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SensloT is an open-source sensor monitoring framework for the Internet of Things, which utilizes proven technologies to enable
easy deployment and maintenance while staying flexible and scalable. It closes the gap between highly specialized and, therefore,
inflexible sensor monitoring solutions, which are only adjusted to a specific context, and the development of every other solution
from scratch. Our framework fits a variety of use cases by providing an easy to set up, extensible, and affordable solution. The
development is based on our former published framework MonTreAL, whose goal is to offer an environmental monitoring solution
for libraries to guarantee cultural heritage to be conserved and prevented from serious damage, for example, from mold formation in
closed stocks. It is a solution with virtualized microservices delivered by a famous container technology called Docker that is solely
executable on one or more single board computers like the Raspberry Pi by providing automatic scaling and resilience of all sensor
services. For SensIoT we extended the capability of MonTreAL to integrate commodity servers into the cluster to enhance the ease
of setup and maintainability on already existing infrastructures. Therefore, we followed the paradigm to distribute microservices
on small computing nodes first, thus not utilizing well-known cloud computing concepts. To achieve resilience and fault tolerance
we also based our system on a microservice architecture, where the service orchestration is solved by Docker Swarm. As proof of
concept, we are able to present our current data collection of the University of Bamberg’s Library that runs our system since autumn
2017. To make our system even better we are working on the integration of other sensor types and better performance management
of SD-cards in Raspberry Pis.

1. Introduction

In the last couple of years, advancements in Internet tech-
nologies, which enabled networking of everyday objects,
significantly increased the popularity of the Internet of
Things (IoT). The IoT “describe[s] embedded devices with
Internet connectivity, allowing them to interact with each
other, services, and people on a global scale [to] increase
reliability, sustainability, and efliciency by improved access
to information” [1]. Systems, which affect each other, can
be interconnected like home and building automation with
environmental monitoring to allow information to be shared
between these systems. With low powered wireless embedded
devices, which require little infrastructure, like the popular
Raspberry Pi (RPi), a cheap fully fledged general purpose

computer with a small footprint, it is possible for everyone
to build low-cost ubiquitous sensing systems, whether low
or high scaled, with ease to get cheap access to monitoring
systems.

Unfortunately, the deployment and maintenance of such
a sensor monitoring system for the IoT is expensive, inflex-
ible, and very costly due to the lack of a general open-
source framework, which allows universal application and
extensibility and adopts proven technologies to simplify the
deployment and management without the burden of costly
infrastructures or cloud services in the background.

Like MonTreAL [2], SensloT is based on the work of
Lewis et al. [3], which proposes an environmental monitoring
solution in a quality-controlled calibration laboratory. They
used the RPi 1 with the Raspbian operating system (OS) in
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their architecture while their sensor interfacing is written
in the Python programming language. For their web-based
monitoring and graphing, they used Cacti, which reads the
sensor data. Furthermore, they also introduced parallelism of
reading sensor data by using Linux’s cronjobs.

Another prototype for the e-health sector, which was
implemented by Jassas et al. [4], consists of RPis with
attached e-health sensors. These medical sensors measure
patients’ physical parameters which in turn are collected and
transferred to the cloud environment by the RPi to get real-
time data. The application running on the RPi is written
in C++ and utilizes TCP sockets for data transmissions.
Nevertheless, their former prototypes do not consider the
privacy of sensor data and miss an architectural concept.

Hentschel et al. [5] introduced a concept with supernodes,
which are simply sensor enhanced RPis. “They are capable
of local compute operations, as well as transmitting data to a
centralized database. Each node can behave autonomously to
carry out tasks like sending tweets, processing data, dynamic
reconfiguration, and communicating with other devices” [5].

Likewise, Boydstun et al. [6] proposed a drifter node
sensor network for environmental monitoring and exposed
the potential of the RPi. Their sensor devices are equipped
with a camera, a GPS module, and a Wi-Fi USB adapter to
broadcast an ad hoc network. The components were sealed
within an acrylic case and placed in coastal areas to measure
water dynamics and gather data about the seafloor.

In contrast to those approaches, which mostly cover small
application areas with very specific conditions and cloud
connectivity, the further development of MonTreAL focuses
more on being a general sensor monitoring framework fitting
more use cases by being easily extensible and applicable. To
enable a straightforward updatable, scalable, and manageable
framework with appropriate technologies on energy efficient
devices, SensloT continued to make heavy use of lightweight
container virtualization. Moreover, obtained sensor data is
still processed locally without the need to upload it to cloud
services or expensive infrastructures and without the burden
to overflow the core network with unnecessary data traffic.

Consequently, there is currently no general sensor mon-
itoring framework similar to SensloT available and besides
MonTreAL none of them makes use of container virtualiza-
tion to simplify the overall deployment and maintenance of
their application.

2. Foundations of SensloT

MonTreALs high-level architecture, depicted in Figure 1,
consists of Workers, i.e., SBCs like the RPi, which are running
services to address a variety of sensor types and collect
environmental information of connected physical sensors,
which in turn are sent to a server in a uniform format utilizing
a messaging queue.

The server, i.e., the second component of the framework
called manager, accumulates and stores gathered data and
provides a user interface to allow users to view data in a
suitable way utilizing a simple web interface [2].

To achieve a simple “to set up distributed system of
IoT devices equipped with specific sensors and to gather,
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FIGURE 1: Simplified architectural overview of MonTreAL [7].

accumulate, and store the collected data” [2] MonTreAL
takes advantage of Docker and Docker Swarm, which allow
the framework to run all of its services within containers.
This enables easy distribution and simple management of
MonTreALs components as well as resilience and reliability
through the underlying Docker Swarm paradigm [2].

MonTreAL provides an easily manageable solution for
monitoring environmental properties and virtualization at
IoT level but falls short at providing a solution to implement
a wider variety of sensor types besides temperature and
humidity sensors and does not mention technologies to
efficiently handle steady sensor data.

Handling an incoming deluge of sensor data and efhi-
ciently accumulating, storing, and visualizing the same
require careful consideration of underlying technologies.
Despite common database solutions being capable of han-
dling steady sensor data, they provide no optimization
regarding disk space usage, which might grow unrestricted,
and optimized queries, which might take an unacceptable
amount of time in consideration for hundreds, thousands, or
even millions of datasets.

3. Container Virtualization for Use Cases of
the Internet of Things

Virtualization is by far not a new concept, with the first steps
already done in the 1960s on IBM mainframes. However, its
further development and dissemination have been prevented
by hardware and software limitations for quite a long time.
Today, advances regarding the efficient abstraction of hard-
ware resources led to the availability of many virtualization
solutions and turned them into one of the core technologies
enabling cloud computing [8, 9].

Virtual machines (VMs) used to be the most common
approach of software virtualization for a long time. They
enable the concurrent execution of multiple OSs on a single
host computer by utilizing a hypervisor. The hypervisor, or
also called VM monitor, is an additional software abstraction
level, which runs on the host OS (type 2 hypervisor) or
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directly on top of the hardware (type 1 hypervisor) and
manages the guest OS’s concurrent access on the common
underlying hardware (CPU, network, storage, etc.). Without
a hypervisor, the VMs would compete for the same resources
at the same time, which obviously would not work at
all. In a common VM scenario, each VM runs a single
application based on its individually required binaries or
libraries using the guest OS. While it is also possible to
run many applications on a single VM, separation is often
seen as a major advantage of VMs: it can increase the
reliability of applications, as a crash or malfunction inside
a single VM only affects this VM and most likely not any
other [8]. Nowadays, VMs form the backbone of basically all
cloud computing solutions. Content providers like Amazon
or Google use VMs for their offerings and also create their
services on top of them. So in the end, nearly all cloud
workload is executed in VMs [10].

On the other side, a disadvantage of VMs is their resource
consumption due to the fixed allocation of virtual CPU cores
and RAM (random access memory) to each VM regardless
of their actual demand [10]. However, to enable service
distribution in a fog computing manner, there is a need
for a more lightweight virtualization solution in order to
support low power edge or IoT devices but also to allow a fast
distribution of applications on different fog nodes [11]. This is
where containerization comes into play.

Containers in the context of virtualization are not a
completely new approach since they were enabled for Linux
by namespaces with Kernel version 2.6.32. Namespaces intro-
duce the ability to separate Kernel resources and assign them
to different processes. Based on the host’s process tree, the
container can fork his own tree with its own root process.
Whereas the host can see the whole tree (all processes), the
container is only aware of himself (his own subtree) and,
hence, totally isolated. The same basic isolation principle also
applies for all other current namespaces: IPC (InterProcess
Communication), MNT (Mount points), NET (Networking),
USER (User IDs), and UTS (system identifiers) [12]. Addi-
tionally, the important Linux technology cgroups allow it to
monitor and limit the resource usage of a specific process and
its children.

All in all, namespaces enable concurrent execution of
different containers on the same host OS using the same
Kernel. This contrasts with VMs, which require a Kernel for
each guest OS, and, furthermore, allows containers to bypass
the initially mentioned resource consumption handicap of
VMs.

Docker (https://www.docker.com/), the world’s leading
software container platform and “a tool that helps [to] solve
common problems like installing, removing, upgrading, dis-
tributing, trusting, and managing software” [13] and provides
a modern solution to tackle common software problems. By
taking advantage of the former virtualization approaches, it
achieves an easily maintainable and deployable system.

Applications which need to run a variety of different
services on several devices make it economically reasonable
to utilize a technology providing easy deployment and high
portability within a distributed system environment. Docker
containers are lightweight, stand-alone, executable packages

3
‘( User
access
[ Internal distributed state store ]
Manager Manager Manager
server server server
(follower) (leader) (follower) Task

N

[ Worker [ Worker

0/ |o

{ Worker { Worker

sensor sensor
device device

sensor
device

sensor sensor

R
Worker
device device

FIGURE 2: Functionality of Docker Swarm [7].

of software that include everything to run them (runtime,
dependencies, code, system libraries, system tools, and set-
tings) and they can be easily distributed.

A model of such a container, bundled with all the files that
should be available to run the packaged program, is called a
Docker Image. Docker Images represent the “shippable units
in the Docker ecosystem” [13] and can be used to create and
run an arbitrary number of containers without additional
effort [13].

The extension, Docker Swarm (https://docs.docker.com/
engine/swarm/), i.e., a Docker Engine in swarm mode, is
a cluster of Docker Engines providing a way to simplify
building distributed system environments and dynamic-
deployment topologies of containers. This goal is achieved
by featuring a decentralized design, scaling, automated state
reconciliation, multihost networking, load balancing, secu-
rity, and more. The swarm cluster consists of at least one
manager node, a Docker Engine, which takes care of the
cluster’s topology and maintains the overall cluster state. In
case of multiple manager nodes, they start in the follower state
and use the Raft Consensus Algorithm [14] to negotiate the
global cluster state and elect one leader node for the cluster
as depicted in Figure 2.

All manager nodes schedule services, which are blue-
prints for tasks being executed on worker nodes, respectively.
Additionally, the cluster can contain an arbitrary number
of worker nodes whose sole purpose is to execute tasks
which can be dynamically added or removed at runtime
while manager nodes possess worker capabilities too. The
manager node will react to other nodes joining the cluster
by immediately starting defined services on the new device
or compensate inoperative units by recreating respective
services on other still operating devices.

Furthermore, Docker’s native support for overlay net-
works allows for a virtual network to span between devices
which enable unsophisticated communication between ser-
vices within the swarm, while the manager node takes care of
the service distribution and discovery.

When running services on distributed devices, there is
a chance to unintentionally transmit sensitive data over an
insecure network. Docker Swarm provides a way to centrally
manage sensitive data and securely transmit it to only those
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containers that need access to it. Docker secrets are encrypted
blobs of data that remain in Docker Swarm. They are only
accessible to services, which have been granted explicit access
to it.

The synergy of Docker containers and Docker’s swarm
mode grant major advantages for a system built in a dis-
tributed environment. Furthermore, utilizing Docker Com-
pose (https://docs.docker.com/compose/), a tool for defining
and running multicontainer Docker applications, the deploy-
ment, and installation of services is simplified even more.
Actually, Docker Swarm supports composed files and deploys
stacks, which are a composition of services, on a cluster.

Deploying and managing via Docker provides major
benefits. The overall deployment is much more simplified
and can be done without major effort. Adding, removing,
and relocating new devices, e.g., RPis, can be done at
runtime and does not need additional configuration to work
properly. Moreover, Docker Swarm ensures a stable system by
relocating and restarting services in case of failures.

4. Architectural Modularity of SensloT

The principles of SensloT are the same as the ones of
MonTreAL: SensIoT operates with an arbitrary number of
small sensor devices like the RPi which can be equipped
with sensors to collect environmental information. The RPi
was selected because of its relatively small footprint and
low power consumption [5]. In addition, the RPi 3 Model
B has wireless LAN and Bluetooth Low Energy (BLE) on
board, which allows any distribution as long as a power
source is available (https://www.raspberrypi.org/products/
raspberry-pi-3-model-b/), which might be favorable when
running a distributed sensor network. Furthermore, it is
a very inexpensive, readily available, and mass-produced
SBC providing interfaces for a wide variety of different
sensors through GPIO and USB and being able to run
Linux distributions [5]. Therefore, it is capable of running all
necessary applications, especially Docker, which is nowadays
officially supported on ARM architectures. The collected data
is sent to the server, which aggregates, stores, and processes
the information to create a useful representation for the user
as depicted in Figure 3.

While SensloT keeps most of the principles of MonTreAL,
it was improved to fit more use cases and to be easily
extensible.

5. Dataflow of SensIoT’s Modules

Like its predecessor MonTreAL the framework consists of two
logical components as depicted in Figure 3: An amd64-based
server, subsequently just called server, which runs services
to receive, aggregate, store, and process sensor data and to
manage an arbitrary number of connected amd64/arm-based
sensor devices, subsequently called sensor(s), which in their
turn run services to continuously collect and temporary hold
environmental information of physical sensors connected
through USB or GPIO (general purpose input/output). Com-
pared to Docker Swarm in Figure 2, every sensor slips into
the role of a Swarm Worker and the server into the role of
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the Swarm Manager. Since Docker Swarm supports multiple
manager nodes, all services on them can be distributed and
scaled over multiple server instances accordingly.

Every service runs within its own isolated Docker con-
tainer and all containers together are managed by Docker
Swarm to simplify the overall deployment and maintenance.

To maintain data the server runs a database service and
a dashboard service to provide the user with an appropriate
way to view and analyze the collected information. Fur-
thermore, the server provides a simple web API for other
machines to fetch sensor data.

For administrative purposes, users can access several ser-
vices like the Docker Swarm Visualizer (https://github.com/
dockersamples/docker-swarm-visualizer) or Portainer (https://
portainer.io/), a simple management UI for Docker, to man-
age all running containers.

All these services are accessible through Traefik (https://
traefik.io/), a reverse proxy. Applications deployed utilizing
Docker are configured once beforehand and started with-
out additional effort. Services are distributed automatically
among all devices within the system.

Unfortunately, there is a serious limitation within this
approach in our case: Docker Swarm does not allow running
services in privileged mode, i.e., with root privileges, which
might be necessary when reading data from sensors depend-
ing on their interface. For example, to access sensors attached
to RPi’s GPIO interface, the service needs access to /dev/mem
which is only accessible by the root user. While there are
several approaches on the web to avoid these limitations,
but not without blowing a hole in both security and system
stability protections, SensloT makes use of the Docker Engine
API to communicate with the local Docker daemon on every
sensor device to run one or more privileged sensor reading
services.

Environmental information is continuously collected by
these respective sensor services and processed within the
sensor device by enriching every record with metadata
regarding its origin before it is sent to the server.

6. Data Acquisition by the Sensor’s Module

Since SensloT evolved from MonTreAL, its original focus
laid on working with temperature and humidity sensors and,
therefore, SensloT sensor devices can currently be equipped
with remote ASH2200 (https://www.elv.de/elv-funk-aussens-
ensor-ash-2200-fuer-z-b-usb-wde-l-ipwe-Lhtml) sensors
through USB utilizing a USB-WDE-1 (https://www.elv.de/
usb-wetterdaten-empfaenger-usb-wdel-komplettbausatz-1
html) receiver and low-cost DHTI1, DHT22, and AM2302
(https://learn.adafruit.com/dht) sensors through GPIO.

However, the RPi can manage a variety of different
sensors through its USB and GPIO interfaces and, therefore,
SensloT can be easily extended with other sensor types.

The sensor service, which implements the specific sensor
driver to regularly read from the sensor’s interface, pulls data
from the attached physical sensor as depicted in Figure 4.

Data provided by physical sensors may consist of different
complexity depending on the actual sensor: as plain values
like most GPIO sensors provide, e.g., 24.0 for temperature
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FIGURE 3: Detailed architectural overview of SensIoT [cf. [7]].

and 60.0 for humidity when using the DHT11/22 sensors, or as
a more complex structure like the USB-WDE-1 with attached
ASH2200 sensors provides, which includes values for up to
eight individual sensors plus mean of all measured values,
rain forecast, and several additional data as shown below:

To circumvent problems with these manufacturer spe-
cific data formats and to guarantee desired exchangeabil-
ity between compatible systems [15], every sensor reading
service converts its received data into a more universal

format utilizing the JavaScript Object Notation (JSON)
(https://www.json.org/) format, where a combination of
sensor_id and type forms a unique identifier for every
sensor per device containing an arbitrary number of mea-
surements.

{

"sensor_id": 1,
"type": "DHT22",

1 "
measurements”: [
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FIGURE 4: Dataflow of a physical sensor to sensor container (excerpt
of Figure 3).

"name": "temperature”,
"value": 24.2,
"unit": "\u00b0C"

"name": "humidity",
"value": 60.0,
"unit": "%"
}
]
}

Every individual measurement consists of a name, describing
the measured value, e.g., temperature, humidity, noise, or
movement, the measured value and a unit, e.g., ‘C, %,
dB, or whatever fits best to describe the specific measure-
ment with an abbreviation. When expanding SensloT by
implementing new sensor drivers, this convention must be
ensured.

Since sensor reading containers are not part of Docker
Swarm, sensor data is sent to the local manager service
through a TCP socket, where it is processed further.

To provide a richer description and context of the
measured data, the manager service appends additional
information about the sensor’s location to each measurement
and the time the measurement was done to be able to trace
back the data to its origin later since the simple numeri-
cal values, which are provided by most sensors, require a
rich context to be useful. Later, this metadata allows for
more complex queries to filter, group, and analyze data
and to be able to draw conclusions from the gathered data
[15].

The data format, which is transmitted by the sensor device
to be processed on the server side, is the basic unit which
every processing service relies on afterward. It contains all
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necessary information in order to unmistakably trace back
every measurement to its origin. Figure 5 shows SensloT’s
data format in a logical tree diagram and the hierarchy of the
attributes.

Thereafter, the short-lived sensor data is ready to be sent
to the server utilizing a distributed messaging queue.

7. Data Transmission by a Messaging Queue

SensloT implements NSQ (http://nsq.io/), a real-time dis-
tributed messaging platform, which offers high scalability and
ease of use to realize interdevice communication.

Its components consist of an arbitrary number of mes-
saging queues (nsqd), which receive, queue, and deliver
messages to clients, and a directory service (nsqlookupd),
which manages topology information of the network and
provides addresses of nsqd instances to possible clients.

NSQ features support of distributed topologies with no
single point of failure, high horizontal scalability without
brokers allowing for seamlessly adding new nodes, com-
munication over TCP, supporting client libraries in several
programming languages, and TLS for secure connections.

NSQ implements the publish-subscribe pattern to pro-
vide greater network scalability. Every single nsqd instance
is designed to handle multiple streams of data called topics
and every topic has one or more channels while every channel
receives a copy of all messages for a topic. A nsqd instance
maintains a long-lived TCP connection to one or more
nsqlookupd instances and periodically pushes its state, which
again is exposed on an HTTP endpoint for consumers with
regard to a polling policy. Consumers can look up topics
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at one or more nsqlookupd instances. They can subscribe
to the topic they are interested in by either creating a new
channel for themselves, which ensures that messages are
delivered to this specific consumer or by joining an existing
channel created by another consumer, which leads to the
message being delivered to a random consumer attached to
this channel.

Topics and channels are not configured beforehand but
created on first use by publishing to the specific topic or
by subscribing to the specific channel. Both publisher and
subscriber are highly decoupled in terms of configuration due
to the fact that they never need to know about each other but
only about a common nsqlookupd instance.

NSQ allows SensloT to be deployed in a dynamically
distributed environment, to be highly scalable without adding
complexity, and it improves overall stability by enabling repli-
cation of services. Furthermore, NSQ serves as a write buffer
to orchestrate and synchronize write requests to the database
of a potentially large number of sensor devices. Without such
a write buffer there might be potential performance issues
because of too many concurrently open connections to the
database when every sensor device is able to issue write
requests independently [16].

SensloT runs several nsqd, nsqlookupd, and consumer
instances to maintain high availability even if single devices
become inoperable.

The throughput of NSQ is high enough to handle
messages of several hundred or even thousands of sensors
simultaneously. The dynamic creation of topics and especially
channels allows adding and removing new nodes and con-
sumers at runtime without interfering with other nodes and
without the need to reconfigure running nsqd or nsqlookupd
instances.

SensloT features NSQ on AMD64 and ARM architecture
allowing any user-defined distribution of these services.

Figure 6 shows nsqd instance running on a sensor device
which is registered to the nsqlookupd instance running on
the server. The sensor device, which has successtully received
sensor data from the sensor, sends the converted data to
the nsqd instance to enqueue the data. A consumer, which
operates on the server, makes use of the nsqlookupd instance
to discover available nsqd instances to regularly pull data
from the queue by subscribing to the corresponding topic.
Depending on the consumer’s task, data is then written into
a database or cache or otherwise processed.

8. Data Persistence by Databases

When permanently storing data produced by sensors, which
are monitoring environmental properties over a long time,
there are several circumstances to be noted, which inevitably
lead to particular requirements the underlying data store
must comply with to work efficiently.

Such data is called time series data, “a sequence of data
points measured at uniform time intervals” [17], and its key
difference from regular data is that it is uniquely specified
by a timestamp and you will always query it over the time
dimension. It is “frequently used to represent environmental
properties [like temperature, humidity, CPU load, network
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FIGURE 6: Architecture of NSQ [7].
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traffic, RAM usage, etc.] and is fundamental in environmental
science” [15].

A monitoring system like SensloT with a possibly large
number of attached sensor devices inevitably creates an
immense amount of time series data over time and easily
exceeds a few ten thousand data records even though it is not
uncommon these days to collect a much higher number of
time series data [17].

Furthermore, the deluge of time series data must be
enriched by metadata to effectively use, understand, access,
and manage it as described above, which increases the
complexity and size of each dataset, the required storage to
permanently store it, and the amount of time to computation-
ally analyze it even further [15].

Relational databases like MySQL (https://www.mysql
.com/) or PostgreSQL (https://www.postgresqgl.org/), which
organize data with uniform characteristics in logically
divided tables linked by relationships, “are affected by serious
scalability issues when collecting hundreds of thousands
(millions) metrics, making them practically unusable for
large monitoring systems” [17]. Since every dataset increases
the table cardinality and disk space taken with every mea-
surement interval, storing and querying millions of datasets
in traditional relational databases have a significant impact
on performance because their “write efficiency is positively
correlated with the data scale” [18]. Retrieving data might be
affected too, “since data access time greatly increases with
the cardinality of data and number of measurements” [17]
because the unoptimized indexes of relational databases can
become too large to be cached and “thus jeopardizing the
performance of applications sitting on top of the database”
(17].

Nevertheless, time series data has some interesting char-
acteristics, which allow for several optimizations when rea-
soning about storing massive amounts of time series data, and
“an emerging trend towards high performance, lightweight,
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databases specialized for time series data” [15] and near real-
time monitoring demand and analysis led to the vast growth
of time series databases (TSDB).

In Figure 6, a consumer service, which implements a
specific database driver, fetches data from one or more nsqd
instances utilizing the nsqlookupd’s discovery service. In
combination with Figure 3, this database_writer then stores
data in a database.

From the sheer amount of time series databases available,
SensloT currently supports two different databases to store
sensor data: InfluxDB (https://www.influxdata.com) and cur-
sive (https://prometheus.io/).

8.1. Characteristics of InfluxDB. InfluxDB is one of the most
common solutions when storing large amounts of highly
time-dependent data and performing real-time analysis of
these is a major concern. InfluxDB was created from the
ground up including a custom high performance datas-
tore with high ingestion speed and data compression. It is
entirely written in Go (https://golang.org/) and compiles to
a single binary without external dependencies. InfluxDB can
handle a high amount of data points per second, which
sooner or later might result in storage concerns mentioned
above.

Downsampling data with continuous queries, which peri-
odically and automatically compute aggregated data to make
frequent queries more efficient and retention policies, which
are unique to each database and determine the datas lifecycle,
ensure that the disk space needed to store large amounts of
time series data over a long time is limited to a manageable
size. InfluxDB can be easily configured to hold high precision
data only for a limited time and lower precision data, i.e.,
aggregated data, for a much longer time or forever.

InfluxDB does not provide a user interface since it is
part of the TICK-Stack, which consists of Telegraf that is an
extensible server agent for collecting and reporting metrics,
InfluxDB, Chronograf, an administration and visualization
interface, and Kapacitor, as a data processing engine. All four
components form a modern time series platform provided by
InfluxData (https://www.influxdata.com/).

The open-source edition of InfluxDB runs on a single
node but there is also an enterprise edition for high availabil-
ity and for eliminating the single point of failure.

8.2. Characteristics of Prometheus. Prometheus was origi-
nally built at SoundCloud (http://soundcloud.com/) but later
became a stand-alone open-source project and joined the
Cloud Native Computing Foundation (https://cnct.io/) in
2016.

Prometheus features a multidimensional data model,
utilizing labels, i.e., key-value pairs encoding metadata to
identify series of time series data, which allows for grouping,
filtering, and matching via queries, and a flexible query
language to leverage this dimensionality.

Prometheus runs as an autonomous single server node
and does not rely on distributed storage. Time series data is
collected via a pull-based approach over HT'TP (scraping) or
an intermediary Push Gateway. Targets to scrape from are
found via service discovery or static configuration.
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Most parts of Prometheus are written in Go'’ making
them easy to build and deploy as static binaries. Prometheus
stores data locally and runs rules to aggregate and record new
time series from existing data or generate alerts. Prometheus
works well for recording any purely numeric time series
and is also applicable in highly dynamic service-oriented
architectures. It is designed for reliability and each server runs
autonomously, not depending on network storage or remote
services. Furthermore, there is no need to set up extensive
infrastructure to use it.

8.3. Comparison of InfluxDB and Prometheus. To summarize,
both databases address the same problem space but partly fol-
low different approaches and differ in various aspects. While
InfluxDB supports various data types and variable times-
tamps, ranging from nanoseconds to seconds, Prometheus
is float-only and has fixed timestamps. Their compression
level is similar since they both use the implementation of
Facebook’s Gorilla Paper [19]. They both support high scal-
ability and high availability through clustering or federating
but in InfluxDB’s case, these features are restricted to the
commercial version. Here is where Prometheus’ pull-based
approach to scrape data comes in handy: for high availability,
you can use an arbitrary number of different cross-federated
Prometheus servers scraping the same target since the targets
do not need to know the server’s address.

A further major design difference might be that
Prometheus has no easy way to attach other timestamps
than now to metrics. In a system like SensloT, where time
series data is not immediately stored in the database because
it could remain in the queue for a while, this may be a deal
breaker for some use cases.

Nevertheless, while a commercial company maintains
InfluxDB following the open-core model and offers premium
features like closed-source clustering, hosting, and support,
Prometheus is an independent open-source project main-
tained by a number of companies and individuals.

SensIoT supports both databases since both provide
important features needed for a monitoring framework for
the IoT. While it is hard to draw conclusions from a deluge
of time series data, SensloT also features proven dashboard
solutions to provide a meaningful visualization for the user.

9. Data Visualization through Dashboards

As described above time series databases are mostly used
in combination with dashboards to provide an appropriate
visualization of the time series data they store and can be
queried for. Some databases already come with their own
web interface which allows for querying and graphing; others
rely on additional applications. Since Prometheus’ graphing
capabilities are very limited and should only be used for
ad hoc queries and debugging, the following sections will
introduce Chronograf, InfluxDB’s visualization engine and
administrative interface, and Grafana, an open-source metric
analytics and visualization suite for time series data.

9.1. Chronograf. Chronograf, which is part of the TICK-Stack
and responsible for data visualization and administrative
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tasks, offers a complete dashboard solution for visualizing
data with precreated dashboards and the possibility to create
custom dashboards.

Besides its graphing capabilities, Chronograf’s web and
administration interfaces allow users to easily execute and
visualize ad hoc queries utilizing InfluxDB’s SQL-like query
language, which can be “clicked together”, insert data for
testing purposes and debugging, and create an arbitrary
number of dashboards. Additionally, it allows viewing and
managing alerts, which requires Kapacitor (https://www
.influxdata.com/time-series-platform/kapacitor/), managing
InfluxDB’s retention policies for every database individually,
and managing users, organizations, and data sources.

For access control, Chronograf supports authentication
via OAuth 2.0 (https://oauth.net/2/) providers to offer autho-
rization and authentication of users and role-based access.
Chronograf supports OAuth from GitHub, Google, and
custom providers with own authentication, token, and API
URLs. To provide data confidentiality, data integrity, and
server authentication, a secure connection over HTTPS is
also supported when accessing Chronograf.

9.2. Grafana. Grafana is an open-source metric visualization
and analytics suite, which is most commonly used for visual-
izing time series data for application and infrastructure met-
rics including industrial sensors, weather, home automation,
and process control. It offers a customized query editor for
each data source, which features the particular capabilities the
respective data source’s query language exposes; i.e., you can
“click together” your queries, while Grafana instantly updates
the particular graph so you can effectively explore your data
in real-time making use of its query inspector, which provides
feedback about the current query.

Grafana supports templating allowing a more dynamic
and interactive graphing through variables within each query
acting as placeholders. Users can choose the variable values
by selecting from a drop-down menu above the graph and
actively change data that is currently displayed by this graph.

Dashboards can be easily exported and imported, shared
via links or snapshots encoded into a static or interactive
JSON document, and tagged to provide quick, searchable
access to all dashboards of an organization through Grafana’s
dashboard picker, which allows filtering by name, tags, or its
starred status.

Another interesting feature is a scripted dashboard. If new
data sources are added or metrics’ names are changed in a
defined pattern, it might help to dynamically create dash-
boards using Javascript since every dashboard is represented
by a JSON object.

Grafana can be entirely configured through configuration
files or environment variables and managed through a basic
CLI and, moreover, provides a rich HTTP API for adminis-
trators.

9.3. Comparison: Chronograf and Grafana. Although the
dashboards shown in the last two sections look very similar,
there are considerable differences between these two solu-
tions and it seems to be unfair to equate them since they
follow different strategies.

Chronograf is part of the TICK-Stack and heavily inte-
grated with InfluxDB to provide interfaces for visualization
and administration; precisely, this makes it impossible to
use it with other data storage solutions. Grafana supports
many different data sources and is heavily customizable and
more of a full-featured dashboard solution in contrast to
Chronograf, which feels more like a very basic visualization
and administration tool.

Nevertheless, both provide a solid dashboard solution for
everyone. Both support “clicking together” dashboards and
even queries, so users do not need considerable experience
with their underlying technology. But Chronograf misses
the high customizability of Grafana, which provides a wide
variety of options to customize your graphs and dashboards.
You can easily change the range and label of your axis or series
or annotate time ranges within your graph. Furthermore,
Grafana provides a lot of preconfigured dashboards and offi-
cial and community built plugins for individually extending
and customizing your local Grafana instance and a built-in
alerting and notification system.

Even though SensloT features both dashboard solutions,
it is recommended to go with Grafana since it is independent
of the underlying data store, i.e., InfluxDB or Prometheus,
and provides a feature-rich and fully fledged dashboard
solution, which should satisty almost every need. While a
graphical dashboard solution provides meaningful informa-
tion for users, it is most likely useless for other machines at
the same time, which are interested in fetching data from the
system for further processing.

10. Accessing SensloT through Its Web API

For representational purposes, a very basic HT'TP API is
currently available which allows querying the latest sensor
data and a list of all sensor devices available in an unso-
phisticated way. It is provided by the web container that
queries a memcache backend to which the data is written by
a memcache_writer as depicted in Figure 3.

However, further development has been dropped for now
since there are already very powerful HTTP APIs included in
some database solutions. Nevertheless, there are consumers
like PRTG (https://www.paessler.com/prtg), a commercial
network monitoring system, which was used as backend
during development but later replaced by InfluxDB and
Grafana, or Prometheus, which provide a pull approach to
fetch data and, therefore, such solutions need an APT to get
their data.

SensIoT’s web API is easily extensible and allows provid-
ing data in every form. Table 1 shows a query to get a full
sensor list of all current sensors and a query to get the latest
data of a specific sensor in JSON.

Nevertheless, SensloT’s HTTP API remains too basic to
allow meaningful operations on or with it but it can be
enhanced if necessary.

11. Extensibility of SensloT

One of SensIoT’s most important goals, to provide a general
sensor monitoring framework for the IoT, is to be easily
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TABLE 1: SensIoT’s web APL

Service URL/Description

web.sensiot.de/json/sensorlist

Sensor List

Get a list of all sensor devices and
their location available

web.sensiot.de/json/<device_id>/
<sensor_type>/<sensor_id>
Get the latest data for the
respective sensor

Sensor Data

Socket

|

Socket Writer

T

Queue

Sensor Driver
(to implement)

il

Physical Sensor

FIGURE 7: Detailed overview of a sensor implementation.

extensible and enable users to utilize it for almost every
application, which involves collecting, storing, and analyz-
ing environmental data with small, distributed SBCs with
attached sensors. Therefore, it was designed to allow adding
new sensor types and consumers without major expense and
trouble.

11.1. Implementation of New Sensors. Theoretically, there
are only two restrictions when implementing new sensor
drivers regarding their employability in SensloT, as shown
in Figure 7. Firstly, the sensor driver must follow the data
format for measurements to allow interoperability with the
rest of the system and, secondly, it must send its data through
the TCP socket. You are neither restricted to a specific
programming language nor restricted to other techniques,
but your code must run within a Docker container and be
deployed via Docker Swarm. Building sensor containers in
other programming languages than Python, which are not
directly part of SensloT, is not covered here.

The implementation of new sensor types only consists of
a few steps, which roughly contain implementing the new
driver, defining a configuration, and connecting it with a
socket writer utilizing a queue and finally declaring it in the
frameworK’s service definition. The only restriction is that
SensloT uses the Python programming language.

We begin by taking a look at how services are created
with regard to the configuration and sensor declaration.
As depicted in Figure 8, the manager class gets the global
configuration O from the ConfigurationReader class.
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Based on that configuration, it creates required services @ by
calling the service class, which holds all service definitions
and how they are assembled, i.e., ASH2200 sensor Driver
+ Socket Writer or NSQ Reader + InfluxDB Writer. The
service class looks up the service construction plan ® and
creates instances @ of every needed service, assembles them
as required, and returns them to the manager class. Then the
manager starts and monitors all services ® + (©.

For the implementation of a new sensor, a new category
can be created optionally, which describes the class of the
sensor to ease the maintainability of the system. At the
current state of the framework, there are only temperature
and humidity sensor implementations available. For the
sensor, firstly, create a new Python file, within the respective
categories’ directory, secondly, update the __init__ function
to set attributes as required, and implement the read func-
tion for your specific sensor. The functionality to periodically
read and send data through the socket is inherited by the
AbstractSensor class and must not be worried about.

class My_Sensor(AbstractSensor):

def __init__(...):
super(My_Sensor, self).__init__(...)

def read(self):
self.event.wait(self.interval)
logger.info("Reading data... ")

measurements = []

i i

read data from the sensor

return measurements

Thereafter, create a sensor configuration which can be added
to SENSIOT’s global configuration or the device configura-
tion.

"<name>": {

"service": "<category name>",

" "o

type": "<type>",
"image": " <namespace>/sensiot:multiarch-latest",
"device": ["<device>"],

"o

"command": ",
"configuration": {
<necessary configuration>

Finally, connect the new implementation with a socket writer
in ./src/services.py. and declare its initialization. If a
new category was created beforehand, a new method must
be created. Otherwise, if no new category was created, it is
sufficient to add a new entry to the existing sensor category.
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Manager ConfigurationReader

Services <Driver/Consumer/etc.>

@) create_serviées(conﬁg, service)

® start_services()

14—_I

® get_services(service)
o |
Loop)

@ initialize(config)

LoopJ

® start

——

FIGURE 8: Sequence diagram of service initialization.

Consumer

f

Consumer Driver
(to implement)

3

Queue

NSQ Reader ——> Lookup Servic

Il

Queue

FIGURE 9: Detailed overview of a consumer service.

11.2. Implementation of New Consumers. It requires similar
steps, as mentioned above, to implement new consumer ser-
vices for SensloT. The consumer driver must be implemented
and connected to an NSQ reader instance utilizing a queue, as
depicted in Figure 9. Afterward, any necessary configuration
must be added to the framework’s configuration file and,
finally, it must be declared in SensloT’s service definition.
The whole procedure is very much like implementing
a new sensor driver. The implementation should be placed

in a suitable directory. For consumers, there is currently no
abstract class available to inherit from, since it has been
shown that consumers differ much more from each other and
have less in common. Adding the consumer’s configuration to
SensloT’s global configuration file is similar to adding a new
sensor’s configuration to the configuration file, as described
above, declaring the new consumer service. Additionally,
you always have to write a new method to connect your
implementation with the NSQ reader.

When implementing new consumers, there are additional
steps required. For every service except local sensors, there is
a Docker Compose template that is used by the corresponding
Makefile to create and start the service. It is necessary for the
implementation to create a new Docker Compose file, which
defines the service’s name, the networks it is connected to, and
its deploy policies. There is an annotated template.yml to
help writing Docker Compose files for new consumers.

To summarize, SensloT basically works like its pre-
decessor MonTreAL with several improvements regarding
its application area, deployment, and extensibility. It pro-
vides a wider area of application and straightforward ways
to implement new sensors and consumers and employs
proven technologies to effectively handle and visualize sensor
data.

SensIoT’s repository (https://github.com/uniba-ub/The-
SENSIOT-Framework) contains the whole source code, a
testing setup which runs on your local machine, and a
production setup, subsequently just called Swarm Setup,
which utilizes Docker Swarm.
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12. Performance Evaluation on
a Raspberry Pi Cluster

The evaluation of SensloT’s prototype consists of a laptop
serving as Swarm manager, four RPis 3 Model B which served
as sensor devices with a USB-WDE-1 receiver connected to
each, and four ASH2200 sensors placed in different rooms
and outside of the building. It is important to mention that
every sensor device with its attached receiver received the
data of all ASH2200 sensors; i.e., every sensor device gathered
exactly the same data during the evaluation period.

The prototype was configured to run the sensor reading
service for the ASH2200 sensor on every sensor device
and an nsqd instance on both Swarm Manager and each
Swarm Worker, i.e., sensor device. The data was stored in a
running InfluxDB instance as well as a Prometheus instance.
Furthermore, the web API was enabled to provide current
sensor data and a list of all known sensors. Grafana, as
well as Chronograf, was used to provide a dashboard to
view the collected sensor data whereas Grafana provided one
dashboard using InfluxDB and one for Prometheus as data
sources.

The prototype was running for 30 days and its func-
tionality was checked every day while Google’s cAdvisor
(https://github.com/google/cadvisor) analyzed the perfor-
mance characteristics of all running containers and collected
various metrics.

During the evaluation period, 905,512 individual mea-
surements for both temperature and humidity were executed
and stored within InfluxDB and Prometheus, i.e., 1,811,024
individual data records in each database. Prometheus con-
stantly uses 258 MiB of disk space. Despite Prometheus’
retention policy, which deletes data older than 15 days, the
disk space used never changed. Unfortunately, all data is
stored in a compressed format so further analyses were not
possible.

InfluxDB’s disk space consumption is more of what you
would expect when permanently collecting data because
it shows continuously increasing values depending on the
number of stored measurements and decreasing values when
data is compressed or deleted due to the database’s retention
policy. While InfluxDB’s disk space consumption can be
heavily optimized by adjusting its retention policies and
continuous queries, Prometheus should not be used as long-
term storage for time series data but rather with other remote
storage solutions.

During the test, a cAdvisor instance was running on
the server as well as on one sensor device, i.e., an RPi, to
analyze how many resources SensloT’s components need and
to identify the resource consumption.

The sensor device’s sensor service is idle most of the
time while the nsqd instance and the manager service list a
more frequent but low CPU activity, especially when data is
transmitted. The memory usage is permanently low and does
not exceed 20 MiB of RAM when added up.

To conclude, SensloT covers several areas of application
which involve monitoring environmental properties. The
prototype above simulated a setup with four sensor devices,
four physical sensors, and data throughput of 16 sensors since
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every USB-WDE-1 receiver received the sensor data of all
ASH2200 sensors. While it might be sufficient to measure
temperature and humidity only every hour, there are also use
cases requiring a much shorter measurement interval with
much more sensor devices. Therefore, it is necessary to know
SensIoT’s maximum data throughput which will be evaluated
in the following section.

13. Stress Testing of SensloT

The same setup as mentioned above was used to perform a
stress test to evaluate how many messages per second SensloT
would be able to handle and which parts of it might fail
considering the deluge of sensor data. To make sure to hit the
frameworKk’s boundaries, it was configured to start four sensor
mocks on every sensor device, which for their part generated
sensor data with maximum capabilities. Their sensor_count
was set to 10,000 and their interval to 0. The amount of
generated sensor data per sensor mock laid by around 1,000
datasets per second.

From the deluge of sensor data released by the sensors,
which together generated around 16, 000 #1sg/s, only around
24 messages reached their endpoint in the same amount
of time and were saved in the database. In the process, a
maximum of 32, a minimum of 0, an average of 24msg/s, and
in total 87,276 stored messages were achieved.

This high derivation needed further examination since
both InfluxDB and Prometheus are capable of handling a
much higher amount of incoming data. Unfortunately, Sen-
sIoT does not collect statistics about the message throughput
for every service which is necessary to find bottlenecks in the
system, but NSQ does, at least for its own components.

The total number of messages processed by all nsqd
instances together was 228,001 of ~57,600,000 messages
(16,000,,,, * 3,600,) generated by the sensor mocks which
inevitably leads to the fact that one or more services running
on each sensor device are causing the “data-jam”.

Nsqadmin reveals more problems, even on the server
side. It lists all channels, i.e., consumers, with their total
number of ready-to-fetch messages and most remarkably
stored messages in memory and on a disk. Depending
on the channel, there are enormous numbers of messages
temporarily stored on disk that indicates that the underlying
consumer implementation is too slow to fetch the same
amount of data within the same time this data is enqueued (~
64msg/s). This leads to an unavoidable overflow after some
time. Comparing the InfluxDB consumer, which was able
to consume 84,633 (226,557, — 141,924,,,..;) messages
within an hour (23, 5 msg/s), with the Prometheus consumer,
which was only able to consume 3,789 (228,001,,, -
224,222 ,,..4) messages within the same time (1 msg/s), leads
to the conclusion that both implementations are unusable for
some use cases, which require a high data ingestion rate.

To further evaluate the bottlenecks of SensloT, a slightly
different setup was chosen. Since the consumer implemen-
tation for Prometheus seems to have major issues, only the
data flow from sensors to InfluxDB was taken into account
and all services were updated to regularly log their average
message throughput. Furthermore, only one sensor device,
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running a single sensor mock instance with a maximum
data generation rate, was used to guarantee just one data
flow.

The message throughput of the sensor, which was gen-
erating around 1,000 msg/s, was slowed down by the very
first interthread data transmission from the sensor to socket
writer through their interprocess connection, Python’s built-
in queue. The current socket writer implementation can only
handle around 125 msg/s, which might cause potential data
loss if the sensor’s throughput is higher. Unfortunately, the
data throughput is further decreased since the throughput
of the socket reader does not pass 15msg/s. It is hard to
say whether the socket reader caused the slowdown or the
sending of the data to an nsqd instance utilizing the NSQ
writer. But considering that the throughput of the socket
reader and the NSQ writer are the same, neither the metadata
appending logic nor the NSQ writer can be the cause for
the drop from 125 msg/s to 15msg/s. These components are
connected in the same way as the sensor and the socket writer
through a queue with limited capacity and, therefore, this
would also result in data loss and a lower message throughput
of the NSQ writer.

We already showed above that the InfluxDB writer’s
throughput is 24 msg/s and the values of 15msg/s can be
traced back to the slow socket reader. Another look at the
nsqadmins dashboard verified this assumption since no data
was stored in memory or on a disk.

So increasing the number of sensor devices to three to
generate a higher amount of messages per second (45 =
Bdevices * 15,5,) should prove that a higher data throughput
can be handled on the server side. We know that the
throughput of the InfluxDB writer is 24 msg/s. Fortunately,
Docker Swarm allows us to easily scale services, so besides
increasing the number of sensor devices the number of
InfluxDB writer instances was also increased to three.

This setup shows the data ingestion rate of InfluxDB with
three sensor devices generating around 45 msg/s and three
InfluxDB writer instances which are able to handle up to
72msg/s. A look at nsqadmin’s dashboard reveals that all
messages were processed and no “data-jam” occurred; i.e.,
NSQ did not have to store messages in memory or on a disk.

Figure 10 draws the final image of SensIoT’s data through-
put. The sensor service on the sensor device is able to
transmit 125msg/s through the socket independent of the
underlying physical sensor. The local manager service is only
able to process 15 msg/s because of the slow socket reading
procedure. The InfluxDB writer can handle an average of
24msg/s but can be scaled up if higher throughput is
necessary. All NSQ components in between are nothing we
have to worry about since they are able to handle a multiple
times higher amount of messages even with an enormous
amount of sensor devices because every sensor device runs
an nsqd instance.

To summarize, there seem to be little possibilities to break
SensloT by overloading since it already blights the cause
in its lowest instance: the sensor devices, which drop data
exceeding their capabilities. Only a huge amount of sensor
devices might overburden the system; i.e., sensor data is
bottled-up in the nsqd instances, which might fail sooner or
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FIGURE 10: Message throughput of SensIoT’s modules.

later when disk space becomes low and consumers are not
properly scaled.

All around the evaluation was very successful and shows
that SensIoT can be universally used to monitor environ-
mental properties utilizing single board computers, i.e., RPis,
and arbitrary sensors, given that they can be accessed by the
instated single board computers. In contrast to MonTreAL,
SensloT provides several enhancements across all areas.

SensloT is universally applicable due to its improved code
base and its overall design. MonTreAL was designed for a
specific use case with a very monolithic code base, which
does not allow implementing other arbitrary sensor types. In
contrast, SensloT is designed to allow new implementations
without major effort. Important operations are implemented
by the framework so programmers only have to reason about
the specific driver implementation, either for sensors or for
consumers.

Furthermore, the overall deployment is much more sim-
plified. While there is no solution in MonTreAL to circumvent
the problem with the privileged sensor container and the
user has to start the privileged sensor reading container
manually by logging into the device, SensloT makes proper
use of the local Docker API, not only to start but also
to restart the container if it stops. With this solution, the
whole deployment is performed utilizing Docker Swarm’s
capabilities and without starting services on every sensor
device individually.

Another advantage over MonTreAL is the awareness of
time series data. SensloT implements proven technologies to
handle time series data by utilizing InfluxDB or Prometheus,
databases optimized for storing and querying data, which is
uniquely specified by time, to provide effective data handling
regarding both performance and storage size.

The basic web interface of MonTreAL, which can be
described as nearly featureless, is replaced in SensloT by
more powerful solutions, namely, Grafana and Chronograf,
whereby Grafana might be the best solution. This applies,
regardless of the used data store, much more features and is
as easy to use as Chronograf, which is restricted to InfluxDB
as a data source.

Compared to MonTreAL, SensloT provides additional
HTTP APIs. On the one hand, both database solutions come
with their own HTTP API to fetch sensor data, metrics, and
information about targets, which allows for extensive data
querying, and, on the other hand, SensIoT provides its own
basic web API, which can be easily extended to provide data
in arbitrary formats.

Regarding other already existing sensor monitoring
solutions, which feature the distribution of single board
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FIGURE 11: SensIoT’s dashboard of a magazine at Bamberg University Library.

computers, SensloT stands out by providing a general solu-
tion not bound to any specific context. Like Hentschel et al.
[5], the framework recognizes the potential of the RPi, which
is capable of locally computing operations. SensloT can be
configured to transfer the whole NSQ infrastructure as well
as consumers to its sensor devices.

14. Conclusion

We introduced SensloT, a general sensor monitoring frame-
work for the IoT. It most notably stands out by utilizing
Docker and Docker Swarm to tackle common software
problems and to enable flexible data collection. SensloT
employs IoT devices to collect environmental data and imple-
ments proven technologies to efficiently handle sensor data.
It provides appropriate database and dashboard solutions
for efficient data storage and meaningful data visualization
and was evaluated in a real-life scenario to validate its
functionality and reliability.

Currently, SensIoT is running in seven magazines, one
server room, at the lending desk, and in one carrel using
a total amount of 18 sensors. Figure 11 shows continuous
temperature and humidity readings of two locations at
Bamberg University Library. In April 2017, we started the trial
phase until September and since then we are running it as a
fully operational system.

SensloT can easily be deployed without major effort and
without expensive infrastructure or the burden of a cloud
service. Moreover, the implementation of new sensors and
consumers is simplified and done in a matter of minutes
for someone who is experienced and knows the details of
SensloT. However, the process can be further optimized to
hide internals from the user. Since it is always the same
procedure, the coupling of the required components can be
done by the framework in the background and users must
not deal with implementation details.

Adding new sensor devices works as expected when we
reimplemented the ASH2200 and DHT* drivers to fit the

current design. For someone who regularly worked with
MonTreAL and SensloT and experimented with different
solutions for different problems of which some heavily failed
and some worked well, we can say that SensIoT promises high
potential and with every dismissed solution new ways open
up to create a better solution for a general sensor monitoring
framework for the IoT. So in the current state, SensIoT is not
near to be a finished product since there is much potential for
improvements but it is a promising foundation.

Finally, SensloT is open-source and available on GitHub
via https://github.com/uniba-ub/The-SENSIOT-Framework.
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