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The covariance based law of effect: A fundamental principle 

of behavior 

Abstract 

Building on George Price’s formal account of selection, we present an abstract theoretical account of 

behavioral selection that integrates the domains of individual learning and evolution. From the 

perspective of the multilevel model of behavioral selection (MLBS), we argue that the covariance 

based law of effect (CLOE) qualifies as a fundamental principle of behavior in that it provides a 

general formal framework for selectionist thinking and model building. We demonstrate the 

feasibility of our approach by means of a covariance based model of choice behavior that explains 

the effects of changeover delays on operant matching. 

Keywords: behavioral selection, covariance based law of effect, multilevel model of behavioral 

selection, natural selection, Price equation, metatheoretical structuralism 

1 Introduction 

The idea of universal principles that explain the behavioral dynamics of living organisms was once 

very popular among behaviorists (C. L. Hull et al., 1940; Thorndike, 1932; Tolman, 1938). This view 

was questioned by Skinner (1950), who argued that behavioral psychology was not ready for a 

general theory. Skinner’s position has led to considerable skepticism towards theory among 

behaviorists and a tendency to adopt a pragmatist philosophy of science (Chiesa, 1994; Marr, 1983; 

Moore, 1998; Sidman, 1960). Today, many behavioral psychologists still work in the Skinnerian 

tradition: gather data, establish functional relations between observables, and so on (see, however, 

Staddon, 2016 for a theory-based approach). 

The pragmatist strategy in behavior analysis has left the field of theory construction mainly to 

cognitive psychologists, who build their models around mental concepts (Anderson, 1985; Eysenck, 
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2001; Fodor, 1983; Neisser, 1967). Although some behaviorists have argued against the Skinnerian 

approach (e.g., Staddon, 2014), the majority of behavior analysts remains skeptical towards a theory 

driven, deductive approach to behavior (Burgos, 2007). However, the history of science shows that 

major progress in several scientific areas (specially the most advanced ones, e.g., physics) have 

occurred due to the systematization of different phenomena under common theoretical principles 

(Kitcher, 1993). 

Notably, Skinner introduced his apparently anti-theoretical research program on purely pragmatic 

grounds. In his highly influential paper “Are theories of learning necessary?”, Skinner argued that the 

ultimate goal of a science of behavior has to be a theoretical construction that is of “greater 

generality than any assemblage of facts” (Skinner, 1950, p. 216). Obviously, Skinner was not anti-

theory per se, he was just critical about the theoretical approaches put forward by behaviorists of his 

time. Although still committed to the experimental approach, Skinner later revived the idea of a 

universal theoretical principle for the behavioral sciences by proposing “selection by consequences” 

as an explanatory mode that gives an ultimate causal explanation for various mechanisms of 

adaptive behavior, including operant conditioning, cultural adaptations and natural selection 

(Skinner, 1981).  

In fact, the idea that learning can be characterized as a selection process had been around for quite a 

while (Campbell, 1956; Gilbert, 1970; Pringle, 1951; Staddon & Simmelhag, 1971; Thorndike, 1900) 

and is still a popular theme among behaviorists (e.g., Becker, 2019; Donahoe, 2011; D. L. Hull et al., 

2001; Richerson, 2019; Simon & Hessen, 2019). However, lacking a mathematically sound theory of 

selection, the principle of “selection by consequences” remained an informal narrative for a long 

time that has been subject of substantial criticism (cf. the open peer commentaries to Skinner, 1984; 

also Tonneau & Sokolowski, 2000 and Burgos, 2019).  

Formal models have the advantage that they enforce conceptual rigor and clarity to a much higher 

degree than verbally stated theories. Therefore, the full potential of the selectionist account may not 
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yet have been revealed. However, attempts to scrutinize the selection analogy by means of formal 

models are rare. Donahoe et al. (1993) propose a neural model based on “selection networks” that 

unifies different adaptive behavioral phenomena like operant conditioning and classical conditioning. 

However, these neural networks are not themselves instances of selection. Instead, they are 

intended to provide a neural explanation for a selection process that is observed on the behavioral 

level (Donahoe et al., 1993). Another path is taken by McDowell (2004), who formalizes a behavioral 

selection process by means of an evolutionary algorithm. However, the proposed “Computational 

Model of Behavioral Selection” implements selection on the level of potential behaviors that are 

neither directly observable, nor do they correspond to real entities. Therefore, McDowell’s 

simulations do not show that reinforcement is a selection process, but rather that an evolutionary 

algorithm can mimic the outcome of reinforcement. Finally, there are two recent approaches to a 

formal selectionist theory of reinforcement that build on an abstract mathematical description of 

selection by means of the Price equation (Price, 1970, 1972, 1995, written ca. 1971). The first one 

was put forward by Baum (2017) as an attempt to state a mathematically rigorous description of 

reinforcement as an abstract selection process. Although Baum’s “Behavioral Price Equation” does 

provide a consistent conceptual framework to describe reinforcement in terms of selection, it only 

applies to learning scenarios where there are no other sources of behavioral change apart from 

reinforcement. A second application of the Price equation formalism to reinforcement was presented 

by Borgstede and Eggert (2021). In contrast to Baum’s  approach, the proposed “Multilevel Model of 

Behavioral Selection (MLBS)” incorporates natural selection and reinforcement learning within a 

single model, thereby linking the effectiveness of reinforcers to their predictive power with regard to 

evolutionary fitness (Borgstede, 2020). The core of the MLBS is the covariance based law of effect 

(CLOE), which states that reinforcement is proportional to the covariance between behavior and 

reinforcement. 

In this article, we argue that the CLOE qualifies as a fundamental principle of behavior that captures 

the essence of individual learning in terms of selection. The remainder of this paper starts with a 
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brief introduction to the mathematical description of selection by means of the Price equation 

(Section 2), followed by its application to individual learning within the MLBS (Section 3). We then 

elaborate on the role of fundamental principles in natural science (Section 4) and show how the CLOE 

qualifies as a fundamental principle, in that it provides a general theoretical framework for behavior 

analysis (Section 5). To illustrate the value of the CLOE for theory building, we further present an 

exemplary application to model the effects of changeover delays on operant matching (Section 6). 

Finally, we discuss the results of our analysis and give an outlook on how the CLOE may unify the 

field of behavior analysis (Section 7). 

2 The Price equation 

The Price equation was introduced by George Price in his seminal paper “Selection and covariance” 

(Price, 1970). It describes the principle of selection on the most abstract level, such that it applies to 

any selection process. One of the most common forms of the Price equation is:  

 𝑤𝑤�∆𝑧𝑧̅ = Cov(𝑤𝑤𝑖𝑖, 𝑧𝑧𝑖𝑖) + E(𝑤𝑤𝑖𝑖 ∆𝑧𝑧𝑖𝑖) (1.)  

Here, 𝑧𝑧𝑖𝑖  are character values of an arbitrary set (e.g., a particular genotype). 𝑧𝑧̅ is the arithmetic mean 

of 𝑧𝑧 over all elements of the set (i.e., the population average). 𝑤𝑤𝑖𝑖 designates the contribution of 

element 𝑖𝑖 to the elements of a second set (e.g., a population of offspring) and is usually called 

“fitness” because it corresponds to the contribution of an individual to the future population. 𝑤𝑤�  is 

the arithmetic mean over all 𝑤𝑤𝑖𝑖. The Price equation partitions the difference in mean character value 

between two sets, ∆𝑧𝑧̅, into the covariance between 𝑧𝑧𝑖𝑖  and 𝑤𝑤𝑖𝑖 and the expected value of fitness 

weighted within-elements change, 𝑤𝑤𝑖𝑖∆𝑧𝑧𝑖𝑖.  The partitioning of change into a covariance term and an 

expectation term corresponds to the separation of selective and non-selective sources of change. For 

example, if 𝑧𝑧𝑖𝑖  designates the presence of a particular genotype in individual 𝑖𝑖, mean character value 

𝑧𝑧̅ equals the frequency of the corresponding genotype in the parent population and ∆𝑧𝑧̅ is the gene 

frequency change from one generation to the next. Correspondingly, Cov(𝑤𝑤𝑖𝑖, 𝑧𝑧𝑖𝑖) captures the effect 

of natural selection on gene frequency change, while E(𝑤𝑤𝑖𝑖 ∆𝑧𝑧𝑖𝑖) summarizes all sources of gene 
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frequency change that are not natural selection, like mutation, recombination or environmental 

factors.  

The Price equation is a mathematical identity and, therefore, true by definition. Consequently, the 

Price equation (along with all of its variants) does not provide an empirical model in any mechanistic 

sense. Instead, it constitutes an invaluable analytical tool that helps to disentangle different sources 

of change in various contexts and to identify the relevant factors that need to be studied when 

dealing with selection processes (Luque, 2017).   

3 The multilevel model of behavioral selection 

Borgstede and Eggert (2021) extend the Price equation to a multilevel model of behavioral selection 

(MLBS) that describes selection on different aggregate levels, thereby capturing the effects of within-

individuals selection (learning) and between-individuals selection (evolution).  

Formally, the MLBS consists in a multilevel extension of the Price equation applied to an arbitrary 

behavior 𝑏𝑏. Behavior is conceptualized on a molar level, i.e., 𝑏𝑏 is not a single instance of behavior 

(like visiting a certain food site), but an aggregate measure that is itself extended over time (like the 

rate of visiting a certain food site or the time spent foraging). Like in the basic Price equation, the 

change in average 𝑏𝑏 in a population of individuals is partitioned into a population-level covariance 

capturing natural selection and a population-level expectation capturing average change between 

parents and their offspring. To account for the comparatively small time scale at which individual 

learning occurs, the MLBS focuses on the survival part of evolutionary fitness, treating surviving 

individuals formally as their own offspring. In this setup, the change between parents and offspring 

expressed in the expectation term in equation 1 corresponds to the change from a parent to its own 

future-self, i.e., intra-individual behavioral change. The core assumption of the MLBS is that this 

intra-individual change is itself subject to a selection process and can be described by the same 

abstract principle as natural selection.  
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To apply the covariance principle expressed in the Price equation to the within-individual level, the 

individual needs to be formally partitioned into lower level elements. Since behavior takes up time, it 

makes sense to think of these lower level elements as behavioral episodes, which are themselves 

defined by recurring contextual factors (e.g., the trials in a reinforcement experiment). Within-

individuals change can now be captured by recursively inserting the Price equation into the 

expectation term to account for behavioral variation between episodes 𝑗𝑗: 

             𝑤𝑤�∆𝑏𝑏� = Cov𝑖𝑖(𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖) + E𝑖𝑖(𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖) 

                                                           𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖 = Cov𝑗𝑗�𝑤𝑤𝑖𝑖𝑗𝑗, 𝑏𝑏𝑖𝑖𝑗𝑗� + E𝑗𝑗(𝑤𝑤𝑖𝑖𝑗𝑗Δ𝑏𝑏𝑖𝑖𝑗𝑗) 

(2.)  

Equation 2 partitions population change of average behavior ∆𝑏𝑏� into a population-level covariance 

Cov𝑖𝑖(𝑤𝑤𝑖𝑖, 𝑏𝑏𝑖𝑖), capturing natural selection, and the expectation over intra-individual behavioral change 

E𝑖𝑖(𝑤𝑤𝑖𝑖Δ𝑏𝑏𝑖𝑖). The expectation term is itself partitioned into a within-individuals covariance 

Cov𝑗𝑗�𝑤𝑤𝑖𝑖𝑗𝑗, 𝑏𝑏𝑖𝑖𝑗𝑗�, capturing reinforcement, and a within-individuals expectation term E𝑗𝑗(𝑤𝑤𝑖𝑖𝑗𝑗Δ𝑏𝑏𝑖𝑖𝑗𝑗), 

capturing all sources of within-individuals behavioral change apart from reinforcement. These non-

selection factors include random variation, external and internal constraints, as well as other 

mechanisms of behavior change. Since the MLBS focuses on reinforcement, the intra-individual 

expectation term is treated as a residual term and denoted 𝛿𝛿. Dropping the indices for notational 

simplicity, the within-individuals part of equation 2 thus becomes:  

 𝑤𝑤∆𝑏𝑏 = Cov(𝑤𝑤, 𝑏𝑏) + δ (3.)  

Equation 3 closely mirrors Baum’s behavioral Price equation (Baum, 2017). However, the MLBS does 

not treat behavioral selection as an isolated process where fitness is circularly defined by the 

observed behavioral change. Instead, “fitness”, as expressed by 𝑤𝑤 is taken rather literally by 

identifying it with the predicted evolutionary fitness of an individual, given the current behavior. Of 

course, the individual has no access to its actual future evolutionary fitness. Therefore, it has to 

adjust its behavior according to fitness proxies that predict the expected change in an individual’s 
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evolutionary fitness. The predictiveness of a fitness proxy with regard to evolutionary fitness 

constitutes its reinforcing power (Borgstede, 2020). For example, food will act as a reinforcer as long 

as it positively affects an individual’s body weight, because in most species, body weight predicts 

evolutionary fitness on a population level (i.e., heavier individuals contribute more to the future 

population than low-weight individuals). The concept of a fitness proxy is similar to Baum’s 

“phylogenetically important events”(PIEs) (Baum, 2018). However, it goes beyond the idea of 

“events” acting as reinforcers by treating any statistical fitness predictor as a reinforcer. This also 

includes behavior shown by other individuals or the individual itself, and even internal state changes 

(like the dopamine concentration in the brain), as long as they co-vary with evolutionary fitness on 

the population level. 

Formally, a fitness proxy 𝑝𝑝 is defined by means of a population-level linear regression 𝑤𝑤 = 𝛽𝛽0 +

𝛽𝛽𝑤𝑤𝑤𝑤𝑝𝑝 + 𝜀𝜀, where 𝛽𝛽𝑤𝑤𝑤𝑤 is the slope of the regression of individual fitness on a fitness proxy 𝑝𝑝. 

Substituting 𝑤𝑤 in equation 3 with the predicted value from this regression and simplifying yields the 

fundamental principle of behavioral selection, the covariance based law of effect (CLOE):1  

 𝑤𝑤∆𝑏𝑏 = 𝛽𝛽𝑤𝑤𝑤𝑤Cov(𝑏𝑏,𝑝𝑝) + δ (4.)  

The CLOE describes reinforcement on the most abstract level as the result of a covariance between 

behavior and reinforcement, where reinforcement is defined as any statistical predictor of 

evolutionary fitness. The CLOE was proposed as a fundamental principle that underlies all 

reinforcement based learning processes (Borgstede & Eggert, 2021). In the following sections, we will 

argue that the CLOE can in fact be regarded as a fundamental principle of behavior and demonstrate 

how it can be utilized to aid theory construction in behavior analysis. 

                                                           
1 See Borgstede and Eggert (2021) for the complete derivation. 



THE COVARIANCE BASED LAW OF EFFECT 

9 
 

4 The role of fundamental principles in natural science 

Although the history of science provides several examples of “fundamental principles” in different 

scientific areas, how to conceptualize them has undergone considerable debate among scientists and 

philosophers of science. Following the ideal of logical positivism (Carnap, 1995), early behaviorists 

adopted a syntactic conception of scientific theories, where fundamental principles are understood 

as the axioms of a theory, from which specific laws and predictions are to be derived by means of 

deductive reasoning.2 

The traditional, syntactic, view of scientific theories was later questioned by philosophers of science. 

First, they pointed out that scientific theories are more than their axioms and theorems, in the sense 

that they are complemented by many other specific laws. Even the most developed scientific 

theories cannot be fully characterized by their axiomatic core. For example, Newtonian mechanics 

does not only consist of the three classical laws of motion and the law of gravitation, but also 

includes more specific laws with a much more restricted domain of application, for example Hooke’s 

law, Archimedes’ law, Galileo’s law, etc. Moreover, classical mechanics can be stated in various 

syntactic forms (e.g., using the formalisms of Langrange or Hamilton). The different formalisms that 

have been proposed for classical mechanics over the course of time emphasize that scientific 

theories are not petrified structures but historical entities that can be changed and adapted in order 

to extend their range of applicability. 

To account for these complexities, beginning in the 1960s and 1970s, several philosophers developed 

a semantic conception of scientific theories that views scientific theories as a collection of models, 

rather than axioms (Giere, 1988; Suppe, 1989; Suppes, 1970). One particularly sophisticated 

formulation of the semantic conception is metatheoretical structuralism (Balzer et al., 1987). The 

structuralist view represents scientific theories as a collection of so-called theoretical elements. 

Theoretical elements are connected by a hierarchical relation that specifies which theoretical 

                                                           
2 A paradigmatic example of the axiomatic approach is C. L. Hull (1943). 
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elements are specializations of more general theoretical elements. Specializations specify subclasses 

of the class of phenomena described by the more abstract principles. Thus, the more specific laws 

are not logically deduced from the more abstract principles. Instead, they restrict the scope of the 

more abstract theoretical elements such they provide details about specific parts of the world that 

are intended to be explained by the theory.  

Given the theory is sufficiently developed, these theoretical elements can be arranged in the form of 

a theory-net (see Figure 1). At the top of the theory-net we find the fundamental principle (or 

fundamental law) of the theory, a very general statement about how the theory accounts for a 

certain class of phenomena. According to the structuralist view, fundamental principles provide a 

definition for the general analytical concepts of the theory. However, fundamental principles buy 

generality at the expense of being empirically vacuous.3 The role of fundamental principles is to 

serve as the guiding principles of a theory, telling us “what the theory is about” (Díez & Lorenzano, 

2013). By doing so, they point us towards the relevant factors to consider when explaining a specific 

class of phenomena. Empirical applications of the theory require more specific laws that limit the 

scope of the fundamental principle. Thus, a fundamental principle provides a shared formal 

vocabulary for the practitioners in a scientific field. 

As historical entities, scientific theories expand and adapt to explain new kinds of phenomena. For 

example, Newton’s second law of motion, as stated in classical particle mechanics, needed to be 

modified to account properly for the dynamics of fluids. This procedure is also accompanied by 

connecting the formal vocabulary from one theory with the formal vocabulary of another theory. 

Specifically, elements from different theories may be related to one another via what we may call 

intertheoretical links. Continuing from the above example, the theories of classical particle mechanics 

and fluid mechanics are connected by a set of intertheoretical links between Newton’s second law 

                                                           
3 For a similar, non-structuralist view, on fundamental principles see Kuhn (1977) and Friedman (2001).  
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(the fundamental principle of classical mechanics) and the Cauchy momentum equation (the 

fundamental principle of fluid mechanics) (Granger, 1995). 

 

Figure 1: Theory-net depicting a subset of the theory elements from classical mechanics and fluid mechanics. The 
fundamental principle of classical mechanics is Newton’s second law, which is connected to the fundamental principle of 
fluid mechanics, the Cauchy momentum equation, via a set of intertheoretical links. The Cauchy momentum equation is 
specialized by the Navier-Stokes equation, which then branches into the Gromeka-Lamb equation and Stoke’s flow equation, 
etc. Each specialization narrows the scope of the above principles to a more specific subclass of phenomena. 

5 The covariance based law of effect as a fundamental principle of 

behavior 

We will now construct a tentative theory-net from several theoretical elements that have been 

proposed in the field of behavior analysis. Our theory-net is not intended to be final or 

comprehensive, but rather an attempt to demonstrate how several theoretical principles are related 
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when pictured in the broader perspective of behavioral selection theory. Especially the lower levels 

of the net are far from complete and the depicted theoretical elements are best understood as 

illustrative examples. Our tentative theory-net for behavior analysis is depicted in Figure 2. 

 

Figure 2: Tentative theory-net relating the covariance based law of effect to theoretical elements from evolutionary biology 
and behavior analysis. 

The conceptual foundation of the MLBS is the abstract description of selection by means of the Price 

equation. The Price equation has been proposed as a unifying theoretical principle in the field of 

evolutionary biology that structures many subordinate general principles and specific laws, which we 

omit here (Luque, 2017; Rice, 2004; see also Luque & Baravalle, 2021 for a tentative theory-net for 

evolutionary biology). The MLBS expands the scope of the Price equation from the realm of 

evolutionary biology to behavior analysis. Within the MLBS framework, the CLOE relates to the basic 

Price equation in a similar way as the Cauchy momentum equation relates to Newton’s second law. 

While the Cauchy momentum equation is the fundamental principle by which Newton’s second law 

is applied to the field of fluid dynamics, the CLOE is the fundamental principle by which the Price 
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equation is applied to the field of behavior analysis. The CLOE can therefore be regarded as the basic 

theoretical element of behavioral analysis. The CLOE is directly connected to the theory-net of 

evolutionary biology via an intertheoretical link. The intertheoretical link concerns the definition of 

reinforcers, which would be inherently circular if there were no external criterion for identifying 

reinforcers (apart from that they reinforce). Defining reinforcers as fitness predictors provides such 

an external criterion. Since the MLBS formalism requires fitness predictors to be linear, reinforcers 

with a nonlinear fitness function may sometimes yield unreliable fitness predictions. Therefore, given 

nonlinear fitness effects, organisms will achieve better fitness predictions (and thus have an average 

fitness advantage) if they transform the relevant physical dimensions of the reinforcer such that the 

fitness function becomes approximately linear. Such transformations have been studied extensively 

in the quantitative study of perception and are commonly called psychophysical functions 

(Gescheider, 2016). There is considerable evidence that many psychophysical functions can be 

approximated by a power function, the so-called “psychophysical law” (Stevens, 1957).  

When understood as a basic theoretical element, the CLOE allows to structure several more specific 

laws. The behavioral selection part of the CLOE can be used to derive some general insights into the 

nature of reinforcement by analyzing the equilibrium condition of selection being equal to zero. For 

example, Borgstede and Eggert (2021) show how various empirical effects, like response deprivation, 

conditioned reinforcement or blocking, can be explained by the CLOE using the equilibrium 

condition. Borgstede (2021) further relates the CLOE to information theoretic concepts, thereby 

giving a non-essentialist explanation for the apparent connection between learning and information 

seeking. In order to apply the equilibrium condition, one has to impose constraining conditions that 

depend on the specific scenario. In simple choice scenarios, for example, we usually presume that 

the overall time spent at the different behaviors within a trial cannot exceed the trial length (note, 

however, that there are cases where relative time spent at different behaviors do not necessarily 

sum up to one, e.g., when an animal is moving and vocalizing simultaneously).  
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Another aspect of behavioral selection concerns the sources of covariance between behavior and 

reinforcement, i.e., the acting contingencies of reinforcers as expressed by the effective schedules of 

reinforcement. On a molar level, the feedback function of a schedule of reinforcement provides 

sufficient information to derive the covariance between behavior and reinforcement. Specifically, 

given a certain behavior rate, the first derivative of the molar feedback function returns the 

corresponding expected change in reinforcement per unit change in behavior. When approximated 

by a linear regression, the expected change in reinforcement corresponds to the slope of the 

regression line. For a known behavioral variance, this regression slope determines the covariance 

between behavior and reinforcement.4  

Apart from behavioral selection, the CLOE separates non-selection sources of behavioral change. For 

example, there are instances where behavior occurs in the presence of reinforcement, although it 

has not been selected (Breland & Breland, 1961; Segal, 1972; Staddon & Simmelhag, 1971). Non-

reinforced behavior occurring as a function of reinforcement is often summarized under the name of 

adjunctive behavior. A specific quantitative law governing adjunctive behavior has been proposed as 

the law of induction that relates reinforcement and behavior by a power function (Baum, 2018). 

In the next section, we will use the analytical framework of the generalized matching law to explain 

various empirically demonstrated effects in the context of choice behavior by means of the more 

general theoretical principles proposed above. This exemplary application of the formal selectionist 

framework will demonstrate how the CLOE can be used to guide theory formulation in behavior 

analysis. 

                                                           
4 For example, the reinforcement obtained from a ratio schedule is a linear function of behavior with a slope 
given by the average reinforcement per behavior 𝛽𝛽𝑅𝑅𝑅𝑅 = 𝑅𝑅/𝑏𝑏. Since, by definition of least squares regression, 
𝛽𝛽𝑅𝑅𝑅𝑅 = Cov(𝑅𝑅, 𝑏𝑏, )/Var(𝑏𝑏), the covariance between behavior and reinforcement in a ratio schedule is 
Var(𝑏𝑏)𝑅𝑅/𝑏𝑏, i.e., the product of the slope of the feedback function and behavioral variance. 
Note that the CLOE specifies behavioral change with regard to the effective fitness predictors 𝑝𝑝 instead of 𝑅𝑅. 
Consequently, for real applications, we first have to apply the corresponding psychophysical function 𝜓𝜓(𝑅𝑅) 
before we calculate the covariance from a given feedback function (compare the example below). 
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6 Exemplary application: Effects of changeover delay on operant 

matching 

The matching law describes the empirical relation between behavioral allocation and reinforcement 

under concurrent variable interval schedules when behavior has settled to a steady state (i.e., 

average behavioral allocation is stable). In its original form, the matching law states that the ratio of 

response rates between choice options equals the ratio of obtained reinforcement from the options 

(Herrnstein, 1961). However, the strict equality only holds if changing between options is associated 

with a certain delay (about 1.5 seconds) where responses do not produce reinforcement, a so-called 

changeover delay (CoD). When there is no CoD, individuals generally tend to undermatch (i.e., the 

response ratio is skewed towards equal responding when compared to the reinforcement ratio). 

When the CoD is very long (e.g., by introducing travelling costs between choice options like in Baum, 

1982), overmatching is observed (i.e., the response ratio skewed towards the option with the higher 

response rate when compared to the reinforcement ratio). Following Baum (1982), we conceptualize 

CoD as an indicator of travel time between food patches. Consequently, “changing over” is not 

incorporated into the primary measures of response rate for the choice options but counted as a 

separate behavior (cf. Baum, 1974).  

In this section, we will demonstrate how the effects of CoD on under- and overmatching can be 

explained in the broader context of behavioral selection theory, making explicit use of the theoretical 

elements proposed above. For the sake of simplicity, we limit our formal analysis to the selection 

part of behavior change (for an explicit treatment of adjunctive behavior by the law of induction see 

Baum, 2015). 

6.1 Model 

Let 𝑏𝑏1 and 𝑏𝑏2 be the number of lever presses for levers 1 and 2 in an experimental trial, with 𝑅𝑅1 and 

𝑅𝑅2 being the corresponding obtained reinforcements (number of food pellets). The fitness function 

of food intake is generally a monotone increasing function with diminishing slope (i.e., the fitness 
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gain per food pellet is higher when the animal is food deprived when compared to the same animal 

having access to a high amount of food). Therefore, the animal can approximately linearize the 

fitness function if it applies a power transformation. The corresponding psychophysical function 

yields a linear fitness predictor 𝑝𝑝 = 𝑅𝑅𝑠𝑠 with 0 < 𝑠𝑠 < 1. 

The covariance between behaviors 𝑏𝑏𝑖𝑖 and fitness predictors 𝑝𝑝𝑖𝑖  is derived from the molar feedback 

function of the underlying schedules of reinforcement. For variable interval schedules, a reasonable 

feedback function is given by 𝑅𝑅 = 𝑥𝑥𝑏𝑏 (𝑥𝑥 + 𝑏𝑏)⁄ . Figure 3a depicts the corresponding feedback 

functions for a VI 2 schedule. Depending on the steepness parameter of the psychophysical law, the 

effective feedback function with regard to the linear fitness predictor 𝑝𝑝 (i.e., after the psychophysical 

transformation) changes accordingly (Figure 3a, dashed and dotted lines).  

To predict steady state behavior, we apply the equilibrium condition for behavioral selection, 

thereby setting behavioral change equal to zero for each lever pressing rate 𝑏𝑏𝑖𝑖. If each behavior was 

treated separately, the equilibrium condition would imply that Cov(𝑝𝑝, 𝑏𝑏𝑖𝑖) = 0. However, because the 

feedback function in a variable interval schedule is monotone increasing, the resulting covariance 

between behavior and reinforcement would always be positive and the equilibrium condition could 

never be reached. Therefore, individuals would increase their lever pressing rate indefinitely. This is 

where behavioral constraints become relevant. Since in our experimental setup the two choice 

options are mutually exclusive, the sum of all responses can never exceed the maximum number of 

responses in a trial. In the simplest case where the complete time is divided between the two choice 

options, the response rate at one lever determines the response rate at the second lever. 

Consequently, positive selection acting on one behavior implies negative selection on the other 

behavior. It can be shown that, at the point of equilibrium, the amount of negative selection equals 

the amount of positive selection, resulting in a linear function with a slope of −1 (see Figure 3b, solid 

line). The equilibrium condition then becomes:5 

                                                           
5 See Appendix A1 for a formal derivation. 
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 Cov(𝑝𝑝, 𝑏𝑏1) = Cov(𝑝𝑝, 𝑏𝑏2) (5.)  

At the point of equilibrium, the covariances in Equation 5 are completely determined by the slopes of 

the feedback functions for 𝑏𝑏1 and 𝑏𝑏2. Therefore, Equation 5 basically states that behavior is in a 

steady state if and only if the marginal returns of the two choice options are equal. It has been 

shown that under concurrent variable interval schedules, equalizing marginal returns coincides with 

maximizing reinforcement and with strict matching (Baum, 1981). However, if the number of 

reinforcements is transformed according to a psychophysical power function, the equilibrium 

condition becomes skewed towards the less frequent behavior, resulting in undermatching (see left 

column of Figure 4). 

 

Figure 3: Effects of the parameter 𝑠𝑠 (steepness of psychophysical function) on feedback (a) and duration of CoD on the 
behavioral constraint in a concurrent VI/VI schedule (b). 

To model the effects of CoD on matching performance, we change the constraining condition to 

explicitly account for the duration of CoD. Hunter and Davison (1978) showed that the total time 

spent changing between two behavioral options is approximately proportional to the product of the 

numbers of responses on the corresponding options. Treating “changing over” as an additional 
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behavior that competes for the available time, we can specify a corresponding constraint (see Figure 

3b). 6   

Like before, additional responses at one option tend to decrease the number of responses at the 

other option. However, if there is a CoD, the slope of the function is no longer constant but depends 

on the value of 𝑏𝑏1. Moreover, for higher CoD, the function becomes more convex, with a slope of -1 

if both behaviors are equally frequent (i.e., 𝑏𝑏1 = 𝑏𝑏2), a slope steeper than -1 if 𝑏𝑏1 is the less frequent 

behavior, and a slope flatter than -1 if 𝑏𝑏1 is the more frequent behavior (see Figure 3b). 

Consequently, the amount of indirect selection now depends on the relative allocation of behavior, 

thereby skewing behavioral allocation towards the more frequent response. Therefore, for large 

durations of CoD, the model predicts that the more frequent behavior will be preferred over the less 

frequent behavior, resulting in overmatching for high durations of CoD. Taken together with 

undermatching being the default in the absence of CoD, there will be a specific value for the duration 

of CoD where the constraining effect and the effect of nonlinear fitness functions cancel each other 

out and produce strict matching CoD. 

Figure 4 presents the results of a numerical simulation with a programmed reinforcer ratio of 3:1 

(concurrent VI 2 / VI 6 schedule). The simulation was carried out for three different values of the 

steepness of the psychophysical function and three different CoD durations. The panels show the 

amount of behavioral selection (as calculated from the CLOE) from various starting points (i.e., 

different combinations of response rates) as arrows indicating direction and relative strength of 

selection. Stable state behavior was calculated using the corresponding equilibrium condition for 

each combination of parameters (see Appendices A1 and A2 for formal details).  

                                                           
6 See Appendix A2. 
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Figure 4: Vector field plots for different combinations of the parameters 𝑠𝑠 (steepness of psychophysical function) and 𝛾𝛾2 
(duration of CoD). The plots were generated using a numerical simulation of two mutually exclusive behaviors under a 
concurrent variable interval schedule (VI 2 / VI 6), yielding a programmed reinforcer ratio of 3:1, with 𝑧𝑧 = 0.5 and 𝐶𝐶 = 100 
(see Appendices A1 and A2 for formal details). The red dots mark the equilibrium points derived from the CLOE (i.e., stable 
state behavior). The solid lines correspond to the constraining condition. The sensitivity values of the fitted matching 
equation for each condition reveal that strict matching is a special case where the undermatching tendency that results from 
the psychophysical function is counterbalanced by the overmatching tendency that results from CoD. 

7 Discussion 

In this article, we have argued that the field of behavior analysis would benefit from an abstract 

theoretical perspective that guides experimental research as well as model construction. In our view, 

“selection by consequences” can provide such a theoretical perspective if presented within a 
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consistent formal selectionist framework like the MLBS. We have sketched how the covariance based 

law of effect (CLOE) can be understood as a fundamental theoretical element underlying all specific 

laws of behavior. The feasibility of our approach was demonstrated by an exemplary application of 

the CLOE to explain the effects of changeover delays on operant matching.  

Our approach builds on the most abstract formal description of selection by means of the Price 

equation (Price, 1970). The Price equation applies to all selection processes, biological and non-

biological. Therefore, if behavior analysis can be coherently subsumed under the principle of 

selection at all, any formal account of behavioral selection needs to be consistent with the Price 

equation. However, “recognition of covariance [...] is of no advantage for numerical calculation, but 

of much advantage for evolutionary reasoning and mathematical model building” (Price, 1970, p. 

521). Consequently, taken on its own, the CLOE is almost empirically vacuous. Like all other 

fundamental theoretical principles, it is not a “capture it all” law, but rather a statement of what the 

theory is about. As such, it helps to structure theoretical and empirical thinking by pointing us to the 

factors that are relevant to our research. In the case of the CLOE, the basic theoretical statement is: 

behavior analysis is essentially concerned with a Darwinian process. If we accept this basic statement, 

the formalization in terms of the CLOE is straightforward. Applying the formal framework of the 

MLBS, one can then construct specific models for various scenarios by identifying the relevant 

sources of selection, as well as external and internal constraints on behavior (e.g., Strand et al., 

2021). Moreover, a formalized selectionist approach provides a general theoretical framework to 

make sense of otherwise puzzling empirical findings (like the effects of CoD on operant matching). 

Therefore, the MLBS may bear the potential to formulate a unified account of learning and behavior 

in general. 

Since the MLBS provides an explicit link between behavioral selection and natural selection, 

biological constraints of behavior naturally arise. For example, the mechanisms for the detection of 

fitness predictors certainly vary between different species and may range from simple temporal 
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integrators in bacteria to complex neural processing, which some might want to call “cognitive”.7 

Depending on the specific biological mechanisms that realize adaptive behavioral responses to 

changing environments, learning may take very different forms. However, if we understand learning 

as a selection process that is functionally linked to natural selection, we will always see the more 

general pattern behind apparently distinct processes. 

When Skinner (1950) claimed that the quest for a general theory of behavior was premature, he was 

certainly right with regard to the theoretical programs put forward by Hull, Tolman and others. These 

approaches were ambitious but ultimately failed to capture the general structure of behavioral 

dynamics. It was not until the 1970s, when George Price wrote his seminal papers on the nature of 

selection, that psychology could possibly come up with a general theory of behavior that is of 

“greater generality than any assemblage of facts” (Skinner, 1950, p.216). The MLBS might be 

considered as the type of theory that Skinner envisioned. It goes “beyond the collection of uniform 

relationships” (Skinner, 1950, p. 215) in such a way that all regularities of adaptive behavior are 

taken to be special instances of the fundamental principle of behavioral selection: the covariance 

based law of effect. 

The experimental analysis of behavior has produced a vast amount of data and a considerable 

amount of stable effects that have withstood decades of empirical tests. What is needed now is a 

theoretical integration of these effects from an overarching theoretical perspective. We believe that 

behavioral selection is the key to such a unifying account of behavior. 

8 Appendix: Calculating behavioral equilibria using the CLOE 

8.1 A1: Equilibrium without CoD 

In experimental settings with mutually exclusive behaviors, behaviors compete for the available time 

during an experimental trial. An appropriate constraint is given by a weighted sum over all mutually 

                                                           
7 The same holds for mechanisms regulating adjunctive behavior. 
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exclusive behaviors in a trial, ∑𝛾𝛾𝑖𝑖𝑏𝑏𝑖𝑖 = 𝐶𝐶, with 𝐶𝐶 being the trial duration and 𝛾𝛾𝑖𝑖  being the average 

duration of a single instance of each behavior 𝑏𝑏𝑖𝑖. Given such a behavioral constraint, selection on 

each behavior can be partitioned into a direct selection component (obtained from the feedback 

function of the corresponding behavior) and an indirect component (obtained from the feedback 

functions of the competing behaviors).  

We can analyze the amount of indirect selection of 𝑏𝑏1 via the competing behavior 𝑏𝑏2 if we weigh the 

selection on 𝑏𝑏2 by the expected change in 𝑏𝑏2 per unit change in 𝑏𝑏1 (i.e., the partial derivative of 𝑏𝑏2 

with respect to 𝑏𝑏1, which is given by 𝜕𝜕𝑅𝑅2
𝜕𝜕𝑅𝑅1

). Hence, the overall selection on 𝑏𝑏1is: 

 Δ𝑠𝑠𝑏𝑏1 = 𝛽𝛽𝑤𝑤𝑤𝑤Cov(𝑝𝑝, 𝑏𝑏1) +
𝜕𝜕𝑏𝑏2
𝜕𝜕𝑏𝑏1

𝛽𝛽𝑤𝑤𝑤𝑤Cov(𝑝𝑝, 𝑏𝑏2) (S1) 

In the absence of CoD, at the point of equilibrium, we would expect each increase in response rate at 

𝑏𝑏1 to result in an equal decrease in response rate at 𝑏𝑏2. Therefore, 𝜕𝜕𝑅𝑅2
𝜕𝜕𝑅𝑅1

 would be constant with a 

value of −1, resulting in the following equilibrium condition: 

 Cov(𝑝𝑝, 𝑏𝑏1) = Cov(𝑝𝑝, 𝑏𝑏2) (S2) 

8.2 A2: Equilibrium with CoD 

Like above, we start with the general time constraint for mutually exclusive behaviors, ∑𝛾𝛾𝑖𝑖𝑏𝑏𝑖𝑖 = 𝐶𝐶. 

However, we need to account for the additional time spent changing between the options. Let 𝛾𝛾1be 

the duration of a single response and 𝛾𝛾2 the time needed to change from option 1 to option 2. 

Adapting the findings from Hunter and Davison (1978), we can express the total number of 

changeovers between options as 𝑧𝑧𝑏𝑏1𝑏𝑏2, with 𝑧𝑧 being a parameter expressing the general tendency to 

change between options. Given that the animal does not engage in any other behaviors during the 

experiment, the total duration of an experimental trial can now be partitioned into one part 

describing the time spent responding, 𝛾𝛾1(𝑏𝑏1 + 𝑏𝑏2), and the time spent changing from one response 

option to the other, 𝛾𝛾2𝑧𝑧𝑏𝑏1𝑏𝑏2. Hence, the constraining condition becomes: 
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 𝛾𝛾1(𝑏𝑏1 + 𝑏𝑏2) + 𝛾𝛾2𝑧𝑧𝑏𝑏1𝑏𝑏2 = 𝐶𝐶 (S3) 

The rate of change in 𝑏𝑏2 per unit change in 𝑏𝑏1 due to this constraint can be obtained by solving S3 for 

𝑏𝑏2 and calculating the first derivative of  𝑏𝑏2 with respect to 𝑏𝑏1, which yields: 

 
𝜕𝜕𝑏𝑏2
𝜕𝜕𝑏𝑏1

= −
𝛾𝛾12 + 𝛾𝛾2𝑧𝑧𝐶𝐶

(𝛾𝛾1 + 𝛾𝛾2𝑧𝑧𝑏𝑏1)2 (S4) 

The equilibrium condition thus becomes:  

 Cov(𝑝𝑝, 𝑏𝑏1) =
𝛾𝛾12 + 𝛾𝛾2𝑧𝑧𝐶𝐶

(𝛾𝛾1 + 𝛾𝛾2𝑧𝑧𝑏𝑏1)2 Cov(𝑝𝑝, 𝑏𝑏2) (S5) 
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