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group of the Special Interest Group Artificial Intelligence of the German Com-
puter Science Society (Gesellschaft für Informatik) and the German Cognitive
Science Association.

Dealing with complexity has become one of the great challenges for modern
information societies. To reason and decide, plan and act in complex domains is
no longer limited to highly specialized professionals in restricted areas such as
medical diagnosis, controlling technical processes, or serious game playing. Com-
plexity has reached everyday life and affects people in such mundane activities
as buying a train ticket, investing money, or connecting a home desktop to the
internet.

Research in cognitive AI can contribute to support people navigating through
the jungle of everyday reasoning, decision making, planning and acting by provid-
ing intelligent support technology. Lessons learned from expert system research
of the nineteen-eighties are that the aim should not be to provide for fully au-
tomated systems which can solve specialized tasks autonomously but instead to
develop interactive assistant systems where user and system work together by
taking advantages of the respective strenghts of human and machine.

To accomplish a smooth collaboration between humans and intelligent sys-
tems, basic research in cognition is a necessary precondition. Insights in cognitive
structures and processes underlying successful human reasoning and planning
can provide suggestions for algorithm design. Even more important, insights in
restrictions and typical errors and misconceptions of the cognitive systems pro-
vide information about that parts of a complex task from which the human
should be relieved. For successful human-computer interaction in complex do-
mains furthermore it has to be decided which information should be presented
when in what way to the user.

We strongly believe that symbolic approaches of AI and psychological re-
search of higher cognition are at the core of success for the endeavor to create
intelligent assistant system for complex domains. While insight in the neurologi-
cal processes of the brain and in the realization of basic processes of perception,
attention and sensu-motoric coordination are important for the basic under-
standing of the basis of human intelligence, these processes have a much too



fine granularity for the design and realization of intercative systems which must
communicate with the user on knowledge level. If human system users should
not be incapacitated by a system, system decisions must be transparent for the
user and the system must be able to provide explanations for the reasons of its
proposals and recommendations. Therefore, even when some of the underlying
algorithms are based on statistical or neuronal approaches, the top-level of such
systems must be symbolical and rule-based.

The papers presented at this workshop on complex cognition give an in-
spiring and promising overview of current work in the field which can provide
first building stones for our endeavor to create knowledge level intelligent assis-
tant systems for complex domains. The topics cover modeling basic cognitive
processes, interfacing subsymbolic and symbolic representations, dealing with
continuous time, Bayesian identification of problem solving strategies, linguistic
inspired methods for assesing complex cognitive processes and complex domains
such as recognition of sketches, predicting changes in stocks, spatial information
processing, and coping with critical situations.
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Markus Knauff



Board of Reviewers:

Berry Claus, Psycholinguistik, Universität des Saarlandes
Joachim Funke, Allgemeine/Theoretische Psychologie, Universität Heidelberg
Günther Görz, Künstliche Intelligenz, Universität Erlangen
Helmar Gust, Künstliche Intelligenz, Universität Osnabrück
Hilde Haider, Allgemeine Psychologie, Universität zu Köln
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Accessing complex cognitive processes  
via linguistic protocol analysis 

Thora Tenbrink and Linn Gralla 

FB 10 Faculty of Linguistics and Literary Sciences, Universität Bremen, Germany 
{tenbrink | gralla@uni-bremen.de} 

Abstract. Complex cognitive processes are often investigated via elicitation of 
natural language data. While traditional psychological research typically 
focuses on the analysis and interpretation of content that is directly expressed in 
verbal reports, linguistic discourse analytic methods can contribute deeper 
insights into the processes involved, via highlighting linguistic structures and 
patterns that the speakers themselves may not be consciously aware of. In this 
paper, we first present the general method of "Cognitive Discourse Analysis", 
outlining its main features and analysis procedures in the light of requirements 
from cognitive science and artificial intelligence. In the second part we turn to a 
more detailed, exemplary presentation of a study of thought processes involved 
in object assembly. A process model developed on the basis of the verbal data 
represents the main steps of the generalized abstract problem solving procedure. 
Furthermore, the linguistic data reflect a complex interplay of structural and 
functional object conceptualizations and mapping processes between them. 

Introduction 

A great variety of everyday tasks involve complex cognitive processes: these include 
route planning and event scheduling, decision making, using household appliances for 
specific purposes, and many more. What kinds of thought processes are involved in 
dealing with such tasks? Much research in the area of cognitive science, in particular 
cognitive psychology and – increasingly – artificial intelligence has been devoted in 
the past decades to accessing cognitive processes across various types of task, often 
for purposes of modelling human ways of thinking, and reproducing them in artificial 
agents. Quite often, such research involves the elicitation of natural language, either 
as external representations of current internal processes while solving a particular task 
in so-called think-aloud protocols, or as retrospective reports which are suitable 
reflections of the earlier thought processes (Ericsson & Simon, 1984).  

Currently, this particular type of linguistic data interpretation remains largely 
uninformed by linguistic expertise. Usually, cognitive scientists elicit and analyse 
language for the purposes demanded by the task at hand, without consideration of the 
particular features of the discourse type they are dealing with. The aim of this paper is 
to show the extent to which linguistic tools for discourse analysis are suitable for 
capturing and highlighting aspects of language in use that may be of crucial interest to 
cognitive scientists, both for purposes of investigating psychological procedures 
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involved in problem solving and other complex cognitive processes, and for purposes 
of modelling such procedures formally and computationally. As one potential 
outcome, the design of artificial agents that share particular aspects of human thought 
may profit greatly from a structured, in-depth understanding of the language used to 
externalize complex cognitive processes. Natural language is unquestionably the most 
common medium required and used to convey information between agents; employed 
in an informed way, it can serve as a fruitful mediator and representation method 
bridging the gap between computational issues and human thought. 

We will start out by presenting the main features of a newly developed method 
called Cognitive Discourse Analysis (CODA), discussing elicitation as well as 
analysis procedures that have been successfully adopted so far. The second part of 
this paper concerns a more detailed, exemplary presentation of our current study 
concerned with object assembly.  

CODA – Cognitive Discourse Analysis 

Ericsson and Simon (1984) provide a broad and exhaustive account of previous 
literature in the area of language data collection along with cognitively complex tasks. 
Along with this, they discuss the question of the validity of verbal data as such, i.e., 
the extent to which – and the circumstances under which – participants' accounts of 
thought processes can be trusted. Their work contains a detailed account of the 
recommended data collection, annotation, and analysis procedures for verbal data, 
particularly think-aloud protocols and verbal reports. This approach has since been 
established as a kind of paradigm which is regularly re-used and adopted for a great 
variety of purposes. 

In this tradition, linguistic features are only seldom accounted for in any way. The 
analysis of verbal protocols generally focuses on extracting aspects that the speakers 
are themselves aware of, i.e., the conceptual strategies and processes that they report 
explicitly. However, linguistic representations may reflect conceptual aspects that the 
participants take for granted, being unaware of the significance of particular ways of 
framing a verbal representation. This is the basic motivation for adopting discourse 
analytic tools in addition to the content-based interpretation of verbal protocols. 

The approach of CODA targets a systematic analysis of linguistic patterns by 
addressing the way how some content is expressed or structured in addition to what is 
said. As such, this idea envelops a wide range of achievements and ideas from the 
field of linguistic expertise; indeed the CODA methodology is flexible enough to 
allow for, and unite, various different perspectives. However, certain procedures of 
elicitation as well as analysis may be more suitable for particular purposes than others 
– both in terms of identifying cognitive processes in general, and in terms of 
addressing specific research questions in a particular study. Crucially, text-type 
related and task related aspects need to be differentiated carefully. On the one hand, 
some types of linguistic patterns are systematically related to the usage of a particular 
text type (e.g., Biber, 1989), yielding standard and less standard ways of representing 
information. On the other hand, a range of systematic aspects in language involve 
cognitively relevant phenomena such as presuppositional aspects, semantic under-
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specification, and conceptual categorizations, building a bridge between the available 
linguistic system and the current topic represented during a problem solving task. 
Such insights support the interpretation of those aspects of the language data that are 
in fact peculiar to the task at hand, i.e., that reflect cognitive processes related to the 
participants' behaviour.  

In the following, we briefly sketch a range of elicitation issues as well as analysis 
procedures that have been usefully adopted in CODA-based studies, along with 
examples. Concerning elicitation, a main focus will be on the significance of 
linguistic data types. Analysis procedures, on the other hand, center around systematic 
patterns in language that may be cognitively relevant for a particular task. Following 
this overview we will turn to a more detailed discussion of a set of think-aloud data 
collected during a problem solving task: assembling a dollhouse with limited prior 
information about the functions of the available parts.  

 
Elicitation in CODA: Significance of linguistic data types  

Ericsson & Simon's (1984) framework provides a good basis for identifying the 
cognitive significance of particular text types. For instance, information verbalized 
during the task and retrospective probing is likely to reflect cognitive processes 
within short-term memory, while generalized questions after the task require 
intermediate processing influenced by long-term memory. Therefore, think-aloud 
protocols and retrospective reports are best suited to elicit unbiased verbalizations of 
cognitive processes. While this insight motivates a focus on these particular text 
types, other types of verbalizations have different effects which may also be welcome 
under certain circumstances. For some purposes, slightly enhanced discourse goals – 
if well understood and systematically accounted for in the interpretation of the elicited 
language data – may lead to further useful insights. If the instruction given to elicit 
verbal protocols along with complex cognitive tasks is formulated in a less neutral 
way, inducing some kind of bias, this will influence not only the elicited language as 
such but may also affect the way the participant perceives the task, and thus have an 
impact on behavior. Under certain circumstances, the requirement to verbalize may 
promote a better understanding of the task itself – or it may lead to an impairment 
(Schooler, Ohlsson, & Brooks, 1993). In the following, we will briefly discuss three 
further widely used text types, which may be suitable for different purposes. 

 
Instructions for other people may trigger intermediate processes of verbalization, 

such as explanations. Such data may provide insights into how cognitive processes 
can be conveyed from an expert (in solving a complex task) to a novice. Clark & 
Krych (2004) present a relevant analysis of dialogues concerned with a joint problem 
solving task (building a LEGO model), showing how experts adjust their instructions 
according to their partners' reactions. One important field of investigation within 
spatial cognition research concerns the analysis of route directions. Here, participants 
are typically not asked to describe what they were thinking when finding their way, 
but use a verbal representation to enable another person to find their way (e.g., Denis, 
1997). This opens up further possibilities for eliciting language under consideration of 
different perspectives. Apart from the text type itself, the precise nature of the 
(perceived) discourse goal (i.e., why language is produced) plays a decisive role, with 
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systematic influences on the level of granularity or detail expressed in language as 
well as the trains of thought that are triggered by the way the current linguistic aims 
are understood. A recent study by Wiener, Tenbrink, Henschel, and Hölscher (2008), 
which involved three different types of linguistic data (think-aloud protocols and 
written route descriptions "for themselves" and "for a stranger"), revealed that the 
way a route information is conveyed depends on the perceived relevance of the 
question for the route receiver, based on previous knowledge, presumed preferences 
(nice routes vs. shortest option), and so on. Such issues have consequences not only 
for the way a route instruction is formulated but also on the information itself, i.e., the 
choice of a route. Moreover, the think-aloud protocols highlighted the incremental 
cognitive processes involved in the actual wayfinding process, drawing on visual 
information. Thus, variation in the elicitation of language data led to enhanced 
insights about a range of crucial cognitive aspects.  

A recent linguistic in-depth comparison (Tenbrink, 2008a) of three different text 
types produced by a single study participant (a think-aloud protocol with a 
subsequently produced retrospective report plus an instruction "for a friend") in 
relation to a variant of the Traveling Salesperson Problem addressed the distinct 
perspectives of each data type on the conceptualizations of the problem solving task at 
hand. The linguistic features of the think-aloud data reflected cognitive chunking and 
a gradual shift of attention focus with respect to perception and action. The retro-
spective reports coherently represented those cognitive processes that after a number 
of trials turned out to be most decisive for this particular person. The instructions 
formulated for an addressee additionally revealed potentially useful ideas that were 
not necessarily decisive for the participant's own actions. 

 
Interview questions. Ericsson & Simon (1984) pointed out that questions posed 

by the experimenter, if not formulated in a very general way, lead to filtering 
processes and may address aspects that the subjects never actually attended to 
themselves during the problem solving process (such as reasons and motivations). 
However, this may not necessarily be a disadvantage. In the analysis of strategies 
used in particular problem solving tasks, intermediate thought processes may lead to 
the mention of strategies that could have been used but were not; due to conscious 
reflection, participants may realize that better performance on the current task could 
have been achieved. Such a recognition of further possible strategies would in most 
cases also be reflected linguistically, highlighting the need for detailed linguistic 
analysis. However, after the task, the motivation for improving performance may  be 
reduced, as is the perceptual input; thus, it becomes even more difficult to imagine 
good ways of solving the problem. Thus, the main danger consists in participants 
wrongly believing that they solved the task in a particular way; therefore, a particular 
kind of verbal data always needs to be controlled against other ways of verbalization 
as well as against behavioral data. Generally, relying on think-aloud data alone may 
often not be sufficient since verbalizations during the task may influence behavior 
under certain circumstances, and they may be incomplete in systematic respects 
(Ericsson & Simon, 1984). Similarly, Someren et al. (1994) point out that 
retrospective reports may sometimes omit false leads, i.e., fruitless thought processes 
that the problem solver discarded after a while. 
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Dialogue. Apart from the possibility of eliciting dialogues between experts and 
novices as already mentioned, further variations are possible. Boren and Ramey 
(2000) suggest extending Ericsson & Simon's approach to a communication-based 
one: they argue for allowing the experimenter to communicate in a fairly natural way 
with the participant in order to elicit more information and to support the user in 
exploring the ideas and issues at stake. Krahmer and Ummelen (2004) compare this 
approach directly with Ericsson and Simon's and find that dialogic interaction during 
performance appears to have an influence on task success but not necessarily on the 
contents of the comments being produced (thinking aloud vs. dialogue).  

Clearly, when engaging participants in dialogue, or when using questionnaires, one 
should avoid questions that are theory-driven to such a high degree that they bias 
participants to the kinds of answers that the researcher is looking for. In CODA, 
various different verbalizations are triggered, not in the first place by specific 
questions, but by suggesting different discourse tasks to the participant. Thus, 
participants may be asked to produce verbal representations not only for the purpose 
of revealing thought processes, but primarily for a different purpose in which these 
thought processes are again put to use, this time not for behavioral purposes but in 
order to create a linguistic product. This includes monologic and dialogic discourse, 
as well as spoken and written language. Spoken language differs from written 
language, for example, with respect to the usage of certain markers of hesitation (see 
below), repetitions and self-corrections, lexical choices, typical syntactic patterns, and 
so on. With the presence of an (active) addressee, dialogue patterns such as 
alignment, clarification, and adaptation to the interaction partner come into play that 
influence the amount and representation mode of the information to be conveyed, and 
therefore highlight different aspects as compared to other discourse types. By 
systematically eliciting and comparing several such accounts, it is possible to 
approach the thought processes underlying verbalizations from different perspectives. 

Analysis procedures in CODA 

Structure and information presentation. The way in which texts (of any type) are 
structured can be expected to relate systematically to the way the underlying cognitive 
processes are structured. This concerns both the text as a whole, revealing for instance 
temporal and causal relationships developing gradually, and smaller portions of the 
text, for example information packaging within single clauses. Insights from linguistic 
theory such as Functional Grammar (Halliday, 1994) support the identification of 
parts of the text that are represented as Given or New, based not only on linear order 
but also on a range of grammatical features such as presenting vs. presuming 
reference types. Information presented as Given is linguistically taken for granted, 
which (if not supported by the previous text) may serve rhetorical purposes or reflect 
the underlying trains of thought. Information presented as New is apparently 
"newsworthy" for the speaker. Such effects may be supported by the usage of explicit 
discourse markers (see next paragraph). Related to our study of route planning under 
diverse circumstances (Wiener et al., 2008), we analyzed the way in which 
information about landmarks was packaged in think-aloud protocols in various 
conceptual situations (Tenbrink, 2008b). The analysis revealed a high amount of 
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occurrences of presuppositions and non-anchored spatial references. For example, the 
utterance "At the concert hall take the Sedan street in the direction of the theatre'' 
presupposes the location of both the concert hall and the theatre (i.e., their location 
cannot be derived from this utterance, though it may be derivable from the earlier 
discourse); in contrast, due to the spatial anchoring of the Sedan street within the 
utterance, its spatial location can be mentally integrated directly. This reveals the 
underlying spatial representation on the part of the speaker, where the presupposed 
locations are firmly anchored but not made prominent, leading to necessary inference 
processes on the part of the hearer. 

Discourse markers. In a line of work on an approach called "psychopragmatics" 
(Caron-Pargue & Caron, 1991), Caron (1996) identified a number of linguistic 
markers that may reflect cognitive processes. Particularly interesting in this respect is 
the usage of connectives: On the one hand, connectives (such as before, because, 
while) serve to explicitly structure the represented contents, revealing how the 
participant construes the concepts and relations involved. On the other hand, certain 
markers that are particularly prominent in spoken language may reflect hierarchical 
thought processes; for instance, occurrences of "Okay, now…" may signal the 
completion of a subprocess together with the start of a new one. In Tenbrink & Seifert 
(under review), a route planning task involved the mental combination of two 
domains, planning (based on a map) and travelling (in the real world); this 
combination was systematically reflected by modal markers in retrospective reports.  

Lexical choices. The way words and concepts (typically, nouns) are used may be 
revealing about the role of a particular semantic or conceptual field during a problem 
solving task. In the analysis of a version of the Traveling Salesperson Problem 
(Tenbrink & Wiener, 2009), we were interested in the impact of colour and shape on 
the path planning processes required for this particular problem solving task. While 
strategies focusing directly on either one of these concepts were rarely formulated 
explicitly (which is not surprising since attending to colour or shape did not support 
the problem solving process in any direct way), the lexical analysis revealed that 
participants actually relied heavily on concepts of colour, but not shape. In Tenbrink 
& Seifert (under review), on the other hand, a detailed lexical analysis supported the 
differentiation of planning and travelling domains based on choices and combinations 
of words for particular thought processes. 

Activity sequences.  A focus on the verbs used in verbal protocols reveals the types 
of activities that are prominent for a participant during a complex cognitive task. 
According to Halliday (1994), verbs can be classified into a limited number of types 
according to their basic semantic function; the three main types are verbs of being 
representing abstract relations, verbs of sensing representing consciousness, and verbs 
of doing representing the physical world. Each of these types (and some further 
subgroups) have their own grammatical restrictions as well as functions in discourse. 
Starting from this classification, a close examination of the development of processes 
(i.e., usage of verbs and possible nominalizations of verbs) can reveal the particular 
types of activities that the participants attend to during the task. Such analysis always 
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focuses on whole constructions with verbs at their center, rather than attempting to 
interpret decontextualized usages. In Tenbrink & Wiener (2009), this type of analysis 
led to the proposal of an accumulated procedure for solving the Traveling Salesman 
Problem, generalizing over all collected protocols.  

Exemplary study: Object assembly 

The lasting success of companies like IKEA suggests that people are willing to 
assemble their furniture on their own. In general they are aided in their effort by a 
manual that is supplied by the manufacturer; however, some people are reluctant to 
use these, or the manual may be missing. Moreover, a situation may occur in which 
object parts are discovered without information about the composite object that may 
be assembled from the parts. In such situations, object assembly turns into a problem 
solving task involving an interesting variety of cognitive processes, resembling earlier 
findings in other domains (Tversky, Heiser, Lee, & Daniel, 2009). A range of studies 
have addressed the conveyance of information relevant to an assembly process in 
situated communication (e.g., Rickheit & Wachsmuth, 2006). In our explorative 
study, we collected think-aloud data and retrospective reports in an object assembly 
task, so as to learn more about the cognitive processes involved in solving such 
problems. A number of studies have shown the impact of prior knowledge on recall 
(Bransford & Johnson, 1972) and comprehension (Dixon, 1987). In order to address 
the impact of the amount of prior information on the cognitive processes involved and 
their linguistic reflections, we tested participants in three conditions. The participants 
in the first condition were told nothing about the nature of the composite object and 
thus lacked contextual information altogether. Those in the second condition were 
told that a dollhouse should be assembled and thus provided with domain knowledge 
(the general context of the assembly). Those in the third condition were given very 
specific contextual information on the object and the actual goal state by combining 
verbal and visual information. In the following we sketch the procedure and analysis 
involved in this project in order to illustrate procedures of the CODA methodology in 
practice. As this is work in progress, the analysis is not yet complete; however, we 
report a range of patterns emerging from the procedure of analyzing think-aloud data. 

Procedure 

52 participants (graduate and under-graduate Bremen University students, 28 female, 
24 male) were presented with a box containing 10 object parts, plus a large roof piece 
and 2 wooden boards, all of which belonged to a wooden two-story dollhouse by the 
German toy brand “Selecta”. They were randomly assigned to three conditions. In the 
first condition (no goal condition) they were asked to assemble all given parts in a 
sensible way. Participants in the second condition were asked to use all parts to 
assemble a two-story dollhouse in a sensible way (verbal goal condition). In the third 
condition participants were shown a picture of the complete two-story dollhouse for 
30 seconds and asked to assemble the depicted dollhouse (verbal & visual goal 
condition). All of the participants were trained and instructed to think aloud during 
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the assembly, based on Ericsson and Simon's (1984) methodology. After they 
indicated completion of the task, they were asked to give a retrospective report on the 
assembly procedure (not analyzed here). The participants were video-taped and their 
speech was recorded and later transcribed. 

Analysis 

Structure. Tversky et al. (2009) identified a common structure involved in 
explanations of construction tasks; across modes (gestures, diagrams, and words), a 
clear beginning, middle, and end could consistently be identified. We were interested 
in examining whether similar structures would emerge in think-aloud protocols, 
which differ from explanations by the lack of an explicit addressee. Based on our data 
we defined three stages as follows: 

• The beginning was defined as utterances produced after entering the room 
and before starting the actual assembly process. Two main categories in 
regard to content were identified: repetition of parts of the instructions 
and first perceptual remarks. The first category contained reminders of 
thinking aloud or repetition of object parts mentioned in the instruction 
(e.g. box, table, parts). The majority of these utterances included the 
linguistic marker ‘okay, well’ signaling that the passive part of receiving 
instructions was finished and the active part started.  

• The major middle part directly concerns the assembly process. It contains 
a local structure of sub-processes (also referred to as episodes).  

• The end was defined as utterances following the actual assembly process, 
expressing completion of the task.  

All of the 22 protocols analyzed in this respect so far exhibited this structure. 
Beginning and end parts were analyzed in regard to content as well as linguistic form; 
this will not be pursued further here. The analysis of the middle part focuses on the 
sub-processes of the assembly and their linguistic representation. In the following we 
will briefly present two aspects of this procedure: first, the content-based derivation of 
a process model representing the cognitive processes involved in object assembly, and 
second, a lexical analysis highlighting the mental representations of objects and their 
functions, and mappings between these, as part of the assembly process. 

Process model. Given the explorative nature of the analysis a preliminary process 
model was derived  by a context based analysis of the verbalized actions in a pilot 
protocol (cf. Someren et al., 1994), drawing on Palmer's (1977) account for working 
definitions. This model was validated and expanded by the analysis of (so far) 10 
further protocols from all three conditions. According to Palmer (1977), problem 
solving consists of explorative hypotheses, false leads, dead end, backtracking, and 
fresh starts. For our current purposes these categories were more specifically defined 
as follows. Hypotheses are ideas and assumptions about objects, moves or 
consequences of actions. Actions that are evaluated as wrong moves are called false 
leads. Dead end states are temporary impasses or states of frustration. Fresh starts are 
instances of disassembly of parts or the whole object and their reassembly in a new 
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way. In addition to utterances expressing these states, some participants also comment 
on the nature of the task (meta-level) or verbalize thoughts that are not directly task 
related (aside). All verbalizations in the middle part of the 11 protocols could be 
classified as representing one of these categories. Possibly related to the fact that this 
particular discourse did not serve a communicative intention, some states are not 
explicitly verbalized. For instance, positive evaluations are seldom stated, but they are 
implicit in a new hypothesis which shows that the assembly process proceeds. The 
current version of the process model is shown in Figure 1. The processes that were 
identified in the think-aloud data are similar to the search-control process described 
by Newell and Simon (1972). The next step in this analysis procedure will be to spell 
out the particular linguistic representations used for each of the actions and states. 
This will provide further insights about their nature and about the patterns of 
verbalization, which may be useful for computational purposes as explained above. 

 

 

Figure 1. Process model derived from verbal protocol data in object assembly  

Lexical analysis. The analysis of the nouns used by participants allows for 
conclusions about the current mental representation of an object part at a particular 
stage in the assembly process. The nouns can be distinguished in regard to their goal 
specificity; they can either be generic, i.e. not goal object related (e.g. thing, wood, 
board) or specific to the goal domain (e.g. roof, wall, window). A clear mental 
representation of the target object should be reflected in a frequent use of goal 
specific nouns. Participants who were given little or no prior information should 
therefore use goal specific nouns less regularly, or only later on in the assembly 
process. Participants who were given a picture of the goal object, in contrast, could 
draw upon an existing external representation of the object from the start. As an 
outcome, the distribution of generic and specific nouns should differ systematically 
between conditions. Our analysis of 22 protocols so far supports this assumption. 

While the analysis of the usage of nouns highlights the existence of two levels of 
representation (generic / specific), the mapping process between object parts and 
functions in the targeted dollhouse is particularly interesting. A generic noun (e.g. 
thing) or a deictic expression (such as this (one)) refers to a particular object in the 
stock; a specific name of a role within the dollhouse (e.g. wall) assigns a function to 
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it. These two levels of conceptualization may be connected by comparison, modal 
verbs or relational verbs. Altogether, explicit mapping occurs 77 times in the 22 
think-aloud protocols analyzed in this respect so far (distributed approximately evenly 
across individual protocols and conditions, with a slightly higher relative frequency in 
the verbal goal condition as compared to the other conditions). An analysis of the 
patterns of its occurrence highlights the impact of prior information on mapping 
processes as follows. 

We were particularly interested in the amount of certainty concerning the mapping, 
as this sheds light on the stability of the mental representation of a currently focused 
object. Linguistic markers expressing high certainty should reflect clearer mental 
representations on the part of the speaker than linguistic markers expressing neutral or 
tentative mapping processes and uncertainty. We identified three categories of 
linguistic representations of mapping processes. First, a high degree of certainty is 
expressed by the use of relational verbs (present tense of be) and a particular set of 
modals known to signal a high level of certainty (must, will) (Martin & Rose 2003). 
Second, another set of modals such as the German equivalents of may (müsste, 
könnte, sollte) expresses a lower, though still positive level of certainty. The third way 
in which objects may be assigned functions linguistically is via comparison (such as 
(looks) like, (use) as). Such markers neutrally reflect a tentative assignment of a 
function to an object. In some cases, hedges such as a bit in this looks a bit like a roof 
add an element of uncertainty to the assignment. 

According to our analysis of 22 protocols so far, it appears that participants in the 
verbal goal condition assign meaning by using linguistic markers of high certainty 
most often. These participants were given information about the nature of the target 
object but not its particular appearance; therefore, they may have had features of 
typical dollhouses in mind (e.g. open front, walls, roof) and simply matched those to 
the objects at hand in some suitable way. Mappings via modals expressing a lower 
degree of certainty were most often used by participants in the verbal & visual goal 
condition. These participants were shown a picture of a correctly assembled dollhouse 
which they were asked to match. This may have led to a lower degree of certainty if 
the object parts could not readily be matched to the target picture in memory. 
Mappings via comparison were most frequent in the no goal condition, reflecting the 
fact that participants were altogether uncertain about the object's functions and 
tentatively explored mapping options. The analysis of the remaining protocols will 
shed more light on these issues. However, already at this intermediate stage, a pattern 
emerges showing that the amount of prior information systematically affects the ways 
in which object parts are referred to. These results highlight how the cognitive process 
of assigning functions to previously undefined object parts is linguistically expressed 
in various ways exhibiting a scale of changing certainty. This systematic variety in 
linguistic expressions is not necessarily part of the participants' conscious assembly 
process, but reflects how mental representations change through time, mediated by the 
amount and nature of prior knowledge.  
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Conclusion 

The linguistically based analysis of verbal protocols enhances the range of insights 
that can be gained about the cognitive processes involved in complex tasks. In this 
paper, we have discussed a range of issues concerned with data elicitation, analysis, 
and interpretation. Two general conclusions can be drawn from this account. On the 
one hand, diverse types of discourse may be useful for gaining diverse types of insight 
about thought processes that are externalized in language for diverse purposes. This 
fact can be made use of for implementation in artificial agents both with respect to 
computational modelling of thought processes, and in the usage of language for 
purposes of mediation between different ways of processing (in machines and 
humans). On the other hand, knowledge about the particular linguistic features 
involved in texts of any kind may support the analysis of verbal reports effectively, by 
enabling a focus on those kinds of linguistic items that potentially reflect cognitive 
processes of interest for scientific progress. While a content-based analysis of 
language data is suitable for highlighting the conscious processes that study 
participants verbalize, the structure and linguistic choices involved in these 
verbalizations contain much more information than one might suspect at first sight. 
This kind of subtle reflection of cognitive processes becomes informative whenever 
linguistic evidence exhibits systematic patterns in language use. Particularly if these 
patterns can be matched to other types of evidence (such as behavioral results, eye 
movements, and the like), the linguistic data analysis can be trusted as a particularly 
valuable tool for accessing complex cognitive processes in problem solving tasks. 
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Kühnberger2

1 University of Münster, Institute for Geoinformatics
angela.schwering@uni-muenster.de

2 University of Osnabrück, Institute of Cognitive Science
{krumnack,gust,kkuehnbe}@uos.de

Abstract. In order to enable machines to operate intelligently in their
environment, it is important that they do not only collect sensory in-
put about their environment, but also recognize and understand objects.
Analogical reasoning is considered fundamental for many complex cogni-
tive processes. In this paper, we present an experiment which gives empir-
ical support of our hypothesis that object recognition and concept forma-
tion rely fundamentally on analogical similarities. Similar object sketches
with the same structure are recognized faster and more frequently than
similar object sketches with different structure. Afterwards, we intro-
duce our analogy-making framework Heuristic-Driven Theory Projection
(HDTP) and explain how HDTP can be used for object recognition.

1 Introduction

In order to enable machines to operate intelligently in our world, it is important
that they do not only collect sensory input and observe the environment, but
also recognize and understand it. The correct classification of perceived objects
allows a machine to use its background knowledge about the world to reason
on it. Sketches, i.e. freehand schematized drawings, are an intuitive medium for
people to communicate about objects in the world. In this paper, we focus on
learning and recognition of sketched objects. We present empirical evidence for
our hypothesis that structural similarities are important in the human recogni-
tion process. We propose a computational model how machines recognize new
sketches by detecting common structures to known sketches and classify the ob-
jects according to their ontological knowledge. We examine how concepts change
over time and develop an analogy-based approach for learning and revising con-
ceptual knowledge and for explaining the creation of new and abstract knowl-
edge.

Realizing learning and recognition of sketched objects on a machine requires
an appropriate language for describing spatial objects in their environments. It
must be possible to capture the geometry of all elements in a scene and the spatial
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relations between them. Furthermore, the representational formalism must be
adaptable to change representations of the same scene according to the different
perceptions in varying contexts. Recognition requires the ability of comparing
new stimuli to already known stimuli in the memory. The structural composition
of the object parts is very important, in particular for sketches of spatial objects.
Analogical mapping is used to compare two stimuli–a new stimulus and a well-
known stimulus–for structural similarities. In a recognition task, the well-known
stimulus can be a typical instance of a concept or the specification of a concept
from memory.

The model of computational cognition proposed in this paper uses knowledge
gained through recognition tasks to learn new and revise old concepts. The two
main mechanisms for learning constitute learning via transfer and learning by
abstraction [10]. Once a new stimulus is successfully classified, either additional
knowledge about the concept can be transferred to the newly classified stimulus,
or features observed about the new stimulus can be transferred and integrated
in the existing concept description. This additional knowledge leads to a richer
and more precise concept description. Moreover, the comparison process aligns
analogous elements in both stimuli, i.e. reveals the commonalities of both stim-
uli at an abstract level. These analogous commonalities describe the essential
characteristics defining a concept.

This paper is structured as follows: in Section 2, psychological evidence is pro-
vided that structural changes of a visual stimulus do influence object categoriza-
tion of humans stronger than non-structural changes. Section 3 proposes some
ideas for a model of object recognition based on the analogy engine Heuristic-
Driven Theory Projection. Section 4 provides a vision how adaptations of repre-
sentations for analogy-based stimulus recognition can be used for learning new
concepts. Section 5 concludes the paper.

2 Object Categorization and Structural Alignment

2.1 The Experiment

A lot of common everyday objects are made up of several, distinct components.
The same is true for the kitchen stove depicted by the line drawing in Figure 1.
Some components typical for the outward appearance of such a stove have been
highlighted in grey color. Obviously, these core elements are spatially related to
each other. It is possible to describe these relationships in a qualitative manner.
Commonly used spatial relations are topological, directional, or metric relations
[1] and may involve other qualities such as symmetry and repetition of elements.

When applying this general idea to the stove in Figure 1, its highlighted
components might be regarded as separate regions with certain underlying topo-
logical relations. The four hotplates on top could be regarded as four disjoint
regions all of which are in turn situated inside Area 1. Underneath, Area 2 con-
tains six disjoint temperature regulators. Similar relationships can be found as
to the front handle and the spy window both of which are disjoint and situated
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Fig. 1. Line drawing of a typical kitchen stove.

within another area (Area 3) on the stove’s foreside. Furthermore, the lateral
Area 4 directly meets Area 2, and so forth.

To investigate the role of structured representation in human object recogni-
tion, an experiment was set up, in which subjects had to recognize line drawings
of different objects.3 132 line drawings were selected for the experiment. Of
these, 72 functioned as filler items, whereas the remaining 60 drawings acted as
the so-called ”basic” experimental stimuli. The latter served as a basis for the
development of four additional variations, namely two versions of non-structural
modifications and two versions of structural modifications (cf. Figure 2). Gener-
ally speaking, each experimental condition was conceptualized as a pair of two
experimental stimuli, henceforward referred to as item pairs.

Basically, a single experimental trial was composed of a source image stimulus
and a subsequent target image stimulus. First, the source stimulus was shown
and all subjects were expected to name the object that they thought to have
identified in the black and white line drawing by an oral answer. Then, subjects
had to press the keyboard’s down-arrow key to call up the target image. In
preparation for the imminent stimulus, a fixation cross with a duration of 250
ms was shown in the middle of the monitor prior to the occurrence of the target
image. Finally, the target image stimulus appeared for maximally 650 ms. This
time, the subjects’ task consisted in deciding as quickly as possible by pressing
the ”yes” or ”no” button whether the object they were just seeing was an instance
of the same concept as the object they had named in the step before.

Due to the five experimental conditions, we created equally many stimulus
lists that counterbalanced item pairs and conditions. Each subject saw 36 filler
item pairs, 12 MAT items pairs, 12 NS1 item pairs, 12 NS2 item pairs, 12 S1
item pairs, and 12 S2 item pairs yielding 96 experimental trials in total. Figure
2 specifies the modified versions of the original stimulus.4

3 The interested reader is referred to [20] for a complete presentation of the experi-
ments.

4 75 native German subjects, 50 females and 25 males, volunteered for the experiment
and confirmed normal or corrected normal vision. The vast majority of participants
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Source image: Target image: 

  
Match condition (2x Basic stimulus) 

  
Non-structural condition I  

(Basic stimulus + Variation 1) 

  
Non-structural condition II  

(Basic stimulus + Variation 2) 

  
Structural condition I  

(Basic stimulus + Variation 3) 

  
Structural condition II  

(Basic stimulus + Variation 4) 

 

MAT: The match condition was conceptualized as

an item pair with identical source and target images.

Solely the 60 basic experimental stimuli served as ba-

sis to set up this condition. Furthermore, this condition

served as a baseline with respect to the reaction time

measurements and required a clear ”yes” response from

the subjects.

NS1: This condition entailed the movement of signif-

icant picture elements. These manipulations were not

taken for a structural change since it was made sure

that the topological relationships between the manip-

ulated and unaffected picture elements remained un-

touched. It was anticipated that the subjects would

show a high tendency to give a ”yes” response.

NS2: This condition entailed the resize of picture ele-

ments without moving them to another position. Sim-

ple resize was not taken for a structural change as long

as the topological relations between the manipulated

and other picture elements remained constant. It was

anticipated that the subjects would show a high ten-

dency to give a ”yes” response.

S1: As for the first structural condition, it exclusively

implicated the removal and/or addition of selected pic-

ture elements. Adding to or removing significant ele-

ments from the overall scene was regarded as a clear

structural change. It was decided to accept both a “yes”

and a “no” response as “potentially correct”.

S2: The second structural condition likewise implied

the movement of significant picture elements as with

condition NS1. However, this time a structural change

was deliberately caused by moving selected elements

into another area. Alternatively, this condition involved

the resize of desired picture elements as with condition

NS2. Both ”yes” and ”no” were accepted as potentially

correct answers.

Fig. 2. The types of stimuli used in the experiment: Match condition, non-structural
condition I (NS1), non-structural condition II (NS2), structural condition I (S1), and
structural condition II (S2).

2.2 Results

For the goals of this paper, it suffices to find evidence for the assumption that
humans would need more time to recognize structurally manipulated objects
compared to non-structurally manipulated objects. As a consequence, it was de-
cided to combine both non-structural (NS1 & NS2) as well as the two structural

consisted of undergraduate students who were enrolled in Psychology or Cognitive
Science at the University of Osnabrück. The mean age was 23.2 years, ranging from
age 18 to age 58. The experiment was conceptualized and generated with the aid of
the software suite E-Prime 2.0 by Psychology Software Tools Inc.
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Condition RT in ms (Std. Dev) ACC in % Yes / No Ratio in %

MAT 618 (147) 95.6 —

NSCOM 708 (182) — 82.1 / 17.9

SCOM 752 (200) — 61.3 / 38.7

Table 1. Descriptive statistics results - analyses by subjects (”Yes” and ”No” re-
sponses).

conditions (S1 & S2), essentially because of their strong relatedness.5 The rele-
vant reaction times per subject were summed up and averaged afterwards. The
same holds for the “yes”/“no” response ratios yielding the numbers shown in
Table 1.

On that basis, a 1 (source image) × 3 (target image type: MAT, NSCOM,
SCOM) factorial analysis of variance (ANOVA) including repeated measures was
conducted on the response latencies by subjects and by items. Only data points
that were maximally two standard deviations away from their corresponding
mean were taken into account to reduce the quantity of outliers in the first
place. A confidence interval of 95% was consistently used.

As a result, the main effect for target image type was highly significant in
the analysis by subjects (F1) and by items (F2) with F1(1.61, 112.56) = 87.51,
p < .001 (Huynh-Feldt corrected); F2(2, 110) = 69.15, p < .001. Concerning the
main effect for list, it was only significant in the analysis by items, F1(4, 70) =
.52, p > .72; F2(4, 55) = 7.50, p < .001. By contrast, the two-way interaction
between list and target image type was not significant at all with F1(8, 138) =
1.21, p > .30; F2(8, 108) = 2.00, p > .05.

Several pairwise comparisons (MAT vs. NSCOM; MAT vs. SCOM; NSCOM
vs. SCOM) were carried out. In all pairwise comparisons, the main effect for
target image types was highly significant in the analysis by subjects and by
items. As an example the results for NSCOM vs. SCOM are mentioned6. The
main effect for target image type was highly significant by subjects and by items
with F1(1, 70) = 34.82, p < .001; F2(1, 55) = 15.90, p < .001. The main effect
for list was only significant in the analysis by items, F1(4, 70) = .41, p > .80;
F2(4, 55) = 3.40, p < .05. The two-way interaction between list and target image
type was not significant (F1(4, 70) = 1.52, p > .21; F2(4, 55) = 1.16, p > .34).

2.3 Discussion

The experiment provides two results that are relevant for the discussion in this
paper. First, the relation of “yes”/“no” responses shows that the degree of recog-
nition is significantly higher if the structure of the visual stimulus is not changed
(NSCOM), compared to the cases where it is changed (SCOM). This indicates
that subjects are more willing to accept an object as belonging to a category, if
its relational structure stays intact. Second, the reaction time is shorter in these

5 A detailed presentation of the results with separate treatment of all conditions can
be found in [20].

6 The complete results can be found in [20].
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cases, indicating that the task is cognitively less complex if a structural match
of stimuli can be found.

Both results back the claim, that object recognition seems to be based, at
least partly, on matching structural representations of the provided stimuli. A
cognitive plausible model of object recognition should therefore incorporate such
representations and matching mechanisms. In the rest of the paper, we sketch
a model for recognizing visual stimuli that is driven by analogical mapping and
that furthermore allows to introduce a learning mechanism based on recognition.

3 Analogy-Based Recognition of Visual Stimuli

The model we propose is based on Heuristic-Driven Theory Projection (HDTP),
a formal framework to compute analogies. This section gives a brief introduction
to analogies and HDTP focussing on those aspects relevant to the intended
application. A more comprehensive description of HDTP can be found in [19].

3.1 Syntactic Basis of HDTP

Classically, an analogy is established between two domains of knowledge, called
source and target domain. By discovering corresponding structures in both do-
mains, an analogical relation can be constructed. Such a relation can be used to
identify commonalites and differences between the domains. Furthermore, gaps
discovered in one domain can be filled by transferring knowledge from the other
domain, based on the analogical relation. Such analogical inferences, though
possibly incorrect from a logical point of view, can be a basis to explain certain
aspects of cognitive phenomena like creativity and learning.

HDTP provides a formal framework to compute analogical relations and in-
ferences, for domains represented in first-order logic. Both, source and target
domain, are given by axiomatizations, i.e. finite sets of first-order formulae. The
basic idea is to associate pairs of formulae from the domains in a systematic
way. HDTP uses anti-unification to identify common patterns in formulae. In
anti-unification, two formulae are compared and the most specific generalization
subsuming both formulae is identified. As a result, besides the generalized for-
mula a pair of substitutions is computed, that expresses the analogical relation
between the two formulae.

This process of generalization by anti-unification can be iteratively applied
to formulae of the two axiomatizations. However, it might be the case that for
some axiom no good corresponding axiom exists on the other side. Nevertheless,
there might still exist a good formula in the theory spanned by the axiomati-
zation, i.e. among the formulae that can be derived from the axioms. In this
case, HDTP will try to prove such a formula. This process can be considered
as a kind of re-representation [11], since the originally given axiomatization is
adapted to match the needs of the analogy considered. As a consequence HDTP
does not compute an analogy between two specific axiomatizations, but between
the theories spanned by these axiomatizations.
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line(a, (1, 1), (1, 4)) polygon(p1, [a, b, c, d])
line(b, (1, 1), (4, 1)) polygon(p2, [d, e, f, g])
line(c, (1, 4), (4, 4)) . . . above(p2, p1)
round(m, (2, 5), (3, 5), 0.5) group(g2, [m, n, o, p])
round(n, (4, 5), (5, 5), 0.5) . . . inside(g1, p2)...

Fig. 3. Representation of a stove with its primitive elements in an unstructured way
(left) and in a structured way (right).

HDTP distinguishes between domain knowledge (facts and laws holding for
the source or the target domain) and background knowledge, which is true across
domains. The background knowledge is of special importance in the context of re-
representation, as it may be used to derive further formulae in the two domains,
which then can be used again for generalization.

Uncovered parts of the source and the target domain, i.e. formulae that
are not part of the analogical relation and therefore cannot be derived from
the generalized formulae, are candidates for analogical transfer. The established
analogical relation is used to translate these formulae. If the result does not lead
to a contradiction in the other domain, it can be considered as an analogical
inference, i.e. new knowledge that might be added to the axiomatization of that
domain.

3.2 A Formal Language to Represent Spatial Objects

We now apply the ideas of HDTP to the processing and recognition of visual
stimuli. In this setting, source and target are both from the same domain, i.e.
sketch drawings. We distinguish between flat and structured representations of
visual stimuli. A flat representation covers all features of a stimulus without any
relational structure between them (e.g. the left side of Figure 3 listing the primi-
tive visual elements of the stove). A structured representation captures regulari-
ties of a stimulus, like symmetry, iterations, Gestalt groupings etc. It furthermore
comprises geometrical and topological relations. The structured representation
on the right side of Figure 3 replaces the lines by a description of closed shapes
such as polygons. Although the flat and the structured representation contain
the same information, the structured representation is closer to the way humans
perceive the visual stimuli. Our computational model of cognition shall take a
flat representation as input and automatically compute a structured representa-
tion of the sketch reflecting human perception. A structured representation can
be build from a flat representation according to a certain set of rules.

The application of HDTP as a framework for object recognition requires the
development of a suitable language to represent spatial objects, the ability to
adapt these representations such that analogous structures between the source
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and the target object become visible, and finally a mechanism for analogy-based
learning of concepts. As a consequence the language has to meet two major
requirements: it must describe all elements in a spatial scene with respect to the
aspects relevant in human perception, but it must describe as well the spatial
relationships which are important to compare and recognize objects. To reflect
human perception, the language must comprise significant perceptual features,
but also vocabulary to specify visual structures. When the human visual sensory
system observes a spatial object, it transforms the unstructured information into
a structured representation of coherent shapes and patterns. Human perception
tends to follow a set of Gestalt principles: stimuli are experienced as a possibly
good Gestalt, i.e. as regular, simplistic, ordered, and symmetrical as possible.
Therefore the language focuses on basic Gestalt principles of perception, i.e.
it allows for groupings according to the principle of similarity, the principle of
proximity, closure, and good continuation.

The second requirement refers to spatial features: the geometry of elements
in a scene and their spatial relations have to be represented in a way that allows
for cognitively plausible reasoning. Common calculi for qualitative spatial rea-
soning such as RCC 8 for topological relations [14] and TPCC calculus [12] or
neighborhood-based approaches [6, 15] for directional relations are integrated in
the formal language.

In [17], we developed first steps towards a language for representing simple
figures in geometric proportional analogies. Figure 3 shows exemplary a formal
language representing a stove. On the left is an unstructured representation
of the stove listing its primitive elements (lines and round elements). On the
right is a structured representation of a stove: The four connected lines are
represented as closed polygon. The four hotplates are grouped together according
to the Gestalt principle of similarity and proximity. The topological relation
inside and the directional relation above are captured as well. The groups of
hotplates are inside the polygon p2 and polygon p2 is above polygon p1. In the
following section, we explain how HDTP automatically adapts the unstructured
representation to form a structured one.

3.3 Adaptation of the Representation for Analogy-Based Stimulus
Recognition

The cognition of spatial objects involves the construction of a consistent and
meaningful overall picture of the environment. Gestalt Psychology argues that
human perception is holistic: instead of collecting every single element of a spatial
object and afterwards composing all parts to one integrated picture, we expe-
rience things as an integral, meaningful whole. The whole contains an internal
structure described by relationships between the individual elements.

In HDTP, a visual stimulus is described via a set of axioms specifying the
features of all elements at a basic level (Figure 4). A set of perception rules and
rules for spatial reasoning form the background knowledge of the system. The
set of all formulae that can be inferred from the axioms comprises all possible
re-representations of the same visual stimulus, but at different structural levels.
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Fig. 4. Analogical comparison in the logical framework HDTP.

The initially flat representation can be transformed into a structured one by
means of logical inference.

In the recognition task, a new stimulus (target) is compared to a known stim-
ulus (source). The source stimulus is described via a structured representation
recalled from the memory or knowledge base. The structural commonality be-
tween the flat representation of the target and the structured representation of
the source is initially not obvious. To successfully classify a new stimulus, a map-
ping between the target stimulus and the source stimulus must be established,
i.e. an analogous structure has to be established on the target stimulus. Dur-
ing the analogy-based mapping process the target must be re-represented such
that common structures become visible. The re-representation process building
a structure on the target side can be driven by heuristics motivated by human
perception, like Gestalt principles.

Figure 5 shows adaptation rules as they can be found in the background
knowledge: The first rule is applied to detect closed shapes such as a polygon
and the second one is applied to compute topological relations such as inside.
The re-representation process is driven by heuristics based on properties of hu-
man perception and by building a structure on the target side analogously to
the structured stimulus on the source side. Experimental data shall give the nec-
essary insight for creating appropriate heuristics reflecting human strategies in
spatial object recognition. The heuristics have a great influence on the efficiency
of the whole computational approach.

4 Analogy-based Learning, Concept Formation, and
Creativity

Similarity judgment is one of the most central constructs in cognitive processes.
Organization of conceptual knowledge in memory, recognition of new stimuli,
and learning hinge crucially on similarity comparisons [8]. In particular, the role
of structural similarity in relational categories has been considered as important
[7]. We argue that structural similarity as detected in analogies is particularly im-
portant for learning spatial concepts. Our approach for computational cognition
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Closed Shape (adapted from Gestalt principle)
lineConnection(A, B) :- line(A, ( , ), (X, Y )), line(B, (X, Y ), ( , )).
lineConnection(A, B) :- line(A, (X, Y ), ( , )), line(B, (X, Y ), ( , )).
polygon(P, [. . .]) :- . . .

Topological Relation proper part (adapted from RCC8)
regionConnection(X, Y ) :- region(X), region(Y ), not(disjoint(X, Y )).
part(X, Y ) :- not(regionConnection(Z, X), not(regionConnection(Z, Y ))).
properPart(X, Y ) :- part(X, Y ), not(part(Y, X)).
overlap(X, Y ) :- part(Z, X), part(Z, Y ).

Fig. 5. Adaptation rules are stored in the background knowledge and define how un-
structured descriptions can be re-represented to structured ones.

shall learn to classify spatial objects, i.e. the system shall be able to revise and
refine its ontological knowledge during a training phase. Although researchers
agree that analogy-making is central for human learning, there does not exist a
comprehensive theory for analogical learning. Our own first ideas for a learning
model based on HDTP were outlined in [18].

HDTP supports learning at two levels: analogical transfer and abstraction.
Learning via analogical transfer means gaining new knowledge by applying addi-
tional knowledge about the source to the target. The system transfers knowledge
about the concept (e.g. knowledge about the functionality) and applies this to the
new stimulus. This enables the system to draw new inferences on the target side.
Transfer also happens from the target to the source: the system observes char-
acteristics about the new stimulus which leads to a revised concept definition.
Learning via abstraction refers to the generalization process that is essential to
derive abstract concept definitions. Existing approaches apply classical induc-
tive learning which requires large set of data samples to create general laws.
However, humans can generalize already over a small set of samples. Apply-
ing analogical comparison and describing structural commonalities at a general
level is one possible way to make the essence defining a concept apparent. Re-
flecting this analogical generalization process is one of the strengths of HDTP
[16]: during the analogical mapping, anti-unification automatically constructs a
generalization for every aligned pair of formulae. This way, HDTP creates an
explicit generalized theory over two theories – the source and the target theory.
We argue that this generalized theory captures exactly the essential commonal-
ities of the instances of a concept at an abstract level and therefore is an ideal
mechanism for extracting the defining elements of a concept.

The following example illustrates how HDPT functions in concept formation
and concept learning (cf. Figure 6). HDTP has a structural description of a stove
in its knowledge repository. Presenting a new stove in a recognition task, HDTP
detects the analogous structure and constructs a generalization containing the
commonalities (i.e. common aspects about the geometry and spatial relation
such as the temperature regulators being situtated in the front polygon). The
generalization represents the concept ”stove” at an abstract level. If again a new
stove is presented in a second recognition task (e.g. the third one in the above
figure), it could be classified as a stove, however the new generalization is not so
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Fig. 6. A structural comparison of these stoves reveal that all stoves sketches have the
form of a 3D cube with four hotplates on top and a spy window at the front. Three
sketches show stoves with temperature regulators at the front.

specific on the position of the temperature regulators. First steps towards this
incremental analogy-based learning have been sketched in [9].

5 Conclusions and Critical Evaluation

Analogies play a major role for cognition. We have shown empirically, that struc-
tural commonalities are important in object comparison and recognition: In a
recognition task, subjects have recognized sketches of non-structurally varied
objects faster and easier than sketches of objects which were structurally varied.

We have suggested an approach using HDTP, a symbolic analogy-making
framework, to compute analogies between sketches of objects. HDTP is a promis-
ing framework, because it supports adaptation and learning at an abstract level.
Many times analogical structures are not visible per se, but result from a com-
parison and mapping task. HDTP combines the representation of basic elements
in a sketch with background knowledge on human perception. Therefore, HDTP
can reveal commonalities in different contexts and different perceptions. It re-
represents an unstructured flat representation of a sketch and determines a struc-
tured representation of the target stimulus which possibly matches the structured
representation of the source stimulus. Furthermore, HDTP compares structures
of source and target stimuli and computes a generalization of the shared struc-
tures. This supports concept learning.

Lately, various approaches have been developed to describe visual stimuli and
detect analogous structures. CogSketch (comprising GeoRep and nuSketch) [4, 5]
is a powerful tool for sketch understanding. A sketch consists of glyphs, which are
the primitive elements. The spatial structure of the overall sketch is analyzed
by topological, metric and directional relations between glyphs. A glyph is a
piece of ink, i.e. a glyph can be a simple point but also a complex drawing. The
approach proposed in this paper considers primitive elements as the most basic
entity in a sketch, which itself can be re-represented as more complex figures by
re-representation rules such as the ones depicted in Figure 5. The Languages of
Perception [2] developed for Indurkhya’s algebraic Interactionist Theory has a
similar idea of re-representing simple geometric elements. It incorporates Gestalt-
motivated mechanisms for re-representation such as groupings and iterations.
The approach presented here goes beyond the Languages of Perception: We also
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aim at the explicit description of spatial relations and the integration of existing
qualitative spatial reasoners. Galatea and the Proteus analogy model [3] was
developed to describe visualizations in the context of problem solving. It aims
at detecting visual similarities and transferring problem solving solutions, but
not at the re-representation for perceptual understanding of sketches.
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Abstract. The fields of neural computation and artificial neural networks have
developed much in the last decades. Most of the works in thesefields focus on
implementing and/or learning discrete functions or behavior. However, technical,
physical, and also cognitive processes evolve continuously in time. This cannot be
described directly with standard architectures of artificial neural networks such as
multi-layer feed-forward perceptrons. Therefore, in thispaper, we will argue that
neural networks modeling continuous time explicitly are needed for this purpose,
because with them the synthesis and analysis of continuous and possibly peri-
odic processes in time are possible (e. g. for robot behavior) besides computing
discrete classification functions (e. g. logical boolean functions). We will relate
possible neural network architectures with (hybrid) automata models that allow
to express continuous processes.

Key words: neural networks; physical, technical, and cognitive processes; hybrid
automata; continuous time modeling.

1 Introduction

During the last decades, the field of (artificial)neural networkshas drawn more and
more attention due to the progress in software engineering with artificial intelligence.
Neural networks have been applied successfully e. g. to speech recognition, image anal-
ysis, and in order to construct software agents or autonomous robots. A basic model in
the field is a multi-layer feed-forward perceptron. It can beautomatically trained to
solve complex classification and other tasks, e. g. by the well-known backpropagation
algorithm (cf. [4, 15]). Implementing and/or learning discrete functions or behavior is
in the focus of neural networks research.

Nevertheless, technical, physical, and also cognitive processes evolve in time con-
tinuously, especially if several agents are involved. In general, modeling multiagent sys-
tems means to cope with constraints that evolve according tothe continuous dynamics
of the environment. This is often simulated by the use of discrete time steps. In the liter-
ature,hybrid automataare considered for the description of systems by a mathematical
model, where computational processes interact with physical processes. Their behav-
ior consists of discrete state transitions plus continuousevolution [5]. Hybrid automata
have been successfully applied especially to technical andembedded systems, e. g. for
describing multi-robot behavior [2, 14]. However, a feasible procedure for learning hy-
brid automata does not seem to be available.

Therefore, we will at first introduce application scenariosthat include complex cog-
nitive, technical, or physical processes for the synthesisand analysis of continuous and
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possibly periodic systems of agent behavior (Sect. 2). After that, we briefly discuss
some related works on neural networks and hybrid automata wrt. their applicability to
timely continuous systems (Sect. 3). Then, we present an enhanced model of neural
networks with continuous time, which we callcontinuous-time neural network(CNN)
(Sect. 4), which can simulate the behavior of hybrid automata as a system that interprets
periodic, continuous input and the response to that. It can also be used for periodicity
detection, e. g. in speech or musical cognition. Finally, wewill end up with conclusions
(Sect. 5).

2 Scenarios of Agents in a Continuously Evolving Environment

Scenario 1 (deductive reasoning).Classification tasks like e. g. image recognition or
playing board games (see Fig. 1) require deductive reasoning and cognition. In this
scenario, the environment is discrete (according to the classification in [15]), because
there is only a limited number of distinct percepts and actions. In particular, it is not
dynamic, i. e., the environment does not change over time, while the agent is deliberat-
ing.

min, max

AND, XOR,

PARITY

Fig. 1: Agent reasoning deductively.

Ordinary artificial neural networks allow to solve classification tasks and to express
logical boolean functions for deductive reasoning directly, i. e. functions of the form
f : X →Y, whereX = (x1, . . . ,xn) represents the input values andY = (y1, . . . ,ym) the
output values. Therefore, deductive reasoning can be adequately implemented by using
them. Neural networks in general consist of an interconnected group of nodes, called
units, which are programming constructs mimicking the properties of biological neu-
rons. Standard neural networks such as multi-layer feed-forward perceptrons have a
restricted architecture. There, we have only three or more layers of units: input, hidden,
and output units, which are connected only in this order [4, 15]. It is well-known [4] that
every continuous function that maps intervals of real numbers to some output interval of
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real numbers can be approximated arbitrarily closely by a multi-layer perceptron with
just one hidden layer, if we have sigmoidal activation functions, i. e. bounded, nonlin-
ear, and monotonously increasing functions, e. g. the logistic function or the hyperbolic
tangent (tanh). Multi-layer networks use a variety of learning techniques, the most pop-
ular being backpropagation. In general, any declarative logical operation can be learned
by such a network. However, many real cognitive or physical processes depend on time,
as in the following scenario.

Scenario 2 (robot at a conveyor belt).Let us consider a robot that has to perform
a specific routine again and again, e. g. grabbing a brick froma conveyor belt (see
Fig. 2). Fig. 3 shows the height h of the robot arm depending onthe time t. For the ease
of presentation, we abstract from releasing the box, movingthe arm down and grabbing
the next one here. In addition, we assume, that the agent knows the duration T of each
episode.

T

t

Fig. 2: An example robot arm, picking boxes on a conveyor belt.

This scenario requires the solution of several tasks. In particular, continuous be-
havior of the robot agent must be producible for grabbing thebricks continuously and
periodically. Clearly, for synthesis and also for analysisof processes or behavior, mod-
eling the timet explicitly is necessary, because we have to model mappings of the form
X(t) 7→ Y(t). For Scenario 2, we assume that the robot has to move its arm upand
down within a fixed time intervalT. This leads to a sawtooth function, if we consider
the dependency from time (see Fig. 3). Such behavior can be expressed easily by an
automaton model, especially hybrid automata [5] (see Sect.3). However, the procedure
with hybrid automata mainly is a knowledge-based approach.They cannot be learned
easily by examples as e. g. neural networks.

While clearly Scenario 1 can be specified directly with ordinary neural networks,
Scenario 2 requires to model the timet somehow. This can be achieved by discretizing
time, i. e. by considering input values at different discrete time points,t, t−1, . . . , t−T
for some time horizonT. Then, we may usexi(t), xi(t−1), . . . , xi(t−T) with 1≤ i ≤ n
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h

t

x

T

Fig. 3: The sawtooth function for the height of the robot arm,assuming that it can lower the arm
in zero time.

as input values. But this procedure has several disadvantages: It increases the number
of input units significantly, namely from onlyn to (k+1) ·n. In addition, it is not clear
in this case, what granularity and past horizon of discrete time should be used.

Therefore, a presentation by (enhanced) neural networks seems to be a good idea,
that makes use of the (continuous) timet as additional parameter, at least implicitly. Fur-
thermore, oscillating periodic behavior must be producible, even if the inputX remains
static, i. e. constant. For instance, once switching on a robot, i. e. change one input unit
from 0 to 1, the periodic behavior should hold on, until the input unit is switched off
again. Therefore, we will introduce units, whose input may be a fixed value, but whose
output yields a sinusoid (see Sect. 4, Def. 2). By this, we canexpress periodic behavior
in time by neural networks. Furthermore, we should be able toanalyze behavior and to
detect period lengths, which we formulate now:

Scenario 3 (behavior and periodicity analysis).Before a robot is able to behave ade-
quately in a dynamic environment, it has to analyze its environment, e. g. to find out the
duration of an episode of the robot at the conveyor belt (Scenario 2, Fig. 2), i. e. the pe-
riod length in time. This task also appears in speech and musical harmony recognition,
as illustrated in Fig. 4.

Since cognitive science may be defined as the study of the nature of intelligence
and thus of intelligent behavior, drawing on multiple disciplines, including psychol-
ogy, computer science, linguistics, and biology, we consider behavior and periodicity
analysis here, because it is obviously an important aspect of intelligence. In particular,
this holds for scenarios with several agents and/or agents in dynamically changing en-
vironments, because it is the basis for coordination and synchronization of (periodic)
behavior of agents. For instance, finding the way through a dynamic environment with
many obstacles and crossing traffic of a specific frequency, requires synchronization
among agents, including periodicity analysis.

One possible key for determining overall period lengths is auto-correlation, i. e. the
cross-correlation of a signal with itself. It can be mathematically defined by convolution
(cf. [1], see also Sect. 3.3). However, we choose another formalization here: We simply
assume that a unit of a CNN (cf. Def. 2) can delay its incoming signals for a specific
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Fig. 4: Agent analyzing periodic episodes in the environment.

time delayδ. Then, a comparison of the original signal with the delayed one yields the
appropriate result. Eventually, biological neural networks, e. g. the hearing system in
the brain, seem to be able to delay signals [8]. Before we present the CNN model in
more detail (Sect. 4), let us first discuss related works thatare more or less suitable for
modeling the scenarios introduced here.

3 Neural Networks, Hybrid Automata, and Continuous Time

The underlying idea that the original model of artificial neural networks tries to capture
is that the response function of a neuron is a weighted sum of its inputs, filtered through
a nonlinear, in most cases sigmoidal function

y = h(
n

∑
i=1

wixi)

whereh is the activation function, e. g. the logistic function ( 1
1−exp(−x) ). Fig. 5 shows the

general scheme of a unit of a neural network with the inputsx1, . . . ,xn and one output
y. Each incoming and also the outgoing edge is annotated with aweightwi .

3.1 Fourier Neural Networks

An obvious paradigm to combine neural networks with periodic input are so-called
Fourier neural networks[11, 16]. They allow a more realistic representation of the
environment by considering input oscillation for implementing and/or learning dis-
crete functions or behavior. From a neurophysiological point of view, they appear to
be closer to reality, because they model the signals exchanged between neurons as os-
cillations, making the model to better agree with discoveries made in neurobiology. In
[16], the output function of a neuron is defined asf (X) =

R
D c(X)ϕ(X,Y)dY, where

ϕ(X,Y) is some characteristics of the inputX, weighted by the coefficientsc(X), i. e.,
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we get a weighted integral (replacing the sum from above) of the inputs and their char-
acteristics. However for the computation, a discretized model given by the equation

f d(x) = h
(

∑i ciΠn
j=1cos(ωi j x j + ϕi j )

)
is used with the sigmoidal logistic functionh

from above in order to obtain output in the interval[0;1].

w1
... w0

x1

xn
wn

Fig. 5: A unit of a neural network (scheme).

In [11], Fourier neural networks with sinusoidal activation functionh(x)= csin(ax+
b) are considered. Additional non-linear (sigmoidal) activation functions are not needed
to express arbitrary functions in this case. In fact, the sine function has the charac-
teristics of a sigmoid function in the interval[−π;π]. All logical operators with two
inputs (Scenario 1) can be implemented in this framework (see Fig. 6) by onlyone
single unit with sinusoidal activation function, in contrast to the standard neural net-
works with other, monotonously increasing activation functions. However, learning
these neural networks is a difficult task, because sinusoidal activation functions are non-
monotonous. In addition, continuous time is not modeled explicitly in this approach.

function # inputs a b c meaning

AND 2 π
4 − π

4

√
2 logical conjunction

XOR 2 π
2 − π

2 1 exclusive or
ODD n π

2 (n−1) π
2 1 odd parity, returns 1 iff an odd number of inputs is 1

Fig. 6: Implementing logical functions for one Fourier neural network unit with activation func-
tion csin(ax+b). The Boolean valuestrue andfalseare represented by+1 and−1, respectively.

3.2 Continuous Neural Networks

[9] introduces neural networks with an uncountable number of hidden units. While
such a network has the same number of parameters as an ordinary neural network, its
internal structure suggests that it can represent some smooth functions more compactly.
[9] presents another approach for neural networks with an uncountable number of units,
where the weighted summation of input values is replaced by integration. Because of
this, they are called continuous neural networks. However,continuous time and hence
temporal processing is not modeled explicitly there, whichis the primary goal of this
paper.

In [10], neural networks are used in a nonlinear system identification algorithm for a
class of nonlinear systems. The algorithm consists of two stages, namely preprocessing
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the system input and output and neural network parameter estimation. However, first
and foremost, it is only applicable to the analysis of control systems with a special
structure.

3.3 Finite Impulse Response Perceptrons

Temporal processing in neural networks means to deal with dynamic effects and to
introduce time delays in the network structure [4]. Therefore, in thefinite-duration im-
pulse response (FIR) model, temporal processing is realized by a linear, time-invariant
filter for the synapsei of a neuronj. Its impulse responseh ji (t) depends on a unit im-
pulse at timet = 0. Typically, each synapse in the FIR model is causal and has afinite
memory, i. e.h ji (t) = 0 for t < 0 or t > τ, with the memory spanτ for all synapses.
The response of a synapse can be defined as the convolution (auto-correlation) of its
impulse response with the inputxi(t). Thus, we can express the output ashi j (t)∗xi(t) =R t
−∞ h ji (u)xi(t− u)du. The net activation potential over allp synapses, with threshold

θ j , is given byv j(t) = ∑p
i=1

R τ
0 h ji (u)xi(t− u)du− θ j , where the overall output is the

sigmoidal nonlinear logistic activation function (see above). With this, an artificial neu-
ron can represent temporal behavior. The FIR multi-layer perceptron, with its hidden
and output neurons based on this FIR model, has been applied for adaptive control, dy-
namic system identification, and noise cancellation. Once trained, all synaptic weights
are fixed. Then, the network can operate in real time.

Instead of the FIR model, where time is simulated by additional copies of a neuron
for different times (cf. Sect. 2, Scenario 2),real-time recurrent networks(cf. [4]) are
designed by using a common neural model, where the temporal processing is realized
by the feedback of the network.

3.4 Hybrid Automata

Another model that allows to model discrete and dynamic changes of its environment
and hence continuous time arehybrid automata, a combination of Moore and Mealy au-
tomata [5]. A hybrid automaton is a mathematical model for describing systems, where
computational processes interact with physical processes. In contrast to simple finite
state automata, well-known in computer science [3, 12], their behavior is stated not
only by discrete state transitions, but also by continuous evolution. Hybrid automata
consist of a finite set of states and transitions between them. Thus, continuous flows
within states and discrete steps at the transitions are possible. If the state invariants do
not hold any longer, a discrete state change takes place, where a jump condition indi-
cates which transition shall be used. Then, a discrete step can be done, before the next
state is reached. States are annotated with invariants and flow conditions, which may
be differential equations. There, the continuous flow is applied to the variables within
the state invariants. Thus, the behavior of the robot in Scenario 2 can be described as
shown in Fig. 7. Hybrid automata, however, are not well-suited for mapping continuous
input with periodic behavior. In addition, (hybrid) automata cannot be learned easily by
examples as e. g. neural networks.
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up

f: ẋ = 1
2π

i: x < h

down

i: x > h

f: ẋ→ 0

j: x = h e: release(bi)

j: x = 0 e: grab(bi+1)

j: x = 0

e: grab(bi)

Fig. 7: Hybrid automaton for the robot arm (Scenario 2).

3.5 Central Pattern Generators

For Scenario 2, oscillating, periodic patterns must be generable. This can be achieved,
if a single unit is able to oscillate spontaneously, as we will assume here (cf. Def. 2).
Alternatively, recurrently connected units can trigger each other, inducing periodic pat-
terns. Such a system is calledcentral pattern generator(CPG). They can be defined as
neural networks that can endogenously (i.e. without rhythmic sensory or central input)
produce rhythmic patterned outputs [6] or as neural circuits that generate periodic motor
commands for rhythmic movements such as locomotion [7]. CPGs have been shown to
produce rhythmic outputs resembling normal rhythmic motorpattern production even
in isolation from motor and sensory feedback from limbs and other muscle targets. To
be classified as a rhythmic generator, a CPG requires: two or more processes that inter-
act such that each process sequentially increases and decreases, and that, as a result of
this interaction, the system repeatedly returns to its starting condition.

4 Towards Continuous-Time Neural Networks

We will now definecontinuous-time neural networks(CNN). With them, we are capable
of modeling the three general scenarios, introduced in Sect. 2. At first glance, they are
very similar to standard neural networks, because they alsoconsist of an interconnected
group of units. In fact, a CNN degenerates to an ordinary neural network, if the extended
functionality is not used. We distinguish several types of units (see Def. 1 and 2).

Definition 1 (input and output units, on-neurons). In a CNN, there may be one or
moreinput and output units. Input units do not have any incoming edges, while output
units do not have any outgoing edges. In the following, we restrict our attention to
networks with only one output unit. The values of the input units x1(t), . . . ,xn(t) and of
the output unit y(t) depend on the time t. There may also be so-calledon-neurons, i. e.
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units without incoming edges, yielding a constant output c,independent from the actual
time t.

In our model, as in standard neural networks, we assume that the input value of a
unit j is a weighted sum of the incoming values, and we have a nonlinear activation
function. But in addition, we have two further optional components in each unit (for
integration over time and for enabling oscillation) that may be switched on or off. Fur-
thermore, inputs may be delayed or not. This is summarized inthe following definition,
leading to a unit with up to four stages, calledsub-unitsin the sequel:

Definition 2 (continuous neural network unit). In general, a CNN unit computes its
output value y(t) from its input values x1(t), . . . ,xn(t), which may be the overall input
values of the network or the output values of immediate predecessor units, in four steps.
Each step yields the value yk(t) with 1 ≤ k ≤ 4, where y(t) = y4(t). For k≥ 2, the
respective sub-unit may be switched off, which means that yk(t) = yk−1(t).

1. summation: The input value of the unit is the sum of the incoming values xi(t) with
1≤ i ≤ n, each weighted with a factor wi and possibly delayed by a time amount
δi , which is0 by default:

y1(t) =
n

∑
i=1

wi ·xi(t− δi)

2. integration: In certain cases, the integrated activity, i. e. the averagesignal power,
is useful. Therefore, we introduce an optional integrationprocess, which is switched
off by default.

y2(t) =

√√√√√1
τ

tZ
t−τ

y1(u)2du

Note that, forτ→ 0, we have y2(t) = |y1(t)|, i. e., the unit is switched off for positive
values. If it is switched on, we takeτ → ∞ by default. Alternatively, the statistical
variance of y1(t) could be used here.

3. activation: In order to be able to express general, non-linear functions, we need a
non-linear activation function (cf. [4]). Instead of the often used logistic function
(cf. Sect. 3), we use the hyperbolic tangent here, becausetanh(x) ≈ x for small x
and the range of the hyperbolic tangent is[−1;+1], which corresponds to the range
of sinusoidal periodic functions. It holds:

y3(t) =
tanh(α ·y2(t))

α
We make use of a factorα that retains these properties here. By default,α = 1. For
α→ 0, the sub-unit is switched off.

4. oscillation: The unit can start to oscillate with a fixed (angular) frequencyω:

y4(t) = y3(t) ·cos(ω t)

This corresponds to amplitude modulation of the input signal. In principle, other
types of modulation, e. g. frequency or phase modulation, would be possible, but
this is not considered here. Forω = 0, this sub-unit is switched off.
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With this type of units, all scenarios, introduced in Sect. 2, can be implemented. If
the integration and the oscillation sub-unit is switched off, the functionality of the unit
is identical with that of standard neural network units (cf.Sect. 3 and [4, 15]). Hence, all
logical boolean functions (Scenario 1) can be expressed easily, of course, in contrast to
Fourier neural networks, generally with hidden units. Everything that can be expressed
by an ordinary neural network can be expressed by a CNN, because the former one is a
special case of a CNN.

Scenario 2 can be implemented with several oscillating units, i. e.ωk 6= 0, because
it is known from the study of Fourier series, that arbitrary periodic functions can be
written as the sum of simple waves represented by sines and cosines. For the sawtooth-
like graph (Fig. 3), we havef (x) = h

2 − h
π ∑∞

k=1
1
k · sin(2π

T kx). The latter sum may be
approximated by the firstn summands, which can be expressed byn oscillating CNN
units (see Fig. 8).

w=1/2
δ=0

x(t)
∑

ω= 2π
T

· 1
2∅ ∅

w=1/n
δ=0 ∑

ω= 2π
T

· 1
n∅ ∅

∑
ω=0∅ ∅

w=1
δ=0

∑
ω= 2π

T
·1∅ ∅

y(t)

∑ ∫
tanh cos ωt

w=1
δ=0

w=1
δ=0

w=1
δ=0

...

Fig. 8: Network with several oscillating units for Scenario2. Sub-units, that are switched off, are
marked with/0.

In Scenario 3, we have to find out the period lengthT of a task automatically from
a complex signal, e. g. the duration of an episode of the robotat the conveyor belt
(Scenario 2, Fig. 2). For this, consider the functionx(t) = cos(ω1t)+cos(ω2t), whose
overall period length depends on the ratioω2/ω1. Let ω1 = 2π andω2 =

√
2ω1. The

corresponding graph forx(t) is shown in Fig. 9. In order to determine the overall period
length, we must be able to find out the so-called missing fundamental frequency, i. e.,
we have to find a time durationT such thatx(t)− x(t −T) becomes zero. Applying
the least squares method, this could be turned in finding the minima (almost zeros) of
1/T

R T
0 (x(u)− x(u−T))2 du, i. e., we overlap the original signal (δ = 0, w = 1) with

a phase-shifted and inverted copy of itself (δ = T, w = −1), which yields an effect of
comb filtering(cf. [8]).

Fig. 10 shows the graph for the square root of the latter integral in dependency
from T, which can be achieved by switching on the integral sub-unit. It has minima
near 5 and 12 (and also near 7 and 10) which alternatively can be derived by continued
fraction development of the ratioω2/ω1 [13, 17]. Thus, the corresponding CNN unit
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yields approximately constant output wrt.t, namely the values shown in the graph in
Fig. 10, where small values near 0 indicate periodicity. This procedure allows us to
express analysis of periodic behavior as desired.

0

1

−1
1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 9: Complex periodic signalx(t) = cos(ω1t)+cos(ω2t) with ω2/ω1 =
√

2.

0

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 10: Periodicity analysis for complex signalx(t). The graph shows the output of the comb-
filtered signal in dependency from the delay in timeT, checking the period length of the overall
signal, with main minima atT = 5 andT = 12. It is constant wrt. the current timet.

5 Conclusions

In this paper, we sketched ongoing work on neural networks with continuous time.
These networks can support the modeling of behavior synthesis and analysis in robotics
and for cognitive systems. For arbitrary continuous, periodic input, the robot or the
agent in general has to react continuously and within a certain time interval. Hence,
complex, physical and/or cognitive processes can be modeled adequately by a CNN. A
CNN without recurrence and constant values for the angular frequenciesωk in the os-
cillation sub-units and switched-off integration sub-units correspond to standard neural
network units in principle. Thus, the classical backpropagationmethod can be employed
for learning a CNN from examples, where a set of input and output values must be given
for different time pointst. Therefore, future work will implement this theory. We intend
to do this on a concrete autonomous robot platform, namely a quadrocopter, i. e. flying
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robots with four propellers. Analysis of the network is alsoan important part and will
be investigated in further detail, too.
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Abstract. John R. Anderson proposed a correspondence between ACT-R mod-
ules and brain regions (brain mapping hypothesis). To check this conjecture we
plan to compare model-generated blood-oxygen-level dependent (BOLD) signal
curves with BOLD curves obtained from functional Magnetic Resonance Imag-
ing (fMRI) scans. In contrast to Anderson’s studies our subjects were not urged to
follow a single strategy but construct their personal strategy within a constraint-
based strategy space. So, the mapping hypothesis has to be checked strategy-
specific. The identification of strategies was difficult because subjects were not
able to identify their own in a retrospective manner. So we used Response-Time
(RT) data in combination with a Bayesian Belief Net to identify personal problem
solving strategies without using fMRI data for checking the mapping hypothesis.

1 Introduction

Of late, one of the busiest branches of ACT-R related research is focusing on the neu-
rophysiological analogy of the ACT-R theory [1]. The ACT-R architecture provides a
set of modules with specific functions. Anderson [2, 3] postulates a mapping between
these modules and brain regions. For instance, the procedural module is mapped onto
the basal ganglia, while the declarative module is mapped around the inferior frontal
sulcus. The ACT-R 6.0 implementation provides a set of tools which directly predict
BOLD signals for these brain regions.

Several studies were conducted by Anderson et. al. in order to verify the mapping
hypothesis. These included experiments from various domains, as algebraic problem
solving [4, 5], associative learning [6], or insight problems [7]. One particular feature in
common of all these experiments was the fact that participants had to employ the same
problem solving strategy on all tasks.

The empirical validation of the mapping hypothesis is among the research goals of
our multidisciplinary research project1. While also the effects of affective and informa-

1 Cognitive Modeling and Bayesian Identification Analysis (CoMBIAn), work package within
project Impact of affective and informative feedback on learning in children before and after a
reattribution training: An integrated approach using neuroimaging, educational research and
modeling, Möbus, Moschner, Parchmann & Thiel (main applicant), BMBF-Programme for the
Promotion of Scientific Collaboration between the Neurosciences and Research on Learning
and Instruction, 03/01/2008 − 02/28/2011
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tive feedback on learning are being studied [8], an accompanying fMRI study offers
us the possibility to compare BOLD signal predictions generated from strategy-specific
ACT-R models with BOLD signals obtained from actual fMRI scans. However, the dif-
ficulties we encountered during our efforts suggested a refinement of our modelling
methods. In contrast to the experiments described by Anderson et. al. [4], the tasks in
our experimental setting were far more complex, because in order to solve these tasks,
participants were free to choose their personal strategies. Because different strategies
lead to different brain region activation predictions, we had to model these different
strategies and identify the chosen subject-specific strategy without using fMRI data
(Fig. 1). We would work unduly in favor of the mapping hypothesis if we would assign
subjects to strategies according to similarity of their BOLD curves with the strategy-
specific ACT-R-BOLD curves.

Fig. 1: Process model for checking the mapping hypothesis and classification of subjects
according to their personal strategies.

Our short-term research goal is now to devise a method of identifying strategies
from behavioural data which does not include fMRI-data. In this paper, after hav-
ing shortly described ACT-R and its mapping hypothesis, we will present the exper-
iment, discuss the modelling of strategies by the means of two example strategies,
and present the method and results of the Bayesian Identification of personal problem-
solving strategies.
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2 Experimental design

All participants were children in the age between 11 and 12. The exercises which the
children had to solve come from the domain of the chemical formula language [9],
which is generally unknown to children of that age. However, instead of real-world
chemical elements, pseudo-elements (like ”Pekir” or ”Nukem”) were used to ensure
that the children only applied the rules of the artificial formula language.

The children were asked to answer 80 trials during fMRI scans. A single trial con-
sists of the auditive and visual presentation of a chemical compound name and the
visual presentation of a pair of structural formulae (Figs. 2a and 2b). A selection be-
tween two distinct structural formulae, one on the left, the other on the right, is expected
from the subject. The participant has to select the correct structural formula to match
the compound name. The total presentation lasts for 4.5 seconds. An additional time of
1 second for the answer is granted, so that the maximum response time amounts to 5.5
seconds.

(a)

(b)

1. The abbreviation for an element is defined
by two letters

2. The first letters of the abbreviation are also
the first letters of the names of the ele-
ments

3. Both letters appear in the elements name
4. An element may have a multiplicity from

1 to 4 in the compound. Distinct numerals
are used to denote the multiplicity:
1 -
2 pli
3 pla
4 plo

5. The position of a numeral is always before
the element in the compound name

6. The central element of the structural for-
mula is always the first in the compound
name

(c)

Fig. 2: Two of 80 trials, trial A (Fig. 2a) and trial B (Fig. 2b). The compound name is at
the top, structural formulae left and right below. For both trials the left formula matches.
The rules on the right (Fig. 2c) determine the correct formula.

If the response occurred in time, a feedback is given. The feedback is split into
two parts: one part informs about the participant’s performance; a second, (hopefully)
affective part informs about the performance of a fictional peer group.
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In order to find the correct structural formula for a compound name, six semanti-
cally partly overlapping rules (Fig. 2c), which are part of the instruction given to all
participants, have to be applied and checked for violations. These rules define the con-
straints of a strategy space from which correct personal strategies can be constructed by
the subjects. There is no explicit order in which the rules should be applied. Either the
left or the right formula violates at least one of the rules. The trials are thus classified
by the position of the faulty formula (left/right) and by the number of the violating rule.

The rules were well known by the children because they went through an extensive
instruction phase in multiple sessions. They familiarised themselves with the rules using
age-based material and games especially designed for that purpose. They also passed
20 trials on a computer and another 40 in a fMRI simulator before entering the actual
fMRI experiment.

While the chemical formula language as context of the problem seems to be more
typical of algorithmic problems, the evidence of a clear goal combined with multiple so-
lution paths suggests the classification as a rule-using problem as described by Jonassen
[10], albeit a well-structured one, since rules and all parts of the problem are available to
the problem solver. However, the complexity is higher than that of the problem in pre-
vious research [4–7] in this area. These may be considered true algorithmic problems
in the sense that they have to be solved by a fixed number of steps.

3 Strategy Modelling

Two input channels are available to the problem solver. The visual input channel is
mandatory, while the auditory input channel is auxiliar. This fact adds to the complex-
ity of the problem, especially as both channels may be perceived in parallel or consec-
utively. Either the left or the right formula or both have to be evaluated visually. This
results in a variability of conceivable strategies, which differ in efficiency as well as
module activation. Two of them are shown in Fig. 3. A set of basic tasks is derived
from the rules in Fig. 2c. These tasks are shared by all strategies, though not necessarily
in the order presented here:

1. Visually and/or auditorially perceive and encode the different parts of the com-
pound name (mandatory for any successful strategy)

2. Count the outer elements of a structural formula and compare them with the first
numeral in the compound name

3. Count the inner elements of a structural formula and compare them with the second
numeral in the compound name

4. Compare the inner element with the first element of the compound name
5. Compare the outer element with the second element of the compound name
6. Indicate the correct formula

Tasks 2-5 may be applied to both formulae, or, more efficiently, to either the left
or the right formula. It should be noted that some concurrency can take place if the
compound name is encoded using only auditory input. Tasks 4 and 5 may be split into
two different tasks as the abbreviation of an element always consists of two letters.
Since the first letter is easier to compare with the name, it may be more appropriate to
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prioritise the first comparison and leave the second letter for later. A second open ques-
tion which is not reflected within the above list of tasks is the position of the retrieval
for the numerals. It can take place very early when encoding the compound name, but
there is also the possibility to retrieve the numeral later on between the counting and
comparison stages.

While all the strategies share the same basic set of tasks, they all perform differ-
ently on each trial. Some trials may only be solved by counting the elements (Fig. 2a),
others by name-element comparisons (Fig. 2b), others by both. A strategy shows higher
performance (shorter response time) if it concentrates on a single structural formula to
decide whether it matches or not. Each trial class (the violated rule and location of the
violating formula) has an impact on the performance of the strategy.

Several, though so far not all possible, strategies were modelled, at first on an ab-
stract layer as UML activity diagrams (Fig. 3), and subsequently within the ACT-R
environment as a set of production rules. As only expert participants were modelled,
all strategies find the correct answer but with a large variation in performance. For ex-
ample, model A (Fig. 3a), which already counts when listening to the compound name,
performs extremely fast by taking only one formula into consideration. A similar model
B (Fig. 3b) which checks both formulae shows slower performance.

In a subsequent interview, nearly all children stated that they counted the elements
before comparing the abbreviations with the names, which is reflected in our modelling.
Another indication for the correctness of this assumption can be seen in Fig. 4. Trial B
may not be solved by counting; abbreviations have to be compared with the compound
name instead. It took all children considerably longer to solve trial B. Also a few chil-
dren said that they looked at a single formula and not at both. So a single-formula
strategy is plausible and must be taken into account, even if it may not be the common
case. Indeed, a few children show a fast response, resembling that of model A in Fig.
3a.

Most children with a high success rate stated that they benefited from the aural
presentation of the compound name. So far, our models use solely the auditive input for
encoding the compound name, although alternatives will be implemented later. Both
models predict adequate response times for trial A, but fail to do so for trial B, which
can be seen in Fig. 4. Apparently, both models are too fast, which may be a hint that
our productions which compare the abbreviations are too effective.

Both models perform quite differently on trial A, as can be seen in the module
traces in Fig. 5. Model A shows less activity in the declarative and visual modules,
since it does not count as much as the second model. However, using the ACT-R 6.0
built-in fMRI tools, we found that this has an impact on the BOLD prediction for some
of the regions (figs. 5c and 5d). Note that this is just the case for two models which are
very similar in their design. This effect is even more distinctive if the models differ in
their conception.

For instance, any realisation of Task 1, percieving and encoding the compound
name, would surely engage ACT-R’s visual or aural module, if not both, and the imag-
inal module. Tasks 2 and 3, which encompass encoding and counting the structural
formulae, would involve the imaginal, the visual and the retrieval module, as well as
the imaginal module. Tasks 4 and 5 would also require at least the imaginal module, but
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Compare OL Sym to 2nd element 
name : Compare Abbreviation

Compare IL Sym to first element 
name : Compare Abbreviation

Encode cardinality with 1st 
and 3rd word

Encode cardinality with 2nd 
word

Hear/Encode first word

Evaluate/Count left formula

Hear/Encode third word

Hear/encode second word

Hear/Encode fourth word

Compare cardinalities

Anwer right

Answer left

1st word is numeral?

match?

match?

match?

another word?

no
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no
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yes

yes
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(a)

Compare IL Sym to first element 
name : Compare Abbreviation

Compare OL Sym to 2nd element 
name : Compare Abbreviation

Encode cardinality with 2nd 
word

Encode cardinality with 1st 
and 3rd word

compare right cardinalities

Evaluate/Count left formula

Hear/Encode fourth word

Hear/Encode first word

Compare left cardinalities

Hear/Encode third word

Hear/encode second word

Evaluate/Count right formula

Anwer right

Answer left

1st word is numeral?

match?

match?

match?

match?

another word?

no

no

no

no

yes

no

no

yes

yes

yes

yes

yes

(b)

Fig. 3: Two example strategies as UML activity diagrams. This kind of diagram was
chosen because it provides an abstraction from ACT-R rule models. Both start count-
ing the elements of a formula while still listening. They differ because model A (Fig.
3a) evaluates only the left formula, while model B (Fig. 3b) examines both left and
right formulae. Subsequently, they resolve the numerals and compare them with the
cardinalities of the left structural formula or both formulae respectively. If there is no
discrepancy in the cardinalities, both models check the inner element symbol of the left
formula (IL) for consistency with first element’s name, and if needed, continue to do so
with the outer symbol of the left formula (OL).
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Fig. 4: Box plot of the participants’ response times for correct answers for trial A from
Fig. 2a (left) and trial B from Fig. 2b (right). Model results from a single model run are
shown next to the box plots.

it could involve the visual module if the second letter of the symbol has to be checked
for occurance in the compound name. As the Tasks 2-5 can be arranged in any arbi-
trary order, or even be splitted into subtasks which could run in parallel, quite different
patterns of module activation would emerge. This implies that even models which pro-
duce similar behaviours may predict distinct BOLD signals, if the productions involved
activate different modules.

4 Bayesian analysis of behavioural non-fMRI data

It is doubtful whether the participants are able to remember their problem solving strat-
egy for each trial. It is also possible that they applied different strategies to trials. This
switching hypothesis could be investigated by Hidden Markov Models (HMMs). The
choice of strategy may be related to the trial configuration. However, we assume that
the participants already settled for a single strategy after the extensive instruction and
training phases. In order to determine which of our models is suitable to explain the per-
formance of the actual strategy used by the participant, we devised a Bayesian Belief
Network (BBN) [11] as diagnostic tool for identifying the personal trial-independent
strategy of the subject.

The main idea is that all models produce distinct response times for each trial. The
class of the trial, i.e. the criteria which need to be checked to solve the trial, is known.
We assume that response times for a strategy are dependent on the class of the trial.
This may be derived from the task structure: As the order of the rule checks vary from
model to model, they produce different response times for each trial. This is reflected in
the BBN in Fig. 6. Note that this is a naive Bayesian classifier with two latent variables
Complexity Left and Complexity Right; response times and rules applied to the
trial are indicators for a strategy.

The probability tables of the BBN are being learned by running all the strategy-
specific ACT-R models to generate cases. This results in a data matrix whose columns
correspond to the nodes from the BBN and whose rows correspond to trials. The two
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Fig. 5: Buffer traces from model A (Fig. 5a) and model B (Fig. 5b) on trial A. In Fig.
5a, model A shows considerable less activity in the visual system (second column from
the left) than model B in Fig. 5b. This manifests itself in the BOLD-predictions for the
visual module of model A (Fig. 5c). The BOLD-prediction for model B in Fig. 5d peaks
about 2 seconds later and decays slower than the prediction for model A in Fig. 5c.
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Fig. 6: Bayesian Belief Network for strategy identification. When using the training
data as test cases, inference on the strategy node shows an error rate of 35.83%. An
Augmented Bayesian Classifier, not shown here, improves the error rate to 23.23%.

latent nodes Complexity Left and Complexity Right in the BBN describe the com-
plexity of each structural formula. The complexity is dependent on the number of el-
ements in the formula and which rules have to be applied to the formula. The ACT-R
models provide response times for the RT node. The Strategy node indicates the strat-
egy of the ACT-R model. Because of the existence of latent variables the expectation-
maximization learning method [11] is used to learn the probabilities from the cases. At
best a response and the complexities are perfect indicators for a single strategy under a
given trial configuration.

After training the BBN, it is used for classifying the subjects’ data according to the
inferred strategy. The response time of a subject, together with the trial class, is entered
into the BBN as evidence. It is then possible to infer the most likely strategy. If, for
example, the class of trial A is entered as evidence (6 elements for each formula and the
exclusion criteria, being True for symbol comparison on the right, otherwise False),
and a response time between 2.5 and 3 seconds, strategy S 2 (which corresponds to
model A) is indicated with the highest probability in the Strategy-Node (Fig. 6).

As can be seen in Fig. 1, we intend to check the BOLD-prediction against BOLD
signals from the fMRI data for a chosen strategy. If the mapping hypothesis is cor-
rect, the corresponding simulated and real-world BOLD signals should correlate sig-
nificantly positive. For this reason, we identify all persons who share the same strategy
with the BBN (Fig. 7a). Subsequently, we test the correlation between the aggrega-
tion of all their BOLD responses in the defined regions with the aggregated BOLD-
prediction for the ACT-R modules by the model (Fig. 7b). If the mapping hypothesis
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is correct, such corresponding correlations should be higher than between any other
module-region pairs.

Model runs

Module activation

Tim
esteps

Runs model M1

Brain activation

Tim
esteps

Persons

Measurement person type S1

Trial 1
Trial 2

Trial 1
Trial 2

(a)

Module activation

Tim
esteps

Aggregated model M1 Aggregated Person Strategy

Brain activation
Tim

esteps

Trial 1
Trial 2

Trial 1
Trial 2

Canonical correlation?

(b)

Fig. 7: Activations and BOLD curves obtained from strategy-specific ACT-R model
runs and subject fMRI scans (fig 7a) are aggregated across simulation runs and per-
sons(Fig. 7b). These aggregated data are used for computing strategy-specific module-
region correlation matrices.

5 Conclusion

So far, our research work is concentrating on the actual identification and modelling of
the possible strategies. According to our new approach it is now possible to validate our
RT-predicted strategies with behavioural and fMRI data. This was not done in the brain-
mapping related research before. E.g. Anderson simplified problem solving strategies
and urged subjects to follow a single strategy. With our method it is possible to use
more complex and personal strategies. This is possible as long as strategies could be
analyzed rationally before data analysis of fMRI scans starts.

The analysis of the experimental data and the definition and implementation of
strategies is currently in progress. If the mapping hypothesis is correct, there should
be a correlation between the aggregated model-brain activations.
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8. J. Özyurt, M. Rietze, and C. Thiel, “fMRI of feedback processing in children and adults,” in
Frontiers in Human Neuroscience, 2008.

9. S. Heuer and I. Parchmann, “Son2e oder Fus2bal2 - wie Sechstklässler die chemische
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Abstract. We briefly report about experimental investigations we con-
ducted for the so-called dynamic stocks and flows task (DSF) and present
a cognitive model to replicate human’s behavior. The goal in the DSF
task is to maintain a certain level of water in a tank under the influence
environmental flows which depend on unknown dynamics. Our findings
are complemented by an analysis of recent experimental data from the
literature. The results are integrated in a cognitive model with which we
are able to reproduce and predict human behavior for this task.

1 Introduction

Assume your task is to regulate the level of a water tank whose stock depends on
in- and outflow events. Your aim is to maintain a specific water-level (goal) by
letting water flow into the tank to increase the level or pumping water out of the
tank to decrease the water-level. Additionally, the water-level is influenced by
environmental in- and outflows that can not be controlled. The environmental
flows are dynamic and rely on unknown mathematical functions.

What are the appropriate actions to choose? Are there differences for the pre-
diction of the underlying mathematical functions? Such research questions have
been investigated in the dynamic stocks and flows challenge (DSF-challenge)1.

Current research so far has mainly covered the manipulation of one function
(in- or outflow function, but not both). Thus, many aspects still remain undis-
covered: First of all, what happens if there are different functions for in and
outflow? A central result is the correlation heuristic [1]. This heuristic claims
that individuals tend to choose to copy the value of the environmental inflow
value to the user outflow and vice versa. The question is, do participants use
this heuristic if the in- and outflow functions are not constant? Or would they
rather use a function which is an appoximation of the difference between in- and
outflow? Despite its very simplistic representation of this dynamic open-ended
task as a waterlevel scenario the hidden function could be any computable func-
tion! In other words, it is possible to precisely test which kind of functions (e.g.
linear, quadratic, exponential, logarithmic, and so on) humans are able to iden-
tify and which can only be approximated. In this sense, such reasoning tasks
1 http://www.hss.cmu.edu/departments/sds/ddmlab/modeldsf/problem.html
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are very similar to analogical tasks and intelligence tests like Raven, where the
underlying function has to be identified. The only difference is that in this wa-
terlevel task an immediate response – a feedback – is possible and the reasoner
can adapt.

The paper is structured as follows: At first we present an overview of related
research to dynamic systems and how humans handle them. Then, we analyze
the DSF task in more detail and classify the task according to aspects of artificial
intelligence and cognitive science. Afterwards, we briefly present our own con-
ducted studies and present identified (putative) principles in human behavior.
Our findings result in a cognitive model for the DSF task which we will present
in the last section. Finally, a short discussion concludes the article.

2 Task Analysis

2.1 Related Research

Fundamental research analyzing dynamic systems was done by Forrester. He
identified crucial components like accumulation of flows, feedback, and time
delays and invented a formal methodology for analyzing and modeling such
systems [2]. He first described the difficulties humans have in controlling such
systems based on counter-intuitive system behavior.

Several works investigated how humans behave when controlling dynamic sys-
tems and revealed that even for apparantly easy tasks humans perform poorly.
Booth-Sweeney and Sterman conducted a pen-and-paper experiment where the
subjects should predict the water-level of a bathtub based on water inflow dia-
grams. Their results show that humans tend to correlate the system stock with
the system flow behavior [3]. Subjects wrongly assumed that the system stock
decreases with a decreasing but still positive inflow.

Dutt and Gonzalez analyzed the human strategies in the similar DSF task
that was designed to study human dynamic decision making processes [1, 4]. In
contrast to the pen-and-paper experiment by Booth-Sweeney et al., the subjects
had to maintain a certain water level in a tank. The experiment was conducted
using a computer simulation with a graphical representation of the water tank.
The water level was influenced by an unknown environmental inflow and outflow
as well as subject’s inflow and outflow actions. Over a time period of 100 steps
the subjects had to reach and maintain a specific level by specifying the amount
of water that should flow into and/or out of the tank. The sum of the current
amount and the net flow of environmental and user flows results in the amount of
water for the next time step. The environmental flow dynamics were controlled
by different functions (e.g. linear, non-linear) but so far they only investigated
controlling the environmental inflow. One main result of their experiments is
that humans have more difficulties in maintaining the goal level if the functions
underlying the environmental flows have a negative slope (slope effect) [1, 4]. As
mentioned above, they also identified the correlation heuristic, e.g. the strategy
to copy environmental inflow values to user outflow actions.
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Lebiere et al. established a model comparison challenge for the DSF task
using the experiment data of Dutt and Gonzalez. The data is partially provided
to the participants to develop a model for simulating human performance on this
task. We also participated in this challenge and conducted further experiments
to first, get a more reliable dataset and second, to investigate more complex
settings (e.g. testing of several function types).

2.2 Task Details

The level of water in the tank is the stock that increases with the inflows and
decreases with the outflows. The two types of inflows and outflows in this task
have been classified as exogenous (outside of the decision makers control) and
endogenous (under the decision makers control). The exogenous flows in the task
are the Environmental Inflow (increasing the level of the stock without the users
control) and the Environmental Outflow. The endogenous flows are Users Inflow
and Outflow.

The stock level s(t) at time t can be defined as follows [4]:

s(t) = s(t− 1) + [φei (t− 1) + φui (t− d)]︸ ︷︷ ︸
inflow

− [φeo(t− 1) + φuo (t− d)]︸ ︷︷ ︸
outflow

with

φei (t) : N→ R the environmental inflow at time t,
φeo(t) : N→ R the environmental outflow at time t,
φui (t) : N→ R+ the user inflow at time t,
φuo (t) : N→ R+ the user outflow at time t.

The parameter d controls the delay of the user action, such that it is not
executed directly (default d = 1). At each time period users see the values of
environmental inflow and outflow, user inflow and outflow, the amount of water
in the tank (stock) and the goal level. At each time step, submit their action by
specifying values for user inflow and outflow. These inputs can have any positive
value, including zero.

The DSF task is performed in discrete time steps and after each step the user
can set inflow and outflow values that will be submitted after pressing a submit
button (see Fig. 1). There is no time restriction for user decision period. After the
user’s action, the inflow and outflow values are processed the water-level change
is animated. The user is provided with the information of the environmental and
the user’s flows of the last time steps. Furthermore, the water-level is represented
graphically together with a marker line for the goal level.

2.3 Problem Classification

There are several schemata for classifying problem environments according to
different abstraction levels. For artificial intelligence (AI) Russel and Norvig
classified task environments according to the following properties([5]):
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(a) (b)

Fig. 1. Comparison of the original GUI used by Dutt and Gonzalez (a) and our simpli-
fied version we used in our experiments (b). The interface is divided into three parts.
At the top, information about the current time step, the previous environmental flow
and the current amount in tank is given. In the middle, a graphical representation of
the tank is displayed. The blue canvas indicates the current water-level and the red line
displays the goal level. The lower part provides two input fields for the user’s inflow
and outflow values which are submitted after clicking a button. In our version we left
out the repeated display of flow information.

– Accessible vs. Inaccessible: If during reasoning all aspects and information
is available then the problem can be called accessible.

– Deterministic vs. Non-deterministic: If the next state is completely deter-
mined by the current state and the selected actions.

– Static vs. Dynamic: If the problem structure can change while the reasoner
is deliberating then the problem is said to be dynamic; otherwise it is static.

– Discrete vs. Continuous. If there are a limited number of distinct, clearly
defined possibilities and actions we say that the environment is discrete.

From this definition it follows that the DSF-tasks are accessible because
there are no hidden influences. Since the environmental flows might depend on
stochastic processes, the task is nondeterministic. It is a static and continuous
environment because the system does not change while the user is not performing
any action and the actions consist of real-valued inputs.

In contrast, typical properties of complex problems in human reasoning are
characterized by Funke [6]:

– Cognitive complexity: measured by the number of involved variables.
– Interconnectedness: measured by the high interdependency of variables.
– Dynamicity: measured by the temporal changes during the reasoning process

(cf. [5]).
– Polytelie: (multiple goal availability) measured by the number of sub goals

that have to be optimized.

According to Funke, interconnectedness and dynamicity are the main char-
acteristics for complex problems [7]. Here the dynamicity qualifies this problem
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as a complex problem. An integrated approach is from Quesada et al. [8] which
included in their taxonomy a combination of formal (which are similar to clas-
sifications in AI, e.g. [5])) and psychological descriptions. The main criteria for
the inclusion are:

– skill-based vs. planning-based (the first one requires a more reactive behavior
while the second one allows for a predictive behavior)

– Knowledge-lean vs. knowledge-intensive problems
– Learning vs. non learning during problem-solving
– Understanding-based vs. search-based problems
– Ill-defined vs. well-defined problems.

Although further training might increase the performance, the obviously well-
defined DSF task is easy to understand without any previous knowledge. It is
mainly a skill-based task since for complex environmental dynamics it is hard
for the user to predict the successive system state. During the task, the subject
has to figure out the underlying environmental changes to be able to maintain
the goal-level. Thus, the task is knowledge-lean and requires learning. It is an
understanding-based problem, since a search-based approach is not reasonable
in this continuous domain.

2.4 Experiment Setting

As mentioned above, the organizers of the DSF Challenge provided partial ex-
periment data2 from Dutt and Gonzalez. Four different datasets were given, each
for a different underlying environmental inflow function (see Fig. 2). So far, dif-

(a) linear inflow (b) non-linear inflow

Fig. 2. Functions underlying the environmental dynamics used by Dutt and Gonzalez
[4, 1]. The outflow was constant zero in all cases.

ferent aspects remain unknown: First of all, what happens if different functions

2 The experimental data can be retrieved from:
http://www.hss.cmu.edu/departments/sds/ddmlab/modeldsf/data.html
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are used for environmental inflow and outflow? Would participants use the cor-
relation heuristic? Or would they rather use a function which is an appoximation
of the difference between in- and outflow?

Since humans are not good at identifying logarithmic functions (i.e. the non-
linear functions in the experimental data) – how do they behave if they get
quadratic functions, gauss-curves, sigmoid functions and constant functions? To
answer these questions, we reproduced the experiment by Dutt and Gonzalez
and tested further function types and combined the use of inflow and outflow
functions which not has been done so far.

Methods, Participants, Procedure. Our experiment was conducted simi-
larly to the original study by [1]. In addition to the originally used functions, we
tested the following environmental functions:

Task 1: φei (t+ 1) = 0.08 · t2 φeo(t+ 1) = 0.08 · t
Task 2: φei (t+ 1) = 0.08 · t+ 2 φeo(t+ 1) = 2
Task 3: φei (t+ 1) = 0.08 · (30− t) + 2 φeo(t+ 1) = 2
Task 4: φei (t+ 1) = 10

8·√2π
· exp(−0.5 · ((t− 15)/8)2) φeo(t+ 1) = exp(1)

We asked the participants to attempt to control the system over the course of
30 time steps. We choose 30 instead of 100 since in all previous studies (cf.[1,
4]) nearly all participants had already adapted after 20 moves to the function of
the task. The participants were presented with our own GUI (see Fig. 1). The
goal was to maintain the water tank level at 4 Gallons, beginning with an initial
level of 2 Gallons. 32 participants were tested in this experiment and received
course credits for their participation. We randomly assigned all 32 students to
one of the above tasks. None of the participants received any information about
the kind of function.

2.5 Experiment Findings

Analyzing the provided datasets reveals several issues:
The graphical representation plays an important role for human behavior: The

original GUI (left in Fig. 1) has a a higher amount of visual information and an-
imated features. We used a simplified GUI (cp. Fig. 1) to reduce visual overload
without lack of information. The participants in our experiments could adapt
faster to the functions than in the experiments by Dutt and Gonzalez. But we
did not conduct control experiments to directly compare the two visualizatons.

It is difficult for humans to deal with non-linear functions and they are worse
at decreasing than increasing functions: While each participant was easily able
to adapt to the linear increase function the fluctuation was much higher with
the non-linear and decreasing functions. This result also has been reported by
[4].

Heuristics are used in the beginning: It seems to be the case that in the first
steps participants used a means end analysis [9] between amount in tank and
goal (neglecting the environmental in- or outflow). However, after these steps
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they use a refined heuristic and approximate the net flow to compute the next
action.

Adaption range: Nearly all participants reach the goal interval3 within 20
steps.

Rounding: The participants in general tend to use rounded values. They tend
to use more precise predictions as they get closer to the goal.

Memory: It is not possible to make exact predictions without storing current
information in the working memory (allowing for additions and subtractions to
identify the different values).

A full presentation of the statistical analysis would go beyond the scope of
the paper. We have found like [1] that on average the Stock differed between
positive and negative environmental of the combined function (inflow-outflow
function). The difference between amount in tank and goal was much smaller in
the first case. Using this measure participants using Task 1 could adapt much
better to the underlying function than participants in Task 4, while Task 2 and 3
were in-between. All but one participant specified either inflow or outflow values
but not both. This means, the participants have computed the total function.

We could reproduce the effect that participants are better in dealing with
increasing functions. We believe it depends on the relatively high values with
which the decreasing functions start (10). This leads to a high deviation from the
goal in the beginning which has to be corrected. This must be, however, validated
in additional experiments. An astonishing fact is that only one participant (out
of 32) has shown the usage of a correlation heuristic (i.e. setting φei (t) = φuo (t+1)
and φeo(t) = φui (t+ 1)).

3 Our Model for the DSF task

3.1 Requirements of a cognitive model

Our aim was to model the user’s behavior in the DSF task. The empirical ad-
equacy of computational models can be evaluated by comparing the observable
trace of subjects behaviors when performing a task with the performance or
trajectory of a model [10]:

– Product correspondence: Similarity of the final performances (such as success
in solving a problem or classes of problems) on a specified scale.

– Correspondence of intermediate steps toward problem solution e.g. w.r.t.
problem solving strategy

– Temporal correspondence: Similar latencies between participants and model
– Error correspondence: Comparability of the numbers and kinds of errors
– Learning correspondence: Comparability in rate of improvement of perfor-

mance with practice in the same learning environments.

3 4.0± 0.1
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3.2 Model Design

Fig. 3 gives a complete overview about how the model works. Starting with no
information about the environment and the system dynamics, our model agent
performs the most rational action as if acting in a non-dynamic environment.
That means, it counterbalances the difference between goal and current amount
by the missing or surplus amount. The model agent retains this policy, that
we call rule-of-thumb (ROT), for a certain amount of steps controlled by the
parameter tf . Also, the ROT takes into account that with further steps the
actions result in more exact amounts. We therefore compute a coarse prediction
of the successive effective environmental inflow at time step t. The effective
environmental inflow at time t is defined as

φi(t) = φei (t)− φeo(t)

For the next step, this value is approximated by

φr(t+ 1) = sigm(t) · φi(t)

where
sigm(x) =

1
1 + e−c(x−s)

.

The value for the counterbalancing action results in

v = s(t)− g + φr(t+ 1)

such that

(φui , φ
u
o ) =

{
(v, 0) if v < 0
(0, v) otherwise.

Table 1. Model parameters.

parameter description

δa Ascend tolerance until underlying function is treated as linear.
tf Time steps until rule-of-thumb is used.
εd Discrepancy when ascend will be re-estimated.
δ1, δ2, δ3 Discrepancies for different rounding precisions.
γe Coefficient for extreme amount correction
s Shift parameter for the sigmoid function.
c Compression parameter for the sigmoid function.
γa Coefficient for ascend deviation.

The parameters c and s modulate the steepness and the shift of the sigmoid
function to adjust the learning progression, i.e. the increasing accuracy of the
prediction. Since the actions depend on previous system states, the model needs
some kind of memory to store perceived environmental attributes. In our model,
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only the last two states are accessible to simulate the limited human working
memory capacity.

After tf steps, the model agent stops using the ROT and starts to guess the
type of the function underlying the changes of the environmental influences. Our
main assumption is that it is difficult for humans to handle influences based on
non-linear functions. Instead, they try to approximate them with linear functions
based on the previous observations. The function for environmental influences is
computed by comparing the ascend of φ between the last two state transitions.
If the ascends are similar up to a small deviation (parameter δa) , these cases are
handled as linear increase and decrease respectively. In all other cases, the un-
derlying function is treated as non-linear without further function interpolation.
Despite the used linearization principle is the same for all function types, the
distinction is necessary because experimental results show that subjects acted
differently for the several cases. In our model we therefore use different param-
eter settings to adjust the state prediction computations. When the function
was guessed, the ascend a of the approximated linear function is memorized and
used for the next predictions until the action leads to a deviation greater than a
tolerance limit (εd). Then, the ascend for the linear function approximation will
be re-estimated. The forecast inflow is computed by

φf (t+ 1) = a · γa + φe(t)

such that the value that has to be counterbalanced is

v = s(t)− g + φf (t+ 1).

The resulting action then results in

(φui , φ
u
o ) =

{
(v, 0) if v < 0
(0, v) otherwise.

A special case occurs when the amount in tank exceeds the visible limit
above ten and below zero4 gallons. This happens mostly in situations where the
environmental influences change in a non-linear fashion. As mentioned above,
humans tend to rely rather on the visual information than the exact absolute
value. Experimental results show that in these situations the subjects react with
strong correcting actions to return to a fill level between 0 and 10. In such cases,
our model attempts to balance back the fill level by the discrepancy between goal
and current amount multiplied by a constant real value we refer to as extreme
amount coefficient (γe). The agent remains in this correcting mode as long as
the amount in tank is out of scale. When reaching a visible fill level again, it
switches back to function guessing.

The values the model agent has to handle are always rounded according
to the discrepancy between goal amount and amount in tank. This reproduces
4 We assume this is a bug in the DSF implementation but still, we considered this

case since experiment data was collected with this program.
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the subject’s behavior to not calculate with exact values in cases of a high
discrepancy. We integrated three rounding methods into the model. When the
discrepancy is higher than δ1, the values are rounded to the next closest integer
or .5 value. For lower discrepancies we also distinguished the case for rounding
to two (δ2)and three (δ3) decimal places.

extreme amount
in Tank?

Update
Working Memory

Guess
Function Type

yes

Start

Perceive
Environment

Try Correction

step < tstep_f_guessing?

Step := 0

s tep  +=  1

apply rule-of-thumb

no

yes

predict
effective inf low

discrepancy too large?

no re-est imate
inflow ascend

yes

compute
user in/outf low

no

Fig. 3. Flowchart of the model.
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3.3 Model implementation

We have implemented our model in Python5. The central part is the Operator
class which is designed as a classical agent that perceives and acts [5]. The
general and function type specific parameters were stored outside the operator
class in an associative array. We narrowed the parameter boundaries in advance
and optimized them by a local search algorithm to best fit the experiment data.

In each step the operator perceives the environmental state and updates its
internal working memory (perceive). Afterwards, it computes the counterbalanc-
ing action for the current state (act). As mentioned above, our main approach is
the idea that the participants use (for a certain number of steps) a rule of thumb.
Then, they approximate the function by linearizations (with respect to some er-
ror rates). These strategies are implemented by the functions apply ROT() and
predictFlow(). In the function predictFlow() the operator computes the fore-
cast and appropriate action. In contrast to the rule-of-thumb, the predictFlow()
function predicts the forecast value more accurately.

3.4 Model evaluation

For evaluation we first trained our model with the given datasets from Dutt
and Gonzalez and also with the data collected from our own experiments. The
trained model was tested against these datasets and we could reproduce the
behavior of average users. The model was also tested by the organizers of the
DSF challenge against unknown datasets, whereby our model achieved a high
accuracy. This means that our model reproduces and predicts human behavior
even in cases for which the model was not trained for. The heuristics identified
in the experiments are embedded into the system which enables the model to
replicate sub-optimal6 human behavior.

4 Conclusion and Discussion

Since the underlying function of a DSF-task can be any computable function,
this problem can be considered as highly computationally complex. Noise and
delayed actions of the reasoner’s response pose additional difficulty on the hu-
man reasoning and planning process. To capture the complexity of these kind
of dynamic problems we classified this task with respect to AI problem and
cognitive science characteristics [6].

Analyzing the classical DSF-task reveals that the original representation from
[4] had a high visual complexity factor. We therefore reimplemented the GUI and
reconducted our own experiments. We could not verify the so-called correlation
heuristic, i.e. that the output should be similar to the input [11]. This heuristic
can best be tested by combining different in- and outflow functions. Here, the
main question is: do participants simply “carry” the environmental outflow over
5 http://www.python.org
6 From a computational perspective.

59



to the user inflow (analogously for the environmental inflow and user outflow)?
Or do they calculate the difference between environmental inflow and outflow?

We have put these questions to the test using four different functions. Our
experimental results could not support the “correlation” heuristic. Taken to-
gether, the correlation heuristic might be due to the higher visual complexity of
the original study and the simpler functions they had tested.

Our intention was to develop a good (adhering to the principles of [10])
cognitive model for the DSF-Competition. Thus, our main assumption is that
humans are not very good at dealing with any kind of non-linear functions. If they
have to deal with such kind of functions they start to approximate the original
function by a linearization (i.e. use tangents) as long as possible and update this
function if the utility decreases. A good utility measure is the difference between
the goal and the current amount in the tank. Further parameters (cf. Table 1)
became necessary to integrate into the cognitive model to approximate human
behavior in learning the functions underlying the environmental changes.

Future work must cover the investigation of additional functions and the
control of several water tanks which have an influence on each other.
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Abstract. From the point of view of an autonomous agent the world
consists of high-dimensional dynamic sensorimotor data. Translated into
symbols the data is easier to handle for cognitive processes. I propose to
formulate the interface design between subsymbolic and symbolic rep-
resentations as global optimization problem. The objective becomes to
maximize the success of the overlying cognitive algorithm. For implemen-
tation of the interface, various known algorithms from data mining and
machine learning turn out to be adequate choices that exploit intrinsic
structures of the data space and allow a flexible adaptation of the inter-
face at the same time. From the point of view of the symbol grounding
problem the meaning of a symbol arises implicitly from this optimization
formulation and fulfills the zero semantical commitment condition.

1 Introduction

In natural systems the transition of subsymbolic data into symbols is known
as perception. Auditory, visual or tactile data from various kinds of sensors are
reduced and subject to neural pattern recognition processes. The human vi-
sual system is an excellent example for such a complex transformation. Also in
the design of artificial intelligent systems many examples exist where subsym-
bolic data is manipulated by means of arithmetic operations and transferred
to a symbolic level. These high-level symbols represent concepts that are com-
parable to mental models in cognitive science. They allow cognitive manipula-
tions like inference processes and logical operations: thinking can be referred
to as manipulation of symbols, similar to computation [8]. Cognition becomes
implementation-independent, systematically interpretable symbol-manipulation.

The questions arises how to define symbols and their meanings for artifi-
cial systems, e.g. for artificial autonomous agents. Which subsymbolic elements
belong to the set that defines a symbol, and – with regard to cognitive manipu-
lations – what is the interpretation of this symbol? These questions are closely
related to the symbolic grounding problem that has been introduced by Harnad
[7, 9] with the Chinese Room Argument (see Searle [16]). How is the meaning
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and the interpretation of a symbol grounded? To answer this question a couple
of strategies have been proposed that are reviewed by Taddeo et al. [19] – many
of them more or less successful.

To my mind the definition of a symbol and its interpretation is mostly of
functional nature. The intention and the success in solving problems to achieve
goals must guide the meaning and thus the definition of symbols. Hence, it seems
reasonable to formulate the symbol definition as optimization problem. Optimal
symbols and their interpretations yield optimal success of an autonomous agent.
In many artificial systems symbols are defined by an interface algorithm that
maps sensory or sensorimotor data to symbol tokens, e.g. class labels. Optimizing
a symbol with regard to the success of cognitive operations means optimizing
the interface design. In many artificial systems the interface design is part of an
implicit system modeling process – regrettably often without much effort spent
on an optimal architecture.

The paper is structured according to three perspectives it introduces. First,
the A formal perspective in Section 2 will formulate the interface design as global
optimization problem. The concepts of symbols and higher cognitive operations
are formalized. The interface between subsymbolic and symbolic representations
is introduced in an optimization formulation while potential objectives, free pa-
rameters and a two-level optimization process are discussed. An algorithmic
perspective is shown in Section 3 where I discuss typical data mining and ma-
chine learning tasks like classification, clustering and dimensionality reduction in
the context of interface design and symbol grounding. I propose not to restrict
to connectionist approaches, but to make use of recent data mining and ma-
chine learning techniques – from k-means to kernel methods. Last, the cognitive
perspective of Section 4 discusses the consequences of the interface optimiza-
tion formulation on the symbolic grounding problem. To my mind – as only the
agent’s objective has to be formulated explicitly, and this is implicit to any bi-
ological form of life1, the optimization formulation is close to fulfilling the zero
semantical commitment condition.

2 Interface Design as Optimization Problem

Cognitive operations operate on a symbolic level. After the characterization of
symbolic algorithms, I formulate the definition of a symbol via its connection to
subsymbolic representations. An interface algorithm maps the subsymbolic data
onto symbols. With regard to the objectives of the cognitive system the interface
design is formulated as global optimization problem.

2.1 Symbolic Algorithms

The definition of higher cognitive operations of autonomous agents is no easy
undertaking and faces similar problems like the definition of intelligence in cogni-
tive sciences and psychology [15]. Most of the higher cognitive operations involve
1 survival, reproduction, and each objective that is connected to the first two ones
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the perception of sensorial information. Spatial reasoning involves visual percep-
tion, while the usage of language involves auditory perception. Hence, higher
cognitive operations include an appropriate interface I and algorithmic opera-
tions on the higher level, so called symbolic algorithms. Because of the difficulties
we face with regard to a definition of what intelligent algorithms are, one can
characterize symbolic operations by giving examples, e.g. deduction processes in
propositional logic, or evolvement, understanding and usage of language, as well
as spatial reasoning. This characterization takes into account what one can only
loosely define as ”more sophisticated” intelligence. In general, most algorithms
from classic artificial intelligence – from depth-first search to planning and rea-
soning – belong to the class of symbolic algorithms. In most cases – and this is
frequently claimed to be important – a cognitive system is situated into a real
environment, this is denoted as embodied intelligence, see [13, 20].

In the following, I assume that an autonomous agent performs cognitive
operations with a symbolic algorithm, i.e. an algorithm that operates on the
level of symbols.

Definition 1 (Symbolic Algorithm). A symbolic algorithm A performs (cog-
nitive) operations on a set of symbols S.

If possible, we measure the success of the operations by a quality measure fA.

2.2 Symbols and Interfaces

An interface algorithm I perform a mapping I : D → S to the set of symbols
S. The result is a cognitive symbol c ∈ C, and C is the set of cognitive symbols,
that we only define for the sake of a better understanding. A cognitive symbol c
comprises a subset of subsymbolic data samples Dc ⊂ D that are assigned to a
certain symbol shape s ∈ S.

Definition 2 (Cognitive Symbol). A cognitive symbol c consists of a data
set Dc ⊂ D of subsymbolic data and a corresponding symbol s ∈ S that is subject
to cognitive manipulations.

A cognitive symbol is the basis of many approaches in artificial intelligence –
although not always explicitly stated. The definition of this concept helps to
become aware of the importance of a well-designed interface I. In case of a
self-organizing map, see Paragraph 3.2, a cognitive symbol is a Voronoi cell
in data space and its corresponding winner neuron n∗, i.e. the corresponding
symbol s. The meaning of a symbol s ∈ S is based on its interpretation on the
symbolic level. On the one hand symbols are only tokens – and may be defined
shape-independent [8]. But, the effect they have on the symbolic algorithm A
can be referred as meaning or interpretation of the symbol. I assume that in
autonomous agents an interface I exists that maps the subsymbolic data from a
high-dimensional set D onto the set of symbols S.

Definition 3 (Interface from Subsymbolic to Symbolic Representa-
tions). The interface from subsymbolic to symbolic representations I : D → S
maps each data sample d ∈ D to a symbol s ∈ S.
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I defines the set of symbols and may be implemented by any interface algorithm.
From the perspective of cognitive economy, it makes sense that |S| << |D|, and
that subsets of D are mapped to S, i.e. I : P(D) → S. In Section 3, I propose
interface algorithms from data mining and machine learning. These interfaces
exploit the intrinsic structure of data space, but most are parameterized and thus
can be subject to optimization with regard to certain properties. A bias of the
search problem is necessary since the learning of representation and training of
the learning algorithm is a hopeless undertaking due to an exponential increase
of the search space as already Mayo [12] states. The exploitation of the intrinsic
structure of the subsymbolic data space is such a bias, and to my mind the most
adequate. Interface design concerns the choice of a proper interface algorithm,
appropriate parameterizations and also the choice of adequate features. Note,
that feature selection – a very successful technique to reduce the solution space
– is also a special case of interface optimization.

2.3 Interface Optimization

Now, we formulate the design of interface I as optimization problem: we want
to find the optimal mapping I∗ : D → S with regard to the success fA of the
symbolic algorithm A.

Definition 4 (Interface Optimization). The optimal interface I∗ maximizes
the success fA, i.e. I∗ = arg maxI{fA(I)|I ∈ I}.

For this optimization formulation we have to define a quality measure fA
with regard to the symbolic algorithm A. The set of interfaces I may consists of
the same algorithm with various parameterizations, e.g. k-means with different
numbers of clusters k. The optimization problem may be solved offline, i.e. the
systems runs until a termination condition is met. Afterwards, the feedback fA
from the symbolic algorithm is sent to the optimizer. The optimizer chooses an
interface variant or a new parameterization and so forth. If feedback fA allows,
an online-adaptation of the interface is another promising possibility. In this
scenario the optimizer adapts the interface during runtime of the system – this
is only possible if the feedback is available online. In the following, we will dis-
cuss typical free parameters and possible feedback for the interface optimization
process.

In practice the model constructor does not spend effort into the explicit de-
sign of the interface between subsymbolic and symbolic representations. It is
frequently an implicit result of the modeling process. Classification algorithms
are applied taking into account the learning signal that a separate source de-
livered as class label. Clustering algorithms find the structure in the data with
regard to special properties, e.g. data density. Most system designers rely on the
correctness of the class label or on the abilities of the clustering algorithms not
concentrating on the requirements of the symbolic algorithm. The definition as
optimization problems helps to get aware that the design is important and to
make the application of optimization techniques more obvious,
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2.4 Optimization Criteria

For the adaptation of an optimal interface I a clear optimization objective has
to be specified. The main objective is to map high-dimensional sensory data
to a meaningful set of symbols (of arbitrary shape). How can this mapping be
measured in terms of a feedback fA from the symbolic algorithm? The feedback
depends on the goal of the autonomous agent. If it can explicitly be expressed by
a measure fA, an optimization algorithm is able evolve the interface. In general,
we see the following scenarios to get the feedback of the symbolic algorithm,
of which only the first two fulfill the zero semantical commitment condition of
the symbolic grounding problem – a definition and discussion of the symbol
grounding aspects will follow in Section 4.

1. Offline-feedback response. In the offline approach the symbolic algorithm
runs for a defined time, e.g. until a termination condition is met, and propa-
gates feedback fA that reflects its success back to the optimization algorithm.
If interface design is the only optimization objective – see Paragraph 2.5 for
thoughts about a two-level optimization process that considers learning on
the symbolic level as well – the system will adapt the interface to achieve a
maximal response. This process might be quite slow if the symbolic algorithm
is supposed to run for a long time to yield fA.

2. Online-feedback response. If the symbolic algorithm delivers the feedback
fA during runtime, this feedback can be used to define symbols online. For
example in a reinforcement learning scenario where artificial agents have
to learn from rewards in uncertain and dynamic environments, the temporal
information of the rewards can guide the interface process online. If an agent
is in a place of the environment where many varying rewards are available
the online-feedback response might lead to a more granular resolution of
states in comparison to places where no feedback is available.

3. Data driven. The intrinsic structure of the sensorial data itself usually guides
clustering approaches and might also be important as strategy to ground the
meaning of symbols, e.g. to differentiate between concepts that do not belong
to the same cluster. With regard to its intrinsic structure, clustering yields
a reasonable discretization into meaningful symbols in these cases.

4. User-driven. The practitioner should include as much knowledge as possible
into the optimization process. The knowledge can guide the response fA
manually. But the user can also integrate his knowledge in form of constraints
for the optimization problems, e.g. defining the number of symbols a priori.

2.5 A Two-Level Learning Problem

The symbol grounding problem is not the only problem an autonomous agent has
to learn. More effort is usually spent on learning of strategies and behavior and
the symbol definition remains an often neglected subproblem. An appropriate
approach would be to treat interface optimization and learning of strategies as
a two-level learning problem. One approach would be to optimize both levels
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alternately: With a fixed set of symbols the learning problem can be optimized,
with a fixed learning strategy the set of symbols can be optimized. Whether
interface optimization and learning can be solved in parallel surely depends on
whether the increase of the search space does not make the whole optimization
problem unsolvable. The two-level learning problem is related to the two-level
mapping from the subsymbolic level to the meanings of symbols that I will
discuss in Section 4.

3 Machine Learning Interfaces

The translation of high-dimensional subsymbolic data into symbols are tasks that
are well known in data mining and machine learning under the terms classifica-
tion, clustering and dimensionality reduction. Many symbol grounding related
work exclusively concentrated on neural networks in the past [6, 7, 2, 18], perhaps
due to a historical affinity to connectionist models. To overcome the restriction
this Section shows the relation between symbol grounding and machine learning:
assigning unknown objects to known concepts is known as classification, group-
ing objects is known as clustering, finding low dimensional representations for
high-dimensional data is denoted as dimension reduction.

3.1 How are Machine Learning Algorithms Related to Symbol
Grounding?

The problem of iconization, discrimination and identification formulated by Har-
nad [6] is closely related to the question how to map high-dimensional data to
classes or clusters. Classification, clustering and dimensionality reduction are
similar in this context. They perform a mapping from a high-dimensional data
space D to a low dimensional set of symbols S that may be a class, a cluster,
or a low dimensional manifold. The three machine learning tasks implement the
nature of dimensionality reduction as follows: Classification algorithms deliver a
subsymbolic to symbolic mapping I : D → S with regard to explicitly labeled
data samples in a supervised way. In a training phase mapping I is learned by
reducing the classification error. A learned interface is used to classify unknown
data, i.e. assign symbols to classes of similar high-dimensional input data. Clus-
tering algorithms deliver the subsymbolic to symbolic mapping D to a set of
clusters S with regard to the intrinsic structure of the subsymbolic data and
the properties of the algorithm in an unsupervised way. Frequently, the dimen-
sionality of observed data is much higher then the intrinsic dimensionality. A
3D-object for example has got an intrinsic dimensionality of 3, but on a dig-
ital image the dimensionality of the data vector is much higher depending on
the resolution of the picture. Last, dimension reduction methods have a similar
task like classification and clustering. For high-level data low-level representation
have to be found, e.g. a mapping from subsymbolic to symbolic data I : D → S
or the mapping from Rm → Rn with m > n. I come to the conclusion that
classification, clustering and dimensionality reduction algorithms from machine
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learning are eligible algorithms for the interface I from subsymbolic to symbolic
representations.

3.2 Examples for Related Machine Learning Algorithms

In the last years kernel methods became quite popular in machine learning and
data mining. It is not the scope of this work to review these methods. For a
detailed introduction I refer to textbooks like Bishop’s [1] or Hastie’s [10]. Here,
I only comment on the properties of three possible interface algorithms with
regard to the interface problem.

A simple but successful clustering technique is k-means clustering [1]. K-
means needs one essential parameter: the number of clusters k – that we denote
as number of symbols. Each cluster Cj ∈ S with 1 ≤ j ≤ k can be described
by its cluster center cj , the barycenter of the cluster elements. This concept
shows that both clustering and cognition share similar ideas: If the distances
between the elements in the data space and the cluster centers are minimal,
then clusters of elements should be represented by the same center whilst far-out
accumulations of elements belong to different centers. This principle is similar
to the idea of semantic distances of mental models. K-Means work as follows.
At the beginning it randomly generates k initial cluster centers cj . In order to
minimize the sum of distances, k-means works iteratively in two steps. In the first
step each data element xi is assigned to the cluster Cj with minimal distance.
In the next step k-means computes the new cluster centers cj as average of
the data elements that belong to Cj . K-means continues with the cluster center
computation, and so forth. The algorithm ends if the cluster assignment does not
change or if the change falls below a threshold value ε. The process converges, but
may get stuck in local optima. K-means allows to specify the number of clusters.
If we use k-means as interface algorithm, we can treat k as free parameter that
can be optimized with regard to fA. The optimal number of symbols to solve
cognitive tasks may frequently not be known in advance. Perspectives are the
number of states in reinforcement learning scenarios or the number of words in
language learning scenarios. But also other clustering algorithms may be applied,
e.g distance based approaches like DBSCAN that are based on the distances
between the data samples [4].

In comparison to clustering algorithms, most dimensionality reduction algo-
rithms maintain the structure of the data space, e.g. neighbored data samples
in data space are neighbored on a low-dimensional manifold. A recommendable
example is the self-organizing map by Kohonen [11]. Its number of neurons and
the learning parameters are eligible free parameters for optimization. In each
generation the self-organizing map updates the weights w of a winner neuron
and its neighborhood with the help of learning parameters η and a neighbor-
hood parameter h, so that they are pulled into the direction of data sample x
The algorithms lead to a mapping from the feature space D to the map. The
mapping maintains the topology of the neighborhood: Close data samples in the
high-dimensional space lie close together on the map. Whether this property is
important for the interface depends on the interpretation of the symbols.
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3.3 Optimization Algorithms

When the optimization objectives are clearly specified, and a feedback fA of a
given interface I is available, the choice of an adequate optimization algorithm
has to be answered. If no more information is available than the feedback, i.e.
no explicitly given functions nor derivatives, we recommend to apply evolution-
ary algorithms. A comprehensive survey of evolutionary algorithms is given by
Eiben [3]. Evolutionary computation comprises stochastic methods for global
optimization, i.e. optimization problems with multiple local optima. They are
biologically inspired and imitate principles that can be observed in natural evo-
lution like mutation, crossover and selection. If the optimization problem is not
supposed to suffer from multiple local optima, deterministic direct search me-
thods like Powell’s conjugate gradient algorithm [14] or similar optimization
algorithms for convex optimization may be applied.

4 Perspective of the Symbol Grounding Problem

Now, I discuss the interface optimization problem from the perspective of the
symbol grounding problem. After its short introduction, I describe the implicit
evolvement of symbol meaning. Guided by seven features of a valid solution to
the symbol grounding problem I will discuss the optimization formulation as
valid solution of the symbol grounding problem.

4.1 Symbol Grounding

Harnad [7] argues that symbols are bound to a meaning independent of their
shape. The symbol grounding problem is the problem to answer how words get
assigned to meanings and what meaning is. Floridi [5] emphasizes the importance
of the symbol grounding problem as an important question in the philosophy
of information. The symbol grounding problem has been intensively discusses
within the last decades [6, 7]. Taddeo et al. [19] reviews various approaches to
the symbol grounding problem classing them into approaches based on repre-
sentationalism, semi-representationalism and non-representationalism.

4.2 Implicit Evolvement of Meaning

From the perspective of the symbol grounding problem the optimization for-
mulation yields valuable insights. Learning and cognitive information processing
become a two-level mapping, first from the space of subsymbolic data D to the
space of symbols S, second, from there to the meaning of symbols. Their se-
mantics are implicit bound to the cognitive process2 whose success guides the
optimization process. During interface design, the first part of the mapping is
subject to optimization while the second parts guides this optimization process.
The whole process yields a grounding of symbols – arbitrary of their shape, but
2 above indicated as symbolic algorithm A
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based on objectives on the functional level of semantics. Decontextualization,
i.e. to abstract from particular patterns and the ability of a symbol to function
in different contexts is less an interface design, but a problem on the symbolic
level, see condition 4 of Paragraph 4.4.

4.3 Related Approaches

Harnad [6] proposes three stages of grounding, i.e. iconization, discrimination
and identification – that comply with the tasks that data mining algorithms
solve, see Section 3. In the taxonomy of symbol grounding approaches the idea to
bind the representation to functional or intentional properties can be found in the
representational approaches. Mayo et al. [12] proposes a functional organization
of the representations and introduces task-specific categories where symbols are
formed in order to solve task-related problems. They introduce a bias to put
sensory data into a category that best contributes to the solution of a particular
problem.

Sun’s [17] intentional model is also related to the optimization view. He
introduces a two-level approach whose first level concerns behavior guided by
the external world and innate bias. Conceptual representations are learned on
the second level. On the first level the autonomous agent explores the world
by trial-and-error bound to its objectives. On the second level the first level
intentional data is used to evaluate courses of action to achieve objectives. The
top down process that guides selection of actions is similar to the top-down
interface optimization feedback principle introduced in this work.

4.4 A Valid Solution to the Symbol Grounding Problem?

On page 33 of their work Taddeo et al. [19] postulate seven features a valid
solution of the symbol grounding problem needs. We will shortly discuss the
interface optimization problem in the context of these seven properties citing
the postulates.

1. The optimization approach is a ”bottom-up, sensorimotor approach” as sub-
symbolic sensorimotor data is mapped from the bottom to the level of sym-
bols and from there implicitly to their meanings.

2. It is a ”top-down feedback approach that allows the harmonization of top
level grounded symbols and bottom level, sensorimotor interactions with
the environment”: The feedback fA from the overlying symbolic algorithm
guides the grounding of the symbols explicitly during optimization. Hence,
the mapping is performed bottom-up while the feedback for the optimization
process is fed top-down and controls the harmonization between both levels.

3. ”The availability of some sort of representational capacities in the autono-
mous agent” holds true as the interface is defined as general mapping. Any
mapping with appropriate representational capacities may be chosen. In par-
ticular data mining algorithms map parts of D to S according to intrinsic
structures of the subsymbolic data. Their representational capacities are the
reason for their success.
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4. ”The availability of some sort of categorical/abstracting capacities in the
autonomous agent” is an apparent feature when mapping subsymbolic to
symbolic data with an interface algorithm: symbols abstract from sensori-
motor patterns and form a category (class or cluster). Decontextualization
may be implemented on the symbolic level.

5. ”The availability of some sort of communication capacities” to ”avoid the
Wittgensteinian problem of a private language” is also valid from the opti-
mization point of view. First, the development of language is a task that can
itself be seen as objective and for that a feedback fA can be defined. With
a ’teacher’ the mapping can also be learned in a supervised way, i.e. it can
be treated as classification approach. Second, symbols and their meaning
may be exchanged exclusively on the symbolic level. Both points of view are
consistent with the communication capacity condition.

6. ”An evolutionary approach in the development of (1) to (5).” the whole sym-
bol grounding and semantic elaboration process is a process the autonomous
agent has to evolve. My formulation of the symbol grounding problem as op-
timization problem strengthens this assumption. Evolutionary algorithms
are an appropriate choice to solve the optimization problem. This issue has
already been discussed in Paragraph 3.3.

7. Satisfaction of the zero semantical commitment condition in the development
of (1) to (6).
To my mind the optimization formulation fulfills the first five conditions.
Due to its importance, the last property is discussed in the next paragraph.

4.5 Zero Semantical Commitment Condition

It may not be difficult to ground symbols somehow, but to answer the question
how an autonomous agent is able to solve this task on his own, to elaborate
his own semantics. Genetic preconditions, interaction with the environment and
other autonomous agents seem to be the only sources this elaboration is based on
in biological systems. The interpretation of symbols must be an intrinsic process
to the symbol system itself without extrinsic influence. From this assumption
Harnad et al. [7, 9] derives three conditions, i.e. 1. no semantic resources are pre-
installed in the autonomous agent (no innatism), 2. neither semantic resources
are uploaded from outside (no externalism), and 3. the autonomous agents pos-
sesses his own means to ground symbols (such as sensors, actuators, computa-
tional capacities, syntactical and procedural resources, etc.). Taddeo [19] names
this zero semantical commitment condition.

Is the zero semantical commitment condition fulfilled in the interface opti-
mization view? The interface part – as parameterized mapping function – as well
as the optimization algorithm are both computational and procedural resources
that are allowed in condition 3. Up to here, we can assume that no knowledge
about the meaning of symbols is integrated into the autonomous agent. Neither
are semantic resources uploaded from outside. The only external knowledge that
is used during learning and optimization is a learning signal from the symbolic
level that reflects the success. Such a learning signal must exist in every learning
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scenario. Without any kind of learning signal, learning is not possible at all.
If available in form of neurotransmitters in case of nervous systems or in form
of survival and reproduction in case of the Darwinian principle of surviving of
the fittest, external feedback is the basis of every biological kind of learning.
Consequently, to my mind the optimization view does not violate any of the
above conditions for symbol grounding with respect to any innatism or external-
ism, and therefore is a perspective towards the fulfillment of the zero semantical
commitment condition.

The formulation of objectives and the appropriate definition of feedback fA
is an open and problem-dependent question. Similarities to reinforcement ap-
proaches are obvious. But it has to be considered that the objective function
itself does not violate the zero semantical commitment condition as externalism
may be introduced, if not the general objective of the autonomous agent is re-
flected in the feedback, but symbol grounding information in an explicit form.
Hence, the only condition for the feedback is to exclusively reflect the fulfillments
of the agent’s needs and other general objectives.

5 Summary and Conclusion

From the formulation of the interface between subsymbolic and symbolic rep-
resentations as optimization problem various consequences arise. The optimiza-
tion process will improve the performance of interfaces and hence the success
in solving cognitive tasks. Learning becomes a two-level optimization problem:
interface learning and learning on the symbolic level. Many approaches from
machine learning for dimensionality reduction, clustering and optimization are
adequate methods for the interface problem. The bias of the intrinsic structure
in the data that is exploited by data mining algorithms leads to a reasonable
reduction of the solution space.

Having this optimization nature in mind, the creator of a cognitive system
can invest more time into careful tuning and control of interface properties. Al-
though the flexibility of most current dimensionality reduction and clustering
methods is quite high, in the future the creators of artificial intelligent systems
may spend more effort in the development of adaptive and evolvable interface
algorithms, in particular in online-scenarios as conditions, e.g. the structure of
high-dimensional data, may change significantly in time. A solely mathemati-
cal and algorithmic formulation only allows a narrow view on the optimization
problem. But a fruitful impact for cognitive modeling and the answering to the
question how to measure the success of higher cognitive functions from cognitive
sciences and psychology becomes important.

Last, the binding of the symbol grounding to the objective of the acting
autonomous agent leads to the fulfillment of the zero semantical commitment
condition as neither internal nor external knowledge, except the objective of the
autonomous agent and its learning algorithms are explicitly integrated into the
agent. Interface and optimization algorithm are computational and procedural
resources.
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Abstract. Over the last years, sensorimotor codes, which are often
termed schemata in their symbolic form, are becoming increasingly ac-
cepted as a fundamental structural code for biological cognitive systems.
In their most embodied form, sensorimotor structures encode the cor-
relations of behavioral activities with their immediate perceptual con-
sequences. Behavior can thereby be a particular muscular contraction,
more elaborate motor synergistic muscular activity, or even complex
(trained) dynamic movements. Perceptual consequences may be very im-
mediate proprioceptions, more elaborate sensory changes, or even com-
plex perceptual dynamics. Besides their immediate behavioral relevance,
sensorimotor codes form the glue that links sensory and behavioral codes
together forming cognitive maps that enable the execution of complex
goal-directed behavior. Together, sensorimotor bodyspaces are formed in
which distances in space are not sensory but they reflect the motor effort
necessary to bridge a particular distance. To create intrinsically moti-
vated behavioral systems, motivations can be added to these modular
bodyspace representations. We show that different types of motivations
need to be distinguished for an effective design of interactively multi-
motivated systems. Moreover, we show that such designs can be easily
integrated into the sensorimotor bodyspace representations. In conclu-
sion, we propose that motivations may not only be necessary to induce
goal-directed behavior, but they may also be a highly important compo-
nent for shaping higher level cognitive modules.

Key words: Sensorimotor Codes, Cognitive Maps, Bodyspaces, Moti-
vations, Homeostasis, Self-Motivated Reinforcement Learning, levels of
cognition

1 Sensorimotor Bodyspaces

From a high-level conscious view-point, we often perceive ourselves in the sur-
rounding space from a somewhat allocentric, abstract perspective. During com-
munication, we might localize ourselves in the environment as currently being,
for example, in a certain room, a city, or country. If relevant for the conversation,
however, we turn to more ego-centric information such as, for example, attending
a certain event, facing a certain object or person, listening to a particular musical
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piece, or watching a certain program on TV. Thus, our self-perception can have
many perspectives and is integrated into various more-or-less egocentric points
of view.

What constitutes these perspectives? That is, in which forms of representa-
tions are such perspectives embedded? Various research directions suggest that
the basis for our spatial perceptions are sensorimotor codes, which are neces-
sarily purely egocentric. Wolff reviewed eye movement studies and concluded
that a spatial representation has do have a dominant, sensorimotor component
[1]. Studies in reaching movements led to the suggestion that multiple coupled
forward-inverse models exist for motor control [2]. Experimental evidence is avail-
able that shows that dynamic sensorimotor encodings can transfer bidirectionally
between different tasks and different sensory modalities. For example, rotations
can transfer bidirectionally from eye tracking to pointing [3]—which led the au-
thors to the conclusion that the investigated adaptation mechanism lies in a
common dynamic code that can transfer between categories. Similarly, dynamic
hand movements can transfer between hands [4]. Thus, dynamic movements are
partially encoded by a common code, as, for example, proposed in the theory of
event coding (TEC) [5] and anticipatory, sensorimotor structures, or schemata,
constitute the basis of this coding scheme [6, 7].

Interestingly, from a much more computationally oriented perspective, it was
shown that correlations between sensory and motor codes may reveal the dimen-
sionality in which interactions take place [8]. The authors show that the number
of components represented in a correlation mapping allows the deduction of the
dimensions of physical space. An integrated perspective of the body integrated
into multimodal, highly modular sensorimotor bodyspaces can be found else-
where [9].

As a consequence, sensorimotor bodyspace representations do not encode the
space purely sensory, but space is represented with various sensorimotor codes,
which implies that distances in space are represented motor-dependently. And
in fact, the conscious representation of spatial distances depends on the motor
effort necessary to bridge the questioned distance [10]. It was even shown that
tool-use can alter the distance perception as well—especially when tool-use is
intended and an object is in reach with the tool but not without it [11].

In neuroscience studies with monkeys, it was even shown that single premotor
cortical neurons with mirror-neuron properties distinguish between reachable
and non-reachable locations in space [12]. Moreover, the structure of the monkey
cortex was shown to be partitioned into various ethologically-relevant functions,
besides limb topology and simple movement typological distinctions [13]. The
different aspects are encoded with somewhat distinct regional, neural population
codes. A single neuron in such a code may control a different facet of the encoded
overall behavior and can be context-dependently modulated. Similar population
codes are also found in the parietal cortex, where peripersonal body spaces are
encoded [14], which surround the body and the reachable space with distributed
neural codes. Thus, population codes are a fundamental encoding scheme of
the brain. Each neuron in a population code represents a particular aspect of
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the code, such as a particular arm constellation in motor cortex or a particular
hand-relative object location in parietal cortex.

Although most of the studies above investigate body-part-relative movements
and representations (especially hand and arm but also eyes) rather than whole
body movements, there are several indications that also spatial representations
that have whole body movements as their motor-code use similar sensorimotor
encoding strategies. In the hippocampus, information converges for the formation
of episodic memory. During movements through space, place cells and head-
direction cells were localized (among others) in the rat’s hippocampus and were
mimicked by associative population codes [15]. Various indications now suggest
that the hippocampus is not only involved in the integration of allocentric and
egocentric representations but also play an important role for the goal-oriented
execution of behavior in space [16, 17].

In sum, sensorimotor highly interactive and dynamic bodyspace represen-
tations are omnipresent in the brain. They range from simple reaching move-
ments to elaborate body movements and categorical movements, which are each
encoded with modular sub-populations of neurons. Each sub-population cov-
ers a particular behavioral task or aspect of interaction with the environment,
including manipulating behaviors as well as navigating behaviors. These repre-
sentations however do not only serve as spatial representations and immediate
behavioral control components, but also appear to constitute the basis for even
higher forms of cognitive representations, leading eventually to complex social
interaction, language, and abstract thought capabilities [18, 19].

2 Sensorimotor Models

Over the recent years, our research group has developed several sensorimotor
models that are self-organized and developed for goal-directed behavioral control.
Two models will be shortly reviewed here.

The sensorimotor redundancy resolving architecture SURE REACH [20–22]
is a psychological plausible model of arm reaching behavior. It consists of two
population codes that interactively represent and control the movement to hand
locations or arm postures in the reachable space. An associative, inverse kine-
matics mapping correlates hand locations with redundant arm postures (one-to-
many mapping) and a sensorimotor model self-associates arm postures motor-
dependently. The latter essentially forms sensorimotor connections between be-
haviorally close postures, where each connection stores the motor vector that is
necessary to reach the one posture from the other.

It was shown that this representation may be regarded as a neural imple-
mentation of the posture-based motion planning theory [23] with the additional
capabilities of anticipated subsequent end-state considerations while reaching for
a current target and the resulting closed-loop control of the arm. Most recently,
the architecture was also applied to the control of a dynamic arm system in a
realistic, physical 3D simulation environment [24].
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While the inverse kinematics and sensorimotor mapping is learned in the orig-
inal SURE REACH implementation [20], the population codes were uniformly
distributed in hand-location and arm-posture space. To overcome this short-
coming, we enhanced self-organizing neural network techniques to be able to
connect perceptual spaces motor-dependently. The time-growing neural gas net-
work (TGNG) grows a population code that covers a particular space, while the
neural connectivity is motor-dependent [25]. It was shown that the resulting rep-
resentation implicitly encodes motor-dependent distances in the explored space.
So far, TGNG was applied to realize goal-directed robot movements in various
maze-like environments. However, in principle the TGNG approach could also
grow the population codes utilized in SURE REACH.

Goal-directed behavior is realized in both systems by model-based reinforce-
ment learning mechanisms, which is essentially discrete dynamic programming
realized within the population encodings [26, 20, 25]. Given a particular external
goal activation ae

i of neuron i in the population code, the activity is propagated
by

ai ← max
{

ae
i ; max

j
[γaj ]

}
, (1)

where ai denotes the current activity of neuron i and index j iterates over all
neurons j that are connected to neuron i via sensorimotor connections. Given
the system state (such as the posture or location) is currently represented by a
neuron i (usually a set of neurons represents the state of the system), then the
behavior is determined by the motor activity that is stored in the sensorimotor
connection that connects to the most activated neuron j, that is, arg maxj aj .

In sum, two sensorimotor population-encoded models exist and can be ap-
plied for the flexible, goal-directed control of arm-movements and full body move-
ments. In the following, we show that these encodings are highly suitable to add
motivational constraints and activated self-motivated behavioral goals.

3 Self-Motivated Behavior

Until recently, the utility of the introduced population encodings was shown due
to their (1) psychological and neuroscientific validity and (2) their capability to
plan and control flexible, goal-directed behavior. However, for the design of an
autonomous, cognitive system, goals and constraints need to be self-activated.
Thus, we now give an overview of how such self-motivated activities may be
included in these systems. We essentially propose that the system should strive
for inner homeostatic states, which may be encoded in a reservoir framework.
These states may represent the internal needs of the particular system, such
as hunger or thirst, as well as even more abstract homeostatic needs, such as
the urge for safety, which can lead to a scared system, or knowledge discovery,
which can lead to a curious system. As proposed elsewhere [27], we propose
to distinguish between these two types by terming the former consummatory
motivations and the latter property-based motivations.
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3.1 Homeostatic Reservoirs

In a similar vein to other recent publications [28, 29], we proposed to use reser-
voir encodings to reflect the actual needs of a system [27]: Each reservoir x can
be represented by an internal state value σx(t) ∈ [0, 1], which encodes how full
the reservoir is at time t. Moreover, each reservoir may have an associated up-
date function φx : [0, 1]→ [0, 1] and a weighting function ωx : [0, 1]→ [0, 1]. The
update function specifies the change in the reservoir level over time given current
interactions with the environment. The weighting function further controls the
impact of the current reservoir state on behavior. Intuitively, this function en-
codes the importance of re-filling reservoir x given its current state. In addition,
a constant priority weighting px for each drive describes the importance of this
drive compared to the others. Thus, the overall importance can be computed as:

ιx(t) = ω(σx(t))px. (2)

The equation essentially reflects the importance of drive x and thus can be used
to motivate current behavior. Given all current importance values, behavior can
be controlled to still the currently most-important need satisfying other needs
on the way given an appropriate opportunity. Thus, self-motivated behavior can
be realized.

A fundamental distinction, however, can be drawn between motivations that
can be stilled by a typical consummatory behavior, such as eating or drinking,
or by obeying particular constraints, such as not entering certain regions. While
the proposition of this general distinction was made elsewhere [27], terming
it location-based and property-based motivations, here we further detail this
distinction and embed it into a wider context. We consequently also refer to the
location-based motivations more generally as consummatory motivations.

3.2 Consummatory Motivations

The impact of each motivations depends on its update function φx. Generally
and without other context information, φx may be considered as continuously
decreasing reflecting the continuous bodily consumption of energy. However, in
consummatory motivations an increase in the reservoir state occurs only upon a
(successful) consummatory behavior while an increase in property-based moti-
vations occurs while the encoded property is increasingly satisfied. Also blends
between the two types are certainly possible.

With respect to sensorimotor population codes, consummatory motivations
are satisfied upon the successful execution of a particular behavior in a particu-
lar context, such as eating. Thus, consummatory motivations can be associated
with particular behavior patterns that are executed in a particular behaviorally-
relevant context. These behavior patterns may be represented by particular neu-
rons in a population code. These neurons may be activated when the importance
ιx(t) grows to a certain level compared with the other importance values ιy(t)
of other motivations y. The neural activity can then serve as a particular goal
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representation, which can lead to goal-directed behavioral patterns, regardless if
using the SURE REACH encoding for arm control or the TGNG encoding for
navigation control.

Interestingly, Graziano has shown that ethologically relevant behaviors are
encoded in partially regionally distinct population codes. Thus, property-based
motivations may be associated with particular ethologically relevant behavioral
patterns and may even lead to the formation of such patterns in the first place.

3.3 Property-Based Motivations

In difference to consummatory motivations, property-based motivations rather
strive for the maintenance or avoidance of particular situations. For example, we
do not like to keep our arm in an uncomfortable position (such as an extreme
twist) for an extended amount of time. This was shown in tasks in which a
particular task had to be executed leading to a particular end-state. Results show
that we chose, for example, our initial grip of a stick based on the anticipated
final state, which is optimized for end-state posture comfort [30].

In the navigation domain, scared animals may avoid open areas striving for
protection and thus preferring to move along walls or through tunnels. In this
case a safety motivation may exist that leads to the modification of path plan-
ning given the current drive for safety. In population codes, both types may be
encoded by a preference bias that is spread over the full population code. That is,
while a consummatory motivation may activate a certain sub-population or even
single neurons in a population code, property-based motivations pre-activate or
pre-inhibit full population codes property-dependent.

Thus, property-based motivations will have a different effect on behavior than
consummatory motivations.

3.4 Both Types Combined

When combining both types of motivations, it does not come as a surprise that
they need to be handled differently. In fact, it was shown that property-based
motivations need to modify the activity propagation of consummatory motiva-
tions through a population code in order to realize goal-directed behavior while
satisfying property-based motivations.

As an example, it was shown that a simulated, “scared” robot may walk
along walls in order to reach food locations by modifying the food-originating
activity propagation by a wall closeness preference:

hi ← max
{

he
i ; max

j
[γ(hj + (sj − 1)ιf )]

}
, (3)

where he
i denotes the consummatory motivational activity in neuron i, hi the

propagated consummatory activity, si the property-based motivational activity,
ιf the current importance of the property-based motivation, and where j iterates
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over all neighboring neurons of neuron i (cf. [27]). Note that (sj − 1)ιf is always
a negative value, which essentially denotes the cost of moving towards node j.

In general, constraint goal-pursuance can be realized by constraining con-
summatory activity propagation by the current property-based motivational ac-
tivities. The result is a system that acts goal-directedly striving for consumma-
tory behaviors while obeying other property-based motivations concurrently. For
TGNG, it was shown that the combination results in a system that exhibits la-
tent learning capabilities, exploits behavioral opportunities, and yields emergent
behavioral patterns due to the concurrent combination of different motivations
respecting their current priorities [27].

Since the SURE REACH architecture essentially encodes sensorimotor
spaces similar to the TGNG approach for navigational spaces, similar moti-
vational combinations can be used also for SURE REACH. So far, only a simple
priority-based drive has been included in SURE REACH in order to avoid ex-
treme arm postures [31], but more elaborate combinations are in preparation.

4 Summary and Conclusions

Summing up, we proposed that population codes can be very suitably combined
with motivational drives in order to realize systems that exhibit self-motivated,
goal-oriented behavior. Such systems may thus not need to be explicitly pro-
grammed to execute particular behaviors or reach particular goals, but rather
only need to be informed about which internal variables need to be kept in suf-
ficient homeostasis. Learning and adaptation of the developed population code
and their association with the particular motivations then leads to the pursuance
of goal-directed behavior.

The changes in the internal variables can additionally distinguish between
consummatory motivations and property-based motivations. Thus, the distinct
propagation of both types of motivation and the influence of property-based
motivations on the consummatory activity propagations can be realized without
the need for pre-programming. This motivation concept can be added to both,
the SURE REACH system for flexible, end-posture oriented arm control [20] as
well as the TGNG model in its navigation tasks [25].

In general, any system that utilizes sensorimotor codes for effective behavior
control may be combined with the homeostatic motivation concept. For exam-
ple, a sensorimotor representation was recently used to optimize self-localization
based on the principle of information gain [32]. The utilized information gain
principle may be coupled with the proposed curiosity-based motivation. In this
way, the system my become even more knowledge-gain directed, as long as the cu-
riosity drive is stronger than the current consummatory motivations. Similarly,
more schema-based approaches such as anticipatory learning classifier system
architectures [33, 34] may be combined with such reservoir-based motivational
systems, as originally already envisioned by John H. Holland in his first learning
classifier system implementation—the “cognitive system” CS1 [35].
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While the thoughts pursued herein were so-far only tested on rather static,
location-based sensorimotor population codes, it becomes apparent that many
behaviors are not simple transitions in space or posture, but unfold in an ex-
tended fashion over time. As mentioned above, a recent neuroscience review of
Graziano [13] suggests that the motor cortex concurrently encodes ethologically-
relevant behaviors besides posture-based and directional codes of particular
limbs or motor synergistic combinations of limbs.

Particularly the formation of ethologically relevant behavioral codes may be
controlled not directly by genetic encodings, but rather by motivational encod-
ings coupled with an appropriate bodily morphology and basic reflexes. Thus,
motivations may serve as a fundamental brain structuring principle that may
lead to the formation of those increasingly abstract sensorimotor representations
that are relevant for the organism. By the encoding of relevancy (via motiva-
tions) rather than the full behavior, much more flexibility may be maintained
in the evolution of the respective genetic encoding and in learning to satisfy the
respective motivational drives during development. Future research will show to
what extend this proposition holds for highly complex, adaptive, social, cognitive
systems, such as us humans.
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Abstract. When facing critical situations, for example the loss of a
job or the breakup of a partner, humans reactions are not predictable.
In this paper we present apart of our conceptual design of a system,
which simulates human’s behavior in critical situations. We concentrate
in this paper on conflict management strategies for our simulation Our
system is based on the multi-agent systems technology and use planing
algorithms. We show how we intend to resolve conflicts while coping with
critical situations and present the current state of our work.

1 Introduction

How does someone react when he faces a critical situation in his life? In our
everyday life, we consistently face situations which pose more or less immense
challenges. Examples can be the breakup with a partner, the loss of a job, an
illness or even the death of a relative. As different as those challenges can be, the
reactions of the persons who are facing the same kind of challenges can be very
different as well. The problem consists in finding out how someone reacts when
he/she faces up a given challenge. The problem being a psychological one, there
have been many research groups in psychology working in that direction, begin-
ning in the early 1980s. They developed psychological models and paradigms in
order to represent and analyze people’s behaviors.

In this paper, we present our approach for the simulation of human’s behav-
ior in critical situations. From a psychological point of view, our approach is
based on the theory on coping strategies developed by Brandtstädter and Greve
[1]. On the other hand, from a computer sciences point of view, our approach
relies on the use of multi-agent systems and Case-Based Reasoning (CBR) [2]
as the main knowledge representation inference. CBR is based uses past expe-
riences to solve new problems. We use it because human’s way to act is mostly
based on past experiences (first or second hand).

Past approaches of modeling psychic processes have remained on a macroscopical
level, as it were, simply connecting functional devices such as ”central executive”,
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or ”motivational center”, etc. Switching to an agent-based approach, it will be-
come possible to include dynamical interactions within such functional clusters
(e.g., interactions between various goals a person holds or between heterogeneous
emotional states - ”mixed emotions” - within a person). This will certainly come
much closer to what we actually are than roughly computer-metaphor inspired
simulations. On the other hand, agent-based simulational models within the psy-
chological realm have exclusively focused on interactions between persons (e.g.,
attitude change; [3]). Hence, the combination of (a) simulational approaches of
intrapsychic processes (such as coping responses) and (b) agent-based technolo-
gies seems to be a highly promising constellation to further advance both the
applicational options of simuational models and the theoretical integrity and
clarity of psychological theories in the coping realm.

For this purpose we developed the SIMOCOSTS (SImulation MOdel for COping
STrategy Selection) model. In the SIMOCOSTS project we are actually aiming
at a threefold goal, namely (1) developing a research software tool for supporting
psychologists, who are working on cognitive modeling and learning as roughly
described above, in their research work, (2) realizing what we call ”collabora-
tive multi-expert-systems” (CoMES; [4]), and (3) instantiating the SEASALT
software architecture [5] we developed in our research lab as a first step towards
realizing CoMES.

Our approach for the simulation in this paper is based on the fact that each
person is goal-driven. That means that the actions made by the person are in-
tended to be a part of the achievement of a certain goal. The simulated person
has many goals and each goal wants to be fulfilled independently of each other
and plans have to be computed (for each goal) in order achieve the goals. A
critical situation is thus a situation in which a goal can not be fulfilled. These
goals all interact in a sort of market place. We use the terminology ”market
place” because we want to accentuate the competitiveness of the goals. This
might lead to conflicts. Conflicts occur when different plans (which were com-
puted for different goals) contain actions which are contradictory. We thus also
have elaborate a conflict management methodology for our approach. This is the
main focus of this paper.

We will first present in the next section some psychological background. After
presenting some related work, we will explain how we are actually implementing
our system by elaborating on the underlying concepts and the used algorithm
for conflict resolution. We will present the current state and an outlook on the
implementation of our system.

2 Psychological Background

Psychological coping research, during the past three decades, has largely rested
on correlational questionnaire studies. Unfortunately, the causal connections be-
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tween the various factors included in the available theoretical models can hardly
be tested with these data. On the other hand, valid experimental studies can
hardly be done in this highly sensible area, both for ethical and practical reasons.
As a consequence, theoretical models have remain underdeveloped and seldom
directly tested. Notwithstanding a bulk of empirical studies in this field, we still
do not know the interplay of different facets and layers of the ”psychic system”
in its response to a threatening or burdensome experience or constellation. From
a theoretical point of view, however, this interplay of intrapsychic factors is cru-
cial for our understand of coping processes and, thus, for successful intervention.
Moreover, the possible intersections to developmental theories (i.e., processing
developmental challenges and tasks) is another underinvestigated issue.

At this juncture, simulational methods offer a highly useful way to sharpen
theoretical assumptions (claims) and to test theoretical hypotheses on possible
interactional processes of several psychic subsystems. In order to create a for-
malized model, an empirically corroborated theory is needed in the first place.
In our work, we start from the two-process model of developmental regulation
[6–8]. The starting point here is the consideration that stressful events, threats to
identity, and developmental losses can be understood as problem situations with
an underlying discrepancy between an is and a should be perspective of personal
development, that is a regulatory deficit. However, in this approach, the differ-
entiation between fundamental reaction modes is drawn along the boundaries
of personal (i.e., behavior which is consciously and intentionally planned and
governed by the person as the acting unit) and subpersonal (i.e., intraindividual
processes such as information processing or emotional regulation which cannot
be controlled or even initiated, often not even consciously be recognized by the
person) perspectives against the background of an action-theoretical perspec-
tive of human development [9]. The model basically differentiates between two
modes of coping with problems, designated as assimilative and accommodative
processes [7]; these can be supported by a third mode of dealing with threats:
defensive processes [1].

Assimilative Strategies: Intentional Self-Development. In the assimilative reac-
tion mode, individuals try to change their life situation or their own behavior in
the sense of a better alignment between their normative expectations and goals
in relation to themselves [6]. For example, we can do sports to improve diminish-
ing physical condition, or change our eating behavior to make our figure closer to
our ideal in this respect. Characteristic for this mode is that personal standards
and goals underlying the situational or developmental appraisal are maintained.
Coping attempts in this mode are usually carried out intentionally, consciously,
and controlled, and can thus appropriately be called coping strategies.

Accommodative Processes: Development as Adaptation. The attempt to remove
or prevent developmental losses by means of active problem-solving can fail or
be bound to difficulties and costs that are too high. Often in life fundamental
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revisions in life- and developmental blueprints become necessary beyond simply
compensatory measures. Serious threats occur that cannot be actively removed
and need to be resolved through reactive preference readjustments. In response
to these burdens, the alternative option consists of revising standards and goals
to the given action possibilities: This is the accommodative mode. Typical ex-
amples of accommodative reactions are the relinquishing and devaluation of
blocked goals, processes of regulating standards, but also processes that lead to
a more readily acceptable reinterpretation of the given situation. According to
Brandtstädter’s view, neither of the modes has primacy. For a given situation it
is not only open which of the modes is ”appropriate” or even ”successful”; and
it is also an empirical question with which modus the person will initially react
in a stress situation; from a dynamic perspective it might often even be that just
the combination of both forms is effective.

Defensively Dealing with Problems: Escape or Detour? From a coping point
of view, however, it seems to make sense to add a third reaction mode to the
developmental model that several of the above-mentioned models included: Indi-
viduals can apparently also completely ignore a problem, denying its meaning or
even its existence. In this case they change neither the problem nor themselves:
Neither personal goals, preferences, standards, nor aspects of the self-image get
adjusted nor does the problem get solved actively. This defensive mode operates,
as it were, entirely behind the back, as the mechanisms as well as the effects of
these processes principally remain hidden from the individual.

3 Related Work

As already discussed in [10] and [11], there already exists many agent-based sim-
ulation approaches (like EOS [12] and Sugarscape [13]) that deal with human
behavior. However we can not use them for our simulation because they do not
deal with coping. Furthermore, cognitive architecture have also been developed
(like ACT-R [14] and EPIC [15]). Yet they do not deal with critical situations.
In [10] and [11], we showed a process based architecture for SIMOCOSTS. Our
work is based on it. In this section we will introduce some techniques used in
our simulation.

As said earlier, the simulated person has several goals and each of them needs
to compute a plan on how they will be achieved. The type of planning we will
use for our simulation is derived from logic-based planning (see [16]). The reason
is that the simulated person is mainly represented with predicates, which give
us the current state (physical and psychological) of the person. In the area of
(agent) planning, some work has also already be done. We can for example see
in [17] that there exists several kinds of planning algorithms. The first type of
planning algorithms are the so-called linear algorithms. The particularity of lin-
ear algorithm is that the generated plan consists of actions which are chosen by
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only considering the preconditions and postconditions of the actions. Essentially
2 types of linear planning algorithms exists

– Progression (also called set based planning): the actions are chosen while
transforming the initial state into the goal state. STRIPS [18] is a prominent
example.

– Regression: the actions are chosen while transforming the goal state into the
initial state.

Other methods include plan based planning and graph based planning (see [17]).
The main difference between linear algorithms and the other planning methods
is that dependencies between the actions are not considered in linear algorithms.

As for agent planning while dealing with conflicts, some work was already done
the area also. One good example is done by Timm in [19]. Timm actually dif-
ferentiate between 2 types of conflicts management methods (i.e. internal and
external). The internal one considers that an agent might have several goals and
trying to accomplish them might create conflicts. He developed a method (called
cobac) in order to solve those conflicts. Yet we can not use it, because the agents
in our simulation just have one goal they want achieve. Each simulated person
has many goals and each goal is implemented as an agent. We thus do not have
internal conflicts in our simulation.
His external method deals with the conflicts that might occur between several
agents. His proposed algorithm (called oac) mainly uses communication between
the agents in order to resolve the conflicts. That means, the agents automati-
cally try to solve the conflicts by communicating with each other and proposing
solutions. Because of the fact that we consider that the simulated person acts in
a critical situation, it is not realistic to suppose that the person would take his
time and elaborate a perfect solution to his problems or conflicts. The person
would rather try to find quick solutions for his most important goals. The sec-
ond method of Timm is thus not appropriate for our simulation either. We will
explain in the next how we intend to deal with conflicts in our simulation.

4 Simulation

In this section we will explain how we intend to implement the simulation with
a focus on conflict management.

In Figure 1, we can see the course of the simulation. At the beginning we have
an initial (generated) situation. When facing a new situation, each agent tries
to find out if the situation is critical for him. This will be done by comparing
the goal state of the agent with the current state (inclusive the new situation)
of the person.

Let us take a student, called Mr. X, as our example. Mr. X has three goals

1. have a stable financial situation
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Fig. 1. Illustration of the simulation

2. finish his master’s degree in Business Informatics
3. create a family

We can further suppose that none of the listed goals has already been reached.
Nevertheless, plans have have already been computed in order to achieve these
goals. That means that the goals are reachable and the actual situation is there-
fore not critical. Knowing for example that three out of four basic courses in
computer sciences (let say CS1 till CS4) are needed (among other courses) in
order to finish his master’s degree, a valid plan for that goal might contain the
actions which prompt Mr.X to take the courses CS1, CS2 and CS3.
A new situation with the information ”CS3 failed” would be a critical situation
for Mr. X because the second goal is not reachable anymore (with the actual
plan).

We saw in earlier that the market place, in which the goals interact, is the
most important part of the simulated person (and thus of the simulation). We
will now explain how the intend to implement it.
The market place contains many competitive goals. As it is the case for humans,
the goals are prioritized. The market place is implemented as a multiagent sys-
tem with each goal being implemented by an agent. In fact these agents will be
implemented following the Belief-Desire-Intention (BDI) principle (see [20]). The
different properties of the person (which are the same for each agent) represent
the situation. The simulated person also have many actions (e.g. take the course
CS3), which can be used by any agent. In each situation, each agent tries to find
out if it is critical for him. If it is the case, the agent tries to find a solution by
computing a (linear) plan. The computed plan consists of several actions which
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might or should affect the situation. The situation is thus updated after each
action. The actions contain all facts, which will be modified in the situation after
it has been applied. They also contain a time stamp which indicates the time
needed before an action is completed.

A conflict occurs when the plan computed by one agent affects another agent.
That is, when applying an action, the situation might change so that it becomes
critical for another agent. In our example, a new plan for the second goal might
include taking the course CS4 in the next term (which will be used instead of
CS3). Yet if we suppose that the plan of the first goal includes having a job (in
the next term) at which the person has to be at the same time on which CS4
takes place, we would have a conflict.
We developed a methodology to resolve conflicts in our simulation which is based
on the prioritization of the goals. Our methodology is based on the fact that a
human will first try to achieve his most important goals before achieving the
others. The algorithm can be seen below.

if any conflict exists then
ConflictedAgents← {A1, . . . , An}
while ConflictedAgents 6= ∅ do

Recompute the plan for the agent Ai with the highest priority while
considering the situations generated by previous plans.
Save the all different situations from the beginning of the plan to the end.
remove Ai from ConflictedAgents

end while
end if

When applying it to the example, this simply means that we would solve the
conflict by first trying to recompute the plan of the most important goal, which
states that the person wants to have a stable financial situation. We will suppose
that the initial plan for this goal do not change, which means that the person
will keep his job. Then a new plan for the next goal in the set of conflicted agents
(master’s degree in business Informatics) should be computed. The agent might
know from its knowledge base that the course CS3 takes place each year. That
would lead to a plan stating that Mr. X should take that course again in the
following year. In this case the conflict would be solved.

There are a few thing that should be noticed for our conflict management
methodology. First, recomputing plans does not always lead to valid one. In
this case, we will have to reconsider the intentions (i.e. the goals). That means,
either the goal itself or its priority will be changed (leading to an accommodative
process).
Second, for a better conflict management, the new plans of each agent should be
computed while taking the modifications of the situation by higher prioritized
agents into account.
The output of our simulation is the state of person (i.e. the situation) after the
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execution of all plans and also the plans as justifications. An important point to
our simulation is that all computed plans are not executed by the person. They
rather represent what the person ”thinks”, he should do. The person would in
fact just execute the final solution (i.e. the output of the simulation)

5 Conclusion and Outlook

We presented in this paper how we intend to implement our approach SIMO-
COSTS for the simulation human’s behavior in critical situations. Our approach
is based on the theory on coping strategies developed by Brandtstädter and
Greve. Our simulation is based on the multi-agent system technology. We ex-
plained the underlying algorithm and showed by means of an example how it
works. In this paper we focused on the conflict management of our agent-based
system. The methodology used for this purpose derivate from human’s behavior
in critical situations.

Currently, we are still implementing the system. We can already represent the
psychological and physical state of a person, which is an important step for the
representation of the situations. We are now implementing the course of of the
presented algorithm. Nevertheless a first prototype will be available in a few
months. The system, once implemented, will be handed to psychologists who
will conduct experiments with it and will also fill it with the required knowledge
for the experiments. We will just have a few examples at our disposal which will
be used for testing while implementing the systems.
We also, with this system, fulfill our aim of extending our CoMES [4] environment
with another distributed knowledge-based system. Another goal is to provide a
more generic architecture for the simulation, such that it can be applied in other
domains like economy. It would then be possible to simulate different scenarios
in a stock market for example.
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Abstract 

The computational cognitive architecture CASIMIR aims at modeling a wide range of 
phenomena, representations, and processes involved in human spatial reasoning and 
problem solving. While performing on a spatial problem, pieces of information stored 
in semantically organized long-term memory structures are retrieved and aggregated 
for being used to build up spatio-analogical working memory representations. 
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