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Abstract. The ability to formulate formally verifiable requirements is
crucial for the safety verification of software units in the automotive
industries. However, it is very restricted for complex perception tasks
involving deep neural networks (DNNs) due to their black-box character.
For a solution we propose to identify or enforce human interpretable
concepts as intermediate output of the DNN. Two effects are expected:
Requirements can be formulated using these concepts. And the DNN is
modularized, thus reduces complexity and therefore easing a safety case.
A research project proposal for a PhD thesis is sketched in the following.
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1 Introduction

The project aims for a safety certification of computer vision (CV) components
solved with convolutional neural networks (CNNs) in autonomous driving (AD)
applications using post-training methods. The goals of this PhD project are:

– Finding a systematic way to formulate safety requirements for CNNs for CV
tasks without major performance losses.

– Giving a method to formally proof that the DNN fulfills these requirements.
– Assessing the contribution of the suggested requirement formulation and

corresponding verification methods for a safety case.

2 Problems in the Automotive Safety Certification of
Neural Networks

The analysis in [14] reveals that most method proposals from the ISO 26262
automotive functional safety standard [1] are also applicable to units based on a
CNN model. However, they are not sufficient to assure safety: In complex tasks
and input spaces typical for AD perception, pure testing is considered neither
practical nor sufficient [15], also due to frequent robustness problems. This needs
to be supplemented by formal verification, (manual) inspection, and implemen-
tation measures. The incomplete specification using examples is not suitable for
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formal verification. There is also no expert knowledge about the algorithm to
remedy this, because of the automated modeling and the black-box character.
These latter properties, lastly, also invalidate manual in(tro)spection methods
and implementation measures. Hence, for a legally and societally acceptable
safety argumentation of CNNs in safety critical automotive applications, the
following is needed: a considerable amount of representative safety relevant test
cases, robustness measures, and a way to open or simplify the black-box for for-
mal verification and introspection. The last aspect is the point of interest for the
proposed PhD thesis topic.

3 Previous Work

One way to simplify a CNN model is topologically, e.g. via pruning of connections
or filters [2]. Another is the transformation into interpretable models via rule
extraction, either globally, e.g. DeepRED [9], or locally, e.g. LIME-Aleph [12].
Unfortunately, the remaining connections respectively the extracted set of rules
operate on pixel level for CV tasks. The resulting model can get large and hardly
human interpretable, since intermediate semantic concepts are missing.

Such concepts encoded by the internal representation of a CNN can be found
and realized as additional output in two ways. One is to guess concepts rep-
resented by a neuron or neuron cluster by means of feature visualization and
attribution techniques [11]. The other is to preselect concepts with accordingly
labeled data, and to use network dissection to find the neuron(s)/convolutional
filter(s) [4], respectively the neuron/filter cluster(s) [7] corresponding to each
preselected concept. Or, similarly, identify layers with the best feature represen-
tation for a given task [8]. All transfer learn the additional output by attaching
one to two trainable dense layers to one DNN layer. An alternative to a post-
training analysis is topological enforcement of desirable concepts as intermediate
output such as done in ReNN [17].

Once the new outputs are available, these can be used to formulate, check,
and enforce formally verifiable rules using solvers [5], as done in ReNN and [13].
Both examples and [10] suggest a positive impact on the performance when
including task specific concepts into the internal representation of a CNN, es-
pecially when using ones formulated in natural language [3]. As is suggested by
the above, there exists a base for concept extraction from CNNs, as well as for
formal verification of relations between neuron outputs. To our knowledge, there
is no holistic approach to both of them in the context of post-training CNN
modularization and automotive formal safety verification.

4 Approach via Concept Extraction

Building on the Net2Vec approach [7], we establish the following understanding
of a concept-to-neuron correspondence: The layer of a NN, or any other collection
of neurons, spans the vector space of the corresponding neuron outputs, here
called the space of abstract features of the layer or neuron cluster. Consider a
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neuron cluster, an abstract feature vector w of that cluster, the projection pw
to the one dimensional sub-vector space spanned by x, and a semantic concept
c. The vector w is said to correspond to c or to be a concept embedding of c if
the intermediate output of the NN obtained by concatenation of the layer with
pw has a high correlation with the existence of c (in a certain spatial location).
This essentially means, w is a mask emphasizing neurons that together predict c
well. Note that previous literature was restricted to feature spaces consisting of
neuron outputs of exactly one layer, not general clusters. The case of unit vector
correspondences (i.e. single neurons) was investigated by [4], that of general
spatial clusters within a layer by [7]. The definition proves to be natural, since
similar concepts correspond to vectors with small distance, and vector operations
yield meaningful relations on the concepts [7].

Our approach pursues the following workflow: Consider a CV task and a
corresponding dataset for supervised learning, and additionally a similar (possi-
bly the same) dataset densely labeled with concepts relevant to task. Examples
would be the segmented and image level visual concepts in the BRODEN dataset
[4]. Assume, a trained CNN is given, and consider a cross-section of it, i.e. a col-
lection of neurons from which the output of one layer can be reconstructed. This
can simply be one layer as in [8]. Consider one of the selected concepts. Repre-
sent it by an output neuron which is attached to the CNN by connecting it to
each neuron of the cross-section. Train and prune the new connection weights
on the concept data. This yields the weighted combination of cross-section neu-
rons that correspond to the concept, the concept vector. By iterating different
cross-sections and optimizing the loss, the best concept vector representing each
concept can be found. For a start improve on the following loss: For segmented
concepts and a cross-section consisting of complete filters, the loss is the one
indicated in [7] which is the intersection over union of the weighted sum of the
thresholded activation maps. For image level concepts (e.g. scenes), use the cross
entropy loss as indicated in [8]. If the prediction results of the intermediate con-
cept output are not satisfying, concept enforcement shall be evaluated, i.e. the
effect of retraining the network with the additional loss. On the interpretable
intermediate output of the DNN, formal analysis is applicable, as well as rule
extraction with possibly more human interpretable outcome. The concept vec-
tors might also mark the interfaces of mostly independent modules within the
network at which the DNN can be split.

5 Outlook: Empirical Evaluation Setup

Within the project the above approach shall be empirically evaluated. The first
simple experiment setup is a traffic sign recognition task on the German Traffic
Sign Recognition dataset [16]. It is expected that the image level concepts of
digits which are found in the speed limit signs have corresponding feature vectors
within any basic convolutional NN trained on the task (see Figure 1). This can
be evaluated using a digit dataset like MNIST. Future work will be located
in the setting of of pedestrian detection, for which expected concepts are e.g.
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Fig. 1. Examples of speed limit signs from the German Traffic Sign Recognition dataset
[16, Fig. 3]; encoded concepts which a recongnition algorithm must be capable to
distinguish are the digits 0 to 8.

segmentations of body parts as found in the Pascal Parts dataset, part of the
BRODEN dataset [4]. An example can be found in Figure 2.

Fig. 2. Examples of concepts labeled in the Pascal Part dataset [6, Fig. 4, p. 6]
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