) .0125 (.001)
�5 .0937 (.003) .1100 (.003)
�6 .1700 (.005) .1980 (.006)

logL 4282.7 3989.4

Table 6.5: Estimation results of the SCY-model for the UK using the
Kalman �lter.

to bear this risk because @F@� is negative. In turn, the spot price premium in
both models is negative. The latter result is inconsistent with theory. Yet,
in both model versions, the true parameter is not signi�cantly di¤erent
from zero on a 95% con�dence level. A third parameter is estimated with
considerable noise, as was the case in the simulation exercise. This time, it
is the risk-neutral spot price trend. The estimate in the extended model is
closer to our expectation. Since v� is the di¤erence of the riskless interest
rate r and the mean convenience yield �, we can calculate the implied em-
pirical mean convenience yield as � = r� v�. Assuming a mean short rate
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of roughly 5%11 gives � � �:84 and �1:21 in the extended and standard
model, respectively. Both values are close to the estimate of b̂1for the short
convenience yield (-1.03, cf. Table 5.9).

The parameters � and � have very low standard errors, but their val-
ues deviate rather strongly from our expectation. As mentioned in section
5.6, the annualized mean-reversion coe¢ cient calculated from the conve-
nience yield regression is 27.3. The expectation for � was roughly 20%,
given by the residuals from the seemingly unrelated regression model ap-
plied in Gibson and Schwartz (1990) (eqs. 10 and 11). As one can see, the
estimate for � is now much lower, 2.3, and the one for � much higher, .83
to .90. Interestingly, the same pronounced deviation occurs by comparing
the estimates for � and � in Gibson and Schwartz (1990) to those from
the Kalman �lter in Schwartz (1997), both generated from the same oil
price dataset with an overlapping time window and the same frequency
of observations. While the estimate for the mean-reversion speed is 16.1
in the former paper, the highest outcome in Schwartz (1997) is 1.9. The
latter value is close to our results. The same holds for � which is found
to be .32 in the former and at least .77 in the latter paper. While a pro-
nounced deviation of � does not come at a surprise given our simulation
results above, the deviation of � cannot be explained only by numerical
problems.

The standard deviation of the spot price shock �1 is very close to our a
priori estimates of 1.11 and .90 for the extended and the standard model,
respectively. �2, in turn, is much lower than expected. This is natural due to
its immediate relationship to � which also turned out lower than expected.
Figure 6.5 shows an exemplary plot of the �ltered spot price against the
realized day-ahead price and the �ltered values of the convenience yield
against their a posteriori values. The values are taken from the standard

11The mean one-month GBP LIBOR during the period is 5.24%.
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model. As can be seen, the �ltered spot price matches the day-ahead price
acceptably although the latter price was not contained in the calibration
set. In addition, the (one-period) convenience yield projections match the
posterior values quite accurately. As could already be inferred from the
estimate for �, convenience yield moves quite closely together with the
spot price. Figure 6.6 shows the �t of model futures prices to the synthetic
futures. All of the prices appear to be closely matched while the best match
is realized for the middle maturities.

The overall impression of the standard deviations of measurement er-
rors is that the in-sample noise is slightly lower in the extended model.
This is con�rmed by looking at our goodness-of-�t evaluation. As shown
in Table 6.6, we use the mean error (ME) the mean absolute error (MAE)
and the root mean squared error (RMSE) to compare the two models.
The ME shows the potential bias in the futures price estimates whereas
the other two quantities show the variation contained in the forecast er-
ror. These measures are computed for the in-sample (one-period) forecast
and an out-of-sample one-period and �ve-period forecast, respectively. The
latter two projections use the given parameter estimates to �t the second
period of the time series from 01/08 to 04/09 (339 additional observations).
An measure of the in-sample �t is also provided by the log-likelihood value
at the optimum in Table 6.5. Since the reduced-form model itself is iden-
tical for both estimations and the same number of observations is used, a
direct comparison of the likelihood densities is possible.

Regarding the in-sample �t, we can see that there is no di¤erence in the
mean errors. However, taking into account the measures of variation we see
that the extended model has a slight advantage over the standard model
overall. It is less important if we move on to the one-period forecast. The
likely reason for this is that the Kalman �lter has two degrees of freedom at
every observation date to �t the state variables to the one-period forecast.
Therefore, the one-period forecast does not deteriorate as long as market
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Figure 6.5: Filtered versus actual/measured values of state variables in UK
(here: extended model).
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Figure 6.6: Filtered versus actual values of futures (obs. variables) in UK
(here: extended model).
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Extended model Standard model

ME MAE RMSE ME MAE RMSE

In-sample

M1 -0.0016 0.0914 0.1193 -0.0029 0.1194 0.1519
M2 -0.0008 0.0382 0.0529 -0.0013 0.0264 0.0404
M3 0.0021 0.0476 0.0634 0.0019 0.0503 0.0682
M4 -0.0016 0.0283 0.0415 -0.0019 0.0233 0.0368
M5 -0.0048 0.0764 0.1019 -0.0051 0.0872 0.1164
M6 0.0101 0.1335 0.1697 0.0096 0.1560 0.1960

OCM -0.0619 0.1946 0.2827 -0.0638 0.2810 0.3874

Out-of-sample (1-period ahead)

M1 -0.0141 0.0659 0.0812 -0.0157 0.0699 0.0865
M2 -0.0014 0.0238 0.0346 -0.0021 0.0242 0.0349
M3 0.0007 0.0332 0.0413 0.0003 0.0333 0.0414
M4 -0.0028 0.0223 0.0297 -0.0032 0.0217 0.0294
M5 -0.0176 0.0500 0.0631 -0.0182 0.0506 0.0637
M6 -0.0404 0.0866 0.1113 -0.0412 0.0884 0.1132

OCM -0.0355 0.1383 0.1715 -0.0377 0.1430 0.1773

Out-of-sample (5-periods ahead)

M1 0.0837 0.4137 0.4774 0.1243 0.4294 0.4950
M2 -0.0237 0.3053 0.3520 -0.0481 0.3278 0.3737
M3 -0.0475 0.2740 0.3087 -0.0746 0.2890 0.3242
M4 -0.0729 0.2352 0.2779 -0.1030 0.2427 0.2925
M5 -0.1072 0.2028 0.2745 -0.1407 0.2066 0.2944
M6 -0.1492 0.1853 0.2759 -0.1871 0.1966 0.3040

OCM -0.1013 0.2064 0.2791 -0.1352 0.2130 0.3010

Table 6.6: Goodness-of-�t statistics for the UK market.
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volatility remains the same and the parameters are stable over time. One
can notice that the mean bias in the second set slightly increases for the
M1 and M6 contract, otherwise the performance of both models remains
acceptable.

The di¤erence between the two speci�cations becomes most important
in the �ve-period forecast. Quite obviously, the forecast deteriorates since
the state variables are �t to the one-period forecast, and projections by
four additional periods increase the forecast error quite signi�cantly. Yet,
the projections of the extended model are, on average, 32% closer to the
true value than those of the standard model. The situation is similar for
the measures of variation. Finally, we look at the �t to the true spot price,
which was not included in the dataset for estimation. All statistics here
seem to speak in favor of the extended model. Interestingly, the measures of
variation are markedly smaller than for the benchmark, particularly in the
in-sample comparison. In the forecast period, the lower mean bias becomes
the more favorable statistic instead. In any case, the table documents that,
regarding the UK market, the extended model yields more accurate point
estimates both in-sample and out-of-the sample.

The estimation results for the US market are shown in Table 6.7. This
time � is estimated remarkably lower than for the UK. It can be assumed
that the change in the frequency of observations (daily versus weekly)
is responsible for this e¤ect. That is, autocorrelation in the convenience
yield increases with a lower frequency of observations since the innova-
tions occurring between two observation dates even out. In addition, �
is pronouncedly smaller in the extended model, which goes along with a
lower value of �2. A possible explanation is that a greater part of the con-
venience yield variation can be explained through past observations and,
hence, supports the hypothesis that some noise in the process could be
removed up-front by the fundamental model�s projections. Decomposing
v� as above yields again a negative mean convenience yield �. Yet, it is
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Extended model Standard model

point std. point std.
est. err. est. err.

� .7100 (.007) 1.3709 (.004)
�S .0115 (.003) -.0591 (.034)
�� -.2124 (.008) -.3612 (.023)
v� .2420 (.006) .3067 (.010)
� .9492 (.008) .9498 (.007)
�1 .5508 (.018) .5447 (.012)
�2 .3266 (.014) .6598 (.017)
�1 (M1) .0536 (.002) .0791 (.003)
�2 (M3) .0193 (.002) .0265 (.003)
�3 (M6) .0262 (.001) .0499 (.002)
�4 (M10) .0267 (.001) .0408 (.002)
�5 (M14) .0215 (.001) .0312 (.002)
�6 (M18) .0326 (.002) .0408 (.002)

logL 5612.7 4643.6

Table 6.7: Estimation results of the SCY-model for the US using the
Kalman �lter.

larger (i.e. closer to zero) than in the UK market. The premium for con-
venience yield risk is again negative and, hence, consistent with theory. It
is also lower in absolute terms than in the UK market. This makes sense
because we have learned from the descriptive statistics in Table 6.2 that
convenience yield variability is lower in the US so investors should require
a smaller risk premium than UK investors.

The lower variability is also re�ected in a slightly lower estimate of �2,
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although it is still roughly 90% and 80% of the corresponding values for
UK, respectively, which seems slightly disproportionate. Again, the change
in the observation interval could be the reason for this. The risk premium
for the spot price is now slightly positive in the extended model and, in
turn, slightly negative in the standard model. However, the latter value is
not signi�cantly di¤erent from zero on a 95% con�dence level such that the
former estimate is more reliable. � and �1; respectively, are very similar in
both extended and standard model, and the fact that � again turns out
much higher than the initial guess does not come at a surprise. Finally, the
lower standard errors of the measurement innovations as well as the higher
function value of the log-likelihood suggest that the in-sample �t again
favors the extended model. We will investigate this further by discussing
the following goodness-of-�t measures displayed in Table 6.8.

Looking at the in-sample statistics, it appears that the mean error is,
on average, slightly larger in the extended version. In turn, we can observe
a marginal advantage in the measures of variation. This is somewhat sur-
prising given the clearly smaller measurement and state noise variation.
The matching accuracy with respect to the spot price (proxied by the day-
ahead price) shows a similar pattern. That is, the mean error is larger, but
both MAE and RMSE are smaller in the extended model.

In the (quasi-)out-of-sample test, parameters and state variables from
the estimation are used to generate model prices for the remaining ma-
turities of futures and to record the corresponding prediction errors. This
time, there is barely any di¤erence in the out-of-sample performance of the
two models. Since the futures prices are correlated along the term struc-
ture, it is not surprising that the results do not deviate materially from the
in-sample results. All in all, we can constitute that the fundamental con-
venience yield projections seem to permit for a mentionable improvement
when the prices of the estimation set of contracts are forecasted. In turn,
no improvement occurs when we price the cross-section, i.e. when the goal
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is to infer the entire term structure of futures prices from a small set of
contracts.

Having compared the two model versions, what general conclusions can
we draw from the empirical analysis so far? First of all, the (net) mean
convenience yield is dominated by the enormous physical cost of storage
in the gas market, since it is negative in all cases. Therefore, it is likely
that convenience yield variation is in�uenced by price variations in the
market for short-term storage (for which data is not publicly available so
far). Besides this, assuming that the above estimates are close to the true
values, autocorrelation in the preference component of the convenience
yield is extremely high in both markets. Day-on-day correlation in the UK
market is in the order of 99% and the weekly �gure for the US is roughly
98%. This would mean that speculation preferences change very slowly.
In addition, this calls the necessity of the second stochastic factor into
question. Yet, the reliability of the estimates is debatable given the strong
deviation from the �rst-guess values for � that have been mentioned above.

To further investigate this reliability we test the robustness of both
models to a change in the dataset of futures contracts used for the es-
timation. Since we need a certain number of contracts as a precondition
to obtain stable state variable estimates and parameters, we can only use
the US market dataset for this purpose. In a �rst estimation run we only
use contracts at the short end of available maturities (i.e. contracts M1
to M6) for calibration before, in a second run, we use only the long-dated
maturities.(M13 to M18). The results are shown in Table 6.9.

Naturally, the log-likelihood density at the optimum is higher for both
models when only the short or long maturities are used. The reason is that
neighboring maturities have a higher correlation and, hence, are easier to
�t jointly. Looking at the parameters, the �rst problem that we �nd is the
instability of mean-reversion speed � when altering the contracts for esti-



Extended model Standard model

ME MAE RMSE ME MAE RMSE
In-sample

M1 -.0205 .0680 .0911 -.0155 .0751 .1019
M3 .0017 .0553 .0720 .0012 .0534 .0693
M6 .0035 .0498 .0636 .0017 .0538 .0683
M10 -.0013 .0457 .0579 -.0011 .0466 .0589
M14 -.0078 .0391 .0502 -.0074 .0362 .0465
M18 .0061 .0384 .0505 .0025 .0414 .0547

Out-of-sample

D1 -.0430 .0747 .0993 -.0361 .0938 .1281

M2 -.0052 .0590 .0762 -.0037 .0580 .0758
M4 .0027 .0542 .0700 .0010 .0556 .0710
M5 .0033 .0529 .0680 .0013 .0572 .0723
M7 .0026 .0482 .0617 .0012 .0493 .0631
M8 .0014 .0474 .0609 .0005 .0460 .0603
M9 .0009 .0466 .0598 .0006 .0458 .0594
M11 -.0048 .0441 .0558 -.0042 .0469 .0583
M12 -.0073 .0412 .0519 -.0066 .0432 .0534
M13 -.0086 .0390 .0502 -.0080 .0376 .0477
M15 -.0055 .0398 .0514 -.0056 .0377 .0492
M16 -.0022 .0393 .0508 -.0032 .0397 .0512
M17 .0012 .0397 .0510 -.0010 .0409 .0522

Table 6.8: Goodness-of-�t statistics for the US market.
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mation. In the original speci�cation, � is highest in the long-end dataset
while it declines for the mixed set used above (spanning dataset) and, �-
nally, for the collection of short maturities. The �rst value is almost twice
as much as the last one. In the extended speci�cation, the order is reversed
with the additional problem that the parameter cannot be identi�ed when
only the short maturities are used for estimation. Regarding the empiri-
cal evidence from convenience yield regressions, we know that the latter
pattern, i.e. higher mean reversion with rising time to maturity, is not sup-
ported by the data. This can be a consequence of the a priori modi�cation
of the dataset with convenience yield projections. In any case though, it
seems that the stochastic process of the instantaneous convenience yield
cannot be reliably estimated from any of the sets of contracts.

Corresponding to the instability in � over datasets, we can also observe
severe changes in �2. The respective estimates in the extended model are
much lower than in the standard model. Yet, the estimates of �2 in the
standard model again vary strongly over datasets. More precisely, the span-
ning set yields an estimate of .66, whereas the short-term and long-term
set yield estimates of 1.63 and 1.92 respectively, i.e. between 2 and 3 times
as much. We point out that although the relative di¤erence between the
estimates for �2 in the extended model are slightly smaller, the general
problem is the same.

Unfortunately, these changes are not directly proportional to those in
�; in which case the situation would reduce to a single identi�cation prob-
lem. Reviewing the results from the simulation exercise, however, it is likely
that the variation with respect to �2 has also numerical reasons and does
not need to be due to a general misspeci�cation. In this case, an improved
version of the optimization and �ltering algorithm would eliminate the
instability. The risk premia are rather stable in the extended model (at
least in absolute terms), while they vary strongly in the standard model.
v� changes in both models, however the two signi�cant estimates in the
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extended model are nearly identical. They correspond to a mean conve-
nience yield of -.21 approximately (given the decomposition v� = r � �

from above and a mean short rate of 3% in the sample period). The stan-
dard model, in turn yields estimates between -.28 (spanning set) and -.73
(long-end set). The median value of the sample is -.35 for the short-end
convenience yield, and it decreases in absolute terms for longer maturities
(cf. Table 6.3).

Therefore, the estimates generated by the standard model are not con-
sistent. In turn, it is comprehensible that the extended model is not able to
identify the instantaneous convenience yield only from long-term contracts
and estimates in the short-end and the spanning dataset are closer to our
expectation. Notwithstanding, the empirical statistics hint at the problem
that a single (mean) convenience yield applying to all maturities of futures
contracts seems to be a problematic assumption. Further discussion on this
issue will follow below. Looking at the volatility of spot price innovations,
�1, both models produce di¤erent results for short and long maturities,
respectively. This e¤ect is somewhat smaller in the extended model where
they range between .36 and .55 compared to .54 and 1.36 in the standard
model. Yet, it is still not immediately clear why such a di¤erence in the
estimate for �1 occurs across datasets. The stability problem with respect
to the coe¢ cient of correlation � is obviously due to numerical problems as
shown by the simulation study. Thus, the di¤ering values of this parameter
across datasets are not surprising.

All in all, one can see that the choice of data used to estimate the model
has a crucial impact on the outcome. For this reason, it is always desirable
to use a dataset covering both ends of the term structure as long as market
liquidity in the contracts is su¢ cient. The proposed extension of the SCY
model with a fundamental convenience yield forecast is favored over the
benchmark. An advantage seems to materialize when forecasts of more
than one time period are made. A necessary condition is that forecasts
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of temperature and storage levels are su¢ ciently reliable for the forecast
horizon considered. However, the economic importance of this advantage
becomes rather small in light of the problems regarding parameter stability
discovered above.

Our strongest conceptual concern is the apparent instability in the
mean-reversion speed. A straightforward reason for this phenomenon would
be that a single convenience yield is an oversimpli�ed picture of reality.
Analogously to interest rates, convenience yields with di¤erent terms might
not be equal. This is supported by the regression results across convenience
yield maturities found in Tables 5.9 and 6.3, including the estimates for
the mean-reversion parameter. Another support for this conjecture comes
from an analysis of the measurement errors of the Kalman �lter. An ex-
emplary plot of these residuals is shown in Figure 6.7 using the standard
model applied to the US dataset as an example. It is apparent that the
errors for the longer term futures (M6 to M18) are not free of autocor-
relation. While it was postulated by Schwartz (1997) (p. 931) that "[...]
the serial correlation and cross correlation in the log prices is attributed
to the variation of the unobservable state variables", this does not seem to
work particularly well in reality. Again, a plausible reason for this would be
that mean reversion speeds (and thus autocorrelation) in the convenience
yield di¤er across maturities. In this spirit, it might be worthwhile to test
whether a deterministic function of the time to maturity could be imposed
on convenience yields, thereby allowing for a term structure with di¤erent
mean reversion speeds. This is an interesting research question emerging
from our analysis. Further insight into the main drivers of the (in)accuracy
of forecast could be obtained with a sensitivity analysis, which investigates
the impact of one parameter�s change on the goodness-of-�t. This would
also help prioritizing issues on the model design front.

In turn, some of the parameter variation across datasets is likely to have
a numerical origin. While many studies including Schwartz (1997) have not
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Figure 6.7: Measurement errors of the standard SCY model (US, spanning
dataset).



152 CHAPTER 6. APPLICATION TO PRICING

made explicit the unbiasedness of the applied optimization algorithm, we
have demonstrated in our simulation study that � is estimated with a se-
vere lack of precision. The accuracy of this estimate is not unimportant
though, since it transmits convenience yield shocks to the spot price. Given
that �ne-tuning the maximum likelihood routine can become complicated
and the overall improvement potential is uncertain, we try instead two
di¤erent approaches. One of them still relies on the Kalman �lter, but
takes explicit account of parameter uncertainty. That is, we change from a
frequentist to a Bayesian estimation. The other approach used is the "im-
plied method" proposed and applied in Cortazar and Schwartz (2003) and
Lucia and Schwartz (2002). It is designed much simpler than the Kalman
�lter routine, with the downside of not providing con�dence bounds for the
parameter estimates. Whether one of these methods can improve parame-
ter stability will be investigated in the following. The numerical results
will also serve as a cross check to validate or reject individual estimates
obtained with the ML-approach above.

6.2.7 Alternative estimation methods

In this subsection, we deepen the investigation of the robustness of the
extended model from a numerical point of view by exploring the perfor-
mance of alternative algorithms. First, we apply a Bayesian estimation
and, second, the "implied method". As stated above, one appealing ad-
vantage of bayesian estimation is that model parameters are assumed to
be uncertain. In other words, one explicitly takes account of model uncer-
tainty. Using such an estimation method could thus unveil an instability
of the parameter estimates found above. Another advantage is that non-
normal distributions of the parameters are allowed, which could help in-
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crease the robustness of the parameters�point estimates.12 The ultimate
goal of bayesian estimation is to �nd the joint distribution of the parame-
ters given the observed data, the posterior distribution, and its moments.
If we denote the true parameter vector and the random realization by 

and ! and the population and sample of the data by Y and y, respectively,
then this density function can be formally stated as f
jY (!jy). Following
from the application of Bayes�rule, the posterior density is computed as

f
jY (!jy) =
L(!; y)f
(!)

fY (y)
(6.29)

in which L(!; y) is a likelihood function of the parameters given the data
and f
(!) is the so-called prior distribution of the parameters that is
speci�ed by the statistician. fY (y) is the marginal (unconditional) density
of the data. Since fY (y) is independent of the parameters, c = fY (y)

�1

is a constant (called normalization constant) and does not in�uence the
density order, but only its level. For this reason, dropping c and taking logs
in the equation above shows that the log-posterior kernel (un-normalized
posterior density) is still proportional to the sum of the log-likelihood and
the log-prior density:

logK
jY (!jy) / logL(!; y) + log f
(!): (6.30)

The equation also shows that logK results from a combination of the pre-
determined parameter density given the data and the subjective prior.13

Usually, the prior densities are borrowed from well known analytical dis-
tributions whose basic properties match the expectation of the statistician

12Note that population parameters in the frequentist approach (ML) do not have a dis-
tribution. The standard errors computed only say how frequently the true parameter is
contained in a certain interval around the point estimate.

13With simple analytical examples, one can show, in fact, that this combination is convex
with weights depending on the particular distributions used.
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regarding the parameters. The sensible issue of bayesian estimation is that
the speci�cation of these prior distributions should not take into account
information from the current dataset. The idea is that rather expertise,
economic intuition and past experience should play a role. In addition, the
prior distribution should not dominate the posterior distribution as long
as the parameter value is not known for certain.

Finding the normalized posterior distribution starts by �nding the dis-
tribution of logK. This is often not possible analytically. Since the dis-
tribution of the likelihood in our case depends on the Kalman �lter out-
comes in a complicated way, no analytical distribution of the likelihood
and, hence, of the posterior kernel is available. In this situation, one has
to revert to simulations of the latter one. The Metropolis-Hastings algo-
rithm is an e¢ cient and widely used sampling method for this purpose,
which is implemented in Dynare. The outcomes are the single parame-
ters�conditional distributions.14 The algorithm reverts to the central limit
theorem and assumes that the conditional distribution of the parameters
is asymptotically normal near the posterior mode. It uses an elaborated
acceptance rule to generate a sequence of random sample values, which
constitute a Markov chain, from a proposal distribution . For a su¢ ciently
large number of draws, the density of these realizations converges to the
continuous posterior distribution of the parameters. The technical details
of the implemented algorithm (here: Random Walk Metropolis-Hastings)
are found in Gri¤oli (2009).

To �nd the mode of the posterior kernel, the starting point of the
sampling algorithm, the density is maximized, which is essentially the same
as maximizing the likelihood, but with some positive weight imposed on

14They completely characterize, according to the Cli¤ord-Hammersley-Theorem, the joint
posterior distribution (cf. Johannes and Polson (2003), p. 12¤.).
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the a priori distribution.15 We specify an inverse gamma prior distribution
for all parameters which are not allowed to become negative (i.e. �; �1; �2
and �1 to �6), a normal prior for �S ,�� and v

� and a uniform prior for �.
In the following, two Markov chains of 20,000 draws each are generated,
of which the second 10,000 are kept. The resulting posterior distributions
are shown in Figure 6.8 and 6.9 (black lines), together with the speci�ed
prior distributions (grey lines) and the estimated posterior mode (dashed
horizontal line).

It can be seen that the posterior densities of the �rst four parameters,
i.e. �; �S ; �� and v�, are symmetric and not dominated by their respective
prior. In addition, the mode computed by maximization of the posterior
kernel approximately coincides with the mode of the sampled distribution.
However, the plot for � shows that the identi�cation problem discovered in
the simulation exercise with the ML-approach reappears in the simulated
distribution. In fact, the posterior density extends over the whole range
of possible values from -1 to 1. This con�rms that the estimate for � will
always be very sensitive to noise in the data or to slight biases in the
other parameter�s estimates. It also shows how misleading the standard
error estimates from the information matrix can be when the Hessian is
computed in a very small region around the mode. The empirical con�dence
interval can be much larger than indicated by a single estimation run. In
turn, the sampled distribution for �1 shows another problem: since the
mode estimate exactly coincides with the hump of the prior distribution
and the simulated mode, it is very likely that the prior has dominated the
estimation. In addition, a second hump exists near the previously found
point estimate of .55 and it cannot be told from the plot whether the
density of the likelihood kernel alone would have been higher at this point
than at the estimated mode. The posterior for �2 lies far apart from the

15Recall that by the asymptotic normality assumption the "posterior density" of the ML-
estimator is symmetric, i.e. mode and mean coincide.
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Figure 6.8: Prior and posterior distribution of parameters with US data
(spanning data, part 1).
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Figure 6.9: Prior and posterior distribution of parameters with US data
(spanning data, part 2).

expected range, but does not appear to be biased by the prior. Brie�y, the
diagnostic checks show that except for �1 none of the parameter estimates
seems to be biased by our priors.

Table 6.10 provides information on the prior speci�cation and the cor-
responding posterior estimates. The displayed log-likelihood values corre-
spond to the density at the posterior mode and the modi�ed harmonic
mean estimator respectively. The prior mean corresponds to the point es-
timate obtained with the ML estimation. The prior standard deviation was
chosen with respect to the variation of the estimates across datasets (com-
paring Tables 6.7 and 6.9). An exception is �; for which only the bounds
of the uniform distribution (-1 and 1) were �xed. The posterior mean is
computed from the sampled densities and is displayed together with the
95% con�dence interval. Comparing posterior modes and means shows only
marginal di¤erences due to the symmetry of most of the distributions and
to the fact that the analytic mode was calculated with su¢ cient precision.
Yet, the comparison with the ML results (or the prior means) requires some
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prior post. mode posterior mean prior prior
mean (std. error) (conf. interval) distr. std. dev.

� .71 .6548 (.036) .6399 (.592, .697) invg 5.00
�S .01 -.2934 (.159) -.2949 (-.545, -.048) norm 2.50
�� -.21 -1.0604 (2.502) -1.0728 (-1.371, -.809) norm 2.50
v� .24 .4350 (.140) .4583 (.184, .676) norm 2.50
� .00 .3688 (7.442) .2626 (-.318, .998) unif .58
�1 .55 .2692 (.108) .3243 (.219, .537) invg 1.25
�2 .33 1.2506 (.049) 1.2350 (1.169, 1.300) invg 2.50

�1 .05 .0483 (.002) .0485 (.045, .051) invg .10
�2 .02 .0199 (.002) .0203 (.018, .023) invg .10
�3 .03 .0254 (.001) .0256 (.024, .027) invg .10
�4 .03 .0273 (.001) .0275 (.026, .029) invg .10
�5 .02 .0192 (.001) .0194 (.017, .022) invg .10
�6 .03 .0318 (.002) .0313 (.029, .034) invg .10

logL 5708 5658

Table 6.10: Bayesian estimation results for the extended model (US data).

discussion. The estimates for the risk premia deviate remarkably from the
former ones. �S is now negative and the con�dence interval does not in-
clude zero. �� remains negative, but the absolute value is now �ve times
as high as that of the prior mean. The parameters �1 and �2 also have a
posterior distribution which does not include the previous point estimate.
The only value which remains close to the expectation is � (and the mea-
surement errors which are, however, only by-products of the estimation).
In other words, all parameters but � are obviously plagued by numerical
problems since two estimation routines should return the same estimates
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when using a given dataset.

We now take, again, a look at the change in parameters when the
dataset is varied as a check of numerical robustness of the bayesian ap-
proach. In the results from the short term dataset, the posterior distrib-
utions become somewhat less symmetric as shown by the diagnostic plots
(Figures 6.10 and 6.11). The mass of � seems to have shifted away from the
mass of the prior. The distributions of � and �� have apparently widened
in addition. The posteriors of both �1 and �2 now seem to be dominated by
the respective priors and both have an additional local mode. The distrib-
ution of �2 has also widened signi�cantly. Looking at the tabulated results
(Table 6.11) the striking di¤erence to the ML result is that � is now sig-
ni�cantly positive and even twice as high as in the spanning dataset. Its
con�dence interval appears, indeed, to have doubled as well, but it remains
proportionate from an absolute viewpoint. The risk premia �S and �� de-
viate strongly from both the ML estimate with the same dataset and the
one from the spanning dataset above. Furthermore, the con�dence interval
from the latter parameter has doubled. v� is now more than two times as
high as in the ML routine, and � appears to be almost a slack variable
again. Finally, �1 is strongly right-skewed and �2 has decreased by 50%
and is not close to its ML counterpart. Brie�y, the stability of parameters
across datasets is not amended compared to the ML estimation. The only
helpful fact is that skewed parameter distributions are identi�ed and the
posterior mean can be computed. Using the latter one as a point estimate
is likely to increase robustness. Unfortunately though, this advantage does
not seem to heal the general instability of the estimates.

Looking at the diagnostic plots for the long-term dataset (Figures 6.12
and 6.13), multimodality problems reappear. Particularly in the case of
�S one would de�nitely prefer using the posterior mean estimate to using
any of the two modes with almost equal density. As for �� the mode was
not computed very exactly and a second local mode from the simulated



0.5 1 1.5 2
0

2

4

6

8
κ

−5 −2.5 0 2.5 5
0

0.5

1

1.5

2
λS

−5 −2.5 0 2.5 5
0

0.5

1

λδ

−5 −2.5 0 2.5 5
0

1

2

3

4
v∗

−1 0 1
0

0.2

0.4

0.6

0.8

ρ

0 0.5 1 1.5
0

1

2

3

σ1

Figure 6.10: Prior and posterior distribution of parameters with US data
(short-term data, part 1).
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Figure 6.11: Prior and posterior distribution of parameters with US data
(short-term data, part 2).

density appears and widens the distribution. The latter phenomenon might
be induced by the prior, whose mode coincides with this local hump. The
distribution for v� is also asymmetric, and the mode from the maximization
is slightly inaccurate. The distribution of �1 is now unimodal. In such a
case, the prior�s in�uence might sometimes be bene�cial in that it induces
just enough curvature in the posterior density to allow the maximization
routine to identify an optimum at all. Yet, given the coincidence of prior
and posterior mode, we do not get to know the value which the data alone
would produce. Finally, also �2 is in�uenced by its prior again, and it could
be that the mode of the data would otherwise be greater than 1, where
the second hump of the density is located.

The results for the long-term dataset in Table 6.11 also show a mixed
picture with respect to both accuracy of the point estimates as well as the
similarity to the ML results. � is su¢ ciently close to the estimate in Table
6.9. �S is now positive and pronouncedly larger than in the ML estimation.
��, in turn, is close to the earlier estimate in Table 6.9, but the con�dence
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Figure 6.12: Prior and posterior distribution of parameters with US data
(long-term data, part 1).
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Figure 6.13: Prior and posterior distribution of parameters with US data
(long-term data, part 2).

interval has widened even more compared to the short-maturity dataset.
The risk-neutral drift v� turns out negative which corresponds to a positive
convenience yield. This is not supported by our preliminary analysis of the
computed convenience yields. Yet again, the con�dence region is large so
the posterior density extends into the positive region. The latter �nding
shows that the identi�cation problems of the convenience yield with only
the long-term contracts are not speci�c to the ML routine but a more
general problem. Correlation parameter � can again be considered inde-
terminate given the large con�dence interval. In addition, �1 and �2 seem
to be in�uenced by their prior distribution and are not similar in value to
their counterparts in the ML estimation. The con�dence interval for both
of them is large with at least �50% deviation around the mean estimate.

All in all, the bayesian estimation does not appear to be remarkably
more stable than the ML-approach as long as the prior information is
mainly taken from a preliminary analysis of the data itself. In our ap-
plication, even cautiously adding such information and still allowing for
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pronounced variation might already have distorted some parameters�esti-
mates. Yet, it could be seen that the assumption of asymptotic normality
made in the ML-approach does not hold for the entire density space of the
parameters. Most of the distributions can, in fact, be asymmetric or mul-
timodal at some point. In this case, at least theoretically, the "maximum
likelihood" estimator should not be the best pick since it is very sensitive
to estimation uncertainty. This problem will particularly exist when a com-
plicated recursive procedure such as the Kalman �lter is involved and no
analytical conditional posterior distributions can be computed. We have
seen, for instance, that � remained basically unidenti�ed in all bayesian
estimations. Put di¤erently, our standard errors from the ML estimation
are very misleading since they only seem to hold in a very narrow space
around the maximum likelihood estimator. This observation is of particu-
lar interest since it casts some doubt on the reliability of results for � in
earlier studies such as Schwartz (1997), which are obtained with the max-
imum likelihood procedure. If the point estimate for � in his reduced-form
model di¤ers strongly from the one found by a simple regression analysis as
in Gibson and Schwartz (1990), it is probably not very robust to changes
in the dataset.

This leaves the question whether a simpler procedure does better in
identifying the model parameters. With this motivation, we test, as a �nal
alternative, the algorithm termed "implied state variable and parameter
estimates" by Schwartz and Smith (2000). Applications of this technique
can be found, for instance, in Lucia and Schwartz (2002), Cortazar and
Schwartz (2003), Wilkens and Wimschulte (2007) and Yan and Li (2008).
It consists of a 3-step loop. Since the futures price equation (6.26c) is
linear in the state variables, the �rst step is to perform OLS regressions
over the cross section of futures contracts at each observation date to
obtain the state variables. The regression equation is equivalent to (6.27)
with dt being subtracted from the left-hand side. For this step, an initial
estimate of the parameters has to be supplied. Next, the time series of
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state variable estimates is used to calculate �1; �2 and � from the state
equations. In the third step, the latter parameters and the state variable
estimates are assumed as given. The full futures dataset is then used to
minimize the squared residual between model prices and observed prices
using a non-linear optimization over �; �� and v�: The loop is run until
convergence in both parameter values and the squared residuals from the
last step has occurred.16 Risk premium �S is not needed in the loop, but
can be recovered from (the mean of) the deterministic trend in the log-spot
price equation, given v� and �1:

While the procedure itself is easier to implement and computationally
more e¢ cient than the Kalman �lter, the conditions under which conver-
gence occurs are somewhat restrictive. Firstly, � should not be too high.
This is because otherwise the convenience yield shock will even out very
quickly which means that the coe¢ cient of the convenience yield in the
futures price equation is nearly identical for the majority of (medium to
long term) contracts. This means that the data matrix for the OLS re-
gressions does almost lose its full rank and the regression results become
inaccurate. This can lead to slow convergence or even divergence of the
procedure. Secondly, the "measurement errors", i.e. the residuals of the
futures price, are not supposed to be too important compared to the state
noise (cf. Schwartz and Smith (2000), fn. 8). Since the model does not ex-
plicitly penalize noise in the state variables, some measurement noise will
always be attributed to these variables. This e¤ect leads to a bias in other
parameters as well. Yet, it is less severe when the mean-reversion speed is
rather low, i.e. the �rst restriction is respected. Finally, the initial values
play a crucial role for both the speed and the success of convergence.

In turn, an advantage of this method is that it does not need a large
sample since the estimator of both the OLS-regression and the nonlin-

16Cf. Cortazar and Schwartz (2003), p. 225.
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ear optimization step produce e¢ cient estimators non only in the limit.
In addition, it is easy to retrieve unbiased parameter estimates when the
measurement error is close to zero. Therefore, the question is how much
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Figure 6.14: Analysis of estimation bias for �2 using implied parameter
estimates.

residual noise this method can bear without becoming unacceptably inac-
curate. Figure 6.14 illustrates the dimension of the �rst two restrictions
with a simulated example for the bias in �2. 50 estimations from simu-
lated datasets have been run for 8 di¤erent measurement error standard
deviations and 3 di¤erent values of �. The �gure shows that for � > 6 the
bias becomes unacceptably high if the size of the measurement errors is
in the order estimated for our natural gas futures data. Yet, for � = 2;

which is roughly the highest value that we have found in the US futures
dataset, the error in �2 appears to be tolerable. Table 6.12 shows the mean
(and standard deviation) of all parameters over the 50 iterations for each
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di¤erent size of the measurement noise when the true � equals 2.

�i 0 :0025 :005 :01 :02 :03 :04 :05

� 2.000 2.000 2.001 1.998 1.998 1.985 1.972 1.962
(2 .0) (.001) (.002) (.007) (.013) (.027) (.047) (.051) (.071)
�S .100 .109 .114 .105 .120 .126 .115 .142
(.12) (.095) (.116) (.122) (.112) (.127) (.107) (.104) (.109)
�� -1.805 -1.803 -1.803 -1.800 -1.807 -1.801 -1.794 -1.808
(-1 .8) (.021) (.017) (.022) (.023) (.035) (.051) (.058) (.082)
v� -.161 -.161 -.161 -.159 -.150 -.140 -.124 -.102
(-.16) (.003) (.002) (.002) (.003) (.005) (.009) (.011) (.014)
� .292 .299 .302 .335 .414 .503 .582 .638
(.32) (.043) (.031) (.043) (.040) (.037) (.032) (.041) (.026)
�1 .344 .346 .347 .361 .390 .437 .498 .563
(.35) (.012) (.010) (.010) (.012) (.013) (.012) (.017) (.018)
�2 1.106 1.107 1.110 1.140 1.240 1.380 1.561 1.754
(1 .12) (.035) (.032) (.028) (.038) (.035) (.058) (.072) (.061)

�1 .000 .001 .003 .006 .012 .018 .024 .029
�2 .000 .002 .004 .008 .017 .025 .034 .042
�3 .000 .002 .004 .009 .018 .027 .036 .044
�4 .000 .002 .004 .008 .016 .024 .032 .040
�5 .000 .002 .004 .007 .014 .022 .029 .036

Table 6.12: Simulation results using implied parameter estimates.

The actual parameter values are given below the respective parame-
ter name, i.e. in the left-most column. The other columns show, from left
to right, the estimation results with ascending standard deviation of the
residuals. The overall impression is that the standard deviation of the para-
meters is remarkably lower than in the Kalman �lter simulation. The only
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parameter which still carries economically relevant estimation uncertainty
is �S . While mean estimates of �; �1; �2 remain slightly below the true
values until the ��s are increased to .005, they deteriorate for values higher
than .01. v� also becomes less accurate for higher measurement errors.
However, the remaining parameters are not strongly a¤ected and remain
rather stable. Hence, we can conclude that, given � = 2, the model re-
mains a testable alternative for estimation. Yet, one might need to slightly
downscale the state noise variability parameters according to the estimated
amount of measurement noise.

Table 6.13 shows the estimation results with this method using the 3
di¤erent US synthetic futures datasets of the extended model (short, mixed
and long maturities). Both the unweighted and weighted least squares
(WLS) results are shown. The weights for the latter have been taken from
the ML results of the Kalman �lter estimation. We see that the results with
weighted residuals get close to the ML results generated with the Kalman
�lter (Table 6.7) for the spanning and the short-term dataset.17 An ex-
ception is �2 in the latter one, which is higher now. Figure 6.15 shows
graphically that this also applies to the state variable estimates (here:
spanning dataset), which are graphed together with the Kalman �lter es-
timates. The precondition is that the "measurement errors" in the WLS
version are weighted accordingly. With respect to the long-term dataset,
apparently the same problem which has been outlined above for high val-
ues of � has now occurred for T�t, the time to maturity. That is, if we only
pick long-term futures, the regressor �1�e��(T�t)

� of the convenience yield
variable in the futures price equation is too similar in the cross-section
and parameters can no longer be correctly identi�ed. For evidence, note
that the time for convergence becomes excessively long if we start with an
initial value for � in the order of the ML result (1.39).

17This is in line with the theoretical reasoning given in Schwartz and Smith (2000), fn. 8.
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Figure 6.15: Plots of implied against �ltered state variables (US, spanning
dataset, WLS).
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span short long
span (WLS) short (WLS) long (WLS)

� .7260 .6588 3.8867 3.2E-5 .0003 -.0004
�S -.0003 .0300 -.2055 .0620 .2146 .2455
�� .2722 -.2002 -1.4783 -.0001 .0356 .0685
v� -.4314 .2441 .5018 .2689 -.8998 .1443
� .8608 .8722 .7427 .6242 .8896 .9165
�1 .5969 .5693 .6794 .5900 .6836 .7821
�2 .4882 .4041 2.1405 .6684 .4437 .5356
�1 .0258 .0465 .0175 .0492 .0163 .0240
�2 .0260 .0111 .0174 .0259 .0104 .0005
�3 .0230 .0236 .0219 .0223 .0164 .0131
�4 .0254 .0250 .0140 .0031 .0191 .0135
�5 .0226 .0169 .0107 .0006 .0219 .0220
�6 .0210 .0256 .0186 .0190 .0220 .0390

Table 6.13: Estimation results using implied parameter estimates. "span"
denotes the spanning dataset (mixed maturities) as opposed to "short"
and "long" maturities.

Obviously, even to obtain the results of the other two datasets, the
residual weights must be known up-front. Therefore, a comparison with
the unweighted results is in order. Overall, especially the estimates for �S ,
�� and v� appear to be sensitive to the change in the residual weighting.
The estimate of � also changes its value signi�cantly in the short-maturity
sample. Yet, the problem here is that the weight of the M1 contract is
particularly low compared to the weights of the longer-term contracts M4
and M5 in the same sample. In fact, the latter contracts have measurement
error standard deviations of .0031 and .0006 respectively in the weighted
least squares version. This compares to a standard deviation of .0492 for
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the M1 contract, which practically means that the �t to the latter has
almost no in�uence on the optimal parameter set. This shows that this is
not simply a numerical problem, but rather a problem of the disparity in
(maturity-matching) mean reversion speeds between the di¤erent contracts
(or, more precisely, its implied convenience yields). From our regressions
for di¤erent terms of convenience yields in 5.9 and 6.3), we have seen that
the yield with the shortest maturity has the highest mean reversion speed.

To summarize, our analysis suggests that the implied method is a fea-
sible alternative, but is only applicable under somewhat restrictive circum-
stances. That is, longer maturities in the dataset should not be too similar,
and neither the mean-reversion speed nor the measurement noise should
be very high. The method can produce results which are similar to the
Kalman �lter, but the risk premia and also v� show at least the same sen-
sitivity as in the latter estimation procedure. In fact, sensitivity can even
become more severe if the mentioned restrictions are not su¢ ciently met.
We conclude this subsection with the con�dence that the ML estimation of
our model is not "outperformed", in terms of robustness, by any of the two
presented alternatives. In turn, the results above have provided support for
our conjecture that a further extension of the SCY model for �exibility in
mean-reversion speeds could be bene�cial - at least for commodities with
pronounced seasonality and high convenience yields such as natural gas.

6.3 Conclusion

In this chapter, we have derived an extended model for the gas spot price
based on the SCY model by Gibson and Schwartz (1990) and Schwartz
(1997). The extension consists of a second component of the convenience
yield, which is not taken into account by these authors. This so-called fun-
damental component is driven by gas storage levels and air temperature.
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It has to be distinguished from the preference component, the stochastic
mean-reverting convenience yield variable known from the SCY model. We
claim that the preference component is primarily driven by the investors�
risk attitude and not by fundamental factors. We have estimated the ex-
tended model with the convenience yield model from chapter 5 together
with a Kalman �lter routine. Data from both the UK and the US mar-
ket have been used. The resulting parameters as well as the predictions of
spot and futures prices have been compared to those of the standard SCY
model. Parameter estimates do not seem to be systematically distorted
through our extension. Quite opposingly, some of them are more plausible
in the extended speci�cation.

In both versions, mean reversion of the stochastic convenience yield
component (i.e. the preference component) turns out to be very slow, i.e.
autocorrelation is in the order of 98% even with weekly instead of daily data
intervals. This result is similar in size to the corresponding estimates in
Schwartz (1997) for crude oil (cf. Table VI there), but it does not conform
to the autocorrelation in the instantaneous convenience yield time series
from the cost-of-carry equation. Week-on-week autocorrelation in the latter
case is only 0.5 in the US market.18 This means that the standard model
fails to explain the mean reversion of the total convenience yield. Yet,
testing the parameter robustness with di¤erent sets of futures maturities
shows that even the extended model is not able to output an estimate for �
which is independent of the maturities of futures contracts in the sample.
A possible explanation is that the assumption of a �at convenience yield
is an oversimpli�ed picture of reality.

The risk premia for spot price and convenience yield risk could not be
identi�ed with precision, but at least the second one has the correct sign in

18Cf. Table 6.3, line 1. Autocorrelation is given by 1� �̂yt�1 .



174 CHAPTER 6. APPLICATION TO PRICING

most cases. That is, it is negative and, hence, it pays to bear convenience
yield risk. Also the risk-neutral spot price trend v� (net of convenience
yield) is in line with our expectation. The implied net mean convenience
yield rate � is negative in all cases and shows once again that the cost of
physical storage which is included in the net convenience yield, is much
higher in the gas market than in the crude oil market.19 This is in line
with the empirical evidence found in chapter 5.

The remaining model parameters are estimated with a lack of preci-
sion, especially the correlation parameter for the stochastic increments �.
Both a simulation with the Kalman �lter routine and a bayesian estimation
(Markov Chain Monte Carlo method) have shown that the point estimates
of this parameter are not reliable. Therefore, the assertion that the high
correlation of the convenience yield and the spot price makes a two-factor
model with convenience yield generally ine¢ cient, is �awed. The real prob-
lem seems to be that the coupling of the stochastic processes in Schwartz
(1997) leads to a numerical identi�cation problem. A way to circumvent
this problem could be to rede�ne the spot price process in terms of the
spot price trend net of convenience yield and �nd a closed-form solution.
It is likely that in this case the spot price and convenience yield distur-
bances �1 and �2 would also become easier to identify and less sensitive
to changes in the dataset.

While these problems apply to both the standard and the extended
model, the goodness-of-�t comparison favors the latter one. For instance,
in the �ve-period out-of-sample forecast for the UK market, the mean bias
is reduced by 32% on average. This holds particularly for the spot price,
but also for the �t to observed futures prices. The (quasi-)out-of-sample
test for the US data applies an estimated model and the �ltered state
variables to price futures of other maturities in the same time period. In

19Cf. Schwartz (1997), Table VI.
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this cross-sectional test both models seem to perform equally well. Hence,
we may conclude that the hybrid model developed in this study provides
slightly more accurate forecasts.

Yet, this e¤ect is rather small compared to the change of parameter es-
timates in response to an alteration of the futures maturities in the dataset.
We have investigated the two extreme cases with only short-term and only
long-term maturities. In fact, the estimates vary strongly, although this
e¤ect is marginally smaller in the extended model. The two alternative
estimation methods explored, the bayesian estimation and the method of
implied state variable and parameter estimates, have not been able to im-
prove numerical stability considerably. Since several parameters�posterior
distributions in the bayesian approach have multiple modes and some are
dominated by the prior, it is not clear in how far the results are more
trustable. Estimation outcomes from the implied method are very simi-
lar to the Kalman �lter when the residuals are weighted according to the
measurement errors in the latter approach. If the residuals are unweighted,
which is the best guess if their variability in unknown, outcomes di¤er ma-
terially.

In sum, the extended model for the gas spot price has been able to
slightly improve the accuracy in forecasting. Nevertheless, the concep-
tual and numerical problems necessitate further investigation. It is widely
known that the robustness of multidimensional models is a delicate issue.
As a �rst important step, this chapter has pointed to the most relevant
issues, and it has put in perspective the criticism of the convenience yield
models for derivatives pricing.



Chapter 7

Conclusion

This thesis is motivated by the ongoing growth of exchange-based natural
gas trading and, especially, the liberalization steps recently undertaken in
the gas markets of the European Union. It has been argued that these steps,
together with increasing global interest in CO2-e¢ cient power generation,
have lead to a rising demand for short-term �nancial risk management
for this commodity. In consequence, the question is what the fair price
for the corresponding �nancial derivatives would be. It has been pointed
out that gas has very speci�c physical and economic properties which dis-
tinguish it from other (energy) commodities. This is the reason why the
aforementioned question should be studied individually in the natural gas
market.

The basis of pricing a �nancial derivative is, almost always, an ap-
propriate estimate of the expected future spot price, which was shown in
chapter 3. Therefore, the thesis has looked at both reduced-form and struc-
tural commodity spot price models found in literature. It was found that
no speci�c model for natural gas exists to date. Besides this, the choice of a
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model has been described as a trade-o¤ between a number of model selec-
tion criteria. The most severe problem of structural models is the di¢ culty
of empirical implementation while reduced-form models regularly neglect
some of the economic properties of commodity markets. The aim of the
thesis is to solve the trade-o¤ by combining the advantages of structural
and reduced-form models.

Since the two-factor reduced-form models provide an acceptable de-
gree of in-sample �t and particular concerns have been raised about the
convenience yield speci�cation, the stochastic convenience yield model by
Schwartz (1997) has been selected as the basis to construct a hybrid model.
In chapter 5, the thesis tested the in�uence of several fundamental vari-
ables on convenience yield dynamics. It has turned out that gas storage
levels and air temperature seem to be important and measurable deter-
minants. With the help of these quantities, fundamental convenience yield
forecasts have been generated for the UK and, in chapter 6, as well for the
US gas market.

In chapter 6, an extended stochastic convenience yield model was de-
rived. It rede�nes the convenience yield as the sum of a preference compo-
nent of investors and a fundamental component. By constructing synthetic
futures prices net of the fundamental component, the same estimation pro-
cedures as for pure reduced-form models can be applied to this model.
While parameter estimates do not become more robust, the forecasting
accuracy and the in-sample �t to both spot and futures prices is improved.
However, we recommend further modi�cations to the model setup prior
to an application to derivative pricing since parameter stability seems to
have amended only at the margin.

Besides the remaining numerical and conceptual problems, the most
important limits of this study are the somewhat restrictive assumptions
imposed on the convenience yield in the extended model. One of these
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assumptions is that the fundamental and the preference component are
uncorrelated. This requires that the risk attitude of investors is not in�u-
enced by storage levels or climate conditions in the market which can be
debated. In addition, we assume that the fundamental component has no
separate market price of risk. This neglects the risk inherent in the forecast
of the fundamental component which might become considerable in size,
depending on the frequency of observations and the forecast window.

Despite these limits, some implications for the derivative pricing prac-
tice should be noted. First of all, it is worthwhile to retain the concept of
convenience yield for usage in spot price models. It it rooted in macroeco-
nomic theory and can be linked to fundamental variables, in contrast, for
instance, to the short-term component in the Schwartz and Smith (2000)
two-factor model. According to our analysis, the high correlation of the
stochastic increments of the risk factors primarily results from an econo-
metric identi�cation problem. In fact, a restated model with decoupled
SDEs might solve this problem if closed-form solutions exist. Even if this
problem remains unsolved, our model will most likely remain favorable
compared to a pure reduced-form model with two rather independent fac-
tors. Clearly, the ability of a model without embedded fundamental rela-
tionships to �t a particular price dataset goes along with the considerable
risk of misspeci�cation.

Another practical implication of this thesis is that practitioners should
be very cautious when estimating any of the multi-factor reduced-form
models with the "implied method" suggested by Schwartz and Smith (2000).
As has been shown in subsection 6.2.7, the results can be severely biased
depending on the size of the idiosyncratic variation in futures prices and the
degree of mean reversion in the second stochastic factor (the convenience
yield or the short-term price component). Finally, an important insight for
practitioners is that the mean-reversion estimate of the instantaneous con-
venience yield seems to understate the true mean reversion parameter and
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varies depending on the maturities of futures in the dataset. Therefore,
the choice of contracts to estimate the model parameters should depend
on the time-to-maturity of the derivatives which are to be valued.

We conclude this study with a short overview of interesting topics for
future research. One such topic is the further extension of our model to ac-
commodate a term structure of convenience yields. This seems reasonable
given a number of hints which occurred during the empirical analysis. One
possibility might be a log-linear relationship between the standard devia-
tions of the convenience yield innovations which would attribute smaller
shocks to long-term convenience yields. Mean-reversion speeds could be
related by a hyperbolic function of maturity such that they decline with
rising maturity and approach a certain minimum level (greater than zero).
The idea of a term structure of convenience yields is already incorporated
in a very general theoretical model by Miltersen and Schwartz (1998) which
nests many of the models described in this study. Empirically, it may be
preferable to estimate these term structure relationships via regression
analysis and then run a Kalman �lter estimation to determine the remain-
ing model parameters.

Further research could also test how sizable the advantage of our ex-
tended model becomes for natural gas derivatives whose prices directly
depend on spot price volatility (e.g. long-term futures options). In addi-
tion, the impact of the prices of substitutes on the convenience yield of
natural gas could be investigated in more detail to validate the rather
general speci�cation of the preference component in our model. Finally,
our assumption that the fundamental convenience yield component has no
market price of risk could be relaxed, and forecast uncertainty could be
directly attributed to the fundamental component. It would be interesting
to see the modi�cations in the model for this case as well as the impact on
the estimated size of spot price noise.



Appendix

Appendix 1
Importance of domestic and commercial gas consumption in UK

The following statistic from the UK Dept. of Business Enterprise and Reg-
ulatory Reform (BERR) demonstrates the importance of domestic and
commercial gas demand based on their annual average share in total con-
sumption. Commercial consumption includes public administration cus-
tomers.

(in bcm) 2003 2004 2005 2006 2007

Total Consumption 103.14 105.39 102.42 97.48 98.36
Domestic Consumption 35.94 36.87 35.71 33.93 32.54
Commercial Consumption 7.80 8.33 7.94 7.73 7.49
Share of Total Cons. 42.42% 42.88% 42.63% 42.74% 40.70%
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Appendix 2
Underground working gas capacity in relation to net import

requirement in selected Western European Countries (12/2006)

The table below shows aggregate consumption and production as well as
the underground working gas capacity of the United Kingdom (UK), the
Netherlands (NL), Germany (GER), France (FR) and Italy (IT) at the end
of 2006. The former two countries still have a largely autonomous supply,
while GER, FR and IT are very dependent on imports already. This is
demonstrated by the di¤erence between consumption and production, the
net import requirement. It is apparent that the amount of underground
storage capacity is directly related to the net import requirement. Con-
sumption and production data comes from the IEA�s annual gas statistics
whereas the working gas volumes come from the International Gas Union.

(in mcm) UK NL GER FR IT

Consumption 96,974 41,487 95,248 47,292 83,126
Production 87,095 67,001 16,996 1,280 10,876
Net import requirement 9,879 0 78,252 46,012 72,250
Working gas 3,267 5,000 19,180 11,643 17,415
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Appendix 3
Historical development of season-ahead storage cost

The most important part of the storage cost which in�uences the basis
variability of gas is the capacity charges. Season-ahead storage capacity is
sold in packages, so-called Standard Bundled Units (SBUs). They comprise
a standard fraction of injection capacity, space capacity and withdrawal
capacity rights for a limited time period (e.g. 67 days at Centrica). Storage
facilities regularly o¤er numerous products with di¤ering priority of ser-
vice (�rm versus interruptible) and renomination �exibility for the shipper
of gas. Yet, price di¤erences between these packages are negligible com-
pared to the variability of these capacity charges throughout the year. The
charges for the physical operation of storing gas are separate costs. These
costs are based on actual throughput and also comprise an individual rate
for injection, space and withdrawal respectively. Since their amount is each
in the order of roughly 1/50 of the capacity charges only, they are econom-
ically negligible for us as well and, hence, not analyzed here.

Capacity already starts to be sold well ahead of maturity. After the
storage operator has ended the auction for the next storage year, it contin-
ues to be traded on secondary markets. While depleted reservoirs accom-
modate by far the most important fraction of stored gas both in the UK
and in the US, the UK market has a quasi-monopolistic operator, Centrica
Storage Ltd. The company operates the Rough �eld in the North Sea. The
prices for Rough storage capacity could be taken as market prices, but
the company only publishes an average price of all SBUs sold for the next
storage year (starting 1 May) on its homepage following legal obligations.
These SBU prices are either �xed or indexed to the winter-summer spread
of quarterly futures prices during an index period.

The graph below plots this average season-ahead price together with
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the maximum interest adjusted basis (IAB) one month ahead (M2 - M1) for
the same storage year. The market seems to have anticipated the conditions
in the following winter very well as shows the parallel development of the
two lines. The upward trend can be attributed to the fact that capacity
step-ups have not been keeping pace with the increasing dependence on
imported gas.
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Appendix 4
Variance of the forecast error in a linear regression with an

AR(1) error process

The variance of the conditional forecast error vt+kjut is obtained by recur-
sively inserting ut+k; ut+k�1; :::; ut+1; ut in the error generating process
ut = �ut�1 + �t: The uncorrelated residuals remaining from each insertion
step will then compose an MA(k � 1)-process of the form

Var(vt+kjut) = �0Var(�t+k) + �
2Var(�t+k�1) + �

4Var(�t+k�2) + :::+

�2(k�1)Var(�t+1) =
Xk�1

i=0
�2iVar(�t+k�i)

meaning that the forecast error is concave increasing in the forecast hori-
zon k. If �t is assumed homoscedastic with Var(�t) = �2 we have that
Var(vt+kjut) = �2

Pk�1
i=0 �

2i; i.e. the relative advantage of one model does
not change if the number of lags increases.
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Appendix 5
US electric generation by energy source (2009)

The following chart shows electric generation data for the United States
provided by the Energy Information Administration (EIA) for the year
2009.
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