

Developer Management in FLOSS Projects
Theoretical Concepts and Empirical Evidence

Andreas Schilling
University of Bamberg

Diese Arbeit hat der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-Friedrich-
Universität Bamberg als Dissertation vorgelegen.

Erstgutachter: Prof. Dr. Tim Weitzel

Zweitgutachter: Prof. Dr. Kai Fischbach

Mitglied der Promotionskommission: Prof. Dr. Guido Wirtz

Tag der Disputation: 16.07.2015

Developer Management in FLOSS Projects
Theoretical Concepts and Empirical Evidence

Andreas Schilling
University of Bamberg

Including a Foreword by Prof. Dr. Tim Weitzel

Dedicated to my family

Developer Management in FLOSS Projects

Developer Management in FLOSS Projects 5

Foreword by Prof. Dr. Tim Weitzel

The open source movement has revolutionized Information Systems development (4 out of 5
developers use projects like Git or Eclipse) and diffusion. FLOSS (Free/Libre Open Source
Software) hence became a major topic for research and practice in the Information Systems
community. A matured literature now offers a variety of useful insights from success factors
like the importance of sustained contributions to ways of how to bridge the cultural and spatial
distances in such virtual and distributed developer teams. A special issue of the Journal of the
Association of Information Systems (JAIS), the flagship journal of the AIS, (Volume 11, Issue
11/12, winter 2010) summarizes that we know a lot about properties of successful FLOSS
projects yet struggle to know how to achieve them. We hence face an interesting IT
management challenge that, by the nature of FLOSS, requires interdisciplinary thinking:
„FLOSS is a complex phenomenon that requires an interdisciplinary understanding of
technical, economic, legal and socio-cultural dynamics” (Crowston/Wade, JAIS (11) ii). This
is, exactly, what Dr. Schilling offers in this work.

The clever idea underlying the research of Andreas Schilling is to combine theoretical
perspectives from organization sciences and HR research with the FLOSS literature to
systematically identify how to find and retain FLOSS developers so that the project becomes
and stays successful. He asks (and later answers): How can FLOSS projects effectively attract,
integrate, and retain developers? Together with inventively gathered and sophistically analyzed
data, we are offered new insights into successful FLOSS governance. Interesting results include
that, in-deed, the extant literature always talks about “teams” and uses control variables like
team size, yet is silent about how to attract and retain good team members or how to consider
relational – not only unary – member properties. To address this issue, Dr. Schilling develops
a Person-Job (P-J) and Person-Team (P-T) fit perspective that considers both, individual and
relational characteristics in FLOSS projects. Empirical analyses shows that his „objective“ P-
T/P-J-based FLOSS success model even beats the “subjective” predictions of experienced
Google project leaders concerning performance and sustained contributions. Another
noteworthy insight is that there is no correlation between past academic achievement and recent
developer performance. To me, the core contribution is that and how face-to-face meetings can
bridge spatial and cultural distances in distributed FLOSS teams and that more diverse teams
outperform all others if and only if there is at least some offline contact amongst FLOSS team
members.

Overall, the thesis of Dr. Schilling offers important theoretical and empirical contributions to a
significant and well established research area by adding, among others, a modern team
perspective. Together with the author’s fine familiarity with the FLOSS culture and the
innovative data, this research is both an instructive and engaging read that is likely to influence
future work on FLOSS (e.g. the Social Practice View as theoretical foundation for many
fundamental FLOSS topics) and virtual teams.

Foreword by Prof. Dr. Tim Weitzel

6 Andreas Schilling

„…der Schweiss FLOSS mir von den Gliedern“

(Friedrich Nietzsche, Also sprach Zarathustra, 2. Teil)

Tim Weitzel

Developer Management in FLOSS Projects

Developer Management in FLOSS Projects 7

Acknowledgement

This dissertation would not have been possible without the help and support of my supervisor,
PhD committee, colleagues, friends, and family. I am deeply thankful for the help these people
provided me, more than any words can express.

First, I would like to thank Prof. Dr. Tim Weitzel, who was the supervisor for my PhD thesis.
It was him who introduced me to the field of open source research and the scientific research
community. Moreover, his guidance and support made it possible for me to pursue my thesis
by combining skills from the business and programming domain. I am also very thankful to
Prof. Dr. Kai Fischbach and Prof. Dr. Guido Wirtz for joining my PhD committee and their
interest in my research. Their valuable comments and advice helped me considerably improving
my work.

Special thanks go to Dr. Sven Laumer for his scientific and personal guidance throughout the
years of my doctorate. In the many discussions we had online as well as in person, he often
provided structure to my thinking and identified interesting new research avenues. Moreover, I
am grateful for his help in publishing our research work and that I could always count on him
as a colleague and as a friend.

Sincere thanks goes also to Dr. Ralph Guderlei for his technical and personal guidance. I deeply
appreciate the numerous Tuesday evenings and the endless hours we spend discussing technical
and mathematical issues. I value his unconditional help whenever I did not know what to do
and I am very thankful for his friendship.

I also like to thank my colleagues Dr. Daniel Beimborn, Wladimir Chrennikow, Thomas
Friedrich, Steffen Illig, Christian Jentsch, Janina Kettenbohrer, Dr. Chritian Maier, Dr.
Bernhard Moos, Oliver Posegga, Dr. André Schäfferling, Frank Schlosser, Alexander von
Stetten, Thomas Tan, Christoph Weinert, Jakob Wirth, Thomas Wirtky, and Matthäus Zylka
for their support and the helpful discussions with them.

Moreover, I thank Trimberg Research Academy (TRAc) and Dr. Marion Hacke for helping me
making my first steps in my doctorate and assisting me on applying for a PhD scholarship. I am
also very grateful to Universität Bayern e.V. for granting me the “Bayerische Eliteförderung”
scholarship for the first three years of my doctorate.

I deeply thank my family for their outstanding support throughout the years of my PhD. Without
their continuous support and emotional backing, I would have never been able to come this far
with my doctorate in in my life. I am sincerely grateful for the love and support of my parents
Sieglinde und Jürgen which made it possible for me to pursue an academic career and live my
life the way I did. Moreover, I am deeply thankful for the assistance of my brother Dr.
Alexander Schilling who I could count on throughout days and nights. I am also grateful for the

Acknowledgement

8 Andreas Schilling

support and backing of my grandparents Katharina und Max throughout the course of my study
and the early steps in my doctorate.

Finally, I am deeply grateful for the emotional assistance and support of my girlfriend Helena
Stefan. Throughout my research she always supported my work although it often meant to forgo
things which should be normal in a relationship. Each moment with her is a gift and I am very
glad that she came into my life.

Andreas Schilling

Developer Management in FLOSS Projects

Developer Management in FLOSS Projects 9

Zusammenfassung (German Summary)

Die Entwicklung von Free Libre Open Source Software (FLOSS) ist von hoher wirtschaftlicher
und gesellschaftlicher Bedeutung. Zum Beispiel setzten mehr als 23 Prozent der 10 Millionen
populärsten Websites weltweit die FLOSS ‚Wordpress‘ zur Organisation ihrer Inhalte ein
(W3Techs 2015). Ein anderes Beispiel bietet die FLOSS ‚OpenStack‘, die von vielen
Unternehmen zur Umsetzung innovativer Informationstechnologie (IT), wie unter anderem des
Cloud Computing verwendet wird (IDG Connect 2013). Die hohe Bedeutung von FLOSS für
Unternehmen beeinflusst auch die Softwareentwicklung. Eine Studie der Beratungsagentur
Forester Research zeigt, dass vier von fünf Softwareentwicklern FLOSS Projekte wie ‚Git‘ oder
‚Eclipse‘ einsetzten (Forrester Research 2014). Neben der verbreiteten Nutzung von FLOSS im
Unternehmenskontext nutzen auch viele private Konsumenten täglich FLOSS, wenn auch oft
unbewusst. Ein Beispiel hierfür ist das weltweit am verbreitetsten Betriebssystem für
Mobilfunktelefone ‚Android‘, das zu großen Teilen auf FLOSS basiert (IDC 2014; Google
2015). FLOSS Projekte spielen auch eine zentrale Rolle bei der Umsetzung der Idee des
‚Internet der Dinge‘. Diese Idee beschreibt die Vision, dass normale Gegenstände wie
Kühlschränke, Raumthermostate oder Fernseher nicht nur mit dem Benutzer sondern auch
miteinander intelligent interagieren (Miorandi et al. 2012). Um diese Vision zu verwirklichen,
sowie um einseitige Abhängigkeiten zu vermeiden, schließen sich große Konzerne wie Bosch
und Microsoft mit kleinen Unternehmen zusammen, um die Kommunikationsgrundlage für das
Zusammenspiel der aktuellen und zukünftigen Geräte in Form von FLOSS zu entwickeln (Asay
2014).

Für den Erfolg von FLOSS Projekten ist es entscheidend, dass die beteiligten Individuen sich
einbringen und zusammenwirken. Trotz der hohen wirtschaftlichen und sozialen Bedeutung
von FLOSS legen verschiedene Studien nahe, dass viele FLOSS Projekte gar nicht oder nur
unzureichend weiterentwickelt werden (Madey und Christley 2008; Chengalur-Smith et al.
2010; Fang und Neufeld 2009). Eine derart unzureichende Entwicklungsaktivität in FLOSS
Projekten kann jedoch folgenschwere Konsequenzen haben, die vom Ausbleiben neuer
Funktionalität bis hin zur Preisgabe persönlicher Informationen reichen können (Durumeric et
a. 2014).

Dennoch ist erstaunlich wenig aufgearbeitet, wie FLOSS Projekte das Engagement und das
erfolgreiche Zusammenwirken der beteiligten Entwickler beeinflussen können. Ein Grund
hierfür ist, dass FLOSS Projekte oft auf dem freiwilligen Engagement der Entwickler sowie
dem Gedanken der offenen Mitwirkung basieren. In Folge dessen lassen sich Lehren aus dem
Organisationskontext nicht eins zu eins übertragen. Darüber hinaus ist zwar viel darüber
bekannt, welche Eigenschaften erfolgreiche FLOSS Projekten haben; es ist aber unklar, wie
diese Eigenschaften erreicht werden können (Crowston et al. 2012, Hahn und Zhang 2005,
Hahn et al. 2008). Angesichts dieses Forschungsmangels sowie der hohen wirtschaftlichen und

Zusammenfassung (German Summary)

10 Andreas Schilling

sozialen Relevanz von FLOSS erarbeitet die vorliegende Dissertation geeignete Strategien und
Methoden für das Entwicklermanagement in FLOSS Projekten. Angelehnt an die Kernbereiche
für das Management von internationalem Personal in Unternehmen behandelt die vorliegende
Dissertation die übergeordnete Forschungsfrage:

Wie können Entwickler für FLOSS Projekte effektiv
(i) angeworben, (ii) integriert und (iii) gebunden

werden?

Zur Behandlung dieser drei Aspekte, sowie für die Ableitung konkreter Methoden und
Strategien für das effektive Management von FLOSS Entwicklern ist diese Dissertation in vier
Kapitel strukturiert. Das erste Kapitel bildet das Fundament für die Ausarbeitung der folgenden
Kapitel, indem es den aktuellen Stand der Forschung, sowie die Herausforderungen für die
Anwerbung, Integration und Bindung von FLOSS Entwicklern zusammenfasst. Darauf
aufbauend, behandelt Kapitel 2 die Identifikation geeigneter Entwickler in FLOSS Projekten.
Hierzu wird, in Anlehnung an den Unternehmenskontext, die Verwendung des Person-Job (P-
J) und Person-Team (P-T) Fit (Edwards 1991, Werbel und Johnson 2001) thematisiert und
evaluiert. Zur Erarbeitung von Handlungsempfehlungen für das produktive Zusammenspiel
von FLOSS Entwicklern wird in Kapitel 3 der Einfluss der geografischen Distanz der
Entwickler zueinander und die Präsenz namhafter FLOSS Entwickler im Projekt untersucht.
Für diese Untersuchungen wird unter anderem auf der Selbstbestimmungstheorie (Deci und
Ryan 1985) und der Theorie der sozialen Praxis (MacIntyre 1981) aufgebaut. Abschließend
evaluiert Kapitel 4 die Nutzung von Mentoring (Kram 1985), um Entwickler langfristig an
FLOSS Projekte zu binden.

Die im Rahmen dieser Dissertation erarbeiteten empirischen Ergebnisse tragen vielfältig dazu
bei die Anwerbung, Integration und Bindung von Entwicklern in FLOSS Projekten zu
verbessern. So erweisen sich die abgeleiteten objektiven Kriterien zur Evaluierung des P-J und
P-T Fit als zuverlässige Indikatoren, um den Verbleib von Entwicklern in FLOSS Projekten zu
prognostizieren. Im direkten Vergleich zu den subjektiven Einschätzungen der Entwickler,
erweisen sich die abgeleiteten objektiven Indikatoren sogar als deutlich zuverlässiger um den
Verbleib neuer Entwickler zu prognostizieren. Die Untersuchungsergebnisse in Kapitel 3 heben
die Relevanz der geographischen Distanz der FLOSS Entwicklern zueinander hervor. Konkret
zeigt die Auswertung von 648 Teamkonfigurationen, dass die direkten offline Beziehungen der
Entwickler zueinander darüber entscheiden, ob ihre produktive Zusammenarbeit durch
räumliche und kulturelle Distanz gefördert oder behindert wird. Darüber hinaus legen die
Untersuchungsergebnisse in Kapitel 3 den Schluss nahe, dass die Anwesenheit namhafter
Entwickler nur begrenzt zu Steigerung der Teamproduktivität in FLOSS Projekten beiträgt.
Wie eine Folgestudie in Kapitel 3 zeigt, könnte ein Grund hierfür sein, dass die Anwesenheit
namhafter Entwickler nur das Vertrauen der Entwickler in ihre gegenseitigen Kompetenzen
stärkt. Demgegenüber wirkt sich aber nur das Zusammengehörigkeitsempfinden der Entwickler
zueinander direkt auf ihre Produktivität aus. Abschließend zeigen die Untersuchungsergebnisse
im vierten Kapitel dieser Dissertation, dass Mentoring ein geeignetes Instrument ist, um die
Projektbindung der FLOSS-Entwickler zu erhöhen.

Zusammenfassung (German Summary)

Developer Management in FLOSS Projects 11

Die erarbeiteten Untersuchungsergebnisse tragen auf verschiedenste Weise zur FLOSS Praxis
und FLOSS Forschung bei. Die abgeleiteten objektiven Kriterien zur Messung des objektiven
P-J und P-T Fit neuer Entwickler in FLOSS Projekten können beispielsweise direkt dazu
eingesetzt werden Teilnehmer für den Google Summer of Code (GSoC) auszuwählen. Darüber
hinaus stellen die empirischen Untersuchungsergebnisse zur Verwendung von P-J und P-T Fit
in FLOSS Projekten eine Grundlage für weitergehende Forschung dar, um beispielsweise
weitere objektive Indikatoren für den Projektverbleib von FLOSS Entwickler abzuleiten.
Basierend auf den empirischen Untersuchungen in Kapitel 3 lassen sich verschiedene Schlüsse
zur wirksamen Integration von Entwicklern in FLOSS Projekten ableiten. Aufbauend auf der
Arbeit von Zhang und Venkatesh (2013) zeigen die Untersuchungsergebnisse zum Einfluss der
geografischen Distanz, dass sich das Projektverhalten von FLOSS Entwicklern nur vollständig
durch die gemeinsame Betrachtung ihres online und offline Kontexts erklären lässt. Des
Weiteren tragen die Forschungsergebnisse in Kapitel 3 dazu bei, die Theorie der sozialen Praxis
nach MacIntyre (1981) im FLOSS Kontext anzuwenden und zeigen, dass bestimmte Faktoren
unterschiedliche Effekte auf das kollektive und das individuelle Verhalten von FLOSS
Entwicklern haben können. Für die Organisatoren von FLOSS Projekten lassen sich aufbauend
auf diesen Ergebnissen verschiedene Handlungsempfehlungen ableiten. Die Ergebnisse zum
Einfluss der geographischen Distanz können konkret verwendet werden, um zu entscheiden ob
und wann FLOSS Projekte offline Treffen mit ihren Entwicklern durchführen sollten. Eine
weiteitere wichtige Erkenntnis für FLOSS Projekte ist, dass die Teamproduktivität nicht
wesentlich durch die Anwesenheit namhafter Entwickler, wohl aber durch Maßnahmen zur
Stärkung des Zusammengehörigkeitsgefühls erhöht wird. Die Studienergebnisse in Kapitel 5
legen schließlich nahe, dass Mentoring eine geeignete Maßnahme für FLOSS Projekte ist, um
Entwickler langfristig zu binden. Eine Grundlage für zukünftige Forschung in dieser Richtung
ist, dass Mentoring sowohl direkt als auch indirekt die Projektbindung von FLOSS Entwicklern
erhöht.

Für die Hauptmotivation der Dissertation, konkrete Handlungsstrategien für die Anwerbung,
Integration und Bindung von FLOSS Entwicklern abzuleiten, können abschließend folgende
vier Kernempfehlungen festgehalten werden: (i) Langzeitentwickler lassen sich frühzeitig
durch die vorgestellten objektiven Kriterien zur Messung von P-J und P-T Fit identifizieren,
(ii) die direkten offline Beziehungen der Entwickler zueinander entscheiden darüber, ob ihr
produktives Zusammenwirken durch räumliche und kulturelle Differenzen behindert oder
gefördert wird, (iii) nicht die Präsenz von namhaften Entwicklern, sondern Maßnahmen zur
Steigerung des Zusammengehörigkeitsgefühls der FLOSS Entwickler sollten forciert werden,
um ihr produktives Zusammenspiel zu verbessern (iv) Mentoring ist für FLOSS Projekte eine
geeignete Maßnahme, um die Projektbindung neuer Entwickler zu erhöhen.

Die Dissertation steht in der Tradition wissenschaftlicher Arbeiten der Wirtschaftsinformatik,
indem sie geeignete Strategien für das Entwicklermanagement in FLOSS Projekten durch
Kombination bestehender Erfahrungen aus dem Organisationskontext und der innovativen
Anwendungsdomäne ableitet und evaluiert.

Zusammenfassung (German Summary)

12 Andreas Schilling

Referenzen

Asay M (2014): Developers Aren't Going to Go for Proprietary Standards. Online verfügbar
unter http://readwrite.com/2014/10/17/internet-of-things-open-source-iot-developers,
zuletzt geprüft am 20.04.2015.

Chengalur-Smith I, Sidorova A, Daniel S (2010): Sustainability of Free/Libre Open Source
Projects: A Longitudinal Study. In: Journal of the Association for Information Systems 11
(11), S. 657–683.

Crowston K, Wei K, Howison J, Wiggins A (2012): Free/Libre Open-Source Software
Development: What We Know and What We Do Not Know. In: ACM Computing Surveys
44 (2), S. 1–35.

Deci, EL, Ryan RM (1985): Intrinsic Motivation and Self-Determination in Human Behavior.
Perspectives in Social Psychology, New York: Plenum Publishing.

Durumeric Z, Payer M, Paxson V, Kasten J, Adrian D, Halderman JA, Bailey M, Li F, Weaver
N, Amann J, Beekman J (2014) The Matter of Heartbleed. ACM Internet Measurement
Conference, S. 475–488.

Edwards JR (1991) Person-Job Fit: A Conceptual Integration, Literature Review, and
Methodological Critique. Cooper CL, Robertson IT, eds. International Review of Industrial
and Organizational Psychology, S. 283–357, New York: John Wiley and Sons Ltd.

Fang Y, Neufeld D (2009): Understanding Sustained Participation in Open Source Software
Projects. In: Journal of Management Information Systems 25 (4), S. 9–50.

Forrester Research (2014): Survey Indicates Four Out of Five Developers now Use Open
Source. Online verfügbar unter http://www.zdnet.com/article/survey-indicates-four-out-
of-five-developers-now-use-open-source/ zuletzt geprüft am 18.04.2015.

Google (2015): Welcome to the Android Open Source Project! Online verfügbar unter
https://source.android.com/, zuletzt geprüft am 20.04.2015.

Hahn J, Moon JY, Zhang C (2008) Emergence of New Project Teams from Open Source
Software Developer Networks: Impact of Prior Collaboration Ties. Information Systems
Research 19(3), S. 369–391.

Hahn J, Zhang C (2005) An Exploratory Study of Open Source Projects from a Project
Management Perspective Management Information Systems Research Workshop 2005, S.
1–27.

IDC (2014): Smartphone OS Market Share, Q4 2014. Online verfügbar unter
http://www.idc.com/prodserv/smartphone-os-market-share.jsp, zuletzt geprüft am
20.04.2015.

Zusammenfassung (German Summary)

Developer Management in FLOSS Projects 13

IDG Connect (2013): Openstack: Platform of Choice for Cloud. Online verfügbar unter
http://www.redhat.com/files/resources/en-opst-idg-openstack-platform-choice-cloud-
infographic.pdf, zuletzt geprüft am 19.03.2015.

Kram KE. (1985): Mentoring at work. Developmental Relationships in Organizational Life.
Lanham (MD): University Press of America.

MacIntyre AC (1981): After Virtue. A Study in Moral Theory. 1st ed., Notre Dame: University
of Notre Dame Press.

Madey G, Christley S (2008): F/OSS Research Repositories & Research Infrastructures. In:
NSF Workshop on Free/Open Source Software Repositories and Research Infrastructures,
University of California, Irvine.

Miorandi D, Sicari S, Pellegrini F, Chlamtac I (2012) Internet of Things: Vision, Applications
and Research Challenges, Ad Hoc Networks 10 (7), S. 1497-1516.

Werbel JD, Johnson DJ (2001) The Use of Person-Group Fit for Employment Selection: A
Missing Link in Person-Environment Fit. Human Resource Management 40 (3), S. 227–
240.

W3Techs (2015): Usage Statistics and Market Share of Content Management Systems for
Websites. Online verfügbar unter http://w3techs.com/technologies/overview/
content_management/all/, zuletzt geprüft am 19.04.2015.

Zhang X, Venkatesh V (2013): Explaining Employee Job Performance: The Role of Online and
Offline Workplace Communication Networks. In: Management Information Systems
Quarterly 37 (3), S. 695–722

http://w3techs.com/technologies/overview/

Developer Management in FLOSS Projects

Developer Management in FLOSS Projects 15

Table of Content

Developer Management in FLOSS Projects -
Theoretical Concepts and Empirical Evidence

Andreas Schilling

What Do We Know About FLOSS Developers’ Attraction, Retention
and Commitment? A Literature Review

Proceedings of the 47th Hawaii International Conference on System
Sciences (HICSS 2014), Big Island (Hawaii), USA

Andreas Schilling, Sven Laumer, Tim Weitzel

Is the Source Strong with You? A Fit Perspective to Predict
Sustained Participation of FLOSS Developers

Proceedings of the 32nd International Conference on Information
Systems (ICIS 2011), Shanghai, China

 Andreas Schilling, Sven Laumer, Tim Weitzel

Who Will Remain? An Evaluation of Actual Person-Job and Person-
Team Fit to Predict Developer Retention in FLOSS Projects

Proceedings of the 45th Hawaii International Conference on System
Sciences (HICSS 2012), Maui (Hawaii), USA

Foreword by Prof. Dr. Tim Weitzel 5
Acknowledgment
Zusammenfassung (German summary)

7
9

Introductory Paper 17

Paper I 101

Paper II 105

Paper III 107

Table of Content

16 Andreas Schilling

 Andreas Schilling, Sven Laumer, Tim Weitzel

The Wizards of OSS - Does Developers’ Geographic Dispersion
Make OSS Teams more Productive?

Under Review: Information Systems Research (ISR), 2nd Round

 Andreas Schilling, Sven Laumer, Tim Weitzel

In the Spotlight - Evaluating How Celebrities Affect FLOSS
Developers’ Participation Motivation

Proceedings of the 21st European Conference on Information
System (ECIS 2013), Utrecht, Netherlands

 Andreas Schilling, Sven Laumer, Tim Weitzel

In Goods We Trust - Are OSS Teams With Reputable Developers
More Productive?

Andreas Schilling, Sven Laumer

Learning to Remain - Evaluating the Use of Mentoring For the
Retention of FLOSS Developers

Proceedings of the 20th European Conference on Information
System (ECIS 2012), Barcelona, Spain

Publications 179

Paper IV 111

Paper V 141

Paper VI 143

Paper VII 175

Appendix 177

Introductory Paper

Introductory Paper

Developer Management in FLOSS Projects -

Theoretical Concepts and Empirical Evidence

Andreas Schilling
University of Bamberg

andreas.schilling@uni-bamberg.de

Developer Management in FLOSS Projects

 20 Andreas Schilling

Table of Contents

Table of Contents ... 20

List of Tables .. 22

List of Figures .. 23

List of Abbreviations .. 24

1 Introduction ... 25

1.1 Research Questions .. 27
1.2 Research Approach .. 29
1.3 Structure of the Thesis .. 31

2 Theoretical Background .. 32

2.1 Free Libre Open Source Software Development .. 32

2.2 Distinct Challenges for FLOSS Developer Management... 33

2.3 Theory Suite .. 34
2.3.1 Person-Job and Person-Team Fit ... 34
2.3.2 Self-Determination Theory.. 36
2.3.3 Social Practice View ... 37
2.3.4 Mentoring .. 39

2.4 Summary ... 40

3 Research Methodology .. 41

3.1 The K Desktop Environment .. 41

3.2 Google Summer of Code .. 42

3.3 Qualitative Studies ... 43

3.4 Quantitative Studies ... 44
3.4.1 Study I ... 45
3.4.2 Study II .. 47
3.4.3 Study III ... 51
3.4.4 Study IV .. 52
3.4.5 Study V .. 55
3.4.6 Study VI .. 56

3.5 Evaluation Techniques ... 58
3.5.1 Linear Model ... 58
3.5.2 Proportional Hazard Model ... 59

Introductory Paper

Developer Management in FLOSS Projects 21

3.5.3 Structural Equation Model .. 61

4 Main Results .. 62

4.1 Literature Review ... 63
4.1.1 Paper I ... 63

4.2 Attraction .. 64
4.2.1 Paper II .. 64
4.2.2 Paper III ... 66

4.3 Integration .. 67
4.3.1 Paper IV ... 68
4.3.2 Paper V .. 69
4.3.3 Paper VI ... 70

4.4 Retention ... 72
4.4.1 Paper VII ... 72

5 Limitations ... 73

6 Contributions ... 75

6.1 Contributions to Theory ... 76
6.1.1 Attraction ... 76
6.1.2 Integration ... 77
6.1.3 Retention ... 81

6.2 Contributions to Practice ... 81
6.2.1 Attraction ... 81
6.2.2 Integration ... 82
6.2.3 Retention ... 83

7 Future Research ... 84

8 Conclusion ... 86

9 References ... 87

Developer Management in FLOSS Projects

 22 Andreas Schilling

List of Tables

Table 1: Overview of the qualitative studies performed_______________________ 43

Table 2: Overview of the quantitative studies performed ______________________ 44

Table 3: Measures for dependent and control variables in Study I _______________ 47

Table 4: Measures for dependent and control variable in Study II _______________ 50

Table 5. Measures for the dependent variables in Study III ____________________ 52

Table 6. Measures for dependent and control variables in Study IV _____________ 54

Table 7. Measures for dependent and control variables in Study V ______________ 56

Table 8. Measures for dependent and control variables in Study VI _____________ 57

Introductory Paper

Developer Management in FLOSS Projects 23

List of Figures

Figure 1. The four research questions of the dissertation ______________________ 29

Figure 2. Research approach of the cumulative dissertation ___________________ 30

Figure 3. Dissertation structure ___ 31

Figure 4: The challenges, used theories, and proposed approaches ______________ 40

Figure 5: The worldwide distribution of KDE developers _____________________ 42

Figure 6. Data extraction in Study I ______________________________________ 45

Figure 7. Sampling strategy in Study II ___________________________________ 48

Figure 8. Data extraction in Study II _____________________________________ 48

Figure 9. Modeling offline social networks in Study II _______________________ 50

Figure 10. Data extraction in Study III ____________________________________ 51

Figure 11. Extraction strategy study IV ___________________________________ 53

Figure 12. Evaluation graph used in Study IV ______________________________ 54

Figure 13. Data extraction in Study V ____________________________________ 55

Figure 14. Data extraction in Study VI ___________________________________ 57

Figure 15. The use of P-T and P-J fit proposed in Paper II ____________________ 65

Figure 16. Results of the cox regression in Paper III _________________________ 67

Figure 17. Visualization of the effects of geo. dispersion in Paper IV ____________ 69

Figure 18. PLS evaluation results in Paper V _______________________________ 70

Figure 19. Structural- and individual evaluation results in Paper VI _____________ 72

Figure 20. Evaluation results in Paper VII _________________________________ 73

Figure 21: Key contributions of the dissertation ____________________________ 75

Developer Management in FLOSS Projects

 24 Andreas Schilling

List of Abbreviations

API ... Application Programming Interface

CBSEM Covariance Based Structural Equation Modeling

CMC .. Computer Mediated Communication

FLOSS .. Free Libre Open Source Software

FS .. Free Software

GSoC .. Google Summer of Code

HLM ... Hierarchical Linear Model

IHRM ... International Human Resources Management

II ... Individualism/Collectivism Index

KDE ... K Desktop Environment

MFI .. Masculinity / Femininity Index

OLS .. Ordinary Least Squares

OSS ... Open Source Software

PDI ... Power Distance Index

P-E ..Person-Environment

P-J .. Person-Job

PLOC ... Perceived Locus of Causality

PLS .. Partial Least Squares

P-T ... Person-Team

SDT .. Self-Determination-Theory

SEM ... Structural Equation Modeling

SPV .. Social Practice View

UAI .. Uncertainty Avoidance Index

VCS... Version Control System

Introductory Paper

Developer Management in FLOSS Projects 25

1 Introduction

Initiatives developing Free Libre Open Source Software (FLOSS)1 create software whose code
can be freely studied, modified, and shared with others (Ghosh 2002). FLOSS projects are an
integral part for of the day-to-day functions of the economy (Gartner Inc. 2012). In fact the
content of more than 23 percent of the 10 million most popular websites worldwide is managed
using the FLOSS ‘Wordpress’ (W3Techs 2015). Moreover, some of the most well-known
billion-dollar companies in the world, such as ‘Instagram’, are based entirely on FLOSS
(Moody 2012). While organizations first started using FLOSS to reduce their IT spending, their
motivation has since changed fundamentally and the dominant factor for the use of FLOSS has
become its superior quality (Accenture Inc. 2010). This is especially the case for innovative IT
functionality. A recent IDG consultancy study revealed that up to 84 percent of the surveyed
organizations plan to rely on the FLOSS ‘OpenStack’ for cloud computing functionality (IDG
Connect 2013). Organizations’ high reliance on FLOSS has also influenced the way software
developers work. Today, four out of five software developers rely on FLOSS such as ‘Eclipse’
and ‘Git’ (Forrester Research 2014). These results are supported by an IBM study which reveals
that nearly 90 percent of surveyed IT-professionals consider FLOSS a key technology for future
application development (IBM 2011). In addition to its importance for the organizational
domain, FLOSS plays an important but often less known role in the lives of private consumers.
In particular, the worldwide most used operating system for mobile phones, ‘Android’, is based
in large parts on FLOSS (IDC 2014; Google 2015). Moreover, FLOSS projects provide key
components for the implementation of the ‘Internet of Things’, which describes the vision that
regular devices such as refrigerators, thermostats, and TVs interact intelligently not only with
the user but also with each other (Miorandi et al. 2012). To realize this vision and avoid
unilateral dependences, big corporations such as ‘Bosch’ and ‘Microsoft’ form alliances with
small corporations to develop the communication bases for the intended interplay of the various
devices in form of FLOSS projects (Asay 2014).

Aside from its high relevance for the economy and society, FLOSS development is the topic of
significant academic research. According to Crowston et al. (2012), ‘… FLOSS has moved from
an academic curiosity to a mainstream focus for research.’ (Crowston et al. 2012, p. 2) during
the last decade. In the assessment by Crowston et al. (2012), FLOSS projects are special because
they allow researchers to study unprecedented processes for collective innovation and
coordination. In a similar vein, Krogh and Spaeth (2007) note that ‘research on the open source
software phenomenon is an interesting example of research that combines scientific rigor with
relevance’ (Krogh and Spaeth 2007, p. 241) and Aksulu and Wade (2010) conclude that FLOSS
research proliferated during the last ten years across various domains and disciplines.

As in the case of organizations, the success of FLOSS projects depends heavily on the activity
of the individuals involved. However, in contrast to the organizational domain, it is not fully
understood how FLOSS projects should effectively manage their developer base. Based on a

1 A precise description of the term FLOSS and its relationship to Open Source Software (OSS)
is provided in Section 2.1

Developer Management in FLOSS Projects

 26 Andreas Schilling

review of FLOSS literature, Crowston et al. (2012) conclude that it has yet to be understood
how social processes and project characteristics enable an effective collaboration among
FLOSS developers. In a similar vein, Hahn and Zhang (2005) conclude that very few studies
examined FLOSS projects from a project management perspective. For example, FLOSS
research examined the reason for individuals’ engagement but not their selection of a particular
FLOSS project (Hahn et al. 2008).

Understanding how to manage FLOSS developers effectively is also of high practical relevance
as the overwhelming majority of FLOSS initiatives face severe challenges in terms of the
activity of their developer base which can threaten their entire existence (Madey and Christley
2008). One such challenge is the slow influx of new developers. A lack of new developers
severely reduces FLOSS projects’ innovation and make them vulnerable to development
slowdown if members leave the project (Robles et al. 2009). Another central challenge for
FLOSS projects is developer turnover. Several studies suggest that many FLOSS developers
are engaged in the development of not only one but rather several FLOSS projects (Lakhani
and Wolf 2005, Hu and Zhao 2009, David and Shapiro 2008), which effectively puts FLOSS
projects into competition for developers’ interest. The consequences of developer turnover can
be grave because when developers leave a FLOSS project, the project often loses its ability to
maintain functionality they contributed (Robles et al. 2009). The third pivotal challenge for
FLOSS projects concerns developers’ effective integration. Commonly high learning barriers
in FLOSS projects hinder developers from becoming effective (Adams et al. 2009, von Krogh
et al. 2003). Moreover, Singh et al. (2011b) provide evidence that most developers do not
advance in their learning, which essentially means that they do not increase their effectiveness.

A lack of development activity in FLOSS projects can not only lead to the absence of new
features but also to much worse consequences. A recent incident which exemplifies such grave
consequences for the economy as well as for society as a whole is the program bug called
‘Heartbleed’ in the FLOSS ‘OpenSSL’. OpenSSL is a cryptographic library which aims to
provide secure end-to-end communication via the Internet. A recent study estimates that
OpenSSL is used by more than two thirds of all webservers worldwide to ensure secure Internet
traffic (Goodin 2014). Considering this broad adoption of OpenSSL, the consequences of this
programming deficit, which was found by security experts at Google, were unprecedented.
Durumeric et al. (2014) estimate that up to 55 percent of the top one million websites worldwide
could have been vulnerable to attacks using the Heartbleed bug. Heartbleed was disastrous not
only due to its enormous reach, but also because of its devastating consequences. In essence, it
allowed attackers to extract sensitive information such as login credentials from webservers
without leaving a trace. One of the most severe documented attacks exploiting the Heartbleed
bug was directed against the largest US hospital network and involved the theft of more than
4.5 million patient records (Finkle and Kurane 2014). Not only webservers, but also industrial
control systems such as those used in power plants and wastewater management are vulnerable
and potentially exploitable to the Heartbleed bug (McMillan 2014). While security patches for
Heartbleed have been made available for affected webservers and industrial control systems,
the reputed security expert Bruce Schneier suggests that low margin, non-upgradable,

Introductory Paper

Developer Management in FLOSS Projects 27

embedded systems used in smart heat meters, thermostats, and in other technologies provide a
major security concern for the years to come (Schneier 2014, Berinato 2014).

Heartbleed is unique not only due to its devastating economical and societal consequences, but
also because it illustrates the failure of the OpenSSL project to attract, integrate, and retain
developers properly. Despite the popularity of OpenSSL, the project only attracted a handful of
developers. Specifically only seven contributors were listed on the project’s website until April
2014 (Stokel-Walker 2014). Even worse, most of these developers did not remain active but
soon left the project after adding new functionality (OpenHub 2015). This developer fluctuation
led to massive unhealthy growth of the OpenSSL codebase, with code which was neither
properly finished nor maintained and sometimes even termed ‘highly experimental’ (Stokel-
Walker 2014). Ultimately, one of the core developers admitted that there were some deficits
regarding the coordination of active developers which could have affected the code quality of
the project (Stokel-Walker 2014). One of the deficits identified is that the two core developers
have never met in person. This dissertation examines the following overall research question in
light of the critical challenges FLOSS projects face regarding managing their developer base
and the identified need for further research:

How can FLOSS projects effectively
attract, integrate, and retain

developers?

The remainder of this section outlines how this dissertation is structured in order to examine
this overall research question. In particular, the next subsection builds upon concepts from
International Human Resource Management and derives the specific research questions which
are examined in this dissertation. Thereafter, Subsection 1.2 details the research approach
followed in examining the articulated research questions and Subsection 1.3 outlines the
structure of the dissertation.

1.1 Research Questions

In order to provide FLOSS projects with guidance on how to manage their developer base, this
dissertation builds on theories and concepts from International Human Resources Management
(IHRM). FLOSS projects and organizations share the vital need for appropriate talent
management but differ substantially in terms of remuneration and regulatory. Due to the critical
role of IHRM for organizations’ success it has been the subject of various studies in
organizational literature over the last years, leading to a rich pool of strategies and concepts for
talent management. Horwitz (2003) and Tarique and Schuler (2010) divided IHRM into three
basic management aspects. In this conceptualization, the first management aspect is concerned
with attracting employees. Specifically, this aspect focuses on identifying and recruiting new
talent (Tarique and Schuler 2010). The second management aspect concerns integrating
employees through effective staffing and development strategies (Tarique and Schuler 2010).
Finally, the third management aspect of IHRM refers to means of enhancing employees’
retention behavior (Horwitz 2003).

Developer Management in FLOSS Projects

 28 Andreas Schilling

Building on this threefold structure of IHRM, the dissertation proposes considering three basic
management aspects to understand and categorize the various challenges involved in managing
developers in FLOSS projects. In the following each of the three proposed aspects for developer
management in FLOSS projects is outlined and the particular research questions of this
dissertation are derived.

Attraction: The influx of new developers is vital to FLOSS projects. Besides adding more
manpower, new developers enhance FLOSS projects’ innovation (von Krogh et al. 2003). With
respect to the open participation in FLOSS projects, previous research focused so far on project-
(Santos et al. 2012) and relational-aspects (Hahn et al. 2008, Hu et al. 2012) to bring in new
developers. An aspect, however, which has been neglected so far is how talented FLOSS
developers can be identified (Pratyush et al. 2010). But this aspect is equally important as the
sheer quantity of new developers. Such understanding is not only the basis for evaluating if new
developers are suited and will remain in the project; it also helps FLOSS projects to identify
newcomers who are worth being trained. Finally, an understanding for the characteristics new
developers should possess assists FLOSS projects’ attraction efforts by identifying those
individuals worth attracting. Thus, to better understand how talented FLOSS developers can be
identified in FLOSS projects the dissertation examines the research question:

RQ I: How can FLOSS projects identify suitable developers?

Integration: The second proposed aspect for developer management in FLOSS projects refers
to integrating members effectively into the project. Developers are often involved in various
FLOSS projects so there is effectively competition for developer attention among these projects
(Lakhani and Wolf 2005, Hu and Zhao 2009, David and Shapiro 2008). Moreover, most
developers contribute only small amounts of code to FLOSS projects (Setia et al. 2012, Singh
et al. 2011b). Thus, FLOSS projects need to figure out ways to foster individual productivity
by motivating developers. At the same time, it is equally important to consider collective
aspects to ensure that FLOSS developers work well with the developer team. One aspect whose
role is highlighted recently for FLOSS developers’ productive interplay is their geographic
dispersion (Colazo and Fang 2010, Daniel et al. 2013, Hu et al. 2012). However, these studies
not only examined different aspects of geographic dispersion but also came in part to different
conclusions regarding its role on productive teamwork. Another shortcoming of these studies
is that they did not control for FLOSS developers’ offline relationships. In addition, a recent
study by Hu et al. (2012) calls for further research on the role of reputed developers in FLOSS
projects. Nevertheless, little is known to date on the individual and collective stimuli which
result from the involvement of reputed developers. In response to previous research calling for
further research on the role of geographic dispersion and the involvement of reputed developers
to achieve productive teamwork, this dissertation examines the two research questions:

RQ II: How do offline distances affect FLOSS developers’ productive teamwork?

RQ III: How do reputable developers affect FLOSS developers’ productive
teamwork?

Introductory Paper

Developer Management in FLOSS Projects 29

Retention: The third basic management aspect of the proposed framework is concerned with
FLOSS developers’ project tenure. Developer turnover hurts FLOSS projects in two sensitive
ways. On the one hand, FLOSS projects often lose the ability to maintain and understand
contributed code when the contributing developers leave (Robles et al. 2009). On the other
hand, long-term developers often add to FLOSS projects’ quality (Jorgensen 2001) and task
completion (Chengalur-Smith et al. 2010). Previous FLOSS research in this regard provide
evidence that developers’ knowledge building and socialization (Fang and Neufeld 2009, Singh
et al. 2011b, Qureshi and Fang 2010) are key facilitators for long project tenure. Although it is
not yet clear how FLOSS projects can actively intervene to promote retention. In order to
propose an effective education and retention strategy for FLOSS projects, the last examined
research question is:

RQ IV: Is mentoring an effective retention strategy for FLOSS developers?

Figure 1 illustrates the four specific research questions of the dissertation and their relationship
to developer management in FLOSS projects. The next section outlines the research approach
adopted to examine these research questions.

Figure 1. The four research questions of the dissertation

1.2 Research Approach
The adopted approach in the dissertation to examine the previously articulated research
questions builds upon the interrelatedness between the FLOSS and the organizational domain.
In particular, the pursued research approach can be characterized in four consecutive steps.
Figure 2 visualizes these steps and their relation to the organizational and FLOSS domain.

The first step of the pursued research approach consists of identifying relevant theories and
concepts from the organizational domain that can serve as a basis for understanding FLOSS
developers’ project behavior. As needed, these concepts are customized for the FLOSS domain
to reflect differences in how remuneration and regulation influence teamwork in the
organizational and the FLOSS domains.

Developer Management in FLOSS Projects

 30 Andreas Schilling

The second research step focuses on the empirical evaluation of relationships within the
FLOSS domain. To take advantage of detailed public accessibly communication and
contribution records in FLOSS projects, the dissertation analyzes principally archival records
of developers’ project behavior. In addition, perceptual data such as survey data was used, if
appropriate, to complement the archival evaluations.

Based on the results of the performed evaluation, the third step of the adopted research approach
is concerned with deriving concrete theoretical and managerial implications for the FLOSS
domain. This is achieved by contrasting the findings with previous FLOSS research, delineating
potential avenues for future research, and deriving concrete management advice for FLOSS
projects.

Finally, the fourth step of the adopted research approach puts the derived evaluation results
into context with organizational theories and strategies, contributing to organizational research
in several ways. First, FLOSS teams represent an extreme case of decentralized collaboration
which provides unprecedented possibilities to ‘falsify’ basic assumptions about software
development as well as empirically evaluate and refine previously untested theories (Krogh and
Spaeth 2007). Moreover, the public collaboration and communication of FLOSS developers
allows teamwork behavior to be evaluated in great detail and across project boundaries, which
is rarely possible in organizational settings (Singh et al. 2011a, Singh et al. 2011b). Thus,
research on the functioning of FLOSS projects can provide important lessons for enhancing
software development practices in organizations (Fitzgerald 2006). In addition, with the
increasing consideration of knowledge workers as volunteers (Drucker 2002), FLOSS research
contributes to the derivation of new management approaches for organizations.

Based on the specified research questions and the research approach followed in pursuing them,
the next subsection outlines the structure of the dissertation.

Figure 2. Research approach of the cumulative dissertation

Introductory Paper

Developer Management in FLOSS Projects 31

1.3 Structure of the Thesis

Based on the proposed threefold framework for developer management in FLOSS projects, the
cumulative dissertation is structured into four chapters. The first chapter constitutes the basis
for the elaboration of the remaining chapters by providing a literature review of the status quo
in FLOSS research on attracting, integrating, and retaining FLOSS developers. Based on the
results of this literature review, Chapter II focuses on ways to improve the quality of developer
attraction in FLOSS projects. Specifically this chapter proposes and evaluates concepts and
measures used to identify developers worth attracting and training. Chapter III of the
dissertation looks at means to enhance developers’ integration into the FLOSS project. In
particular, this chapter examines the effects of geographic distance and offline interactions
among FLOSS developers on the effectiveness of their collaboration. In addition, this chapter
elaborates on the effects of reputable FLOSS developers on team members’ motivation and
their productive interplay. Finally, Chapter IV of the dissertation proposes and evaluates the
use of mentoring as a potential way to retain FLOSS developers. Figure 3 summarizes the
structure of the four chapters including their relationship to the seven research articles of the
dissertation.

Figure 3. Dissertation structure

Developer Management in FLOSS Projects

 32 Andreas Schilling

2 Theoretical Background

This section provides an overview of the various organizational theories and concepts which
built the theoretic foundation for the derived strategies for attracting, integrating and retaining
FLOSS developers. Prior to the presentation of the various theories and concepts, this section
looks at the history and development of FLOSS. Then, the distinct challenges for attracting,
integrating, and retaining FLOSS developers are outlined and the approaches taken in the
dissertation to address them is described.

2.1 Free Libre Open Source Software Development

Free Libre Open Source Software (FLOSS) is an umbrella term which is used to refer to the
creation of software which can be freely studied, modified, and exchanged (Ghosh 2002). With
the use of this umbrella term, researchers can neglect from the often controversial differences
in terms of ideology and licensing between the creation of Open Source Software (OSS) and
Free Software (FS) and focus on the commonly identical development processes for the two
(Crowston et al. 2012, Scacchi et al. 2006).

FLOSS development has a long history. In fact the infancy of computer programming during
the 1950s is built upon the common practice of code sharing. Due to expensive and often
proprietary computer hardware, software was developed almost exclusively by engineers in
corporate and academic research facilities (von Krogh and von Hippel 2003). Their research
background set the stage for those engineers to exchange their code routines with each other so
that others could use and modify it for their specific hardware and usage configurations.
However, this common sharing practice ended in the 1970s when commercial software
development emerged. In contrast to the common practice of code sharing, software companies
relied on software licensing and technical restrictions to prevent others from studying their code
(Dixon 2004, Kavanagh 2004). As a move against these corporate practices, developers around
the world created programming communities to build code which can be freely studied,
modified, and distributed to others.

To this day, FLOSS is still developed through collaboration structures which are basically the
same as at the beginning. The developers involved in FLOSS projects generally are not
concentrated in one place but scattered around the world (Crowston et al. 2012). Moreover,
FLOSS developers generally receive no direct monetary compensation from the project for their
contributions. Indeed, most developers do not receive monetary compensation from any source,
but rather are involved in FLOSS projects voluntarily (Fang and Neufeld 2009). In order to
coordinate their working, FLOSS developers rely on computer mediated communication
(CMC). The records of this CMC in the form of mailing list posts and Internet-Relay Chats are
publically accessible (Hemetsberger and Reinhardt 2006). Finally, there is no formal obligation
between developers and the project. Developers decide on their own which aspects they want
to work on (Crowston et al. 2010). The following subsection elaborates on the distinct
challenges of developer collaboration and how they complicate developer management in
FLOSS projects.

Introductory Paper

Developer Management in FLOSS Projects 33

2.2 Distinct Challenges for FLOSS Developer Management

Like international organizations, FLOSS projects rely on international human resources and
effective talent management. However, FLOSS projects also face distinct challenges in
attracting, integrating, and retaining developers. These distinct challenges make it impossible
to apply existing knowledge from IHRM directly to FLOSS projects. The following paragraphs
outline these distinct challenges and detail the organizational concepts used in this dissertation
to address them.

A central challenge for attracting developers to FLOSS projects is the generally employed open
participation practice, which means that there are no access restrictions imposed upon
newcomers to contribute to the project. Although this practice is a substantial gain for
knowledge sharing, it leads to an uncontrolled situation in which new developers come and go,
which hampers FLOSS projects’ ability to foster sustained code development. FLOSS research
suggests that two factors specifically influencing FLOSS developers’ sustained commitment
early on are their compatibility with the project as well as with the developer team (Fang and
Neufeld 2009). This compatibility of individual and relational characteristics is also central for
identifying talent in organizations. Two concepts from organizational recruitment which have
proven particularly effective in defining and assessing candidates’ individual and relational
compatibilities are Person-Job (P-J) and Person-Team (P-T) fit (see Subsection 2.3.1). Both of
these concepts are based on the idea that it is neither the sole characteristics of the individual
nor the sole characteristics of the organization but rather the compatibility between the two
which determine individual well-being. With respect to the similarity between FLOSS projects
and organizations in terms of talent identification, the dissertation relies on P-J and P-T fit to
conceptualize and evaluate relevant developer characteristics. To account for those aspects in
which FLOSS projects and organizations are distinct, such as monetary compensation and
regulatory power, the concepts are customized for the FLOSS domain in a later step.

To integrate developers into FLOSS projects effectively, various important factors need to be
considered. A key challenge in fostering individual productivity is the systemically innate
dependence on FLOSS developers’ self-motivation. Due to the lack of monetary rewards,
FLOSS projects have to rely on other means to motivate developers to invest their time and
effort. In order to understand the managerial levers which can be used to motivate FLOSS
developers, the dissertation relies on the two social theories which have been used successfully
to understand and examine working behavior in the organizational domain (Beadle 2006, Gagné
and Deci 2005). The first of these two theories, Self-Determination Theory (SDT) by Deci and
Ryan (1985) (see Subsection 2.3.2), is used to understand individuals’ behavioral reaction to
concrete project characteristics. SDT is based on the basic tenet that individuals strive to satisfy
their innate needs for relatedness, competence, and autonomy. Based on the degree to which
behavior satisfies these basic needs, Deci and Ryan (1985) distinguish five motivation forms
which differ in the degree to which individuals consider themselves as self-determined. The
second theory MacIntyre‘s (1981) social practice view, strives to understand the long term
effects of particular characteristics of the project and environment (see Subsection 2.3.3).
Compared to SDT, which focuses on FLOSS developers’ current behavior, the social practice

Developer Management in FLOSS Projects

 34 Andreas Schilling

view also considers individuals’ personal histories and what led them to become FLOSS
developers in the first place. These two behavioral theories are the basis for evaluating the
immediate motivational effects as well as the sustained teamwork gains in FLOSS projects
which result from the involvement of reputable developers. Moreover, the dissertation
examines how FLOSS developers’ feelings of belongingness in the offline context affects their
productive collaboration in FLOSS projects. In particular, it examines the degree to which
offline interactions help FLOSS developers overcome the negative effects of their spatial,
temporal and cultural distances.

Finally, there are various distinct challenges for retaining developers in FLOSS projects. Given
the absence of monetary compensation, FLOSS projects are entirely contingent on developers’
self-motivation to remain active in the project. Considering FLOSS projects often have high
learning barriers which make it difficult for newcomers to contribute to the project, Singh et al.
(2011b) conclude that it is common among FLOSS developers to stagnate in their learning state.
A possible explanation for this is provided by Adams et al. (2009) who show that it can take up
to 60 weeks for newcomers to become effective in FLOSS projects. As Singh et al. (2011b) and
Fang and Neufeld (2009) point out, a key way to support FLOSS developers’ knowledge
building is to improve not only their coding but their project integration. A training method
from the organizational domain which has proven especially effective in enhancing newcomers’
competences and feelings of belongingness is mentoring (see Subsection 2.3.4). Mentoring
describes a training method in which an experienced professional provides technical advice and
interpersonal support to an inexperienced employee. With regard to the effectiveness of
mentoring for knowledge building in the organizational domain (Hale 2000, Brashear et al.
2006) and the applicability of such training method in the FLOSS domain, the dissertation
applies and evaluates its use for educating and retaining FLOSS developers.

2.3 Theory Suite

This subsection provides an overview of the various concepts and theories which are used to
understand FLOSS developers’ project behavior and derive concrete management advice.

2.3.1 Person-Job and Person-Team Fit
Given the open participation in FLOSS projects and the relevance of relational and individual
compatibility, the dissertation proposes and evaluates the use of Person-Job fit and Person-
Team Fit to identify developers who are likely to remain committed. Person-Job fit ensures that
candidates are selected who have the necessary skills and abilities to accomplish the various
tasks of a job. In contrast, Person-Team fit ensures that selected candidates are in alignment
with the other team members.

Person-Job (P-J) and Person-Team (P-T) fit, belong to the overarching concept of Person-
Environment (P-E) fit, which is based on the interactionist theory of behavior (Chatman 1989,
Muchinsky and Monahan 1987) which in turn builds on the work of Lewin (1951). The basic
premise of these theories is that human behavior cannot be explained fully by considering only
either individual or situational characteristics, but only by combining the two (Oreg and Nov

Introductory Paper

Developer Management in FLOSS Projects 35

2008). As a result, P-E fit refers to the level of congruence between the characteristics of the
person and the particular context (Muchinsky and Monahan 1987).

The most common definition for Person-Job fit is by Edwards (1991) and considers it to be a
twofold construct. The first component of this construct refers to the needs-supply match, which
assesses the degree to which a person’s goals, interests, and psychological needs are met
through the various job characteristics (i.e. autonomy, responsibility, pay, etc.). The other
component of P-J fit concerns the demands-ability match. This match assesses the degree to
which the person possesses the abilities and skills which are required to perform the job. The
particular demands of a job are commonly derived by analyzing the concrete tasks and the
required level of knowledge and abilities required to complete them. Edwards (1991) supposes
that a good P-J fit is not only beneficial for the organization, in terms of job performance and
reduced turnover, but also for the individual, who experiences higher levels of job satisfaction
and less stress. Empirical studies support this assumption. Kristof-Brown et al. (2005) reveal
that P-J fit is strongly associated with individuals’ level of job satisfaction and performance and
even moderately high with increased job tenure. A study by Chilton et al. (2005) supports the
relevance of P-J fit specifically for the context of software development indicating that software
developers with higher levels of P-J fit achieve higher job performance and experience less
strain.

In contrast, individuals’ level of Person-Team2 (P-T) fit refers to interpersonal characteristics.
In particular, P-T fit considers individuals’ supplementary fit and complementary fit to the other
team members (Werbel and Johnson 2001). The supplementary fit refers to the degree to which
the candidate shares personal characteristics (i.e. knowledge, skills, beliefs, etc.) with the other
team members (Muchinsky and Monahan 1987). In contrast, candidates’ complementary fit
describes the degree to which they possess personal characteristics that are otherwise lacking
in the team. According to Werbel and Johnson (2001) individuals should have both
supplementary fit and complementary fit as only one of these types of fit could lead to
dysfunctional teams. For example, a high degree of only supplementary fit could lead to high
cohesion among team members but reduce the ability of a team to be innovative. At the same
time, individuals with only complementary fit could contribute abilities otherwise lacking in
the team. However, they do not possess characteristics that enable them to establish common
grounds with the other team members. Individuals who have both forms of fit have been shown
to have the potential to produce positive work outcomes. Kristof-Brown et al. (2005) show in
their meta-analysis that P-T fit has a very strong influence on individuals’ satisfaction with their
coworkers and also positive effects on individual job performance and tenure. Moreover, a
study by Seong et al. (2012) suggests a strong relationship between P-T fit and group
performance.

There are distinct strategies for assessing the various types of fit. The two most common
evaluation forms are perceived fit and actual fit. In the case of perceived fit, an individual’s
level of fit is assessed based on subjective impressions (Kristof-Brown et al. 2005). In contrast,

2 Also known as Person-Group fit

Developer Management in FLOSS Projects

 36 Andreas Schilling

actual fit is assessed through indirect measures, such as the comparison of personal and
organizational characteristics.

2.3.2 Self-Determination Theory
In the absence of pecuniary rewards, it is central to understand what motivates developers to
stay committed to FLOSS projects so that effective incentives can be designed to foster
development activity. To understand FLOSS developers’ motivation to contribute, this
dissertation relies on Self-Determination-Theory (SDT).

Self-Determination-Theory (Deci and Ryan 1985), is a theoretic framework for understanding
how social and contextual conditions affect individual work motivation. SDT distinguishes
among distinct forms of motivation based on the degree to which individuals perceive their
behavior as self-determined (Ryan and Deci 2000b). The basic assumption of SDT is that
people have innate psychological needs for competence, relatedness, and autonomy which they
seek to satisfy to achieve well-being.

Behavior which arises naturally through the satisfaction of these innate needs is intrinsically
motivated. According to Deci and Ryan (2000), individuals carry out such behavior because it
is in itself rewarding to them. In particular, people perceive fun and excitement when behaving
in this way (Ryan and Deci 2000a). Typical examples for intrinsically motivated behavior are
hobbies which individuals perform due to the fun and joy and not because of the outcomes
which are associated with them.

In contrast, behavior is extrinsically motivated when it is not performed due to its inherent value
to the individual, but due to external regulation. In SDT extrinsic motivation is not a uni-
dimensional construct but comprises of various motivation forms which vary according to the
degree to which individuals internalize them (Ryan and Deci 2000b). Internalization describes
the process in which the individual adopts external values, attitudes, or regulations (Gagné and
Deci 2005). A result to this internalization process is that the perceived locus of causality
(PLOC) for the particular behavior gradually becomes internal. Specifically, SDT differentiates
between the following four types of extrinsic motivation, which can be ordered along a
continuum spanning from an internal to an external PLOC (Ryan and Deci 2000b).

External regulation: This motivation form classifies behavior with the lowest degree of
autonomy. Individuals with such motivation behave in certain ways due to external
contingencies like pecuniary rewards or punishment which are associated with it (Ryan and
Deci 2000b). A typical example for this motivation form is when employees only perform a job
because they get paid for it.

Introjected regulation classifies behavior which is perceived to have an external locus of
causality. However, compared to externally regulated behavior, individuals with this form of
motivation internalize some of the exposed regulation as their own. Typically, individuals with
this form of motivation behave in a particular way in order to attain ego enhancements or avoid
guilt (Ryan and Deci 2000b, Ryan and Deci 2000a). An example of this form of behavior is if
an individual performs a particular job to gain self-esteem (Gagné and Deci 2005).

Introductory Paper

Developer Management in FLOSS Projects 37

Identified regulation: Individuals with this motivation form identify with the value of an
original externally induced behavior (Gagné and Deci 2005, Ryan and Deci 2000b). Thus,
people with this form of motivation perceive an internal locus of causality for their doing.
Gagné and Deci (2005) exemplify this particular form of motivation with a nurse who fully
identified with her job so that she also accepts accomplishing tasks which are not interesting to
her, such as bathing patients, but still necessary to achieve of the overall goal (i.e. help patients).

Integrated regulation refers to behavior which is extrinsically motivated but perceived to be
completely self-determined. With this type of motivation, individuals fully integrate the
originally externally posed regulations (Ryan and Deci 2000b). As with intrinsic motivation,
people perceive that the particular behavior emanates from within themselves. However,
contrary to intrinsic motivation, the behavior is still considered instrumentally. Gagné and Deci
(2005) illustrate this motivation with the case of a nurse who considers her profession as a
central aspect of her identity and thus cares for people even when she is not at work. Thus, she
not only accepts but even appreciates uninteresting activities as part of providing care (Gagné
and Deci 2005).

According to SDT, individuals carry out activities with greater effort and persistence if they
consider them self-determined. Sheldon and Elliot (1999) support this by providing evidence
that individuals with more self-determined motivation outperform and invest more effort than
individuals with more controlled motivation forms. Similarly, Vansteenkiste et al. (2004) show
across various learning contexts that self-determined motivation makes individuals perform
better and leads to higher levels of well-being.

2.3.3 Social Practice View
The dissertation also draws on the social practice view (SPV) by MacIntyre (1981) to
understand FLOSS developers’ project behavior, not as a supplement to but rather as
complement to SDT. In particular, the social practice view is used to derive a more holistic
picture on FLOSS developers’ project work.

In his influential work ’After Virtue’, Alasdair MacIntyre (1981) presents the social practice
view as a new theoretic framework for understanding individual behavior. MacIntyre’s social
practice view is part of a new form of virtue ethics and a fundamental critique of utilitarianism
(Moore and Beadle 2006). Compared to classic social theories, MacIntyre’s social practice view
takes a much broader perspective toward understand individual behavior. For example, while
SDT takes a neutral stance on the enacted behavior and focuses on the instrumental and
satisfying use of it, MacIntyre’s social practice view puts the particular behavior in the context
of how it helps the individual to achieve excellence and unity of life (Weaver 2006). Through
this holistic view, the social practice view can even explain why individuals engage in a
particular behavior even if it does not result in immediate returns for them (von Krogh et al.
2012). The following paragraphs describe the notion of a social practice, the pivotal element in
MacIntyre’s social practice view, as well as the various constructs with which it is interwoven.

According to MacIntyre a social practice describes ‘any coherent and complex form of socially
established cooperative human activity through which goods internal to that form of activity

Developer Management in FLOSS Projects

 38 Andreas Schilling

are realized in the course of trying to achieve those standards of excellence which are
appropriate to, and, partly, definitive of that form of activity’ (MacIntyre 1981, p. 187).
Furthermore, a social practice is characterized by a wide and positive effect on humankind (von
Krogh et al. 2012). Although MacIntyre does not elaborate on the concrete requirements
regarding coherency and complexity, he provides several comparisons to understand the
meaning of these necessary properties. In particular, MacIntyre (1981) points out that ‘throwing
a football with skill’ should not be considered a social practice, whereas ‘the game of football’
should be (MacIntyre 1981, p. 187). This coarse definition of a social practice has led to several
debates about what precisely constitutes a social practice (Moore and Beadle 2006).

A central part in the description of a social practice play internal and external goods. Following
MacIntyre (1981), internal goods are only derived through pursuing a social practice and benefit
all participants of a social practice. For example, in the case of portrait painting, MacIntyre
(1981) describes the creation of at least two internal goods. First, there is the excellence of
portrait painting which refers to the excellence of the particular product, i.e. the portrait, and
the excellence in the act of painting. The second internal good refers to the good of a certain
kind of life (MacIntyre 1981). This type of internal good is derived through individuals’ self-
reflection of their performance in the context of their life (Köhne 2012). Contrary to internal
goods, external goods are bound to individuals and can also be attained through other means of
doing (Weaver 2006). Typically external goods are pecuniary rewards and the earned fame
among others for one’s work (Moore and Beadle 2006). In the example of the portrait painter,
such external goods could be the money earned or the fame received for the portrait.

Another difference in the two types of goods concerns their provision. Internal goods are
derived through pursuing a social practice in line with ‘standards of excellence’. These
standards encompass concrete behavioral and technical guidelines on how to perform the social
practice. Moreover, the standards of excellence comprise of a generic element, which is the
participants’ will to respect the standards of excellence as well as their will to be judged based
on how their performance compares to these standards (Köhne 2012, MacIntyre 1981).
Continuing the example from above, the standards of excellence for portrait painting would
comprise of technical guidelines related to the drawing style such as color mixing and material.
In contrast, external goods are contingent on the existence of institutions. In MacIntyre’s
conceptualization, institutions are resembled through classic organizations, to which he
prescribes the responsibility for acquiring money and which are structured ‘in terms of power
and status, and they distribute money, power and status as rewards’ (MacIntyre 1981, p. 194).
The description of these institutions reflects MacIntyre’s fundamental criticism of capitalist
organizations which according to him ‘won’ over social practices (Beadle 2006). The core of
MacIntyre’s critique is that money, power, and status have invaded the social practice and the
derivation of internal goods (Moore and Beadle 2006, MacIntyre 1994). In the example above,
an art company for which the painter works would resemble an institution. MacIntyre’s critique
is expressed by the profit orientation of the company which could lead to the directive that
employees should spend less attention to the details of deriving the product and focus primarily
on the output quantity.

Introductory Paper

Developer Management in FLOSS Projects 39

Finally, MacIntyre’s conceptualization of a social practice and the derivation of internal goods
are linked with the notion of virtues. According to MacIntyre, virtues are “dispositions which
will not only sustain practices and enable us to achieve the goods internal to practices, but
which will also sustain us in the relevant kind of quest for the good” (MacIntyre 1981, p. 218).
Thus, virtues refer not only to the ability to achieve excellence in a particular social practice
but also beyond the practice (Beadle 2006). MacIntyre proposes that humans strive to achieve
‘unity of life’ so that they can conceive their lives as a whole (Beadle 2006). In this context the
development of virtues help individuals to identify those social practices which are relevant to
them. According to Long (2006) honesty and courage are two examples for virtues which are
relevant across various social practices.

2.3.4 Mentoring
Due to the high learning barriers in FLOSS projects, knowledge building is considered a pivotal
challenge for retaining FLOSS developers longer. A possible means to address this challenge
is the use of mentoring as an education and retention strategy.

Mentoring is a one-on-one teaching method in which an experienced employee (the mentor)
provides technical assistance and psychological support to a less experienced individual (the
protégé) (Kram 1985). Mentoring relationships have two effects on protégés. On the one hand,
protégés are assisted in their actions and in learning new knowledge through the technical
guidance of their mentor. On the other hand, mentors provide psychological support to their
protégés in the form of counseling or friendship which in turn builds a strong interpersonal
relationship between them. This interpersonal bond between the mentor and the protégé
differentiates mentoring from other training methods such as classroom teaching and
supervisor-employee relationships (Hale 2000). These two effects distinctly advance protégés’
knowledge building. First, mentors help their protégés acquiring declarative knowledge, such
as understanding facts and routines necessary for them to accomplish their job successfully, by
providing technical assistance. In addition, mentoring relationships help protégés develop
procedural knowledge about how to accomplish the task. This form of knowledge is very
difficult to convey because it is tacit and generally arises only through practical experience.
With respect to this twofold learning effect, previous evaluations suggest that mentoring is
superior to other education techniques in organizations (Hale 2000). Moreover, empirical
studies support that mentoring relationship enhance not only protégés’ knowledge building but
also their job satisfaction and their retention rates (Hale 2000, Brashear et al. 2006).

There are two basic forms of mentoring: formal and informal. In the case of formal mentoring,
a concrete assignment between the mentor and the protégé is created by the organization.
Thereby, formal mentoring relationships are precisely defined in terms of their learning
objectives and length. In contrast, informal mentoring arises spontaneously between colleagues
and has no defined content or structure. Despite their similarities as one-on-one training, formal
and informal relationships should not be considered interchangeable. Rather the used mentoring
form should be selected to fit the particular purpose. Formal mentoring programs should be
used to educate narrowly defined learning objectives while informal mentoring relationships

Developer Management in FLOSS Projects

 40 Andreas Schilling

should be performed to foster a much broader and long-lasting development of the individual
within the organization (Eby and Lockwood 2005).

Previous evaluations within the organizational domain support the effectiveness of formal as
well as informal mentoring relationships. Specifically, research suggests that protégés in
informal mentoring relationships achieve greater long-term behavioral change due to the
investment of more personal efforts (Eby and Lockwood 2005). Moreover, formal mentorships
are especially effective if protégé are satisfied with their mentor. Eby and Lockwood (2005)
suggests that formal mentoring programs serve not only to meet the specified learning
objectives but also to foster protégés’ development within the organization. In particular,
employees who have been mentored report advancements in career planning and networking
opportunities (Eby and Lockwood 2005). The positive effects of formal mentoring programs
are supported by empirical research by Lentz and Allen (2009). According to this study, formal
mentoring benefits both the protégé and the organization. Specifically, the study reveals that
protégés advance in their knowledge building and are more satisfied with their job and their
intention to stay with the organization. Moreover, mentoring relationships help to alleviate
negative experiences of career plateauing.

2.4 Summary

In summary, this section outlined the theoretic background for this dissertation. The first
subsection provided an overview of the term FLOSS and the history of FLOSS development.
Then, the distinct challenges involved in attracting, integrating, and retaining FLOSS
developers are outlined. Finally, relevant organizational theories are introduced that serve as
basis to address these challenges in FLOSS projects. Figure 4 below summarizes the distinct
challenges, the used organizational theories, and the proposed management approaches.

Figure 4: The challenges, used theories, and proposed approaches

Introductory Paper

Developer Management in FLOSS Projects 41

3 Research Methodology

To address the research questions defined and derive useful advice in the three defined
management areas for developer management in FLOSS projects, the dissertation combines
qualitative and quantitative studies. First, in Subsection 3.1, KDE is introduced which is the
evaluation context of all quantitative studies. Then, the Google Summer of Code (GSoC) event
is described, which was the research setting for three of the six quantitative studies. Finally, the
specifics of the performed qualitative and quantitative studies are detailed.

3.1 The K Desktop Environment

The K Desktop Environment (KDE) is a popular desktop environment system for UNIX
operating systems. The next paragraph gives a short overview of the history of KDE and its
relevance to organizations and private households, before the various benefits of KDE as a
study context are delineated.

In October 1996 Matthias Ettrich, the founder of the KDE project, publicly announced his idea
of developing a desktop environment for UNIX systems and asked for help (Ettrich 1996).
Since his original mailing list post, the development of KDE has proliferated and resulted in
the creation of a wide variety of FLOSS projects ranging from games to entire office suites
(KDE 2011). One of the most popular KDE projects is ‘KHTML’, which provided the basis for
most desktop and mobile web-browsers today (Netmarketshare 2015). In addition to generating
great interest among developers, the user base of KDE has flourished over the years as well.
Today, KDE powers many computers in a wide variety of usage scenarios. For example, nearly
52 million children in Brazil use KDE in their schools as well as around 11,000 German
embassies around the world (KDE 2011).

KDE is used as the evaluation context throughout Paper II - Paper VII, because it provides
various characteristics which make it an appropriate context for studying management aspects
in FLOSS projects. One particular benefit of KDE is the ability to study a wide variety of
FLOSS projects which share contextual characteristics, including programming language and
development guidelines. Moreover, all KDE projects use the same development environment
(e.g. IRC channels, mailing lists, version control system, etc.). This homogenous toolset
substantially lowers the effort needed to extract data on KDE developers’ communication and
contribution behavior. In particular, the mailing lists for all KDE projects are hosted under the
common domain ‘org.kde’ which is indexed and archived by the web-service markmail.org.
Markmail provides not only a user-friendly interface to this data, but also an Application
Programming Interface (API) to use the data with compiled programs. Moreover, markmail.org
has indexed the mailing list ‘org.kde.cvs-commits’ through 13 November 2012, which is the
central place where each accepted code commit in every KDE project is published. This made
it even more comfortable to extract relevant figures on KDE developers’ contribution behavior
and avoid problems caused by KDE projects’ change of their Version Control System (VCS)
(KDE Techbase 2009). Another argument which adds to KDE as a suited evaluation context
for studying the various aspects of developer management concerns the huge diversity of the

Developer Management in FLOSS Projects

 42 Andreas Schilling

developer-base, ranging from Indian teenagers to 70-year-old English grandmothers who
translate button descriptions (KDE 2011). Figure 5 shows the worldwide distribution of
development activity for the KDE project between 1 January 2009 and 27 April 2013, which
was examined in Study II. Finally, a cooperation with the project manager of the KDE Commit
Digest project provided access to restricted personal data about KDE developers, such as their
location information (the basis of the evaluation in Study II), and made it possible to create a
broad awareness for an online survey in the KDE community (see Study V).

Figure 5: The worldwide distribution of KDE developers

The next section describes the annual event Google Summer of Code which is also the context
of various quantitative studies on attracting, integrating and retaining FLOSS developers.

3.2 Google Summer of Code
Google Summer of Code (GSoC) is an annual event sponsored by Google in which students are
awarded stipends to contribute to FLOSS projects during their summer break (Google 2015).
Over the last ten years, the number of available GSoC sponsorships has more than tripled. While
there were 419 stipends available to students in 2005, the most recent GSoC event in 2014 was
supported by 1,307 stipends, over three times as many as in 2005 (Google 2014). In addition to
receiving financial compensation, GSoC students are assisted by experienced developers who
act as mentors for their project work.

The application procedure for GSoC consists of a two-step process (Google 2015). First,
applicants write a project proposal in which they describe the specifics of their intended project
work, including a precise schedule for its implementation. In the course of their application,
GSoC students nominate also a preferred mentor for their coding project. In the second part of
the application process, the particular FLOSS projects prioritize and select the GSoC proposals.

In the case of KDE, the selection process for the various GSoC applications comprises an
individual as well as a community evaluation. The individual evaluation is normally performed
by the nominated mentor, who reviews the proposed project and the suggested timeline and

Introductory Paper

Developer Management in FLOSS Projects 43

assigns a score to the proposal. After this individual review, all KDE community members are
invited to vote on the project proposals. The results of these two evaluation rounds are combined
to generate an overall prioritization of the GSoC proposals. Finally, based on the number of
available GSoC slots for KDE, the project proposals are accepted in order of the derived
prioritization.

With respect to the application and selection process, the GSoC event in KDE provides a
uniquely suited study context to evaluate the relevance of P-J fit and P-T fit characteristics for
predicting FLOSS developers’ project permanence. The provided information in students’
applications provide new ways to operationalize and evaluate fit characteristics. Furthermore,
the evaluation context allows objectively derived criteria to be compared with KDE developers’
subjective assessment. Finally, GSoC allows the systematic evaluation of mentoring effects in
FLOSS projects. Although mentoring can also occur at other occasions, the amount of time
spent on it and its structure and goals are seldom as well documented as in GSoC.

3.3 Qualitative Studies
In this dissertation several qualitative case studies were performed to understand the difficulties
of developer management in FLOSS projects. Moreover, these case studies intend to derive and
pre-evaluate possible strategies for addressing these difficulties.

As proposed by Eisenhardt (1989) and Yin (2009), qualitative case studies can be characterized
as a research method which seeks to derive an understanding of the underlying holistic and
meaningful characteristics and dynamics of real life events. As a result, qualitative case study
research is an appropriate research method to examine ‘how’ and ‘why’ research questions (Yin
2009).

In order to understand the concrete problems FLOSS projects are confronted with regarding the
management of their developer base, various project administrators and domain experts were
interviewed. To ensure that the derived results are representative, individuals from various
FLOSS projects and related organizations were selected. Table 1 provides an overview of the
individuals interviewed and their involvement in FLOSS projects.

Table 1: Overview of the qualitative studies performed

Case study Individual FLOSS project
Case study I Lydia Pintscher Community Manager at KDE
Case study II Leslie Hawthorn Google Summer of Code Coordinator
Case study III Brian Proffitt Community Manager at the Linux Foundation
Case study IV Selena Deckelmann Main Developer of PostgreSQL
Case study V Till Adam Services Director KDAB
Case study VI Jos Poortvliet Community Manager at openSUSE
Case study VII Michael Lauer Project Manager OpenMoko
Case study VIII Ian Skerrett Marketing Director of the Eclipse Foundation

Developer Management in FLOSS Projects

 44 Andreas Schilling

Following the recommendations of Yin (2003) the interviews were semi-structured, which
means that the study-related questions were derived to fit the particular research question. The
performed interviews lasted between 45 minutes and 1.5 hours and were recorded and
afterwards transcribed to ease information processing and analysis.

The results of the case studies helped to understand the practical difficulties in attracting,
integrating, and retaining FLOSS developers. Moreover, the results form the basis for the
quantitative evaluation of various management aspects and underlying theories which are
outlined in the following subsection.

3.4 Quantitative Studies
Based on the results of the qualitative studies, six quantitative studies were performed to
empirically evaluate the concepts and means for effectively managing developers in FLOSS
projects. In some cases, these studies are innovative, in that several measures and data
extraction routines were newly developed in the course of the dissertation. To ensure the
validity of these routines and measures, they have been published and discussed in related
conferences prior to their use. Table 2 lists the management aspect, the research objective, and
the publications in which the data extraction and measurement were originally described for
each of the six empirical studies.

Table 2: Overview of the quantitative studies performed

Studies Management
aspect Objective Originally

proposed in:
Reported

in:

Study I Attraction Assess the use of P-J and P-T to
identify sustained developers Paper I Paper II

Study II Integration

(i) Evaluate the effects of spatial,
temporal, and cultural distances
on developers’ interplay.

(ii) Examine if direct offline
interactions mitigate these
problems.

Schilling et
al. (2013) Paper III

Study III Integration

Assess developers’ perceived
motivational stimuli through
working with reputable
developers.

Schilling
(2012) Paper IV

Study IV Integration
Evaluate productivity gains for
FLOSS teams through the
presence of reputable developers.

Schilling et
al. (2014) Paper V

Study V Integration
Assess if and how reputable
developers affect team members
individual productivity

Schilling
(2012) Paper V

Study VI Retention Evaluate mentoring as a viable
education and retention strategy.

Schilling et
al. (2012) Paper VI

The following subsections outline the data extraction strategy and the measurement for the
examined constructs for each empirical study.

Introductory Paper

Developer Management in FLOSS Projects 45

3.4.1 Study I
Study I examines new ways for FLOSS projects to identify FLOSS developers who are likely
to remain active in the project. In particular, this study evaluates various measures for actual
and subjective P-J and P-T fit to predict developers’ project permanence. To do so, GSoC at
KDE is chosen as evaluation context, because it allows to access detailed personal information
of students, like their year of study which is rarely found in FLOSS projects. Moreover, GSoC
is used as study context as it allows to contrast the accuracy of the newly derived measures with
the employed subjective evaluation.

Data Extraction

The archival and subjective data which form the basis for this evaluation have been extracted
from four distinct data sources. First, the names and email addresses of all GSoC students at
KDE were extracted from the official websites for GSoC-2009 and GSoC-2010. Based on this
screening process, 83 GSoC students were identified who contributed to a KDE project in 2009
or 2010 (36 students from GSoC-2009 and 47 students from GSoC-2010). Then, their
contribution and conversation records were extracted using the web-service markmail.com,
which indexes all KDE mailing lists and provides an API for this data. As the number of indexed
mailing lists also includes the mailing list ‘kde.cvs-commits’ to which all accepted code
commits to every KDE project get propagated, the markmail API could not only be used to
reconstruct GSoC students’ prior conversations but also their prior code contributions to KDE
projects. With the exception of two students from GSoC-2009 and one student from GSoC-
2010 all GSoC students could be associated with commits in the KDE code base repository.
The three mismatches are possibly the result of students’ use of different nicknames for KDE
and GSoC. Thus, the overall study sample comprises 80 GSoC students. Figure 6 summarizes
the details of the data extraction methods.

Figure 6. Data extraction in Study I

Measurement

As GSoC students formulate their project proposal according to their specific needs, needs-
supply match is considered high. Therefore, the study focuses on demands-ability match for
assessing GSoC students’ P-J fit. In line with practices from the recruitment context, GSoC
students’ relevant abilities are assessed by their project expertise and project experience. To
assess GSoC students’ project expertise (proj_expertisei,t) at the beginning of GSoC, their year
of study (YoSi,t) at that time was considered. Students’ project experience (proj_experiencei) at
the start of GSoC was assessed based on their previous engagement in KDE. Based on

Developer Management in FLOSS Projects

 46 Andreas Schilling

consultations with KDE experts, students’ project experience was categorized into one of three
classes. These classes roughly reflect the required efforts for the development of an add-on (<
3 commits), a small application (< 94 commits), and everything beyond that.

To measure GSoC students’ supplementary fit (team_expsupi), the timespan between students’
first mailing list post and the beginning of the particular GSoC event was collected. With the
help of KDE administrators, the derived time was classified into the following three categories.

 𝑡𝑒𝑎𝑚_𝑒𝑥𝑝𝑖
𝑠𝑢𝑝 = {

𝑙𝑜𝑤 if < 30 prior_days
𝑚𝑖𝑑 if 31 − 180 prior_days
ℎ𝑖𝑔ℎ if > 180 prior_days

 (3)

To evaluate students’ complementary fit (team_expcompi) their participation in mailing list
discussions at the Bugzilla platform was considered. Bugzilla is the central platform to which
KDE-related programming deficits and their solutions are posted and where discussions take
place. Thus, students’ complementary fit at the beginning of GSoC was determined by how
frequently they engaged in programming deficit-related project discussions. With the assistance
of KDE experts, the participation behavior in such problem-related discussions was classified
as follows:

 𝑡𝑒𝑎𝑚_𝑒𝑥𝑝𝑖
𝑐𝑜𝑚𝑝 = {

𝑙𝑜𝑤 if < 5 prior_posts
𝑚𝑖𝑑 if 6 − 60 prior_posts
ℎ𝑖𝑔ℎ if > 60 prior_posts

 (4)

KDE members’ subjective evaluation of GSoC students’ P-J and P-T fit was assessed by the
assigned prioritization of their particular project proposal. As described in Subsection 3.2
above, GSoC proposals are evaluated in a twofold evaluation approach at KDE, first by the
mentor and then through by all KDE members. Then, these results are combined to prioritize
the proposals and award stipends.

In line with previous FLOSS research by Colazo and Fang (2009), the dependent variable,
students’ retention in the projects (proj_reti), was assessed based on the number of days
between the end of GSoC (DiGSoCEnd) and their most recent code commit (Dit). The specific
measurement of the dependent variable and the controls included in this study are summarized
in Table 3.

 𝑝𝑟𝑜𝑗_𝑒𝑥𝑝𝑡𝑖𝑠𝑒𝑖,𝑡 = 𝑌𝑜𝑆𝑖,𝑡 (1)

 𝑝𝑟𝑜𝑗_𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖 = {
𝑙𝑜𝑤 if < 3 prior_commits
𝑚𝑖𝑑 if 4 − 94 prior_commits
ℎ𝑖𝑔ℎ if > 94 prior_commits

 (2)

Introductory Paper

Developer Management in FLOSS Projects 47

Table 3: Measures for dependent and control variables in Study I
Construct Based on Sample Items

Project retention Colazo and Fang (2009) 𝑝𝑟𝑜𝑗_𝑟𝑒𝑡𝑖 = 𝐷𝑡
𝑖 − 𝐷𝐺𝑆𝑜𝐶𝐸𝑛𝑑

𝑖

Team size Colazo and Fang (2009) 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 =∣ 𝑡𝑒𝑎𝑚𝑡 ∣

Project size Midha (2008) 𝑝𝑟𝑜𝑗_𝑠𝑖𝑧𝑒𝑡 = 𝐿𝑜𝐶𝑡

Project age Colazo and Fang (2009) 𝑝𝑟𝑜𝑗_𝑎𝑔𝑒𝑡 = 𝑁𝑜𝐷𝑡

3.4.2 Study II
The second study in this dissertation examines the productivity effects of spatial, temporal, and
cultural distances on FLOSS developers’ teamwork. In addition, the study examines if offline
interactions help FLOSS developers to overcome the negative effects of their geographic
dispersion. The data extraction and measurement approach used in this study was originally
delineated in Schilling et al. (2013).

Data Extraction

The archival records of KDE developers’ collaboration behavior which build the foundation of
this study were extracted in cooperation with the KDE Commit Digest project. First, the FLOSS
project ‘Enzyme’3 was used to extract detailed commit statistics based on information from the
VCS of each of the 65 KDE projects. Next, KDE developers’ geographic locations were
extracted from the KDE Commit Digest project (this project allows KDE developers to share
their profiles with each other). This location data was merged with the extracted contribution
data to identify KDE projects in which at least 75 percent of the submitted code commits could
be assigned to developers with location information. The following six projects fulfilled this
criteria and were thus selected for the study: ‘KDE PIM’ (a personal organizer), ‘DigiKam’ (a
photo management suite), ‘KDELibs’ (cross-application libraries), ‘Calligra’ (an office suite),
‘KDE Workspaces’ (a desktop organizer), and ‘Kate’ (a text editor). Finally, information on
KDE developers’ offline meetings was extracted based on information from the central KDE
website for organizing developer sprints (https://sprints.kde.org/). Since this website was not
launched until April 2011 and used only hesitantly by various KDE projects at the beginning,
it was also necessary to screen the websites of the examined KDE projects for information on
past developer sprints. In such cases, the attendee list of previous developer sprints was
reconstructed based on a blog post or a group photo.

Consistent with the observations by Kuk (2006), the development of the examined KDE
projects is characterized by a high developer fluctuation. In fact, the high fluctuation leads to a
new developer composition at the targeted KDE projects every week. In response to this high
fluctuation and following previous research by Singh (2010), the contribution history of the six
KDE projects was examined in segments of one week. In order to focus on members’
collaboration process, only team configurations with at least two developers were considered.

3 Website: ‘http://enzyme-project.org’, source code: ‘http://github.com/dannyakakong/Enzyme’

Developer Management in FLOSS Projects

 48 Andreas Schilling

Figure 7 visualizes the used sampling strategy with the four developers Mark, Carl, Joe, and
Alex. Using this sampling and filtering strategy 648 team configurations (N) were derived. The
various steps of the used data extraction strategy are visualized in Figure 8 below.

Figure 7. Sampling strategy in Study II

Figure 8. Data extraction in Study II

Measurement

With respect to previous work by Scellato et al. (2010) on the impact of geographic distances
on interactions in online networks, the spatial distance between FLOSS developers
(spatial_distt) at period t was not assessed in absolute terms but using the exponential decay of
the distance between every two developers (disti,j). Scellato et al. (2010) recommend doing so
because distance has a non-linear effect on individuals’ ability to meet offline. While it makes
considerable difference for individuals to meet offline if they are 1 or 1,000 miles apart from
each other, it makes only a marginal difference if they are separated by 100,000 or 101,000
miles. The used measure weights the spatial distance to team members by their shares of
commits in the particular period t (wj,t) because the more individuals are involved in the
particular period the more they can help other developers.

 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑡 = ∑  𝑗∈𝑡𝑒𝑎𝑚𝑡 ∧ 𝑖≠𝑗 𝑒−𝑑𝑖𝑠𝑡𝑖,𝑗/𝛽 × 𝑤𝑗,𝑡 (5)

 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑡 = (∑ 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑡𝑖∈𝑡𝑒𝑎𝑚𝑡
 × 𝑤𝑖,𝑡) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (6)

The used measure to assess FLOSS developers’ temporal distances (temporal_distt), considers
the actual overlap in individuals’ working hours. To do so, the measure uses the timestamps of
every FLOSS developers’ first and last commit each day to reconstruct their working hours and
compute the number of overlapping hours with every other active developer each day in period
t (overlapi,j,d). In comparison, the measure used by Colazo and Fang (2010) only assesses the

Introductory Paper

Developer Management in FLOSS Projects 49

variance of the timestamps in FLOSS developers’ first code commit each day. However, in
light of the unequal work distribution in FLOSS projects (Toral et al. 2010), the sole
consideration of differences in developers’ stating time could lead to measurement bias. As in
the case of FLOSS developers’ spatial distance, the proposed measure weights members’
temporal distance to each other based of their share of commits in the particular period to
account for the differences in FLOSS developers’ relevance at the particular period t.

 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑡 = ∑ (
𝑗∈𝑡𝑒𝑎𝑚𝑡 ∧ 𝑗≠𝑖

∑ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑖,𝑗,𝑑𝑑∈𝑡) × 𝑤𝑗,𝑡 (7)

 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑡 = (∑ 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑡𝑖∈𝑡𝑒𝑎𝑚𝑡
 × 𝑤𝑖,𝑡) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (8)

The cultural distance among FLOSS developers (cultural_distt) was assessed based on studies
by Hofstede (1980). According to Hofstede (1980) cultural differences among individuals can
be assessed based on the following four criteria: (i) Power Distance Index (PDI): the acceptance
of unequal power distributions (ii) Uncertainty Avoidance Index (UAI): the acceptance of
uncertainty, (iii) Masculinity / Femininity Index (MFI): the dominance of masculine or feminine
values in society, and (iv) Individualism/Collectivism Index (II): the need for individuals to
integrate into groups. In line with research by Malik and Zhao (2013), FLOSS developers’
cultural differences is assessed based on sum of the absolute differences of their national index
scores. Although, Hofstede’s research provides index scores for the countries of most
developers in the evaluation sample, it does not cover some Eastern European countries. For
these countries, study results by Huettinger (2008) were used, who extended Hofstede’s
research to Eastern European countries. As for FLOSS developers’ spatial and temporal
distances, the proposed measure weights a FLOSS developer’s cultural distance to the other
developers with respect to their share of commits (wj,t) within the particular period.

 𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑗 = ∑ (
𝑗∈𝑡𝑒𝑎𝑚𝑡∧𝑗≠𝑖

∣∣𝑃𝐷𝐼𝑖 − 𝑃𝐷𝐼𝑗∣∣ + ∣∣𝑈𝐴𝐼𝑖 − 𝑈𝐴𝐼𝑗∣∣ + ∣∣𝐼𝐼𝑖 − 𝐼𝐼𝑗∣∣ + ∣∣𝐼𝐷𝑉𝐼𝑖 − 𝐼𝐷𝑉𝐼𝑗∣∣) × 𝑤𝑗,𝑡 (9)

 𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑡 = (∑ 𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑡𝑖∈𝑡𝑒𝑎𝑚𝑡
 × 𝑤𝑖,𝑡) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (10)

The existence and degree of direct offline interactions among the involved FLOSS developers
at the particular project in period t, is assessed in a two-step computation approach. In a first
step, the information about attendance at the various developer sprints was used to construct a
global offline relationship graph for the involved FLOSS developers. In this graph, an
undirected link between developers is drawn if they attended the same coding sprint. The links
in this graph are weighted by the number of previous interactions. In a second step this
undirected graph was transformed into a directed graph by weighting the various connections
based on the differences in interaction partners’ level of expertise. Figure 9 illustrates this
transformation process using an example of four developers: Anna, Mark, Carl, and Joe. In this
example, Anna and Mark attended the same developer sprint. Mark is less experienced than
Anna because he is new to the project. Therefore, he can benefit much more from this meeting

Developer Management in FLOSS Projects

 50 Andreas Schilling

than Anna. In turn, Anna benefits much more from meeting with Carl at some other event
because he is even more experienced than she. With respect to this created relationship network,
the level of directed offline interactions within a FLOSS team is assessed by calculating team
members’ average degree of outgoing links at period t.

 𝜂𝑖,𝑗,𝑡 = 𝑒𝑥𝑝𝑒𝑟𝑡𝑖𝑠𝑒𝑗,𝑡 × 𝑚𝑒𝑒𝑡𝑢𝑝𝑖,𝑗,𝑡 (11)

𝑂𝑇𝑡 = (∑ ∑ 𝜂𝑖,𝑗,𝑡𝑗∈𝑡𝑒𝑎𝑚𝑡 ∧ 𝑗≠𝑖𝑖∈𝑡𝑒𝑎𝑚𝑡

) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡
(12)

a) Global offline relationships b) Weighted offline relationships

Figure 9. Modeling offline social networks in Study II

In addition to the various aspects of FLOSS developers’ geographic dispersion and the degree
of offline interactions among them, various controls were considered. These control variables
are listed in Table 4 together with their measurement and the literature on which the
measurement was derived. In addition, Table 4 details the precise measurement of FLOSS
developers’ average team productivity, which is the dependent variable in this study.

Table 4: Measures for dependent and control variable in Study II
Construct Based on Measurement
Avg. team
productivity

Singh et al. (2011a)
Grewal et al. (2006) 𝑝𝑟𝑜𝑑𝑡 = (∑ 𝑐𝑖

𝑡

𝑖∈𝑡𝑒𝑎𝑚𝑡
) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡

Team size Colazo and Fang
(2009) 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 =∣ 𝑡𝑒𝑎𝑚𝑡 ∣

Team
experience Schilling et al. (2014) 𝑡𝑒𝑎𝑚_𝑒𝑥𝑝𝑡 = (∑ ∑ 𝐷𝑖,𝑗,𝑡𝑗∈𝑡𝑒𝑎𝑚𝑡 ∧ 𝑗≠𝑖𝑖∈𝑡𝑒𝑎𝑚𝑡

) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡

Project
experience Schilling et al. (2014) 𝑝𝑟𝑜𝑗_𝑒𝑥𝑝𝑡 = (∑ 𝐷𝑖

𝑡

𝑖∈𝑡𝑒𝑎𝑚𝑡
) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡

Project size Midha (2008) 𝑝𝑟𝑜𝑗_𝑠𝑖𝑧𝑒𝑡 = 𝐿𝑜𝐶𝑡

Project age Colazo and Fang
(2009) 𝑝𝑟𝑜𝑗_𝑎𝑔𝑒𝑡 = 𝑁𝑜𝐷𝑡

Introductory Paper

Developer Management in FLOSS Projects 51

3.4.3 Study III
Study III examines if and how working together with reputable developers stimulates FLOSS
developers’ motivation to contribute to a project. This examination is performed in the context
of GSoC at KDE and Gnome. GSoC was chosen as evaluation context for this study because
GSoC students are generally mentored in their project work by reputable FLOSS developers.
Like KDE, Gnome is a popular desktop environment for UNIX systems with a long
development history and a diverse spectrum of FLOSS projects. Another advantage for the
evaluation is that KDE and Gnome are two of the largest organizations which participate in
GSoC. The question items used to assess the reputation of FLOSS developers’ collaboration
partner were originally proposed in Schilling (2012).

Data Extraction

To assess the motivation stimuli FLOSS developers perceive through working with reputable
developers, a private online survey of GSoC students at KDE and Gnome was performed. For
this online survey, the email addresses of all GSoC students at KDE and Gnome in 2011 were
extracted from the official GSoC-2011 website and they were invited to participate in an online
survey. To improve the response rate to this survey, a reminder email was sent out to all invited
students who had not completed the questionnaire within two weeks after the original mailing.
Overall 97 GSoC students at KDE and Gnome were invited to this online survey of whom 65
students participated in it. Figure 10 summarizes the details of the data extraction procedure
used for this study.

Figure 10. Data extraction in Study III

Measurement

To assess the type and strength of FLOSS developers’ forms of motivation, the survey adopted
question items used by Sen et al. (2008) and Ke and Zhang (2010). In particular, the question
items used to assess FLOSS developers’ extrinsic motives were adopted from Ke and Zhang
(2010). The question items used to evaluate FLOSS developers’ level of intrinsic motivation
were used by Sen et al. (2008). Table 5 summarizes the FLOSS literature from which the
various question items were adopted and provides sample items for each construct.

FLOSS developers’ community reputation was assessed based on the assumption that FLOSS
projects are meritocratic i.e. FLOSS developers earn community reputation based on their
project contributions. Based on this assumption and previous research by Schilling (2012), the
community reputation of the developer the individuals have worked with was assessed using
the following three question items: (1) ‘My mentor is highly respected by other developers in

Developer Management in FLOSS Projects

 52 Andreas Schilling

the community’, (2) ‘Other developers know my mentor for his/her competence’ and (3) ‘The
standing of my mentor in the community is very strong’.

Table 5. Measures for the dependent variables in Study III
Construct Based on Example

External motivation Ke and Zhang (2010)
‘I am keenly aware of the income goals I
have for myself if I participate in this
project’

Introjected motivation Ke and Zhang (2010)
‘I am strongly motivated by the
recognition I can earn through
participating in this project’

Identified motivation Ke and Zhang (2010)
‘When I talk about the project, I usually
say ‘we’ rather than ‘they’’

Integrated motivation Ke and Zhang (2010)
‘The project shares my views on open
source software’

Intrinsic motivation Sen et al. (2008) ‘It is fun participating in this project’

3.4.4 Study IV
Study IV examines the positive effects of the involvement of reputable developers on FLOSS
teams’ productivity. Therefore, the study looks beyond the motivational effects evaluated
previously and focuses on the consequences which result from the involvement of reputable
developers for teamwork productivity. The data extraction and a variation of the measurement
used was originally published in Schilling et al. (2014).

Data Extraction

The archival records for this study were derived from two distinct data sources. As in Study II,
the FLOSS project ‘Enzyme’ was used to derive based on the VCS in each of the 65 KDE
projects detailed contribution information. In addition, Ohloh.com was queried for information
on KDE developers’ community reputation. Ohloh.com is a social networking site which allows
FLOSS users and developers to create a profile page about themselves and exchange ‘Kudos’.
A ‘Kudo’ resembles a form of appreciation for the work or provided support (Hu et al. 2012).
In order to extract the Kudo profiles for all KDE developers, the API of Ohloh.com was queried
with the developer credentials (their name and the SHA-1 hash of their email address) which
was extracted in the first step. In order to derive a comprehensive picture on KDE developers’
community appreciation, their profile pages but also recursively the profile of each evaluator
was extracted. In other words, the extracted Kudo data covers not only the evaluations of all
KDE developers but also their evaluators and their evaluators and so forth. In total, this
recursive lookup process resulted in the extraction of 8,195 Ohloh profiles and 34,300 Kudo
relationships. Finally, the datasets on KDE developers’ contribution behavior and their
community endorsement were merged to identify KDE projects for which at least 75 percent of
all submitted code commits between 1 January 2011 and 1 November 2013 could be attributed
to developers with Ohloh profiles. The following six KDE projects passed this filtering process
and were examined in this study: ‘KDELibs’ (cross-application libraries), ‘KDE Workspaces’

Introductory Paper

Developer Management in FLOSS Projects 53

(a desktop organizer), ‘Calligra’ (an office suite), ‘DigiKam’ (a photo management suite),
‘KDE PIM’ (a personal organizer), ‘Plasma-Mobile’ (a desktop for mobile devices), and
‘Akonadi’ (a storage service for personal information).

As has been observed by Kuk (2006), there is high developer fluctuation in KDE projects. In
fact, in the projects selected for this study, there was a new combination of active developers
every week. Following the lead of Singh (2010), this great fluctuation in team compositions
was handled by segmenting the development history of the considered FLOSS projects into
weekly samples, as was also done in Study II. All team configurations consisting of fewer than
three developers were omitted because the evaluation focuses on the developer collaboration.
Based on this sampling and filtering strategy, the examined study sample comprised 749 team
configurations (N). Figure 11 summarizes the data extraction steps and the transformation
process for this study.

Figure 11. Extraction strategy study IV

Measurement

KDE developers’ community reputation in period t (comm_repit) was assessed in a twofold
approach. First, a global evaluation graph for each period t was derived based on exchanged
Kudos until this period. An example of the form of this evaluation graph is presented in Figure
12 for the three KDE developers a, b, and c. Next, a rank-based measure was applied to the
constructed evaluation graph to assess FLOSS developers’ community reputation in the
particular period. In contrast to other network measures which treat all links in a graph as
equally important, a rank-based measure distinguishes the influence of outgoing links based on
the originating node’s rank. This measurement is consistent with the reputation building process
in FLOSS communities, in which the positive effects of an endorsement are contingent on the
evaluator’s community standing (Stewart 2005). Specifically, the PageRank algorithm by Brin
and Page (1998) was used to assess FLOSS developers’ reputation because it provides two key
benefits for the particular study context. First, the efficient computation of the PageRank
algorithm makes it considerably easier to compute the ranks of the more than 8,000 individuals
in the evaluation graph for each weak between 1 January 2011 and 1 November 2013. In
addition, the computed ranks of the PageRank algorithm are very robust against reciprocal
linking (Gayo-Avello 2013). Reciprocal linking describes the phenomenon that a node links to
another node to get a link back. Because reciprocal linking was also discovered within the
Ohloh network (Hu et al. 2012), the robustness of the PageRank algorithm against such
phenomenon reduces substantially the risk of potential measurement bias. Thus, KDE
developers’ community reputation in t was measured by computing their PageRank in the
global evaluation graph at the particular period t. Based on this egocentric measure, the

Developer Management in FLOSS Projects

 54 Andreas Schilling

community reputation of the FLOSS developer team (comm_rept) is assessed based on the
average community endorsement of the developers involved in period t.

𝑐𝑜𝑚𝑚_𝑟𝑒𝑝𝑖

𝑡 =
1 − 𝑑

∣ 𝑐𝑜𝑚𝑚𝑡 ∣
+ 𝑑 × ∑

𝑐𝑜𝑚𝑚_𝑟𝑒𝑝𝑗
𝑡

𝑘𝑢𝑑𝑜𝑠𝑗∀𝑗∃𝑘𝑢𝑑𝑜𝑗,𝑖∧𝑗∈𝑐𝑜𝑚𝑚𝑡

(13)

𝑐𝑜𝑚𝑚_𝑟𝑒𝑝𝑡 = (∑ 𝑐𝑜𝑚𝑚_𝑟𝑒𝑝𝑖

𝑡

𝑖∈𝑡𝑒𝑎𝑚𝑡
) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡

(14)

In addition to FLOSS developers’ community reputation, the analysis controlled for effects of
other team and project characteristics. The measures for these controls including the literature
from which they were adopted are listed in Table 6. Table 6 also lists the measurement of the
dependent variable of this study, which is FLOSS developers’ average team productivity, and
the reference it was adopted from.

Table 6. Measures for dependent and control variables in Study IV
Construct Based on Measurement

Team size Colazo and Fang
(2009) 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 =∣ 𝑡𝑒𝑎𝑚𝑡 ∣

Team
experience Schilling et al. (2014) 𝑡𝑒𝑎𝑚_𝑒𝑥𝑝𝑡 = (∑ ∑ 𝐷𝑖,𝑗

𝑡

𝑗∈𝑡𝑒𝑎𝑚𝑡∧𝑗≠𝑖𝑖∈𝑡𝑒𝑎𝑚𝑡
) 

/ 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡
Project

experience Schilling et al. (2014) 𝑝𝑟𝑜𝑗_𝑒𝑥𝑝𝑡 = (∑ 𝐷𝑖
𝑡

𝑖∈𝑡𝑒𝑎𝑚𝑡
) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡

Project size Midha (2008) 𝑝𝑟𝑜𝑗_𝑠𝑖𝑧𝑒𝑡 = 𝐿𝑜𝐶𝑡

Project age Colazo and Fang
(2009) 𝑝𝑟𝑜𝑗_𝑎𝑔𝑒𝑡 = 𝑁𝑜𝐷𝑡

Team
productivity

Singh et al. (2011a)
Grewal et al. (2006) 𝑝𝑟𝑜𝑑𝑡 = (∑ 𝑐𝑖

𝑡

𝑖∈𝑡𝑒𝑎𝑚𝑡
) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡

Figure 12. Evaluation graph used in Study IV

Introductory Paper

Developer Management in FLOSS Projects 55

3.4.5 Study V
Study V examines how the involvement of reputable developers affects FLOSS developers’
relationships to other team members as well as their working efforts. In order to examine these
effects a public online survey was designed which was promoted in cooperation with the
relaunch of the KDE Commit Digest website. In order to examine the actual as well as the
subjective consequences which result from the involvement of reputable developers, this study
combines perceptual and archival measurement.

Data Extraction

The data extraction for this study was performed in conjunction with the relaunch of the KDE
Commit Digest website. To assess the various perceptual consequences a private online survey
was compiled. At the time of the evaluation, the KDE Commit Digest project had finished a
major revision of its website and was promoting it on KDE related blogs and news channels.
The administrator of this project agreed to integrate a reference to the compiled online survey
into the last step of the sign-up process for the project. This integration provided two key
advantages for the online survey. First, the integration increased the visibility of the survey to
KDE developers because it was referenced in the promotion for the KDE Commit Digest
relaunch. In addition, the integration made it possible to implicitly link developers’ survey to
their KDE profile so their actual project behavior could be assessed. In total, 86 KDE
developers participated in this survey, including six that had to be omitted due to malformed
answers, resulting in a study sample of 80 KDE developers. The two data sources and the
extraction steps for this study are summarized in Figure 13.

Figure 13. Data extraction in Study V

Measurement

To assess how reputable developers affect team members’ relationships to each other and their
working efforts, the study relies on perceptual and archival measures. To reduce measurement
bias, the study relies only on measures which have already been used in previous evaluations.

In order to assess the involvement of reputable KDE developers, question items discussed in
Schilling (2012) and used in Study III were selected. To evaluate FLOSS developers’ cognitive
and affective trust towards the team members of the particular FLOSS project, question items
were adopted from Stewart and Gosain (2006) and Xu and Jones (2010). In addition, various
archival measures were used to assess actual changes in KDE developers’ productivity, the
characteristics of the project (project size and project age), and the team (team age, team size,
team experience, and project experience). Whenever possible, these archival constructs were

Developer Management in FLOSS Projects

 56 Andreas Schilling

assessed the same way as in Study II and Study IV. Table 7 summarizes the assessed constructs
and the specifics of their measurement.

Table 7. Measures for dependent and control variables in Study V

Construct Measure-
ment Based on Measure / Sample Item

Reputation Perceptual Schilling (2012)
‘Some developers in this project

have a strong standing in the
community’

Cognitive trust Perceptual Stewart and Gosain
(2006)

‘I trust and respect the members
of this project’

Affective trust Perceptual Stewart and Gosain
(2006)

‘If I share my problems with
others in this project, I know they
will respond constructively and

caringly’
Individual

productivity Archival Singh et al. (2011a),
Grewal et al. (2006)

𝑝𝑟𝑜𝑑𝑖
𝑡 = 𝑐𝑖

𝑡

Team size Archival Colazo and Fang
(2009) 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 =∣ 𝑡𝑒𝑎𝑚𝑡 ∣

Individual team
experience Archival Schilling et al. (2014) 𝑡𝑒𝑎𝑚_𝑒𝑥𝑝𝑖

𝑡 = ∑ 𝐷𝑖,𝑗
𝑡

𝑗∈𝑡𝑒𝑎𝑚𝑡∧𝑗≠𝑖

Individual proj.
experience Archival Schilling et al. (2014) 𝑝𝑟𝑜𝑗_𝑒𝑥𝑝𝑖

𝑡 = 𝐷𝑖
𝑡

Project size Archival Midha (2008) 𝑝𝑟𝑜𝑗_𝑠𝑖𝑧𝑒𝑡 = 𝐿𝑜𝐶𝑡

Project age Archival Colazo and Fang
(2009) 𝑝𝑟𝑜𝑗_𝑎𝑔𝑒𝑡 = 𝑁𝑜𝐷𝑡

3.4.6 Study VI
Study VI examines the effects of mentoring on KDE newcomers’ project permanence and their
knowledge building. This examination was performed in the context of GSoC at KDE because
GSoC provides the rare occasion in which there is a documented mentoring relationship
between FLOSS developers and experienced developers. The used data extraction strategy and
the archival measures for this study were originally proposed and discussed in Schilling et al.
(2012).

Data Extraction

For identifying mentored newcomers, the names and email addresses of all GSoC participants
at KDE in 2009 and 2010 were extracted from the official GSoC websites. Then, this
information was used in combination with KDE’s central member directory to find those GSoC
students who have been registered at KDE for no longer than four months before the start of
GSoC. A similar procedure was used to identify regular newcomers to KDE. In particular, the
log file of KDE’s central member directory was used to identify all individuals who registered
at KDE between 1 January 2010 and 1 July 2010. To ensure that the identified individuals are
interested in becoming KDE developers, it was checked that they submitted at least one code

Introductory Paper

Developer Management in FLOSS Projects 57

commit to a KDE project during the first month after their registration. For this check the online
service markmail.com was used as it indexes the mailing-list ‘kde.cvs-commit’ to which each
code commit to every KDE project gets published to. Based on this data extraction and filtering
approach, 91 newcomers to KDE were identified for the evaluation; 41 of these newcomers
have been mentored in GSoC (16 in GSoC-2009 and 25 in GSoC-2010) and 50 of them were
regular (non-mentored) novices. In addition to identifying newcomers, markmail.com was used
to extract all of their code commits and email records to the KDE projects which are used for
assessing their learning progress. The various steps for the data extraction are illustrated in
Figure 14.

Figure 14. Data extraction in Study VI

Measurement

The level of newcomers’ knowledge building, is assessed following the lead of Singh et al.
(2011b), who derive an innovative learning model for the FLOSS context and show that this
model is superior even to traditional learning curve models. The proposed model distinguishes
three main learning states. In this model all FLOSS developers start at the lowest learning state.
By engaging in learning activities (such as submitting code, or opening and participating in
mailing list discussions), FLOSS developers advance into higher learning states (Singh et al.
2011b). With respect to this conceptualization, knowledge building is measured as a latent
formative variable constituted by FLOSS developers’ contribution and communication
behavior.

Beside KDE newcomers’ learning state, the study considers additional project- and team-related
control values. Table 8 provides an overview of these controls and their specific measurement.
The measurement used to assess FLOSS developers’ project permanence is the same as in
Study I.

Table 8. Measures for dependent and control variables in Study VI

Construct Based on Measurement

Project Retention Colazo and Fang (2009) 𝑝𝑟𝑜𝑗_𝑟𝑒𝑡𝑖 = 𝐷𝑡
𝑖 − 𝐷𝐺𝑆𝑜𝐶𝐸𝑛𝑑

𝑖

Team Size Colazo and Fang (2009) 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 =∣ 𝑡𝑒𝑎𝑚𝑡 ∣

Project Size Midha (2008) 𝑝𝑟𝑜𝑗_𝑠𝑖𝑧𝑒𝑡 = 𝐿𝑜𝐶𝑡

Project Age Colazo and Fang (2009) 𝑝𝑟𝑜𝑗_𝑎𝑔𝑒𝑡 = 𝑁𝑜𝐷𝑡

Developer Management in FLOSS Projects

 58 Andreas Schilling

3.5 Evaluation Techniques

This dissertation uses various evaluation techniques to study the distinct aspects of developer
behavior in FLOSS projects. The following subsections present the three evaluation techniques
used in the seven research papers of this dissertation including their core assumptions and
relevant measures to assess their validity.

3.5.1 Linear Model
Linear models are a fundamental modeling technique for quantitative evaluations in social
science (Hanushek and Jackson 2013). A key feature of linear models is that they can be easily
understood and mathematically interpreted. In addition, linear transformation can be used to
express even non-linear effects in linear models (Hanushek and Jackson 2013). The following
description of the different elements of linear models and Ordinary Least Squares (OLS)
regression, a basic technique for estimating the parameters of linear models, paraphrases
Seltman (2014)

A linear model consists of the dependent variable (Y) and one or more independent variables
(Xi). The parameters α and β1 to βm are the coefficients of the linear model and express how one
factor change in the independent variables affects the dependent variable. Specifically, α refers
to the starting level of the dependent variable whereas β1 to βm are bound to the particular
manifestation of the independent variable(s). Finally, the linear model includes the error term
ε, which represents all latent, non-observed effects which influence the dependent variable. This
error term can refer to measurement errors as well as structural errors of the performed
modeling. Equation (15) depicts the population model of a linear model, which expresses the
linear relationship of a dependent and independent variable for a particular population.

𝑌 = 𝑎 + ∑ 𝛽𝑖𝑋𝑖

𝑚

𝑖=1
+ 𝜀 (15)

Because it is generally not possible to observe an entire population, survey samples are used to
estimate a particular linear model for the whole population. A common technique to estimate
the coefficient(s) and the error term of a linear model is Ordinary Least Squares (OLS)
regression. This method seeks to minimize the sum of the square residuals (S). The residuals
refer to the difference between the observed instance of the dependent variable (yi) and its
assumed value according to the specified linear model. Equation (16) shows the mathematic
specification of this estimation process.

𝑆(𝑏) = ∑ 𝑦𝑖 − (𝛼 + ∑ 𝛽𝑗𝑥𝑗

𝑀

𝑗=1
)2

𝑀

𝑖=1
→ 𝑚𝑖𝑛 (16)

OLS regression relies on several mathematical assumptions which need to be considered in
order to ensure measurement validity and reliability. A core assumption is that the specified
constructs have a linear relationship to each other. Other relationship forms between the
dependent and independent variables can only be insufficiently uncovered or not at all.
Furthermore, it is critical in linear regression that errors found are independent of each other.

Introductory Paper

Developer Management in FLOSS Projects 59

The third key assumption is that the study samples are heteroscedacstic. This means that the
derived study samples should not differ in terms of variance to other subpopulations. Lastly,
the normality assumption supposes that the error term follows a normal distribution with
expected value of zero. Despite the general relevance of these assumptions, violations of these
assumptions affect the validity of a linear regression to various degrees. In particular, linear
regression is somewhat robust against violations of the assumption for heteroscedascity and
moderately robust against violations of the assumption of error term normality. In contrast,
however, linear regression is not robust against violations of the assumption for linearity and
error independence (Seltman 2014).

There are three important checks to evaluate the validity and quality of a linear model based on
a concrete data sample. The first validity check is to calculate the p-values, which basically
reflect the significance of various regression coefficients. In an OLS regression, this resembles
a t-test with the null-hypothesis that the particular coefficient equals zero (Seltman 2014). The
second important test is the check for multicollinearity. This check is used to ensure that there
is no correlation between the independent variables which could bias the evaluation results. The
last test is the calculation of the R2, which is also known as the coefficient of determination.
This is a test for the overall fit of the specified linear model to the observed data. It is the amount
of variance in the observed data which can be attributed to the particular linear model (Seltman
2014).

In the dissertation, linear modeling and OLS regression was used in Paper IV and Paper VI.
In these papers, linear modeling was used as a basic evaluation technique to examine the effects
of geographic dispersion, reputable developers, and other factors on the number of commits by
the developer team every week. Linear modeling was used for this evaluation context because
the dependent variable is a quantitative variable. Moreover the high developer fluctuation
observed in the data samples basically leads to a new developer team every week, which in turn
suggests an independence of the weekly observations.

3.5.2 Proportional Hazard Model
The proportional hazard model is a common technique for survival analysis. In contrast to linear
models, the outcome variable in this type of modeling is binary (e.g. survival or death of the
patient). Moreover, the outcome variable is non-linearly affected by the independent variables.
Thereby, the proportional hazard model examines the effects of one or more time-variant as
well as time-invariant predictors on a binary outcome variable. Originating from the medical
context, survival analysis and proportional hazard models are nowadays broadly used in
economics as well as social science to examine the timespan between an initial event and a
dichotomous event.

A common way to formulate the survival function (S(t)), which specifies the probability that
the time T of a particular event (i.e. death) occurs after a given time t is:

 𝑆(𝑡) = 𝑃𝑟(𝑇 > 𝑡) (17)

Developer Management in FLOSS Projects

 60 Andreas Schilling

Another way to model the distribution of the survival times is by using the hazard function h(t).
This function specifies the immediate risk that the time of the particular event T occurs at the
observed time t. Equation (18) depicts the hazard function in terms of the probability that the
time T of the particular event will occur between t and Δt, assuming that T did not occur until t
(Fox and Weisberg 2011).

ℎ(𝑡) = lim𝛥𝑡→0

𝑃𝑟[(𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡) ∣ 𝑇 ≥ 𝑡]

𝛥𝑡
 (18)

A way to specify this hazard function further is the proportional hazard model. As the name
suggests, this model assumes a proportional hazard, which means that a factor change in one of
the independent variables leads to a proportional change in the hazard function. Under this
assumption, the hazard function can be specified as a linear-like model consisting of various
coefficients and independent variables. The first part of the model, the baseline hazard function
h0(t), considers time-variant effects, including time-variant predictors. Conversely, the second
part of the model comprises of the linear-like combination of time-invariant predictors. The
basic notation of the proportional hazard model is specified in Equation (19).

 ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(𝛽1𝑥𝑖1+. . . +𝛽𝑛𝑥𝑖𝑛) (19)

A common technique of estimating a proportional hazard model is the Cox proportional hazard
regression. This regression technique does not make any assumptions about the form of the
baseline hazard function, but rather only focuses on the proportional hazard function. Despite
this focus, the baseline hazard function can be estimated based on the derived covariates for the
second part (Fox and Weisberg 2011). To check the proportional hazard criterion visually the
log-log graph of the dependent variable and the hazard function has to be inspected. If the curves
in this graph are parallel and do not cross each other, a proportional hazard can be assumed
(Kleinbaum and Klein 2012). Despite the absence of further assumptions, it is beneficial to
check for multicollinearity so that there is no cross-correlation among the independent variables
in the observed model (Smith and Smith 2005).

To estimate the second, linear-like part of the hazard function, Cox (1972) developed a
technique called partial likelihood. Since this estimation process is not based on the goal of
minimizing variance of the observed data but rather on an iterative process to find the most
likely coefficients, the R2 coefficient cannot be used as a measure to assess the fit of the derived
proportional hazard model. Instead, a basic test to assess the quality of a derived hazard model
is the χ2 test which compares the information explained by a concrete proportional hazard model
with another proportional hazard model or the null hypothesis in which all derived coefficients
are equal zero (Kleinbaum and Klein 2012).

Proportional hazard modeling in combination with Cox regression was used in Paper III and
Paper VII to assess the effects of fit characteristics and mentoring on FLOSS developers’
project permanence. Survival analysis was chosen for these research papers because the time
already passed in the project is expected to affect the particular time when developers stop

Introductory Paper

Developer Management in FLOSS Projects 61

contributing to the project. Moreover, the variable of interest in this evaluation is developers’
project tenure, which is a binary variable. Finally, the inspection of the log-log graphs supports
the assumption of proportional hazards in the data.

3.5.3 Structural Equation Model
The third modeling technique used in the cumulative dissertation is structural equation
modeling (SEM). According to Fornell (1987), SEM can be distinguished from methods of the
first generation of multivariate statistic, such as multiple regressions, in that it: (i) considers
multiple exogenous and endogenous variables, (ii) supports latent variables, (iii) considers
measurement errors, and (iv) allows for confirmatory evaluations.

The use of latent variables is a key aspect of SEM. Latent variables describe constructs which
are of theoretical interest but which are not directly observable and therefore need to be assessed
indirectly using observable indicators (Bollen 1989). There are two forms of indicators:
formative (or cause) indicators and reflective (or effect) indicators (Bagozzi 2011). Formative
indicators cause or form the latent variable. In this case a latent variable can only be examined
appropriately by considering all relevant formative indicators. The opposite is the case for
reflective indicators, where the latent variable affects the indicators. Because of this inverse
cause-effect relationship, the observed indicators can be a subset of all affected indicators.
Paper V and Paper VI rely on reflective indicators to measure individuals’ latent motivation
type. An example for this is the survey item ‘Participating in this project is fun’, which is one
of various reflections of individuals’ intrinsic motivation. Conversely, Paper VII follows the
lead of Singh et al. (2011b) and considers FLOSS developers’ contribution and collaboration
behavior formative indicators for their latent learning state.

Another key feature of SEM is the ability to construct a measurement model and a structural
model simultaneously (Gefen et al. 2011). This twofold construction allows errors attributable
to the measurement of the various constructs to be differentiated from errors attributable to the
hypothesized causal structure of the constructs. Equation (20) specifies the measurement model
of a SEM in the case of reflective indicators. The reflective indicators (X(m)) of a latent variable
m are modeled as the product of the latent variable (ξ(m)), their coefficients, which are also
referred to as loadings (λ(m)), and a construct specific measurement error (ϴ(m)).

 𝑋(𝑚) = 𝜉(𝑚)𝜆(𝑚) + Θ(𝑚) (20)

There are various validity checks for the measurement model of a SEM. The first check assesses
indicator reliability. Therefore, each indicator should load on its associated construct at a value
of least 0.7 (Carmines and Zeller 1979). Moreover, the assigned indicators should explain at
least half of a latent construct’s variance (Chin 1998). The next validity check assesses the
reliability to which a latent construct is explained through its indicators. To ensure construct
reliability, each latent variable’s composite reliability should be higher than 0.7 (Nunnally
1978). The third measurement check ensures discriminant validity, which refers to the
distinctiveness of the various latent constructs. For discriminant validity, the average variance
extracted of each construct should be higher than the quadratic correlation of that construct with

Developer Management in FLOSS Projects

 62 Andreas Schilling

any other construct (Fornell and Larcker 1981). Another check for discriminant validity is to
ensure that all assigned indicators load strongest with their assigned construct and not with any
other construct.

The structural model is defined as the product vector of all latent variables of its successors (Ξ)
and the coefficient matrix Г. Moreover, the structural model considers the construct specific
measurement error (ε). The validity of the structural model is tested twofold. First, the
significance of the hypothesized relationships can be evaluated using the bootstrapping
technique. The second form of evaluation of the structural model is the calculation of the
coefficient of determination (R2). As in the case of linear regression the R2 coefficient assess
the degree to which the variance in the endogenous construct(s) are explained through the
modeled constructs and hypothesized relationships (Chin 1998).

 𝜉 = 𝛯 ⋅ 𝛤 + 𝜀 (21)

There are two common approaches to estimate a SEM which differ in their fundamental
assumptions, underlying philosophy, distribution assumptions and estimation objectives. The
first estimation approach is Covariance-Based Structural Equation Modeling (CBSEM). The
strength of CBSEM are confirmatory model evaluations which rely on a strong
conceptualization of the measurement items and modeled constructs. Therefore, CBSEM
requires all measurement errors to be uncorrelated. Moreover, CBSEM requires large datasets
comprising at least 200 data samples to evaluate of SEMs (Henseler et al. 2009). The second
commonly used estimation technique is partial least squares (PLS). This estimation approach
is variance-based and thus well suited for explanatory research. PLS does not require
measurement errors to be uncorrelated and provides reliable SEM estimates even based on a
relatively small amount of data samples (Chin and Newsted 1999, Henseler et al. 2009).

In line with the recommendations of Gefen et al. (2011), PLS was chosen as the estimation
technique for the SEMs in Paper V and Paper VI due to the exploratory research approach in
these papers. In particular, the study presented in Paper V examines the previously unknown
effect of working with reputable developers on FLOSS developers’ motivation. Similarly,
Paper VI studies the unknown influence of the presence of reputable developers on team
members’ type of trust among each other. In addition to having an exploratory research focus,
the two papers use PLS because the measures used were in part newly developed in the course
of the dissertation and thus lack mature theoretic and empirical validation (Gefen et al. 2011).

4 Main Results

The following subsections summarizes the main results to the research questions outlined above
by providing an overview of the main results of the seven research articles in the cumulative
dissertation. The first subsection serves as the theoretic basis for the following subsections by
summarizing the status quo on FLOSS developers’ attraction, integration, and retention. The
ensuing subsections describe the key findings of the six empirical studies on the three
management areas for developer management in FLOSS projects.

Introductory Paper

Developer Management in FLOSS Projects 63

4.1 Literature Review

4.1.1 Paper I4
Paper I reviews the state of research on attracting, integrating, and retaining FLOSS
developers. Seven top of the class journals were screened for FLOSS-related research articles
and 43 journal articles were identified which examine management aspects in FLOSS projects.
These journal articles were categorized into a two dimensional concept matrix (Webster and
Watson 2002). The first dimension of this concept matrix distinguishes the particular
management aspect of the articles examined (i.e. attraction, integration, and retention) while
the second dimension follows the recommendation of Webster and Watson (2002) and classifies
the particular evaluation focus of the articles (i.e. individual-, team-, and project-centric).

Several general observations can be made based on the literature classification. First and
foremost, the classification reveals that there is relatively little dedicated research on attracting
and retaining FLOSS developers. This can be explained partly by the use of ambiguous
measures like ‘team size’ which combine aspects of developer attraction with developer
retention. The ambiguity of such measures makes it impossible to derive clear implications
about either of the two management areas. Another general observation is that only few research
articles combine aspects from more than one research perspective. Single-perspective research,
however, is insufficient because research on each of the three management areas stresses the
interrelation of individual, relational, and project characteristics.

Paper I reveals that most evaluations of attracting FLOSS developers took either an individual-
or a project-centric research perspective. Studies with a focus on the individual highlight the
relevance of extrinsic motives for FLOSS developers’ initial commitment (Shah 2006, Fang
and Neufeld 2009). In contrast, relevant project-based characteristics that attract new
developers include a modular codebase and particular governance practices (Sen et al. 2008).
Although research by Oh and Jeon (2007) and Singh et al. (2011b) indicate that team-level
aspects also play a salient role in attracting developers, this aspect has received far less attention.

The performed literature classification also provides new insights into integrating developers
effectively into FLOSS projects, which has been the subject of by far the most research among
all three developer management tasks. Relevant means to enhance developers’ project
commitment include extrinsic as well as intrinsic stimuli. While, Ke and Zhang (2010) provide
evidence that developers contribute more the higher they perceive their behavior to be self-
determined, Roberts et al. (2006) show that there is no crowding out of intrinsic motives through
extrinsic motives among FLOSS developers. Some scholars, such as Chou and He (2011),
combine individual- and team-level factors and highlight that the interrelation among
individual- and team-level factors. They find that project characteristics which foster

4 Schilling A, (2014) What Do We Know About FLOSS Developers’ Attraction, Retention and

Commitment? A Literature Review Proceedings of the 47th Hawaii International Conference on
System Sciences (HICSS), Big Island (HI), pp. 4003 - 4012.

Developer Management in FLOSS Projects

 64 Andreas Schilling

developers’ efforts include less restrictive code licensing, a mature codebase, and the popularity
of the project.

Paper I also highlights the state of research on FLOSS developer retention. Studies with an
individual focus indicate that it is especially FLOSS developers’ identification with the project
and their learning progress which keep them engaged in the project. Singh et al. (2011b) point
out that these individual factors interrelate with group factors because FLOSS developers also
learn through interacting with other team members. Project characteristics which are relevant
to how long members are retained in a FLOSS project include a modular codebase and a less
restrictive code licensing. Oh and Jeon (2007) suggest that team-level aspects play a salient role
in retaining FLOSS developers. Their research identifies a strong herding effect among FLOSS
developers, which makes their project behavior contingent on the behavior of others. However,
only few papers thoroughly examined how team-level aspects affect how long FLOSS
developers are retained on a project.

To summarize, Paper I provides an overview of the status quo on attracting, integrating, and
retaining FLOSS developers. This was achieved by screening top-of-the-class journals for
related research articles on FLOSS developer management and classifying them based on their
management aspect and evaluation focus. Based on this categorization, Paper I highlights the
need for dedicated research on attracting and retaining FLOSS developers and the mutual
consideration of individual-, team-, and project-level aspects.

4.2 Attraction

The second chapter of this dissertation focuses on attracting developers to FLOSS projects.
Building on previous evaluations, a new integrated evaluation approach is proposed and
evaluated which helps to fine tune FLOSS projects’ attraction efforts by identifying candidates
who are most likely to remain active in the project.

4.2.1 Paper II5
Paper II proposes a new theoretical foundation for FLOSS projects to identify developers who
are likely to remain active in the project. Paper II builds on previous FLOSS research, which
examined the effects of individual, relational, and project characteristics on FLOSS developers’
project permanence to derive concepts and criteria to assess potential candidates.

Although there are differences between the organizational and the FLOSS domain in terms of
regulation and remuneration, intrinsic motivation and socialization are considered key drivers
for sustained working efforts in both domains (Werbel and Johnson 2001, Fang and Neufeld
2009, Crowston et al. 2007b, von Krogh et al. 2012). Based on this commonality, Paper II
proposes an adjusted conceptualization of the P-J and P-T fit concept for the FLOSS domain to
identify developers who are likely to remain active. In line with the definition for P-J fit by

5 Schilling A, Laumer S, Weitzel T. (2011) Is the source strong with you? A Fit Perspective to Predict

Sustained Participation of FLOSS developers. Proceedings of the 32nd International Conference
on Information Systems (ICIS), Shanghai, China.

Introductory Paper

Developer Management in FLOSS Projects 65

Edwards (1991), it is proposed that FLOSS developers’ level of P-J fit comprises of a needs-
supply match as well as a demands-ability match. In contrast to the organizational domain,
FLOSS developers are generally not attracted to FLOSS projects due to pecuniary rewards but
because of concrete project features. Thus their ‘needs’ are much more focused towards specific
contribution and implementation conditions. Consequently, the working environment and
project content provide the “supply” in a FLOSS project. In assessing the demands-ability
match, it is important to consider that most FLOSS projects have no dedicated demand
descriptions for novices. Nevertheless, it is beneficial for newcomers to be equipped with
relevant development practices and be familiar with the codebase in order to find motivation to
contribute to the project in a sustained fashion (von Krogh et al. 2003, Fang and Neufeld 2009).
In line with the organizational definition by Werbel and Johnson (2001), FLOSS developers’
P-T fit is defined as a combination of supplementary fit and complementary fit. For the
supplementary fit, Paper II proposes looking at the similarity of values, interests, and skills
between the newcomer and the existing team members. In contrast, the complementary fit is
considered the degree to which a developer has personal or technical skills which the project
lacks.

In summary, Paper II proposes customized versions of P-J and P-T fit for the FLOSS context
which can serve as a theoretical foundation to fine-tune the attraction efforts of FLOSS projects
and identify talented developers. Based on existing FLOSS research, the two concepts provide
a strong foundation to evaluate the individual, relational, and project-related characteristics
which affect the retention behavior of FLOSS developers. Figure 15 illustrates the use of P-J
and P-T fit in FLOSS projects to find developers who are likely to remain active by assessing
the fit of the candidate with the project and the developer team.

Figure 15. The use of P-T and P-J fit proposed in Paper II

Developer Management in FLOSS Projects

 66 Andreas Schilling

4.2.2 Paper III6
Paper III builds on the two proposed customized concepts of P-J and P-T fit from Paper II
and extends them in three regards. First, the paper distinguishes between objective and
perceptive assessment of P-J and P-T fit. Second, it derives concrete measures to assess FLOSS
developers’ perceptual and objective P-J and P-T fit. Finally, it empirically evaluates these fit
concepts and the measures derived based on the project permanence of 80 GSoC students at
KDE (see Study I) using Cox-Regression analysis.

Paper III theorizes that there are relevant differences between the objective and perceptual
assessment of P-J and P-T fit. In particular, it proposes that objective evaluation criteria provide
a less biased picture of a candidate’s fit with the team and the project because the assessment
of actual fit is far less contingent on the assessor’s experience and expertise compared to the
assessment of perceived fit. In addition, Paper III draws on organizational literature and
proposes candidates’ level of relevant working experience and their year of study as useful
measures of their level of P-J fit, in particular their demands-ability match. Supplementary fit
is measured according to the time candidates had already been active on the FLOSS project’s
mailing list before joining the project. In contrast, complementary fit is measured according to
candidates’ contributions to bug-related discussions in the project.

The empirical evaluation in Paper III suggests that the subjective and the objective assessment
of P-J and P-T fit help predicting FLOSS developers’ project permanence. In comparison, the
objective assessment of P-J and P-T fit is a much more accurate predictor for KDE developers’
project permanence than the subjective evaluation. As illustrated in Figure 16b, KDE
developers’ subjective assessment of fit is less suited to predict the project permanence for non-
extreme cases. Despite the high explanatory power of the proposed measures, actual P-J and
actual P-T fit differ substantially in their ability to predict KDE developers’ project permanence.
For example, GSoC students’ level of academic education has no effect on their project
permanence. In contrast, students’ level of project experience has a substantial positive effect
on how long GSoC students worked on the FLOSS project (see Figure 16c). In fact, the risk of
quitting is 50.6 percent lower for GSoC students who had already submitted a small patch to
KDE, compared to students with no prior code contributions to KDE. Moreover, as illustrated
in Figure 16d, GSoC students’ supplementary fit explains to a considerable degree how long
they stayed on the project. In fact, the risk of quitting is more than 64 percent lower for students
who have already been active on the project’s mailing list for more than a month prior to GSoC
compared to students with no prior mailing list activity. However, the evaluation provides no
evidence that GSoC students’ complementary fit influences their project permanence.

In summary, Paper III advances the research presented in Paper II by considering the ways in
which P-J and P-T fit is assessed, proposing concrete measures to assess P-J and P-T fit, and
evaluating empirically the use of the two fit concepts based on GSoC students’ project

6 Schilling A, Laumer S, Weitzel T. (2012) Who Will Remain? An Evaluation of Actual Person-Job

and Person-Team Fit to Predict Developer Retention in FLOSS Projects Proceedings of the 45th
Hawaii International Conference 2012 (HICSS), Big Island (HI) pp. 3446 – 3455.

Introductory Paper

Developer Management in FLOSS Projects 67

permanence. The empirical evaluation suggests that objective assessment of P-J and P-T fit
predicts sustained project commitment much more accurately than subjective assessment. In
particular, the objective measurement of FLOSS developers’ project experience and their
supplementary fit proved to be valuable predictors of their sustained project involvement.

a) Team size

 b) Subjective evaluation

c) Project experience

d) Mailing list activity

Figure 16. Results of the cox regression in Paper III

4.3 Integration

The second chapter of the dissertation examines ways to improve collaboration among FLOSS
developers. Paper IV examines the degree to which FLOSS projects are negatively affected by
spatial, temporal, and cultural distances and if these negative consequences can be overcome
through direct offline interactions among FLOSS developers. In addition, Paper V and
Paper VI examine the positive effects of having reputable developers involved in terms of
motivating FLOSS developers and enhancing their productive collaboration.

Developer Management in FLOSS Projects

 68 Andreas Schilling

4.3.1 Paper IV7
Paper IV examines the effects of FLOSS developers’ geographic dispersion on their
productive collaboration. In order to examine this research question, Paper IV proposes a new
approach to consider geographic dispersion not as unitary but as multidimensional construct. It
also suggests and evaluates the use of offline meetings as an effective means to overcome these
problems.

Drawing on central lessons from organizational literature, Paper IV considers geographic
dispersion a multi-dimensional construct consisting of spatial, temporal and cultural distances.
With respect to the context low interaction in FLOSS projects, it is theorized that each of these
distances has a distinct negative effect on teamwork productivity by reducing team members’
level of shared knowledge and social interactions. With regard to these problems and
recommendations from management literature, offline interactions are considered a potential
strategy for FLOSS teams to overcome the productivity deficits caused by members’
geographic dispersion. In order to evaluate the proposed effects, an empirical evaluation with
648 FLOSS teams was performed (Study II).

The results of the performed evaluation in Paper IV, support the notion of geographic
dispersion as a multidimensional construct by showing that spatial, temporal, and cultural
distances have a distinct negative effect on FLOSS developers’ productive interplay. In
particular, FLOSS developers’ spatial and temporal distances mitigate their productive
interplay moderately while cultural distances only complicate FLOSS teams’ productive
interplay slightly. In addition, the evaluation reveals that direct offline interactions are a viable
means to overcome the negative effects of FLOSS developers’ spatial and cultural distances. In
particular, the analysis suggests that direct offline interactions among the involved developers
reduce and even slightly reverse the negative effects of spatial and cultural distances. However,
the evaluation provides no evidence that direct offline interactions contribute to overcoming
the negative effects of temporal distances among FLOSS developers.

In order to understand this interaction more thoroughly and find the situations in which FLOSS
developers’ direct offline interactions are particularly valuable, Paper IV performs a post-hoc
analysis. The results of this analysis show that FLOSS teams with great spatial distances among
team members outperform teams with small spatial distances among team members as soon as
there is a low degree of offline interaction among the involved developers (see Figure 17a). As
illustrated in Figure 17b, cultural distances among FLOSS developers even become synergetic
as soon as there is little direct offline interaction among the involved developers. Finally, the
post-hoc analysis shows that FLOSS teams with mid-low and mid-high levels of project
experience benefit most from direct offline interactions. Teams with low levels of project
experience benefit also from direct offline ties but to a lesser degree. Conversely, direct offline

7 Schilling A, Laumer S, Weitzel T. (Under Review) The Wizards of OSS - Does Developers'

Geographic Dispersion Make OSS Teams More Productive? 2nd Round: Information Systems
Research (ISR)

Introductory Paper

Developer Management in FLOSS Projects 69

relationships have a negative effect on the productive interplay among team members with high
project experience, as illustrated in Figure 17c.

a) Spatial distance b) Cultural distance c) Project experience

Figure 17. Visualization of the effects of geo. dispersion in Paper IV

In summary, Paper IV proposes and empirically evaluates the various negative effects of
geographic dispersion among FLOSS developers, treating it as a multi-dimensional construct
consisting of spatial, temporal, and cultural distances. The results of the empirical evaluation
indicate negative effects of spatial and temporal distances, but only minor negative effects of
cultural distances. Moreover, Paper IV theorizes and proves that the negative effects of spatial
and cultural distances can be mitigated and even slightly reversed through direct offline
interactions among team members. However, offline meetings have no such positive effect on
team members’ temporal distances.

4.3.2 Paper V8
Paper V examines the degree to which collaboration initiatives with reputable developers
enhance FLOSS developers’ motivation to contribute to a project. The examination builds on
previous research by Hu et al. (2012) which highlights the stimulating effects of reputable
developers on other developers’ behavior.

Paper V builds on Self-Determination-Theory (Deci and Ryan 2000), theorizing that the
involvement of reputable developers increases FLOSS developers’ externally regulated motives
by making them more visible to potential employers and to other developers within the FLOSS
community. At the same time, it is proposed that reputable developers stimulate self-determined
motivation forms among their collaboration partners by providing them with competent advice
leading to higher autonomy in their work. To test these theorized effects, an empirical
evaluation of 65 GSoC students was performed (see Study III).

The evaluation results in Paper V provide evidence that collaboration initiatives with reputable
developers have a nuanced effect on FLOSS developers’ contribution motivation. Specifically,
the evaluation results suggest that working with reputable developers explains to considerable
degrees FLOSS developers’ self-determined motivation forms (identified, integrated, and

8 Schilling A, Laumer S, Weitzel T. (2013) In the Spotlight - Evaluating How Celebrities Affect

FLOSS Developers' Participation Motivation. Proceedings of the 21th European Conference on
Information System (ECIS), Utrecht, Netherlands.

Developer Management in FLOSS Projects

 70 Andreas Schilling

intrinsic motivation). However, such collaboration has little power to explain FLOSS
developers’ externally-regulated motivation forms. Moreover, the performed evaluation
suggests that collaboration initiatives with reputable developers stimulate to considerable
degrees FLOSS developers’ self-determined contribution motives (identified, integrated, and
intrinsic motivation). The only externally regulated motivation form which is also enhanced, is
developers’ introjected motivation. Even though this effect is considerable, it is the weakest of
all significant effects. Figure 18 illustrates the results of the evaluation the motivational effects
of working with reputable FLOSS developers.

Figure 18. PLS evaluation results in Paper V

In summary, Paper V theorizes and evaluates the positive effects which collaboration
initiatives with reputable developers have on FLOSS developers’ motivation to contribute to a
project. The evaluation results suggest that collaboration initiatives with reputable developers
explain to considerable degrees the existence of self-determined motivation forms and have a
strong positive effect on their degree. Conversely, such initiatives explain FLOSS developers’
externally regulated motivation forms only marginally although they provide a considerable
stimulus to FLOSS developers’ introjected motivation.

4.3.3 Paper VI9
Paper VI advances the research of Paper V. Specifically, Paper VI theorizes that the presence
of reputable developers enhances FLOSS developers’ teamwork productivity by providing
cognitive and affective assets to the team. In order to examine these hypothesized effects,
Paper VI combines a structural- and an individual-centric evaluation approach.

In line with the advice from von Krogh et al. (2012) to shift away from considering FLOSS
developers’ motivation as the pivotal point for their project commitment, Paper VI builds on
the social practice view by MacIntyre (1981) and theorizes that having reputable developers on

9 Schilling A, Laumer S, Weitzel T. In Goods We Trust - Are OSS Teams With Reputable Developers

More Productive?

Introductory Paper

Developer Management in FLOSS Projects 71

the team enhances FLOSS teams’ productivity twofold. On the one hand, Paper VI theorizes
that reputable developers provide cognitive assets in terms of training and assistance to the
FLOSS team due to their rich contribution experience. On the other hand, it is expected that
their deep internalization of the FLOSS culture enables reputable developers to foster feelings
of belongingness among team members by verbalizing shared goals. To evaluate the expected
effects, an empirical evaluation of 749 FLOSS teams was performed (see Study IV).

The results of the empirical evaluation provide evidence that the experience of the FLOSS team
as well as the project size and project age have a strong stimulating effect on FLOSS teams’
productivity. In line with the theorized effects, the results of the empirical evaluation suggests
that reputable developers have a positive effect on the FLOSS teams’ productivity, however,
this effect is only marginal.

To examine the reasons for this weak productivity gain, a dedicated post-hoc analysis was
performed in Paper VI. This post-hoc analysis builds on the trust framework by McAllister
(1995) and proposes that reputable FLOSS developers foster the development of cognitive as
well as affective trust among team members which in turn stimulate their working efforts. To
evaluate the hypothesized relationships, a dedicated evaluation of 80 FLOSS developers was
performed (see Study V).

The results of this post-hoc analysis reveal that the involvement of reputable developers
increases only team members’ level of cognitive trust in the FLOSS team directly. However, it
is members’ level of affective trust towards the team members which directly fosters their
working efforts. In addition to these effects, project experience has a strong positive effect on
FLOSS developers’ individual productivity. In contrast, members’ team experience negatively
affects their individual productivity. Furthermore, team size and project age have a moderate
negative effect on FLOSS developers’ individual productivity. Conversely, project size has no
significant effect on FLOSS developers’ individual productivity.

In summary, Paper VI theorizes and empirically evaluates the positive effects which reputable
developers have on the collective as well as on the individual productivity of FLOSS
developers. In particular, Paper VI provides evidence that reputable developers enhance
teamwork productivity only marginally. Based on an individual centric post-hoc analysis,
Paper VI provides a possible explanation for this effect: reputable developers only enhance
developers’ level of cognitive trust towards their team. However, it is FLOSS developers’ level
of affective trust in the team which directly fosters their working efforts. Figure 19 summarizes
the results and the interrelation of the performed structural- and individual-centric evaluation.

Developer Management in FLOSS Projects

 72 Andreas Schilling

Figure 19. Structural- and individual evaluation results in Paper VI

4.4 Retention

The final chapter of this dissertation examines potential means to increase the project
permanence of newcomers. Based on FLOSS literature underscoring the importance of
knowledge building in retaining newcomers in projects (Fang and Neufeld 2009, Singh et al.
2011b, David and Shapiro 2008), the use of mentoring is evaluated.

4.4.1 Paper VII10
Paper VII examines strategies enhancing FLOSS developers’ project permanence by assisting
their knowledge building and socialization in the particular project. Therefore, Paper VII
proposes and evaluates the use of mentoring as a viable education and retention strategy for
FLOSS projects.

Mentoring describes a dyadic teaching method in which an experienced professional, the
mentor, provides technical assistance and psychological support to an inexperienced individual,
the protégé, (Kram 1985). This intense one-on-one relationship helps transfer tacit knowledge
and increases protégés’ work satisfaction and their intention to continue (Hale 2000, Brashear
et al. 2006). With respect to these positive experiences within the organizational domain,
Paper VII theorizes that mentoring also provides a viable education and retention strategy for
FLOSS projects. In particular, it is proposed that mentoring fosters newcomers’ project

10 Schilling A, Laumer S (2012) Learning to Remain - Evaluating the Use of Mentoring for the

Retention of FLOSS Developers. Proceedings of the 20th European Conference on Information
System (ECIS), Barcelona, Spain.

Introductory Paper

Developer Management in FLOSS Projects 73

permanence by enhancing knowledge building and creating interpersonal bonds with team
members. An evaluation of 91 mentored and non-mentored newcomers to the KDE was
performed to evaluate the supposed relationships (see Study VI).

The evaluation results in Paper VII support the theorized relationships. A group comparison
of the levels of knowledge building among mentored and non-mentored project novices reveals
that mentored novices achieved significantly higher learning states than non-mentored
newcomers after a particular period of time. Moreover, a Cox proportional hazard regression
shows not only a significant mediation effect between newcomers’ acquired level of project
knowledge and their project permanence, but also a strong direct association between mentoring
and newcomers’ project permanence. The evaluation also reveals that project age has a weak
positive effect on newcomers’ project permanence, the number of developers has a weak
negative effect on it, and project size has no significant effect on newcomers’ project
permanence. Figure 20 illustrates the hypothesized relationships and results of the performed
evaluation.

Figure 20. Evaluation results in Paper VII

In summary, Paper VII theorizes and empirically supports the use of mentoring as an education
and as a retention strategy for FLOSS projects. The empirical evaluation suggests that
newcomers to FLOSS projects who have been mentored acquire more knowledge, which in
turn increased their retention behavior. In addition, the evaluation results suggest that mentoring
has a direct positive effect on FLOSS developers’ project permanence.

5 Limitations

The theorizing and evaluations in the seven research papers constituting the cumulative
dissertation are subject to limitations, which are outlined in this section.

One limitation concerns the literature review in Paper I, which focused only on articles from
selected top-of-the-class research journals. Articles published in other journals or in the context
of conferences or books were not considered. Although the screened journals were selected
from the AIS Senior Basket based on the JAIS Global Journal Ranking (Romans and Curtis
2004), it cannot be ruled out that relevant articles from other publication outlets were not
considered.

Developer Management in FLOSS Projects

 74 Andreas Schilling

Furthermore, the quantitative evaluations in Paper III - VII were all performed within KDE.
Although KDE comprises of a wide variety of FLOSS projects, this concentration limits the
ability to generalize the evaluation results. Particularly, KDE projects could differ to other
FLOSS projects with regard to the team-focused collaboration of its members. Research by
Howison and Crowston (2014), for example, suggests that FLOSS developers commonly work
on their own, whereas previous studies in the context of KDE show a high level of collaboration
among developers (Kuk 2006, Adams et al. 2009). Moreover, due to the code review process
in KDE, especially newcomers need to coordinate with the maintainer of the particular module
or project to get their code integrated into the project codebase. With respect to this
collaboration, it could be argued that KDE projects show more similarity with virtual teams in
organizations than with other FLOSS projects.

In addition, the theorizing and evaluation of FLOSS developers’ project integration in Paper IV
and Paper VI only considered productive teamwork, even though productive teamwork is only
one of several relevant behavioral outcomes which impact effective project integration. What
makes FLOSS developers’ commitment special, is that it is inherently interrelated with other
favorable behavioral outcomes such as learning and innovating (von Krogh et al. 2003). For
example, the innovation process in FLOSS projects is not a fire-and-forget activity, but rather
requires iterative refinement. This iterative refinement process is even manifested in one of the
core principles of FLOSS development which is to ‘release early and often’ (Raymond 1999,
p. 7). Thus, FLOSS developers’ productive interplay should be considered a necessary but not
sufficient element for FLOSS developers’ project integration.

Furthermore, the proposed multi-dimensional conceptualization of FLOSS developers’
geographic dispersion in Paper IV is only one of several ways to define geographic dispersion.
Although defining geographic dispersion in terms of spatial, temporal, and cultural distances is
based on organizational literature, it is neither a complete nor an absolute conceptualization.
For example, the chosen conceptualization does not consider any form of configurational
aspects which also influences the effects of geographic dispersion in FLOSS projects (O'Leary
and Cummings 2007).

A particular conceptual constraint concerning the combination of structural- and individual-
centric research approach in Paper VI are the non-overlapping study samples. Although, KDE
projects are alike in terms of their coding language and KDE-wide development guidelines
(KDE Techbase 2014), it cannot be ruled out that individuals whose behavior was examined
from a structural perspective would provide different survey replies than individuals who
participated in the individual-centric survey, and vice versa. Moreover, the non-overlapping
study samples for the structural- and individual-centric evaluation made it necessary to evaluate
FLOSS developers’ community reputation in different ways.

A potential concern regarding the evaluation results in Paper III, Paper V, and Paper VII are
the monetary rewards provided to GSoC students. The desire for Google funding could lead
students to elaborate their project proposals not based on their personal interests but in order to
enhance their chances of getting accepted. In consequence, the needs-supply match between

Introductory Paper

Developer Management in FLOSS Projects 75

GSoC candidates and their FLOSS projects in Paper II and Paper III might be lower than
assumed. Similarly, it is possible that GSoC students remain active in FLOSS projects primarily
to enhance their chances of getting accepted in the next GSoC event and not due to their
experienced knowledge gains, which would bias the evaluation results in Paper VII. Likewise,
it is possible that the customization of the project proposals and the desire for getting future
funding could have affected GSoC students’ survey behavior in Paper V.

Finally, the employed archival measures in Paper IV and Paper VI to assess various
characteristics of FLOSS developers’ geographic dispersion and their reputation in the
community were newly developed in the course of this dissertation. Although the measures
were developed based on previous evaluations and published in the context of related
conferences prior to their use in the papers, they may be subject to conceptual and measurement
bias. Furthermore, it has to be acknowledged that the evaluation in Paper IV and Paper VI
focuses only on linear relationships between the dependent and independent variables and
ignores curvilinear and exponential effects.

6 Contributions

The seven research articles constituting the cumulative dissertation make important theoretical
and managerial contributions to FLOSS as well as the organizational domain. Figure 21
summarizes the key contributions of the research papers regarding developer management in
FLOSS projects. The following two subsections describe these key contributions in more detail
and discuss their implications for research and practice in the FLOSS and the organizational
domain.

Figure 21: Key contributions of the dissertation

Developer Management in FLOSS Projects

 76 Andreas Schilling

6.1 Contributions to Theory

The literature review in Paper I identifies potential avenues for future FLOSS research. One
key implication is the need to combine various evaluation levels to understand individual
project behavior. FLOSS developers are exposed to various influences on the project, team and
individual level, which should be considered simultaneously in order to fully understand their
behavior. However, very few of the examined articles actually consider more than one concrete
research perspective. Nevertheless, motivational and behavioral theories indicate that multiple
research aspects should be considered simultaneously to derive a comprehensive understanding
of FLOSS developers’ project behavior.

Another general implication for future FLOSS research is to rely on dedicated measures in order
to identify the distinct effects of the particular aspects. Many of the articles examined in the
literature review rely on ambiguous measures such as ‘team size’, which does not account for
high fluctuation among developers. This makes it impossible to tease out distinct lessons for
attracting and retaining FLOSS developers.

In addition to these general recommendation for future FLOSS research, the literature review
identifies specific opportunities for future research in each of the three key areas for developer
management. The following subsections outline the identified research opportunities and how
the remaining research papers of the dissertation addressed these research gaps.

6.1.1 Attraction
The literature review in Paper I identifies the need for future research on attracting FLOSS
developers which combines individual, relational, and project-related factors. In order to
address this need Paper II and Paper III bring these three aspects together. Moreover, the
research approach in Paper II and Paper III distinguishes itself from existing studies on
attracting FLOSS developers by not focusing solely on the attraction process, but rather by
identifying those individuals worth attracting. As is the case in target advertising, Paper II and
Paper III provide a first step toward improve efforts to attract developers to FLOSS projects
by first identifying individuals worth attracting.

In order to understand how to identify developers worth attracting, Paper II proposes
transferring the two organizational concepts P-J and P-T fit onto the FLOSS domain. In contrast
to previous research on attracting developers, the proposed concepts do not consider right and
wrong characteristics but instead are based on the idea that it is the congruence between
individuals’ needs and abilities which need to fit to the particular ‘supply and demand’ of the
project.

Paper III extends this theoretic foundation by also considering the way in which the fit is
assessed, deriving concrete measures for evaluating the two types of fit, and through practically
evaluating the fit concepts within the FLOSS domain. This evaluation suggests that the
objective assessment of FLOSS developers’ P-J and P-T fit much more accurately predicts
project permanence than their subjective fit assessment. This finding contributes twofold to
FLOSS research. First, it highlights the relevance of objective evaluation criteria over

Introductory Paper

Developer Management in FLOSS Projects 77

individuals’ perceptions for assessing newcomers’ project permanence in FLOSS projects.
Specifically, future research should elaborate further on the quantifying aspects of FLOSS
developers’ objective fit and evaluate if it takes the form of a discrete or a continuous variable.
Second, the evaluation results underscore the importance of considering both individual and
relational compatibility to understand sustained project behavior. Thus, future research should
not consider only one of these aspects as it could be insufficient criteria for attracting developers
to FLOSS projects.

Moreover, Paper III contributes to FLOSS literature by evaluating concrete measures for the
various aspects of P-J and P-T fit. The relevance of the requirements-ability match between
developers and FLOSS projects is in line with the results of previous research which considers
developers’ learning state a key factor for their project behavior (Singh et al. 2011b). Moreover,
the evaluation results suggest that the sheer quantity of FLOSS developers’ academic education
is an unreliable measure of their abilities. This finding is in line with organizational literature
which recommends considering the quality and not the quantity of candidates’ education. In
addition, the evaluation results complement previous research by Qureshi and Fang (2010) by
underscoring the importance of supplementary fit between newcomers and the existing team.
Moreover, the insignificant effect of individuals’ complementary fit could indicate that
complementary characteristics play a less relevant role for retaining FLOSS developers.
Depending on whether future research confirms this insignificant relationship, this could
indicate that members’ differences from one another are not relevant to their ongoing project
commitment.

The evaluation of P-J and P-T fit within the FLOSS domain in Paper II and Paper III provide
also implications for organizational literature. Specifically, the derivation of objective measures
for assessing P-J and P-T fit contribute to organizational literature. One particular contribution
to organizational research concerns the derived objective assessment approach. With regard to
researchers’ advice to consider knowledge workers as volunteers, the evaluation results
highlight the use of objective evaluation criteria for predicting sustained project commitment
(Drucker 2002). Thus, the evaluation of the two fit concepts in Paper II and Paper III can
provide a first step for creating new measures for assessing P-J and P-T fit within organizations,
which may be applied in team staffing and recruitment decisions. In particular, the results in
Paper III highlight the relevance of examining if the derived objective evaluation criteria also
outperform subjective criteria in the organizational domain.

6.1.2 Integration
The results of the cumulative dissertation advance FLOSS literature on developers’ project
integration in two distinct areas. First, Paper III addresses the research gap identified in
Paper I regarding the role of relational factors by examining how FLOSS developers’ offline
context affects their online collaboration. Specifically, Paper III examines if FLOSS
developers’ geographic dispersion negatively affects their collaboration and if direct offline
interactions help them to overcome these problems. Moreover, Paper IV and Paper V
contribute to FLOSS literature by examining the individual and collective effects of including
reputable developers in FLOSS projects from various angles. By doing so, the two papers

Developer Management in FLOSS Projects

 78 Andreas Schilling

address an opportunity outlined in Paper I which is to employ a cross-perspective analysis to
understand how certain phenomena interrelate with individual and collective behavior. The
following paragraphs detail the concrete contributions of these articles to FLOSS and
organizational literature.

The conceptualization and evaluation of geographic dispersion as a multi-dimensional construct
in Paper IV contributes to FLOSS research in three ways. First, the multi-dimensional
conceptualization of geographic dispersion can be used to build a comprehensive understanding
of the influence of geographic dispersion on FLOSS development by bringing together the
isolated and fragmented results of previous studies (Hu et al. 2012, Daniel et al. 2013, Colazo
and Fang 2010). The results of the empirical evaluation support this multidimensional
conceptualization by showing that spatial, temporal, and cultural distances explain FLOSS
developers’ productive interplay to considerable degrees. Second, consistent with conceptual
research by Ågerfalk et al. (2005), the evaluation results reveal that spatial and cultural
distances per se are neither a gain for nor a burden on effective teamwork in FLOSS projects.
Rather it depends on the existence of direct interactions between FLOSS developers. If FLOSS
developers have no direct offline interactions, the negative aspects of their spatial and cultural
distances prevail. In this regard, the evaluation results back previous studies which suggest that
spatial (Hu et al. 2012) and cultural distance (Daniel et al. 2013) hinder productive teamwork
in FLOSS projects. However, as soon as there is little offline interaction among FLOSS
developers, their spatial and cultural distances facilitate their productive teamwork. Irrespective
of FLOSS developers’ offline interactions, however, temporal distances between them
complicate their productive interplay. This finding is contrary to previous research by Colazo
and Fang (2010) which suggests that temporal distances increase FLOSS developers’
productivity. A possible explanation for this discrepancy could lie in the different ways
temporal distances among FLOSS developers is measured. While Colazo and Fang (2010)
consider only differences in developers’ starting time at the FLOSS project, the proposed
measure in Paper IV assesses the actual overlap in FLOSS developers’ working hours. Thus,
the proposed measure is especially appropriate for the skewed work distributions which are
commonly found in FLOSS projects (Toral et al. 2010). Alternatively, it could be the case that
the FLOSS projects studied by Colazo and Fang (2010) are indeed more effective in coping
with the negative effects of temporal distances than the KDE projects in Study II. This triggers
the question for further research why the projects studied by Colazo and Fang (2010) cope
better with temporal distances than KDE projects. Thirdly, Paper IV contributes to FLOSS
literature by considering both online and offline interactions among FLOSS developers.
Previous FLOSS research has focused primarily on FLOSS developers’ online interactions.
Although Crowston et al. (2007a) provide evidence that offline meetings are an important
complement to collaborations in FLOSS projects, Paper I suggests that empirical studies in the
FLOSS domain have neglected this aspect to date. The results presented in Paper IV highlight
the interrelations between the FLOSS developers’ offline and online contexts and call for
further research to understand the interrelations of these two domains.

In addition to FLOSS literature, Paper IV provides several implications to organizational
research. The proposed multi-dimensional conceptualization addresses a pivotal shortcoming

Introductory Paper

Developer Management in FLOSS Projects 79

in organizational literature which is the uni-dimensional and dichotomous differentiation of
team members’ geographic dispersion (Cummings et al. 2009, Hinds and Mortensen 2005,
O'Leary and Cummings 2007). Therefore, the multi-dimensional conceptualization helps
bringing together the isolated and fragmented findings of previous evaluations in the
organizational domain and building an integrated understanding for the nuanced effects of
geographic dispersion. Moreover, Paper IV contributes to organizational literature by
highlighting the ambivalent role of spatial and cultural distances, which in turn provides an
explanation for the mixed findings in organizational literature on the effects of these distance
forms (O'Leary and Cummings 2007, Hinds and Mortensen 2005, Cummings et al. 2009). In
addition, the evaluation results of Paper IV contribute to teamwork research by examining the
concrete situations in which offline meetings lead to the highest value added. Thereby, the
evaluation results support the advice of Siebdrat et al. (2009) to organize offline meetings
especially when members are new to the team. Moreover, the evaluation suggests that offline
meetings are not always a gain for teamwork productivity. In case of experienced team
members, an increasing number of offline meetings even decreases their overall team
productivity. Finally, Paper IV complements organizational literature by highlighting the need
to consider both team members’ online and offline interaction contexts to understand fully their
behavior in the online context. Previous studies which combined these two contexts, like the
work of Kirkman et al. (2004), were rather exceptional. In line with the work of Zhang and
Venkatesh (2013), the performed evaluation highlight the interrelation between team members’
offline and online interactions with each other.

In addition to the role of geographic dispersion, the cumulative dissertation contributes to
FLOSS research by examining the positive effects which reputable developers have on team
members’ individual and collective productivity.

Paper VI makes a central contribution to FLOSS literature by performing a multi-level
evaluation approach to examine if and how reputable developers foster productive interplay
among FLOSS developers. Specifically, the multi-level evaluation approach starts with an
empirical evaluation of the positive effects of reputable developers with 745 FLOSS teams.
This evaluation shows that the presence of reputable developers stimulates FLOSS teams’
productivity; however it does so only marginally. In order to understand this effect better, an
individual centric post-hoc analysis was performed. This study revealed that a possible
explanation for the marginal effect is that reputable developers only enhance members’ level of
cognitive trust in the team, but this type of trust has no direct effect on their individual working
efforts. Instead, it is members’ sense of belonging to the developer team which increases their
productivity directly.

Intuitively these results appear to be contradictory to the conclusion of Paper V which is that
collaboration initiatives increase FLOSS developers’ self-determined contribution motives,
which in turn are thought to lead to higher working efforts. This incompatibility, mirrors the
results of an evaluation by Ke and Zhang (2010) which suggest that integrated motivation per
se decreases FLOSS developers’ task performance unless it is accompanied by the satisfaction
of individuals’ needs for autonomy, competence, and belongingness. In light of this finding,

Developer Management in FLOSS Projects

 80 Andreas Schilling

FLOSS developers’ motivation may be only half of the picture, while their relationships to the
other members is the other. Applied to the particular context, this could mean that the
involvement of reputable developers provides the basis for increased individual efforts, but in
order to unleash productive teamwork, members must feel that they belong to the developer
team. Considered together, the evaluation results of Paper V and Paper VI support the general
reservation of von Krogh et al. (2012) to use SDT as the theoretical basis for a comprehensive
understanding of FLOSS developers’ project behavior.

In contrast to the short-term orientation of SDT, the social practice view (MacIntyre 1981)
provides a much broader theoretic foundation for understanding the role of individuals’ past
and current contribution motivation as well as their relationship to other developers. Thereby,
the evaluation results in Paper VI not only support the social practice view but they propose
some refinements to its original application in the FLOSS context (von Krogh et al. 2012).
Specifically, the evaluation results in Paper VI challenge the idea that only one form of internal
good is derived through pursuing a social practice. This is consistent with the work of MacIntyre
(1981) which differentiates between at least two basic types of internal goods. The first type of
internal good (i.e. the performance itself and the created product) can be derived by pursuing a
social practice following the standards of excellence. In contrast, the second type of internal
good requires individuals to self-reflect upon their work. This type of internal good concerns
the‘related kind of life’ (MacIntyre 1981, p. 190). In light to this basic differentiation the
individual focused evaluation results in Paper VI are plausible as they suggest that the
existence of reputable developers only helps in creating one kind of internal good. In contrast,
the second type of internal good, which kindles FLOSS developers’ commitment, can only be
derived through their self-reflection and by feeling emotionally connected to fellow team
members.

An important insight that can be derived from Paper VI for FLOSS as well as organizational
research is that team and project characteristics can have opposite effects on individual and
collective behavior. One particular characteristic for which this applies is members’ level of
team experience. While teams with members who have worked with each other in the past are
more productive, the opposite applies to individual behavior. In fact, the individual centric post-
hoc analysis in Paper VI shows that individuals are less productive the longer they have
worked with each other. An explanation for this effect could be that FLOSS developers favor
their companionship over the project goals the longer they work together. As a result, the
developers contribute less to the project but remain supportive and thus help other developers
to become productive. From an aggregated perspective, such effect could be completely
covered under the productivity gains of new developers. Thus, future research in the FLOSS
and organizational domain should explicitly examine the effects of particular factors on both
individual and collective behavior rather than study only one and suppose that the other is
consistent with the examined one.

Moreover, the evaluation results in Paper VI encourage the use of the social practice view
within the organizational domain. Although organizations are considered in the social practice
view as classic industry corporations which govern human behavior, the picture of the

Introductory Paper

Developer Management in FLOSS Projects 81

workplace changed considerably. Especially with regard to the similarities between FLOSS
projects and virtual teams in organizations, the performed evaluation results support the call of
Beadle (2006) that the social practice view provides valuable grounds for a comprehensive
understanding for employees’ well-being and productivity. In contrast to motivation theories
which focus on the immediate outcomes associated with individuals’ behavior, MacIntyre
(1981)’s theory takes a much broader view on individuals underlying ethical beliefs and long
term goals. With respect to this broader theoretical foundation, MacIntyre (1981)’s social
practice view could be especially valuable in terms of deriving new insights into how employees
should be embedded into organizations so that they work productively and maintain a healthy
work-life balance.

6.1.3 Retention
Based on the identified need in Paper I for more dedicated research on FLOSS developers’
retention which examines the interaction of individual and team-level factors, Paper VII
evaluates the use of mentoring as a viable retention strategy for new developers. In doing so,
Paper VII extends previous FLOSS research which identified high learning barriers as a key
inhibitor for newcomers’ project permanence (Adams et al. 2009, Singh et al. 2011b). The
performed evaluation in Paper VII support this and show that newcomers’ knowledge building
process is an important driver for their sustained commitment in the FLOSS project.

Moreover, the study results in Paper VII support mentoring as a viable education and retention
strategy in FLOSS projects. In particular, the evaluation results suggest not only that mentoring
helps newcomers to acquire project-related knowledge, which in turn increases their project
permanence, but also that there is an additional direct positive effect on newcomers’ project
permanence. With respect to organizational literature (Eby and Lockwood 2005, Kram 1985),
it seems likely that this direct effect can be attributed to the strong relational bond which not
only fosters the transfer of knowledge but also creates a strong interpersonal relationship
between the mentor and the protégé.

Finally, the examination of mentoring as a viable education and retention strategy for FLOSS
projects also contributes to organization literature. Specifically, the evaluation results in
Paper VII address the call of Parise and Forret (2008) for further research on the effects of
mentoring on protégés’ continuance behavior. Moreover, the derived evaluation results support
previous research by Eby and Lockwood (2005) and Lentz and Allen (2009), which suggest
that mentoring relationships are not only effective in conveying new knowledge but also
building friendship relationships between the mentor and the protégé. In addition, the archival
measurement in Paper VII provides a foundation for organizational research to not rely on
protégés’ subjective perceptions, which are often found inaccurate to assess the outcomes of
mentoring relationships (Eby et al. 2004).

6.2 Contributions to Practice

6.2.1 Attraction
The research results in Paper II and Paper III have various practical implications for FLOSS
projects. A concrete managerial recommendation of these papers for the process of selecting

Developer Management in FLOSS Projects

 82 Andreas Schilling

GSoC students in KDE is to integrate the proposed objective measures for assessing P-J and
P-T fit. The evaluation results in Paper III clearly suggest that objective measures are much
more accurate predictors for sustained project commitment than the currently employed
subjective evaluation process. Beyond GSoC, the proposed measures can help FLOSS projects
to concentrate their training efforts on those newcomers who are likely to remain committed
instead of newcomers with only a short term interest in the project. Moreover, the customized
fit concepts and measures proposed in Paper II and Paper III can be used by FLOSS mangers
to control the fitness of their developer base and identify the need to reach out for new
developers and foster the retention of existing developers at an early stage.

In addition, Paper II and Paper III have managerial implications for organizations. Most
importantly, the proposed measures in these papers provide a first step for organizations to
design and employ new strategies for talent identification (Drucker 2002). Moreover, the
proposed measures can be used to derive entirely new talent acquisition strategies for software
companies, such as using FLOSS projects as a talent pool from which to identify recruitment
candidates.

6.2.2 Integration
Regarding developers’ project integration, Paper IV provides concrete managerial
implications for enhancing team members’ productive interplay in FLOSS projects. Most
importantly, the evaluation results suggest that managers should not consider the effective
interplay of the involved developers for granted but rather contingent upon their spatial,
temporal, and cultural distances. In addition, Paper IV highlights the relevance of direct offline
interactions among FLOSS developers for identifying the most suited development approach
for FLOSS projects. If offline meetings are not possible, FLOSS projects are better off bringing
together developers with little spatial, temporal, and cultural distances to each other. For such
endeavors, a ‘cathedral-style’ development approach could be most appropriate. In such
development approach, code is developed in private and only published with each software
release (Raymond 1999). However, if it is possible to arrange offline meetings, project
managers should favor creating a spatially and culturally dispersed developer base, which can
be typically achieved through a ‘bazaar-style’ development approach. In addition, FLOSS
projects can combine both approaches such as a ‘cathedral-style’ coordination between the
project leader(s) and the maintainer(s) of the particular modules and a ‘bazaar-style’
development approach between regular developers and the maintainer(s).

In light of the common escalation and underperformance of software projects in the
organizational domain (Keil and Mann 2000, Solomon 2010), the examination of productive
teamwork within FLOSS projects also provides various practical lessons for the staffing and
management of geographically dispersed teams in organizations. First, Paper IV provides
evidence that organizations should consider members’ ability to meet offline when staffing
individuals for such teams. If offline meetings are not possible, managers should combine
members with little spatial and cultural distances between them. However, if offline meetings
are possible project managers should adopt the complete opposite approach and bring together
members with high spatial and cultural distances. This is because these distances transform into

Introductory Paper

Developer Management in FLOSS Projects 83

productivity gains as soon as there is little direct offline contact between members. For all team
configurations, however, managers should minimize temporal distances among team members,
as they cause considerable harm to their effective interplay.

Paper V and Paper VI provide managerial advice for FLOSS projects regarding the supposed
positive effects associated with the presence of reputable developers. Although, Paper V
indicates that collaboration initiatives with reputable developers foster self-determined
motivation forms among FLOSS developers, the multi-level research performed in Paper VI
suggests that reputable developers should not be considered a panacea for productive teamwork.
In particular, the results in Paper VI indicate that the presence of reputable developers can be
considered a relevant but not sufficient element for productive teamwork in FLOSS projects.
In fact, reputable developers only enhance members’ level of cognitive trust in each other.
However, this form of trust does not directly affect individuals’ work efforts. Instead, it is their
level of affective trust, their sense of belonging, which foster their work efforts. Thus, managers
of FLOSS projects should favor dedicated team building activities which strengthen members’
sense of belonging, like arranging release parties or social events, over bringing in reputable
developers.

Paper VI also provides managerial implications to organizations in light of their broad use of
external (e.g. Linkedin) and in-house (e.g. IBM Connections) scoring and evaluation systems.
In particular, the evaluation results warn managers of relying too much on such scoring systems.
Although the results of Paper VI indicate that reputable developers enhance teamwork
productivity, this positive effect is only marginal. In comparison, Erden et al. (2014) provide
evidence that the presence of reputable individuals greatly increases the equity price of the
particular firm. However, while there are only few levers for firms to get attention among
financial investors, Paper VI indicates that the productive interplay in software development
teams can be fostered more effectively through dedicated team building activities which
increase team members’ level of affective trust in each other than by bringing in reputable
developers.

6.2.3 Retention
The evaluation of mentoring as an education and knowledge building strategy for FLOSS
projects has substantial implications to FLOSS practice. Previous evaluations draw a rather
alarming picture of contribution behavior in FLOSS projects. Specifically Singh et al. (2011b)
provide evidence that most contributors do not advance in their learning state. This is supported
by Adams et al. (2009) who show that it can even take up to 60 weeks before FLOSS developers
become effective. Though, many newcomers often leave the project before achieving such
progress. In this situation, the evaluation results in Paper VII show that FLOSS projects can
take active means retain their developers longer. In particular Paper VII supports mentoring as
an effective means to assist novices’ knowledge building process. An important consequence
of this positive effect is that FLOSS developers show not only higher commitment regarding
code development but also higher levels of project permanence. Beside the enhanced
knowledge transfer, Paper VII suggests that mentoring also has a direct positive effect on
newcomers’ project permanence.

Developer Management in FLOSS Projects

 84 Andreas Schilling

Considering organizations’ reliance on education activities, Paper VII also contributes to the
organizational domain. On the one hand, it supports managerial use of mentoring initiatives to
enhance employees’ education and foster their long-term project commitment. Moreover, the
proposed measures provide new grounds for organizations to assess the knowledge gains of
their employees. In particular, such archival measures help automatically assessing and
comparing the learning gains from educational activities in organizations, which is considered
a central for corporations (Gartner Inc. 2007).

7 Future Research

The results and implications of this dissertation provide new insights into developer
management in FLOSS projects. Nevertheless, many questions about managing FLOSS
developers remain open. The following paragraphs delineate potential avenues of future
research on the various aspects of developer management in FLOSS projects. First, two general
directions for future research are presented. Then, the specific directions for further elaboration
on attracting, integrating, and retaining developers in FLOSS projects are delineated.

One central recommendation for future FLOSS research concerns the examination of the
derived relationships and management suggestions in the context of FLOSS projects which are
not related to KDE. As outlined in Section 5, a central limitation of this dissertation is its focus
on KDE projects. Thus, further research is necessary which examines the derived conclusions
with a well-diversified and empirically rich project sample. In this context, future research can
also control for contextual differences such as differences in governance styles or programming
languages.

The second general topic for future research is the development and evaluation of an integrated
developer management strategy for FLOSS projects. The cumulative dissertation draws on the
framework for IHRM to build an understanding and derive concrete strategies for developer
management in FLOSS projects. Thus, the next step for FLOSS research is to examine the
interrelations between the three management areas to build an integrated management
approach. Thereby, a concrete question for further research concerns the compatibility or
contradictory of means to attract, integrate, and retain FLOSS developers. For example, while
the presence of reputable developers could be considered subordinate for integrating
developers, it could be considered essential in terms of attracting developers (Hu et al. 2012).
Thus, future research should take a holistic perspective to examine the temporal and long-term
compatibility of the various theories and means to attract, integrate, and retain FLOSS
developers.

Attraction

A particular area for further research on the attraction of FLOSS developers is the refinement
and extension of the proposed fit concepts and measures. A key question in this context, is how
FLOSS developers’ level of complementary fit has no significant effect on their project
permanence. Although the evaluation results in Paper III suggest no such influence, further
research is needed to make a final decision if complementary fit should be considered inferior

Introductory Paper

Developer Management in FLOSS Projects 85

to supplementary fit for identifying new team members. To examine this particular aspect,
further research should examine various measures for assessing candidates’ complementary fit,
so that it can be differentiated between insignificant relationships which can be attributed to
conceptual or measurement reasons.

Another area in which future research can extend the research in Paper II and Paper III is by
considering favorable behavioral outcomes beyond FLOSS developers’ project permanence.
For example, research could examine if the derived fit measures are also appropriate in finding
highly innovative candidates. Although organizational research suggests that it is the case, it
would be interesting to see if the various fit aspects (in particular complementary fit) and
suggested measures differ in their strength to anticipate such behavioral outcomes. Future
research should also consider individuals’ position in the overall interaction network in the
selection process. Such research could examine if FLOSS projects should focus on finding
individuals who are likely to behave favorably in the future, or rather build on the strong herding
effect among FLOSS developers (Oh and Jeon 2007) and attract individuals with the highest
visibility among other developers to trigger a subsequent influx of other developers.

Finally, an important research field for future research is to derive concrete strategies for
actively convincing developers to become active in the FLOSS project. A central constraint
which should be considered thereby is that many FLOSS projects are based on voluntary basis
and therefore cannot provide pecuniary rewards to developers. Thus, future research has to
design and evaluate alternative strategies for attracting developers. Possible tent poles of such
as active attraction strategy could be highlighting the involvement of reputable developers (Hu
et al. 2012) or the relevance of the project to the overall FLOSS community.

Integration

A key area for future examination into FLOSS developers’ project integration is the extension
and refinement of the multi-dimensional consideration of geographic dispersion in FLOSS
projects. Future research should also examine the relevance of configurational aspects in
FLOSS projects (O'Leary and Cummings 2007). In particular, future research should examine
whether there is a difference in FLOSS projects’ exposure to spatial distances if all developers
work spatially distant or if it is only one developer who works apart from all others. Future
studies on the effects of geographic dispersion should also take account of the actual
interrelatedness of FLOSS developers’ project work. In light of the case specific degree of
interrelatedness, it seems appropriate for future research to consider interrelatedness rather as a
case specific variable than a generic property.

Apart from elaborating on the effects of geographic dispersion, future research should further
evaluate the social practice view as a theoretical basis for FLOSS development. The broad
stance of the social practice view offers a new way of looking at the effects of interactions
among FLOSS developers. This perspective provided the basis for the conclusion that feelings
of belongingness are much more important than the level of community reputation of the
involved members. Building on this insight, future research could use the social practice view
as a theoretical foundation to integrate and synthesize past and future research on FLOSS

Developer Management in FLOSS Projects

 86 Andreas Schilling

developers’ project behavior. For example, it provides a holistic explanation for the relevance
of affective trust (Stewart and Gosain 2006) and the importance of situated learning (Fang and
Neufeld 2009). Even more, as proposed by von Krogh et al. (2012) the social practice view can
be used in future research to understand the inconsistent findings of previous research which is
based on SDT.

In addition to the conceptual elaboration, future research should rely on more advanced forms
of evaluation. Specifically, the use of Hierarchical Linear Model (HLM) regression seems to
be appropriate. This evaluation technique allows to simultaneously examine nested effects of
project, group, and individual characteristics on FLOSS developers’ project commitment. Thus,
HLM regression helps to separate effects which affect teamwork productivity from those effects
which only affect individual productivity. Such multi-level examination is especially valuable
in examining the effects of reputable developers’ project involvement. This is because, HLM
regression provides much better ways to assess the threats to validity posed by the combination
of structural and individual-centric research. Finally, HLM regression does not require distinct
study samples. Therefore, HLM regression fits much better to the used sampling strategy than
linear regression, at least under the assumption that some developers are permanently involved
in FLOSS projects while other developers come and go (Setia et al. 2012).

Retention

Future research on retaining FLOSS developers can build on the evaluation results in Paper VII
to build a nuanced understanding for the possibilities in FLOSS projects to foster developer
retention. Thereby, it is a particular question for future research to compare the positive effects
of mentoring with those of other teaching means such as developer sprints, which allow also
the exchange of non-verbal communication ties (Daft and Lengel 1986). Moreover, the use of
collocated training means, such as regional Linux User Groups (Bagozzi and Dholakia 2006),
should be compared with virtual training settings.

Another direction for future research on retaining FLOSS developers is to elaborate on the
effects of mentoring initiatives. Especially the direct link between newcomers’ attendance at
mentoring initiatives and their project permanence should be examined more thoroughly. The
positive direct relationship between these two constructs supports the theorized positive effects
of the social-bond between the mentor and the protégé, while leaving room for alternative
explanations. For example, mentored students may achieve higher levels of autonomy through
mentorship, which may motivate them to stay with the project. Future research should address
this by examining through perceptual measures if the direct relationship between mentoring and
FLOSS developers’ project permanence is due to their feelings of belongingness or rather due
to other reasons.

8 Conclusion

The overall goal of the cumulative dissertation is to derive theoretical concepts and empirical
evidence to assist developer management in FLOSS projects. Borrowing from core structures
in IHRM, the dissertation divides FLOSS developer management into three core areas:

Introductory Paper

Developer Management in FLOSS Projects 87

attracting, integrating, and retaining FLOSS developers. The results of the dissertation provide
distinct contributions to each of these management areas.

The dissertation derives archival measures to identify developers who are likely to remain
active in the FLOSS project and who are thus worth training. The derived objective measures
more accurately predict sustained project commitment than individuals’ subjective assessment.
Moreover, the dissertation offers two key insights into integrating developers into FLOSS
projects. First, the dissertation finds that FLOSS developers’ offline ties to each other
significantly determine whether their spatial and cultural distances will promote or hinder their
effective teamwork. In contrast, temporal distances mitigate productive teamwork regardless of
developers’ offline ties. Second, the dissertation reveals that the presence of reputable
developers in FLOSS projects only adds marginally to productive teamwork. Specifically, the
presence of reputable developers only increases the level to which team members’ consider
their colleagues competent. However, the involvement of reputable developers has no direct
effect on team members’ feelings of belongingness, which are central to stimulate their work
productivity. Finally, the dissertation supports the use of mentoring as an effective means to
retain FLOSS developers.

The dissertation thus provides concrete and useful advice in managing FLOSS developers
which can help FLOSS projects prosper and avoid another ‘Heartbleed’.

9 References

Accenture Inc. (2010) Investment in Open Source Software Set to Rise, Accenture Survey
Finds, http://newsroom.accenture.com/article_display.cfm?article_id=5045#rel. Retrieved
March 21, 2015

Adams PJ, Capiluppi A, Boldyreff C (2009) Coordination and Productivity Issues in Free
Software: The Role of Brooks' Law. IEEE International Conference on Software
Maintenance (IEEE), 319–328.

Ågerfalk PJ, Fitzgerald B, Holmström H, Lings B, Lundell B, Conchúir EÓ (2005) A
Framework for Considering Opportunities and Threats in Distributed Software
Development. In Proceedings of the International Workshop on Distributed Software
Development, 47–61.

Aksulu A, Wade MR (2010) A Comprehensive Review and Synthesis of Open Source
Research. Journal of the Association for Information Systems 11(11):576-656.

Asay M (2014): Developers Aren't Going to Go for Proprietary Standards.
http://readwrite.com/2014/10/17/internet-of-things-open-source-iot-developers, Retrieved
April 20, 2015.

Bagozzi RP (2011) Measurement and Meaning in Information Systems and Organizational
Research: Methodological and Philosophical Foundations. Management Information
Systems Quarterly 35(2):261-292.

Developer Management in FLOSS Projects

 88 Andreas Schilling

Bagozzi RP, Dholakia UM (2006) Open Source Software User Communities: A Study of
Participation in Linux User Groups. Management Science 52(7):1099–1115.

Beadle R (2006) MacIntyre on Virtue and Organization. Organization Studies 27(3):323–340.

Berinato, S (2014) Heartbleed, the Branding of a Bug, and the Internet of Things,
https://hbr.org/2014/04/heartbleed-the-branding-of-a-bug-and-the-internet-of-things/
Retrieved April 18, 2015.

Bollen, KA (1989) Structural Equations with Latent Variables. New York: John Wiley and
Sons Ltd.

Brashear TG, Bellenger DN, Boles JS, Barksdale HC (2006) An Exploratory Study of the
Relative Effectiveness of Different Types of Sales Force Mentors. Journal of Personal
Selling and Sales Management 26(1):7–18.

Brin S, Page L (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems 30(1-7):107–117.

Carmines EG, Zeller RA (1979) Reliability and Validity Assessment. Beverly Hills (CA): Sage
Publications

Chatman JA (1989) Matching People and Organizations Selection and Socialization in Public
Accounting Firms. Academy of Management Best Papers Proceedings, 199–203.

Chengalur-Smith I, Sidorova A, Daniel S (2010) Sustainability of Free/Libre Open Source
Projects: A Longitudinal Study. Journal of the Association for Information Systems
11(11):657–683.

Chilton MA, Hardgrave BC, Armstrong DJ (2005) Person-Job Cognitive Style Fit for Software
Developers: The Effect on Strain and Performance. Journal of Management Information
Systems 22(2):193-226.

Chin WW (1998) The Partial Least Squares Approach for Structural Equation Modelling.
Marcoulides GA, ed. Modern Methods for Business Research, 295–336, Mahwah (NJ):
Lawrence Erlbaum Associates.

Chin WW, Newsted PR (1999) Structural Equation Modelling Analysis with Small Samples
Using Partial Least Squares. Hoyer RH, ed. Statistical Strategies for Small Sample
Research, 307-342, Thousand Oaks (CA): Sage Publications.

Chou S, He M (2011) The Factors that Affect the Performance of Open Source Software
Development - The Perspective of Social Capital and Expertise Integration. Information
Systems Journal 21(2):195–219.

Colazo J, Fang Y (2009) Impact of License Choice on Open Source Software Development
Activity. Journal of the American Society for Information Science & Technology
60(5):997–1011.

Introductory Paper

Developer Management in FLOSS Projects 89

Colazo JA, Fang Y (2010) Following the Sun: Temporal Dispersion and Performance in Open
Source Software Project Teams. Journal of the Association for Information Systems
11(12):684–707.

Cox DR (1972) Regression Models and Life-Tables. Journal of the Royal Statistical Society
34(2):187-220.

Crowston K, Heckman R, Misiolek N (2010) Leadership in Self-Managing Virtual Teams,
Syracuse University School of Information Studies.

Crowston K, Howison J, Masango C, Eseryel U (2007a) The Role of Face-to-Face Meetings in
Technology-Supported Self-Organizing Distributed Teams. IEEE Transactions on
Professional Communication 50(3):185–203.

Crowston K, Li Q, Wei K, Eseryel U, Howison J (2007b) Self-Organization of Teams for
Free/Libre Open Source Software Development. Information and Software Technology
49(6):564–575.

Crowston K, Wei K, Howison J, Wiggins A (2012) Free/Libre Open-Source Software
Development: What We Know and What We Do Not Know. ACM Computing Surveys
44(2):1–35.

Cummings JN, Espinosa JA, Pickering CK (2009) Crossing Spatial and Temporal Boundaries
in Globally Distributed Projects: A Relational Model of Coordination Delay. Information
Systems Research 20(3):420–439.

Daft RL, Lengel RH (1986) Organizational Information Requirements, Media Richness and
Structural Design. Management Science 32(5):554–571.

Daniel S, Agarwal R, Stewart KJ (2013) The Effects of Diversity in Global, Distributed
Collectives: A Study of Open Source Project Success. Information Systems Research
24(2):312–333.

David PA, Shapiro JS (2008) Community-Based Production of Open-Source Software: What
Do We Know About the Developers Who Participate? Information Economics and Policy
20(4):364–398.

Deci, EL, Ryan, RM (1985) Intrinsic Motivation and Self-Determination in Human Behavior,
New York: Plenum Publishing.

Deci EL, Ryan RM (2000) The 'What' and 'Why' of Goal Pursuits Human Needs and the Self-
Determination of Behavior. Psychological Inquiry 11(4):227–268.

Dixon, R (2004) Open Source Software Law, Boston: Artech House.

Drucker PF (2002) They're not Employees, They're People. Harvard Business Review
80(2):70–77.

Developer Management in FLOSS Projects

 90 Andreas Schilling

Durumeric Z, Payer M, Paxson V, Kasten J, Adrian D, Halderman JA, Bailey M, Li F, Weaver
N, Amann J, Beekman J (2014) The Matter of Heartbleed. ACM Internet Measurement
Conference, 475–488.

Eby L, Butts M, Lockwood A, Simon SA (2004) Protégés Negative Mentoring Experiences:
Construct Development and Nomological Validation. Personnel Psychology 57(2):411–
447.

Eby LT, Lockwood A (2005) Protégés’ and Mentors’ Reactions to Participating in Formal
Mentoring Programs: A Qualitative Investigation. Journal of Vocational Behavior
67(3):441–458.

Edwards JR (1991) Person-Job Fit: A Conceptual Integration, Literature Review, and
Methodological Critique. Cooper CL, Robertson IT, eds. International Review of Industrial
and Organizational Psychology, 283–357, New York: John Wiley and Sons Ltd.

Eisenhardt KM (1989) Building Theories from Case Study Research. The Academy of
Management Review 14(4):532-550.

Erden Z, Klang D, Sydler R, von Krogh G (2014) How Can We Signal the Value of Our
Knowledge? Knowledge-Based Reputation and Its Impact on Firm Performance in
Science-Based Industries. Long Range Planning, 252-264, Oxford: Pergamon.

Ettrich, M (1996) New Project: Kool Desktop Environment (KDE),
https://groups.google.com/forum/#!original/de.comp.os.linux.misc/SDbiV3Iat_s/zv_D_2
ctS8sJ. Retrieved April 7, 2015.

Fang Y, Neufeld D (2009) Understanding Sustained Participation in Open Source Software
Projects. Journal of Management Information Systems 25(4):9–50.

Finkle, J, Kurane, S (2014) U.S. Hospital Breach Biggest yet to Exploit Heartbleed Bug: Expert,
http://www.reuters.com/article/2014/08/20/us-community-health-cybersecurity-
idUSKBN0GK0H420140820. Retrieved March 23, 2015.

Fitzgerald B (2006) The Transformation of Open Source Software. Management Information
Systems Quarterly 30(3):587-598.

Fornell C (1987) A Second Generation of Multivariate Analysis - Classification of Methods
and Implications for Marketing Research. Houston MJ, ed. Review of Marketing, 407-450,
Chicago: American Marketing Association.

Fornell C, Larcker DF (1981) Structural Equation Models With Unobservable Variables and
Measurement Error Algebra and Statistics. Journal of Marketing Research (JMR)
18(3):382–388.

Forrester Research (2014) Survey Indicates Four Out of Five Developers Now Use Open
Source, http://www.zdnet.com/article/survey-indicates-four-out-of-five-developers-now-
use-open-source/.

Introductory Paper

Developer Management in FLOSS Projects 91

Fox, J, Weisberg, S (2011) An R Companion to Applied Regression, 2nd ed., Thousand Oaks
(CA): Sage Publications.

Gagné M, Deci EL (2005) Self-Determination Theory and Work Motivation. Journal of
Organizational Behavior 26(4):331–362.

Gartner Inc. (2007) Gartner EXP Says Organizations Must Evaluate Learning and Training
Programs to Gauge Return on Investment, http://www.gartner.com/it/page.jsp?id=505592.
Retrieved October 31, 2013.

Gartner Inc. (2011) Gartner Says Android to Command Nearly Half of Worldwide Smartphone
Operating System Market by Year-End 2012,
http://www.gartner.com/it/page.jsp?id=1622614, Retrieved October 23, 2013.

Gartner Inc. (2012) Drivers and Incentives for the Wide Adoption of Open Source Software
Mark Driver, http://www.gartner.com/id=2158016, Retrieved October 25, 2013.

Gayo-Avello D (2013) Nepotistic Relationships in Twitter and Their Impact on Rank Prestige
Algorithms. Information Processing & Management 49(6):1250–1280.

Gefen D, Rigdon EE, Straub D (2011) An Update and Extension to SEM Guidelines for
Administrative and Social Science Research. Management Information Systems Quarterly
35(2):III-XIV.

Ghosh, R (2002) Free/Libre and Open Source Software: Survey and Study,
http://flossproject.org/.

Goodin, D (2014) Critical Crypto Bug in OpenSSL Opens Two-Thirds of the Web to
Eavesdropping, http://arstechnica.com/security/2014/04/critical-crypto-bug-in-openssl-
opens-two-thirds-of-the-web-to-eavesdropping/. Retrieved March 24, 2015.

Google (2014) Program Information for Past Years, https://code.google.com/p/google-
summer-of-code/wiki/ProgramStatistics. Retrieved April 7, 2015.

Google (2015) Google Summer of Code 2015 Frequently Asked Questions,
https://www.google-melange.com/gsoc/document/show/gsoc_program/google/gsoc2015
/help_page. Retrieved April 7, 2015.

Grewal R, Lilien GL, Mallapragada G (2006) Location, Location, Location: How Network
Embeddedness Affects Project Success in Open Source Systems. Management Science
52(7):1043–1056.

Hahn J, Moon JY, Zhang C (2008) Emergence of New Project Teams from Open Source
Software Developer Networks: Impact of Prior Collaboration Ties. Information Systems
Research 19(3):369–391.

Hahn J, Zhang C (2005) An Exploratory Study of Open Source Projects from a Project
Management Perspective MIS Research Workshop 2005, Purdue University.

https://www.google-melange.com/gsoc/document/show/gsoc_program/google/gsoc2015

Developer Management in FLOSS Projects

 92 Andreas Schilling

Hale R (2000) To Match or Mis-Match? The Dynamics of Mentoring as a Route to Personal
and Organisational Learning. Career Development International 5(4/5):223–234.

Hanushek, EA, Jackson, JE (2013) Statistical Methods for Social Scientists, New York:
Academic Press.

Hemetsberger A, Reinhardt C (2006) Learning and Knowledge-Building in Open-Source
Communities: A Social-Experiential Approach. Management Learning 37(2):187–214.

Henseler J, Ringle CM, Sinkovics RR (2009) The Use of Partial Least Squares Path Modeling
in International Marketing. Advances in International Marketing 20:277–319.

Hinds PJ, Mortensen M (2005) Understanding Conflict in Geographically Distributed Teams:
The Moderating Effects of Shared Identity, Shared Context, and Spontaneous
Communication. Organization Science 16(3):290–307.

Hofstede, G (1980) Culture's Consequences: International Differences in Work-Related
Values. Beverly Hills (CA): Sage Publications.

Horwitz FM (2003) Finders, Keepers? Attracting, Motivating and Retaining Knowledge
Workers. Human Resource Management Journal 13(4):23–44.

Howison J, Crowston K (2014) Collaboration Through Open Superposition: A Theory of the
Open Source Way. Management Information Systems Quarterly 38(1):29–50.

Hu D, Zhao JL (2009) Discovering Determinants of Project Participation in an Open Source
Social Network Proceedings of the International Conference on Information Systems 2009
(ICIS 2009).

Hu D, Zhao JL, Chen J (2012) Reputation Management in an Open Source Developer Social
Network: An Empirical Study on Determinants of Positive Evaluations. Decision Support
Systems 53(3):526–533.

Huettinger M (2008) Cultural Dimensions in Business Life: Hofstede's Indices for Latvia and
Lithuania. Baltic Journal of Management 3(3):359-376.

IBM (2011) Open Source Technologies Play a Key Role in Future of Application Development,
https://www.ibm.com/developerworks/mydeveloperworks/blogs/techtrends/entry/open_s
ource_technologies_play_a_key_role_in_future_of_application_development16?lang=en.
Retrieved December 6, 2012.

IDG Connect (2013) Openstack: Platform of Choice for Cloud,
http://www.redhat.com/files/resources/en-opst-idg-openstack-platform-choice-cloud-
infographic.pdf. Retrieved March 19, 2015.

Jorgensen N (2001) Putting It All in the Trunk: Incremental Software Development in the
FreeBSD Open Source Project. Information Systems Journal 11(4):321–336.

Introductory Paper

Developer Management in FLOSS Projects 93

Kavanagh, P (2004) Open Source Software: Implementation and Management. New York:
Elsevier.

KDE (2011) KDE Booklet Version 8, https://community.kde.org/images.community/
5/5f/Kde_booklet_ver8.pdf. Retrieved April 7, 2015.

KDE Techbase (2009) MovetoGit, https://techbase.kde.org/Projects/MovetoGit. Retrieved
April 7, 2015.

KDE Techbase (2014) Development Guidelines, https://techbase.kde.org/Development/
Guidelines. Retrieved February 13, 2015.

Ke W, Zhang P (2010) The Effects of Extrinsic Motivations and Satisfaction in Open Source
Software Development. Journal of the Association for Information Systems 11(12):785–
808.

Keil M, Mann J (2000) Why Software Projects Escalate: An Empirical Analysis and Test of
Four Theoretical Models. Management Information Systems Quarterly 24(4):631–664.

Kirkman BL, Rosen B, Tesluk PE, Gibson CB (2004) The Impact of Team Empowerment on
Virtual Team Performance: The Moderating Role of Face-to-Face Interaction. Academy of
Management Journal 47(2):175–192.

Kleinbaum, DG, Klein, M (2012) Survival Analysis: A Self-Learning Text, 3rd ed., New York:
Springer.

Köhne M (2012) The Concept of Athletic Excellence – An Inquiry into its Meaning for a Moral
Judgment on the Ban on Doping. Master Thesis, Utrecht University.

Kram, KE (1985) Mentoring at Work: Developmental Relationships in Organizational Life.
Lanham (MD): University Press of America.

 Kristof-Brown AL, Zimmerman RD, Johnson EC (2005) Consequences of Individuals’ Fit at
Work: A Meta-Analysis of Person-Job, Person-Organization, Person-Group, and Person-
Supervisor Fit. Personnel Psychology 58(2):281–342.

Krogh G von, Spaeth S (2007) The Open Source Software Phenomenon: Characteristics that
Promote Research. The Journal of Strategic Information Systems 16(3):236–253.

Kuk G (2006) Strategic Interaction and Knowledge Sharing in the KDE Developer Mailing
List. Management Science 52(7):1031–1042.

Lakhani K, Wolf RG (2005) Why Hackers Do What They Do: Understanding Motivation and
Effort in Free/Open Source Software Projects. Feller J, Fitzgerald B, Hissam S, Lakhani
KR, eds. Perspectives on Free and Open Source Software, 3-22, Cambridge (MA): MIT
Press.

https://community.kde.org/images.community/5/5f/Kde_booklet_ver8.pdf
https://community.kde.org/images.community/5/5f/Kde_booklet_ver8.pdf

Developer Management in FLOSS Projects

 94 Andreas Schilling

Lentz E, Allen TD (2009) The Role of Mentoring Others in the Career Plateauing Phenomenon.
Group & Organization Management 34(3):358–384.

Lewin K (1951) Field Theory in Social Science. Cartwright D, ed. Resolving Social Conflicts
& Field Theory in Social Science, 170-187, Washington (DC): American Psychological
Association.

Long J (2006) Understanding the Role of Core Developers in Open Source Software
Development. Journal of Information Technology and Organizations (1):75-85.

MacIntyre, AC (1981) After Virtue: A Study in Moral Theory, 1st ed., Notre Dame: University
of Notre Dame Press.

MacIntyre AC (1994) A Partial Response to My Critics. Horton J, Mendus S, eds. After
MacIntyre: Critical Perspectives on the Work of Alasdair MacIntyre, Notre Dame: Polity
Press/ University of Notre Dame Press.

Madey G, Christley S (2008) F/OSS Research Repositories & Research Infrastructures
Workshop on Free/Open Source Software Repositories and Research Infrastructures
(FOSSRRI) ,

Malik TH, Zhao Y (2013) Cultural Distance and its Implication for the Duration of the
International Alliance in a High Technology Sector. International Business Review
22(4):699–712.

McAllister DJ (1995) Affect- and Cognition-Based Trust as Foundations for Interpersonal
Cooperation in Organizations. Academy of Management Journal 38(1):24–59.

McMillan, R (2014) It's Crazy What Can Be Hacked Thanks to Heartbleed,
http://www.wired.com/2014/04/heartbleed_embedded/. Retrieved March 23, 2015.

Midha V (2008) Does Complexity Matter? The Impact of Change in Structural Complexity on
Software Maintenance and New Developers' Contributions in Open Source Software.
Proceedings of the International Conference on Information Systems 2008 (ICIS 2008).

Miorandi D, Sicari S, Pellegrini F, Chlamtac I (2012) Internet of Things: Vision, Applications
and Research Challenges, Ad Hoc Networks 10(7):1497-1516.

Moody, G (2012) Another Billion-Dollar Open Source Company: Instagram,
http://www.computerworlduk.com/blogs/open-enterprise/another-billiondollar-open-
source-company-instagram-3569199/, Retrieved March 23, 2015.

Moore G, Beadle R (2006) In Search of Organizational Virtue in Business: Agents, Goods,
Practices, Institutions and Environments. Organization Studies 27(3):369–389.

Muchinsky PM, Monahan CJ (1987) What is Person-Environment Congruence?
Supplementary versus Complementary Models of Fit. Journal of Vocational Behavior
31(3):268–277.

Introductory Paper

Developer Management in FLOSS Projects 95

Netmarketshare (2015) Mobile/Tablet Browser Market Share,
http://www.netmarketshare.com/browser-market-
share.aspx?qprid=0&qpcustomd=1&qpsp=2015&qpnp=1&qptimeframe=Y.

Nunnally, JC (1978) Psychometric Theory, 2nd ed., New York: McGraw-Hill.

Oh W, Jeon S (2007) Membership Herding and Network Stability in the Open Source
Community: The Ising Perspective. Management Science 53(7):1086–1101.

O'Leary MB, Cummings JN (2007) The Spatial, Temporal, and Configurational Characteristics
of Geographic Dispersion in Teams. Management Information Systems Quarterly
31(3):433–452.

OpenHub (2015) OpenSSL Contributors Listing, https://www.openhub.net/p/openssl/
contributors ? Retrieved March 24, 2015.

Oreg S, Nov O (2008) Exploring Motivations for Contributing to Open Source Initiatives: The
Roles of Contribution Context and Personal Values. Computers in Human Behavior
24(5):2055–2073.

Parise MR, Forret ML (2008) Formal Mentoring Programs: The Relationship of Program
Design and Support to Mentors’ Perceptions of Benefits and Costs. Journal of Vocational
Behavior 72(2):225–240.

Pratyush SN, Sherae DL, Ting-Ting CR (2010) The Impact of Person-Organization Fit on
Turnover in Open Source Software Projects. Proceedings of the International Conference
on Information Systems 2010.

Qureshi I, Fang Y (2010) Socialization in Open Source Software Projects: A Growth Mixture
Modeling Approach. Organizational Research Methods 14(1):208–238.

Raymond, ES (1999) The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary, 1st ed., Sebastopol: O'Reilly.

Roberts JA, Hann I, Slaughter SA (2006) Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A Longitudinal Study of the Apache
Projects. Management Science 52(7):984–999.

Robles G, Gonzalez-Barahona JM, Herraiz I (2009) Evolution of the Core Team of Developers
in Libre Software Projects. 6th IEEE International Working Conference on Mining
Software Repositories 2009, 167–170.

Romans D, Curtis A (2004) Global Journal Prestige and Supporting Disciplines A
Scientometric Study of Information Systems Journals. Journal of the Association for
Information Systems 5(2):29–77

Ryan, Deci (2000a) Intrinsic and Extrinsic Motivations: Classic Definitions and New
Directions. Contemporary Educational Psychology 25(1):54–67.

https://www.openhub.net/p/openssl/

Developer Management in FLOSS Projects

 96 Andreas Schilling

Ryan RM, Deci EL (2000b) Self-Determination Theory and the Facilitation of Intrinsic
Motivation, Social Development, and Well-Being. American Psychologist 55(1):68-78.

Santos C, Kuk G, Kon F, Pearson J (2012) The Attraction of Contributors in Free and Open
Source Software Projects. The Journal of Strategic Information Systems 22(1):26-45.

Scacchi W, Feller J, Fitzgerald B, Hissam S, Lakhani K (2006) Understanding Free/Open
Source Software Development Processes. Software Process: Improvement and Practice
11(2):95–105.

Scellato S, Mascolo C, Musolesi M, Latora V (2010) Distance Matters: Geo-Social Metrics for
Online Social Networks. Proceedings of the 3rd Conference on Online Social Networks,
USENIX Association.

Setia P, Rajagopalan B, Sambamurthy V, Calantone R (2012) How Peripheral Developers
Contribute to Open-Source Software Development. Information Systems Research
23(1):144–163.

Schilling A (2012) Links to the Source - A Multidimensional View of Social Ties for the
Retention of FLOSS Developers. Proceedings of the 2012 ACM SIGMIS CPR Conference.

Schilling A, Laumer S, Weitzel T (2012) Train and Retain - The Impact of Mentoring on the
Retention of FLOSS Developers. Proceedings of the 2012 ACM SIGMIS CPR Conference.

Schilling A, Laumer S, Weitzel T (2013) Together but Apart - How Spatial, Temporal and
Cultural Distances Affect FLOSS Developers' Project Retention. Proceedings of the 2013
ACM SIGMIS CPR Conference.

Schilling A, Laumer S, Weitzel T (2014) Stars Matter - How FLOSS Developers' Reputation
Affects the Attraction of New Developers. Proceedings of the 2014 ACM SIGMIS CPR
Conference.

Schneier, B (2014) Heartbleed, https://www.schneier.com/blog/archives/2014/04/heartbleed
.html. Retrieved April 12, 2015.

Seltman, HJ (2014) Experimental Design and Analysis. Carnegie Mellon University.

Sen R, Subramaniam C, Nelson ML (2008) Determinants of the Choice of Open Source
Software License. Journal of Management Information Systems 25(3):207–240.

Seong JY, Kristof-Brown AL, Park W, Hong D, Shin Y (2012) Person-Group Fit: Diversity
Antecedents, Proximal Outcomes, and Performance at the Group Level. Journal of
Management.

Shah SK (2006) Motivation, Governance, and the Viability of Hybrid Forms in Open Source
Software Development. Management Science 52(7):1000–1014.

https://www.schneier.com/blog/archives/2014/04/heartbleed

Introductory Paper

Developer Management in FLOSS Projects 97

Sheldon KM, Elliot AJ (1999) Goal Striving, Need Satisfaction, and Longitudinal Well-Being:
The Self-Concordance Model. Journal of Personality and Social Psychology 76(3):482–
497.

Siebdrat F, Hoegl M, Ernst H (2009) How to Manage Virtual Teams. MIT Sloan Management
Review 50(4):63-68.

Singh PV (2010) The Small-World Effect. ACM Transactions on Software Engineering and
Methodology 20(2):1–27.

Singh PV, Tan Y, Mookerjee V (2011a) Network Effects: The Influence of Structural Social
Capital on Open Source Project Success. Management Information Systems Quarterly
35(4):813–829.

Singh PV, Tan Y, Youn N (2011b) A Hidden Markov Model of Developer Learning Dynamics
in Open Source Software Projects. Information Systems Research 22(4):790–807.

Smith TC, Smith B (2005) Graphing the Probability of Event as a Function of Time Using
Survivor Function Estimates and the SAS System's PROC PHREG. Proceedings of the
13th Annual Western User’s of SAS Software Conference.

Solomon, C (2010) The Challenges of Working in Virtual Teams, http://rw-
3.com/2012VirtualTeamsSurveyReport.pdf.

Stewart D (2005) Social Status in an Open-Source Community. American Sociological
Review 70(5):823–842.

Stewart KJ, Gosain S (2006) The Impact of Ideology on Effectiveness in Open Source Software
Development Teams. Management Information Systems Quarterly 30(2):291–314.

Stokel-Walker, C (2014) The Internet Is Being Protected By Two Guys Named Steve,
http://www.buzzfeed.com/chrisstokelwalker/the-internet-is-being-protected-by-two-guys-
named-st#.sl6xbbmnK. Retrieved March 19, 2015.

Tarique I, Schuler RS (2010) Global Talent Management: Literature Review, Integrative
Framework, and Suggestions for Further Research. Journal of World Business 45(2):122–
133.

Toral S, Martínez-Torres M, Barrero F (2010) Analysis of Virtual Communities Supporting
OSS Projects Using Social Network Analysis. Information and Software Technology
52(3):296–303.

Vansteenkiste M, Simons J, Lens W, Sheldon KM, Deci EL (2004) Motivating Learning,
Performance, and Persistence: The Synergistic Effects of Intrinsic Goal Contents and
Autonomy-Supportive Contexts. Journal of Personality and Social Psychology 87(2):246–
260.

Developer Management in FLOSS Projects

 98 Andreas Schilling

von Krogh G, Haefliger S, Spaeth S, Wallin MW (2012) Carrots and Rainbows: Motivation
and Social Practice in Open Source Software Development. Management Information
Systems Quarterly 36(2):649–676.

von Krogh G, Spaeth S, Lakhani KR (2003) Community, Joining, and Specialization in Open
Source Software Innovation: A Case Study. Research Policy 32(7):1217–1241.

von Krogh G, von Hippel E (2003) Special Issue on Open Source Software Development.
Research Policy 32(7):1149–1157.

W3Techs (2015) Usage Statistics and Market Share of Content Management Systems for
Websites, http://w3techs.com/technologies/overview/content_management/all/. Retrieved
March 19, 2015.

Weaver GR (2006) Virtue in Organizations: Moral Identity as a Foundation for Moral Agency.
Organization Studies 27(3):341–368.

Webster J, Watson RT (2002) Analyzing the Past to Prepare for the Future Writing a Literature
Review. Management Information Systems 26(2):XIII-XXIII.

Werbel JD, Johnson DJ (2001) The Use of Person-Group Fit for Employment Selection: A
Missing Link in Person-Environment Fit. Human Resource Management 40(3):227–240.

Xu B, Jones DR (2010) Volunteers' Participation in Open Source Software Development: A
Study from the Social-Relational Perspective. Database for Advances in Information
Systems 41(3):69-84.

Yin, RK (2003) Case Study Research: Design and Methods, 3rd ed., Thousand Oaks (CA):
Sage Publications.

Yin, RK (2009) Case Study Research: Design and Methods, 4th ed., Los Angeles (CA): Sage
Publications.

Zhang X, Venkatesh V (2013) Explaining Employee Job Performance: The Role of Online and
Offline Workplace Communication Networks. Management Information Systems
Quarterly 37(3):695–722.

Chapter I:

Literature Review

Paper I

What Do We Know About FLOSS Developers’
Attraction, Retention and Commitment?

A Literature Review

Andreas Schilling
University of Bamberg

andreas.schilling@uni-bamberg.de

In: Proceedings of the 47th Hawaii International Conference on System Sciences (HICSS 2014),
Big Island (Hawaii), USA

The publication is available under:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6759097

Developer Management in FLOSS Projects

 102 Andreas Schilling

Abstract

Free Libre Open Source Software (FLOSS) is an essential part of our daily life. Many
companies and private households rely on FLOSS every day. However, the vast majority of
FLOSS initiatives fail. In order to support future research and derive operational advice for
FLOSS projects, this research reviews and categorizes the managerial insights from over 20
years of FLOSS research. Based on the central role of the developer base and research on human
resource management, developer attraction, retention and commitment are identified as core
management areas for FLOSS projects. A detailed analysis of 43 journal articles on FLOSS
management identifies an extensive body, which analyses project members’ commitment. In
contrast, there is relatively little dedicated research on FLOSS developers’ attraction and
retention. Moreover, the literature review reveals that most articles use solely either an
individual-, group- or project-centric research perspective although these perspectives are
interrelated with each other.

Chapter II:

Developer Attraction

Paper II

Is the Source Strong with You?

A Fit Perspective to Predict Sustained Participation
of FLOSS Developers

Andreas Schilling
University of Bamberg

andreas.schilling@uni-bamberg.de

Sven Laumer
University of Bamberg

sven.laumer@uni-bamberg.de

Tim Weitzel
University of Bamberg

tim.weitzel@uni-bamberg.de

In: Proceedings of the 32nd International Conference on Information Systems (ICIS 2011),
Shanghai, China

The publication is available under:

http://aisel.aisnet.org/icis2011/proceedings/humancapital/3

Developer Management in FLOSS Projects

 106 Andreas Schilling

Abstract

Despite the notable success of some Free Libre Open Source (FLOSS) projects, the
overwhelming majority of FLOSS initiatives fail, mostly because of insufficient long-term
participation of developers. In contrast to previous research which focuses on the individual
perspective, we approach developer retention from an organizational perspective to help
existing project members identify potential long-term contributors who are worth spending their
time on. Methodically, we transfer two concepts from professional recruiting, Person-Job (P-J)
and Person-Team (P-T) fit, to the FLOSS domain and evaluate their usage to predict FLOSS
developer retention.

An empirical analysis reveals that both fit concepts are appropriate to explain FLOSS retention
behavior. Looking at contributor retention in Google Summer of Code (GSoC) projects, we
find a moderate correlation with P-J fit and a weak correlation with P-T fit.

Paper III

Who Will Remain?

An Evaluation of Actual Person-Job and Person-
Team Fit to Predict Developer Retention in FLOSS

Projects

Andreas Schilling
University of Bamberg

andreas.schilling@uni-bamberg.de

Sven Laumer
University of Bamberg

sven.laumer@uni-bamberg.de

Tim Weitzel
University of Bamberg

tim.weitzel@uni-bamberg.de

In: Proceedings of the 45th Hawaii International Conference on System Sciences (HICSS 2012),
Maui (Hawaii), USA

The publication is available under:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6149241

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6149241

Developer Management in FLOSS Projects

 108 Andreas Schilling

Abstract

Many businesses and private households rely on Free Libre Open Source Software (FLOSS).
Due to a lack of sustained contributors, however, most FLOSS projects do not survive. The
early identification of developers who are likely to remain is thus an eminent challenge for the
management of FLOSS initiatives. Previous research has shown that individuals’ subjective
assessment is often inaccurate emphasizing the need to objectively evaluate retention behavior.
Consistent with the concepts Person-Job (P-J) and Person-Team (P-T) fit from the traditional
recruitment literature, we derive objective measures to predict developer retention in FLOSS
projects. In an analysis of the contribution behavior of former Google Summer of Code (GSoC)
students we reveal that the level of development experience and conversational knowledge is
strongly associated with retention. Surprisingly, our analysis reveals that students with abilities
that are underrepresented in the project and students with a higher academic education do not
remain considerably longer.

Chapter III:

Developer Integration

Paper IV

The Wizards of OSS -

Does Developers’ Geographic Dispersion Make OSS
Teams more Productive?11

Andreas Schilling
University of Bamberg

andreas.schilling@uni-bamberg.de

Sven Laumer
University of Bamberg

sven.laumer@uni-bamberg.de

Tim Weitzel
University of Bamberg

tim.weitzel@uni-bamberg.de

Under Review (2nd review round): Information Systems Research (ISR)

11 The term OSS has been used instead of FLOSS in order to align with related articles in the
targeted journal and not to express any theoretical difference.

Chapter III: Developer Integration

 112 Andreas Schilling

Abstract

This study examines the influence of geographic dispersion on the productive collaboration of
Open Source Software (OSS) developers. Building on teamwork literature, we consider OSS
developers’ geographic dispersion as a multi-dimensional construct consisting of spatial,
temporal, and cultural distances. We posit that each of these distances has a distinct negative
effect on OSS developers’ productive interplay by reducing their level of shared knowledge
and social relatedness. As a potential strategy for OSS teams to overcome the productivity
deficits of these geographic distances, we evaluate the role of direct offline interactions which
take place in sprint events. The results of our empirical evaluation with 648 OSS teams largely
support our research hypotheses and suggest: (i) geographic dispersion should be considered as
a multi-dimensional construct, (ii) spatial, temporal, and cultural distances have a distinct
negative effect on OSS teams’ productivity, (iii) direct offline interactions between developers
transform the productivity deficits of spatial and cultural distances into productivity gains for
OSS teams, (iv) direct offline interactions are especially valuable for the productive interplay
of developers who have little experience with the particular OSS project. Finally, we compare
the results of our research with previous research in the organizational and OSS domain, which
has generally focused only on one particular dimension of geographic dispersion. Thereby, we
derive possible questions for future studies and delineate specific practical advice.

Keywords: Open Source Software, Geographically Dispersed Teamwork, Spatial Distance,
Temporal Distance, Cultural Distance, Offline Interactions, Shared Knowledge, Social
Cohesion

1 Introduction

Initiatives developing Open Source Software (OSS) have experienced massive growth over the
past decade with OSS code production growing at exponentially high rates (Deshpande and
Riehle 2008). In these OSS initiatives, developers who are scattered around the world
collaborate voluntarily with each other using computer-mediated communication (CMC). With
regard to the high production rates of these collaborations, OSS initiatives are considered
forerunners for geographically dispersed teams within the organizational domain, which instead
commonly underperform (Malone 2004, Solomon 2010). Based on this stark contrast, scholars
thoroughly studied the effects of various individual- and team-level factors to understand OSS
developers’ productive interplay and extract relevant advice for the organizational domain.
Most studies within the OSS domain, however, only examined characteristics of members’
online behavior while disregarding one fundamental element of these initiatives, which is OSS
developers’ geographic dispersion. In comparison, the effects of team members’ geographic
dispersion has been examined intensively in the organizational domain where they are often
seen as a substantial barrier for productive teamwork (Cummings et al. 2009). This in turn raises
the question of whether OSS projects are also negatively affected by their developers’
geographic dispersion and if so what can OSS projects do to overcome these challenges?

Paper IV

Developer Management in FLOSS Projects 113

With respect to this question, we examine if OSS developers’ geographic dispersion
complicates code development in OSS teams. By bringing together central lessons from
teamwork literature (Martins et al. 2004, Hinds and Mortensen 2005) with conceptual OSS
research by Ågerfalk et al. (2005), we consider OSS developers’ geographic dispersion as a
multi-dimensional construct consisting of spatial, temporal, and cultural distances. Building on
organizational literature and OSS studies which only consider one of these distances (Hu et al.
2012, Daniel et al. 2013), we expect that each of these distances mitigates OSS teams’
productivity. Specifically, we posit that geographic dispersion hinders the effective interplay of
OSS developers by complicating the formation of shared knowledge and social relationships
and that the prevalent use of context-low CMC in OSS projects even amplifies this problem.
Hence, our leading hypothesis is that offline interactions (which are considered to be context-
rich) help OSS developers to cope with productivity deficits caused by their geographic
dispersion by enhancing their abilities to build shared knowledge and interpersonal relations.
Thus, by combining teamwork literature and OSS research we examine the following research
question: Do direct offline relationships among OSS developers help them to overcome the
productivity deficits caused by their spatial, temporal, and cultural distances?

The results of our research have several implications for OSS research. First, our multi-
dimensional conceptualization of OSS developers’ geographic dispersion in terms of their
spatial, temporal, and cultural distances adds substantial explanatory power for understanding
the productivity of OSS teams. Also, our conceptualization helps to bring together the findings
of OSS studies which have only focused on one distance form (Hu et al. 2012, Daniel et al.
2013, Colazo and Fang 2010) and helps to derive a comprehensive picture of the effects of
geographic dispersion in OSS projects. Moreover, by looking at both OSS developers’ online
and offline interactions, our study explicitly addresses the call by Crowston et al. (2007) for
more research on the role of offline interactions among OSS developers. Finally, our evaluation
results highlight the importance for OSS managers to base the staffing of their projects on
developers’ ability to meet offline. If offline interactions are not possible, project managers
should bring together OSS developers with little spatial and cultural distances. However, if
offline meetings between OSS developers are possible, project managers should adopt the
completely opposite approach and bring together members with high spatial and cultural
distances. Irrespective of developers’ ability to meet offline, OSS managers should seek to
minimize the amount of asynchronous working hours among team members to achieve
productive OSS development.

In light of researchers’ advice to treat knowledge workers as volunteers (Drucker 2002) our
research also provides value to the organizational domain. Our study draws on the common
critique that teamwork literature treats members’ geographic dispersion as a unitary and
dichotomous construct. In this regard, our multi-dimensional conceptualization can help to
bring together some of the fragmented findings created by previous evaluations and so derive
a comprehensive understanding of the positive and negative effects of members’ geographic
dispersion for productive teamwork. Moreover, by examining how team members’ offline
relationships can stimulate their online collaboration, our work extends research by Zhang and
Venkatesh (2013), who recently revealed an interaction between these two domains. Finally, in

Chapter III: Developer Integration

 114 Andreas Schilling

the light of the common underperformance of geographically dispersed teams within
corporations (Solomon 2010), our research provides several practical lessons for the staffing
and management of such teams. In particular, we delineate the conditions under which
geographically dispersed teams show their productivity potential and detail the conditions under
which collocated teamwork should instead be used. Finally, we point out what managers of
geographically dispersed teams need to watch out for.

This paper is structured as follows. In the next section, we derive our research model and
formulate our research hypotheses. Thereafter, in section three, we detail the research
methodology. Finally, we discuss the theoretical and managerial implications for both the OSS
and the organizational domain.

2 Theory Development

To understand how OSS teams’ productivity is affected by developers’ geographic dispersion,
we build on organizational literature and consider geographic dispersion as a multi-dimensional
construct that encompasses spatial, temporal, and cultural dimensions. Without doubt
geographic dispersion offers substantial gains for OSS teams’ productivity such as access to a
diverse set of skills and the ability to lever time-zone differences to achieve continuous code
development (Colazo and Fang 2010). With regard to the prevalent use of context-low CMC,
we assume, however, that the negative aspects of OSS developers’ geographic dispersion
prevail. Furthermore, by building on team cohesion literature, we posit that offline interactions,
which are considered context rich, mitigate these productivity deficits by giving OSS
developers diverse possibilities for building mutual knowledge and interpersonal relationships.
Figure 1 visualizes our research model and hypotheses.

2.1 A Multi-Dimensional Model for OSS Developers’ Geographic Dispersion
For a long time, organizational literature has considered geographic dispersion dichotomously
and solely in terms of spatial distances (Cummings et al. 2009, O'Leary and Cummings 2007,
Hinds and Mortensen 2005). However, this approach has increasingly been criticized for its

Figure 1. Research Model

Paper IV

Developer Management in FLOSS Projects 115

inadequacy in capturing the collaboration challenges posed to geographically dispersed teams
(Cummings et al. 2009, O'Leary and Cummings 2007, Hinds and Mortensen 2005). In particular
the sole consideration of spatial distances seems too limited to fully understand the problems
faced by geographically dispersed teams (Gibson and Gibbs 2006). Furthermore, the trend in
organizations for flexible working hours and the use of time shifts fully decoupled team
members’ time and space constraints. Thus, when focusing only on spatial distance, it seems
impossible to tease out those effects which are caused through time differences from those
which are caused through differences in members’ locations. As a result, recent teamwork
literature recommends to distinguish between effects which are caused by differences in
members’ locations from those which are caused through non-overlapping working hours
among members (Cummings et al. 2009, Espinosa and Carmel 2003). Apart from separating
temporal and spatial constraints, organizational literature suggests that differences in team
members’ cultural backgrounds are another relevant factor for collaboration in geographically
dispersed teams (Gibson and Gibbs 2006). Cramton (2001) provides evidence that team
members from different cultures have problems in achieving a shared interpretation of concrete
project incidents. With respect to the distinct effects on team members’ formation of mutual
knowledge and thus their collaboration, many researchers propose considering geographic
dispersion as a multi-dimensional construct with spatial, temporal, and cultural dimensions
(Martins et al. 2004, Hinds and Mortensen 2005, O'Leary and Cummings 2007). The second
common criticism of teamwork studies concerns their dichotomous differentiation of
geographic dispersion. O'Leary and Cummings (2007) show in their literature review that the
overwhelming majority of teamwork studies ignores any variation or degree in team members’
geographic dispersion. Instead most studies dichotomously differentiate between collocated
and dispersed project teams. An exception from this common practice is an evaluation by
Kirkman et al. (2006), which in turn highlights the need to consider variations of geographic
dispersion. Aside from the theoretical limitations, this dichotomous differentiation mitigates
the practical relevance of the derived study results as most teamwork settings in organizations
are neither purely geographically dispersed nor fully collocated (Martins et al. 2004).

In the following, we draw on these central critiques to derive a conceptualization of geographic
dispersion in OSS teams. With respect to organizational research by Martins et al. (2004) and
Hinds and Mortensen (2005) as well as conceptual OSS research by Ågerfalk et al. (2005), we
consider OSS developers’ geographic dispersion as a multi-dimensional construct
encompassing varying degrees of spatial, temporal, and cultural distances. As in the
organizational domain, we suppose that geographic dispersion has an ambivalent effect on OSS
teams’ productivity. On the one hand, geographically dispersed members potentially boost team
productivity not only by bringing together a diverse set of skills and experiences but also by
leveraging time-zone differences to achieve continuous coding. On the other hand, however,
geographic dispersion can hinder OSS developers’ effective interplay by complicating the
formation of shared knowledge and interpersonal relationships. With OSS developers’ context-
low CMC interaction, we suppose that the negative aspects of geographic dispersion prevail
and thus reduce OSS teams’ productivity. Next, building on organizational literature, we outline

Chapter III: Developer Integration

 116 Andreas Schilling

the distinct ways in which OSS developers’ geographic dispersion can mitigate their productive
interplay.

2.1.1 Spatial Distance
Spatially dispersed teams have substantial productivity potential as not only can they lever a
global workforce but they can also bring together members with a diverse set of expertise and
experiences. In practice, however, the reduced cognitive overlap among members which is
caused through members’ spatial distances complicates effective teamwork. According to
Cramton (2001) information asymmetries constitute a severe problem for spatially dispersed
teams as members often do not distinguish between information they have shared online and
offline. Even worse, members often expect others to share their experiences and information.
Thus, spatially dispersed team members commonly experience coordination issues which in
turn undermine their effective interplay (Cummings et al. 2009). Moreover, Cramton (2001)
points out that team members can interpret information asymmetries as failures of personal
reliability, which in turn impedes their trust behavior. This hampers team members’ effective
interplay even more as trust relationships are considered a key determinant for productive
teamwork (McAllister 1995). Furthermore, the negative consequences of information
asymmetries are amplified through the use of CMC as it does not convey members’ offline
experiences and gives them only limited possibilities for informal talks to strengthen their
interpersonal relationships.

Although OSS developers’ interact with each other primarily online, we posit that their
productive interplay is likewise affected by spatial distances. According to Crowston et al.
(2007), OSS developers’ often attend local meetings such as Linux User Groups (LUG), where
they meet other members and listen to talks on related programming topics. While such local
meetings enhance OSS developers’ knowledge and expertise, they lead to unequal information
distributions among them. As in the organizational domain, we expect that the resulting
information asymmetries complicate OSS developers’ productive interplay. Specifically we
suppose that OSS developers’ effective interplay is hampered through locally shared
information as well as weaker interpersonal relationships between spatially dispersed
developers. Hu et al. (2012) support the negative effects of spatial distances by revealing that
OSS developers who live in the same city are more likely rate each other positively. Further,
according to Stewart and Gosain (2006), strong interpersonal relations play a key role for OSS
developers’ effective collaboration. Thus, building on lessons from the organizational domain
and reflecting on OSS research, we hypothesize that:

Hypothesis 1: OSS developers’ spatial distances are negatively associated with their
productivity.

2.1.2 Temporal Distance
Another critical factor for the productivity of geographically dispersed teams is the amount of
overlapping working hours between members. For the sake of a uniformed terminology we
refer to non-overlapping working hours among team members as temporal distance. Temporal
distances can foster the performance of geographically dispersed teams by enabling members

Paper IV

Developer Management in FLOSS Projects 117

to work around the clock. Despite this gain for productivity, temporal distances often
complicate productive teamwork (Espinosa et al. 2012, Cummings et al. 2009). This is because,
team members have no or only limited possibilities to engage in real-time communication if
they are with temporally dispersed. Instead, members are forced to rely on asynchronous CMC
or arrange concrete dates to interact with each other. Both alternatives pose serious challenges
for effective teamwork. Zhang and Venkatesh (2013) point out that asynchronous CMC
increases the level of uncertainty among team members because long feedback loops prevent
members from quickly assessing and predicting each other’s behavior. Consequently, team
members are more hesitant regarding their project engagement and hence reduce their working
efforts which in turn lowers team productivity. Unfortunately, scheduling dedicated team
meetings does not help overcoming the productivity deficits either. Because of the extra efforts
associated with attending such meetings (e.g. staying up late), members often arrive at such
events biased and are even more negatively loaded towards other members if the events do not
result in clear decisions (Nurmi 2010). Ultimately, such negative experiences reduce
individuals’ working motivations and thus hamper team productivity. In light of the limited
possibilities for coping with temporal distances, organizational research explicitly warns
against the negative consequences for team members’ productivity (Espinosa et al. 2012,
Cummings et al. 2009).

We suppose that temporal distances have similar effects for OSS teams. Without question,
temporal distances bear enormous productivity potential for OSS teams such as continuous
development routines (Colazo and Fang 2010). However, with regard to organizational lessons,
we posit that temporal distances instead complicate effective teamwork. This is because OSS
developers commonly rely on real-time communication, in the form of Internet Relay Chat
(IRC), to discuss new ideas and to ask for help (Bird and Nagappan). In line with organizational
literature, we assume that OSS developers miss relevant information when they rely only on
asynchronous CMC, as it often does not include all the conversations which took place in IRC.
Moreover, we argue that synchronous CMC meetings between OSS developers do not solve
the deficits caused by temporal distances, either. Instead, drawing on organizational research,
we suppose that OSS developers are rather stressed and less motivated if they need to spend
extra effort to come online for an IRC meeting with their colleagues, which in turn negatively
affects their work efforts. Thus, building on organizational literature and the relevance of IRC
for OSS developers’ collaboration, we posit:

Hypothesis 2: OSS developers’ temporal distances are negatively associated with their
productivity.

2.1.3 Cultural Distance
The influence of team members’ cultural backgrounds on their collaboration productivity has
been a key topic in international management research for over two decades and has spawned
a variety of different definitions and conceptualizations. One of the most cited definitions for
culture in teamwork literature is from Hofstede (1980). A reason for this is, that Hofstede’s
research focuses on those aspects which affect individuals’ working behavior and that his
conceptualization has been evaluated and largely supported by various studies (Kirkman et al.

Chapter III: Developer Integration

 118 Andreas Schilling

2006). According to Hofstede, culture can be defined as the ‘collective programming of the
mind that distinguishes members of one human group from another’ (Hofstede 1980, p. 26).
Individuals build this ‘collective programming’ through their experiences with others and in
their social environment. To characterize cultural differences, Hofstede derived the following
four sub-dimensions based on a multi-national study involving more than 115,000 IBM
employees: (i) Power Distance: the acceptance of unequal power distributions, (ii) Uncertainty
Avoidance: the degree to which people accept uncertainty and ambiguity, (iii) Masculinity vs.
Femininity: the dominance of either masculine or feminine values within societies, (iv)
Individualism vs. Collectivism: individuals’ need to integrate into groups.

For the sake of a uniformed terminology, we refer to differences in team members’ cultural
backgrounds as cultural distances. Despite comprehensive research, studies within the
organizational domain draw an inconsistent picture of the effects of cultural distances among
team members. Although some research highlights their benefits for team members’ problem
solving and creative abilities, many studies instead caution against cultural distances especially
when using CMC. According to Bayazit and Mannix (2003), the underlying reason for the
underperformance of culturally heterogeneous teams lies in different interpretations of
information exchanged via CMC, which are caused by members’ different cultural
backgrounds. Another way in which cultural differences reduce team performance is by
complicating the decision processes via CMC (Gibson and Gibbs 2006, Maznevski and
Chudoba 2000).

We argue that cultural differences complicate the collaboration of OSS teams in a similar way
as in the organizational context. Culture has a salient influence on OSS developers’ motivation
to contribute (Subramanyam and Xia 2008, Padmanabha 2007). For example, while developers
from collectivistic cultures appreciate OSS projects due to ideological reasons, OSS developers
from individualistic cultures are instead motivated by their wish to promote themselves
(Subramanyam and Xia 2008). Even if OSS developers’ motives do not contradict each other,
they may still hinder the establishment of a common ideology with shared values and norms.
However, as Stewart and Gosain (2006) point out, such common ideology is a fundamental
element for the productive collaboration of OSS developers. Another problem for culturally
heterogeneous OSS teams is social categorization. This behavior makes OSS developers
identify with those project members who share their nationality and delineate from members
with other nationalities. As a result, OSS developers may selectively distribute information and
help others, which in turn also mitigates team performance. In a recent study, Daniel et al.
(2013) provide evidence for the supposed negative effects by showing that cultural distances
indeed undermine OSS teams’ productivity. Hence, drawing on organizational literature and
OSS research, we posit that:

Hypothesis 3: OSS developers’ cultural distances are negatively associated with their
productivity.

Paper IV

Developer Management in FLOSS Projects 119

2.2 The Moderating Role of Direct Offline Contact

As outlined above, we expect that CMC has an ambivalent effect on the productivity of
geographically dispersed teams. Although CMC is without doubt the key underpinning factor
for geographically dispersed teamwork, we argue that it poses a substantial barrier for the
productive collaboration of geographically dispersed members. In particular, two
characteristics of CMC complicate collaboration in geographically dispersed teams. These are
(i) context-low interactions and (ii) members’ anonymity to one another. According to
organizational research, an appropriate means of overcoming these problems are offline
meetings between team members (Kirkman et al. 2006). Compared to CMC, offline interactions
provide a much richer context for members to articulate themselves and various possibilities to
build social relationships with each other. In addition, practitioners consider offline meetings
to be a key complement for collaboration in geographically dispersed teams (Siebdrat et al.
2009).

Drawing on the positive effects of offline interactions for the collaboration of organizational
teams, we argue that they provide similar stimuli for the productive collaboration of
geographically dispersed OSS developers. In the OSS domain, offline interactions between
team members commonly occur in the context of sprint events. During these offline events OSS
developers have dedicated time to talk to each other and to present their upcoming or past
coding. Typically, the events end with a social activity, such as clubbing or having dinner, in
which OSS developers get the possibility to build friendships and discover similarities. With
regard to teamwork literature, we posit that enhanced conversations about work-related as well
as other topics help OSS developers mitigate the productivity deficits caused by their spatial,
temporal, and cultural distances.

2.2.1 Direct Offline Contact and Spatial Distance
Offline interactions aid the effective collaboration of spatially dispersed team members by
giving them enhanced possibilities to exchange about work and non-work related topics. In
comparison to members’ CMC interactions, offline interactions let them put faces to names and
gain personal impressions of each other. Moreover, members’ abilities to visualize their
thoughts through whiteboard sketches and the instant feedback of verbal and non-verbal
reactions enhance the exchange of knowledge and help to avoid misunderstandings. Apart from
this enhanced knowledge transfer, offline meetings ease the collaboration among spatially
dispersed members by giving them possibilities for spontaneous talks. Such personal
encounters often lead to off-topic conversations among team members which, in turn, lay the
foundation for strong interpersonal relationships and friendships. Thus, offline interactions help
spatially dispersed members overcoming central barriers for effective teamwork.

OSS studies suggest that the collaboration of spatially dispersed OSS developers similarly
benefits from offline interactions. Based on observations at sprint events, Crowston et al. (2007)
note that whiteboard sketches and the transfer of non-verbal cues are heavily used and
appreciated among OSS developers for exchanging knowledge. Moreover, sprint attendees
reported in an interview with Goth (2007) that they considered offline meetings especially

Chapter III: Developer Integration

 120 Andreas Schilling

important for establishing and maintaining social relationships with one another. One of the
interviewed developers put it this way: ‘At our sprints, we think much more about how to build
team collaboration instead of how to build a specific feature’ and ‘with the Internet, your
already know what everybody is doing, and now the emphasis has shifted to the importance of
conversations in the hall-way, talking about families and grabbing a beer’ (Goth 2007). With
respect to organizational research and the relevance of strong interpersonal relationships for
OSS teams’ productivity (Stewart and Gosain 2006), we posit that:

Hypothesis 4: Direct offline relationships among OSS developers mitigate the productivity
deficits caused by their spatial distances.

2.2.2 Direct Offline Contact and Temporal Distance
In addition, offline interactions foster the effective collaboration of teams with temporal
distances. In particular, members’ enhanced abilities to discuss and perform complex decisions
help addressing central challenges faced by temporally dispersed team members. According to
Maznevski and Chudoba (2000) face-to-face communication helps temporally dispersed
members streamline their coordination and decision-making processes, which in turn enhances
their productivity. In addition, offline meetings help teams with temporal distances become
more productive by reducing the perceived level of uncertainty among members which are
caused by long feedback loops in CMC. To achieve this, offline interactions not only give
members the possibility to learn about each other but also enable them to monitor in person
their colleagues’ team behavior and task commitment.

OSS research indicates that offline interactions have similar stimulating effects on the
collaboration of temporally dispersed OSS developers. Goth (2007) considers offline meetings
to be an essential means for OSS teams to overcome the challenges caused by temporal
distances. In particular, the researcher highlights the possibility of efficiently performing
complex team activities which require rapid member interactions. According to Crowston et al.
(2007), such actions include the discussion of new ideas and making strategic decisions. Such
team activities have substantial relevance for the development of OSS projects and the
productivity of team members. Moreover, strong interpersonal relationships foster OSS teams’
productivity by enhancing members’ ability to cope with situations of uncertainty and help
lessen feelings of isolation. Thus, by combining organizational and OSS research, we
hypothesize that:

Hypothesis 5: Direct offline relationships among OSS developers mitigate the productivity
deficits caused by their temporal distances.

2.2.3 Direct Offline Contact and Cultural Distance
Finally, offline interactions help members to cope with the productivity deficits caused by their
cultural distances. In comparison to context-low CMC interactions, team members very soon
become aware of relevant differences in their cultural backgrounds when interacting face-to-
face. Kankanhalli et al. (2007) consider this awareness to be key for overcoming and avoiding
cultural conflicts and misunderstandings among team members. Furthermore, the context rich
interaction in a face-to-face environment gives team members unique verbal (e.g. different

Paper IV

Developer Management in FLOSS Projects 121

pronunciations and immediate feedback) and visual tools to express their thoughts and
overcome potential misunderstandings caused by their different cultural backgrounds.
Moreover, Espinosa et al. (2006) show in their study that culturally diverse team members can
develop interpersonal relationships much better when communicating offline than when using
CMC. These formed interpersonal relationships help members to not only work effectively
work but also build a team identity which in turn helps to deescalate conflicts.

We argue that offline interactions provide similar stimuli for OSS teams with cultural distances.
In particular, we suppose that the awareness of cultural differences, created in the offline space,
help members working with each other online. Crowston et al. (2007) support this and state that
OSS developers understand email conversations with each other much easier after they have
met in person. Moreover, the researchers detail that offline meetings help OSS developers
building strong interpersonal relationships, which also enhance their collaboration (Stewart and
Gosain 2006). We thus hypothesize that:

Hypothesis 6: Direct offline relationships among OSS developers mitigate the productivity
deficits caused by their cultural distances.

2.3 Control Variables

Beyond developers’ geographic dispersion and their offline interactions, we account for other
factors which have been shown to affect the productivity of OSS teams. Following Colazo and
Fang (2010), we argue that a higher team size generally leads to a higher degree of code
development in an OSS project. In addition, we take into account OSS developers’ team
experience, as research by Singh et al. (2011a) suggests that OSS teams perform considerably
better the more often the involved developers have worked together in the past. Another
characteristic which we take account of is OSS developers’ level of project experience, as Singh
et al. (2011b) provide evidence that OSS developers become more productive the longer they
have been developing for a project. Furthermore, we account for the project size. Colazo and
Fang (2010) point out that OSS projects with large codebases provide more possibilities for
OSS developers to add or modify code. Finally, we control for the project age as older OSS
projects are generally more mature in terms of code structure and documentation, which in turn
eases OSS developers’ coding (Singh et al. 2011a).

3 Research Methodology

To evaluate our research hypotheses, we examine the collaboration practices of OSS teams
within the ‘K Desktop Environment’ (KDE). KDE is the default desktop environment on many
UNIX systems and consists of various OSS projects, ranging from games to entire office suites.
By focusing on KDE teams, we have the possibility of studying a diverse project spectrum
within the same development context (i.e. coding conventions, tool chain, version control, etc.).
In this section, we describe the details of our data collection and the measures used for our
analysis.

Chapter III: Developer Integration

 122 Andreas Schilling

3.1 Data Sample

We collected the data for our evaluation in three distinct extraction steps. First, we downloaded
the code repositories of all 65 KDE projects and wrote programming routines which used the
Version Control Systems (VCS) of these repositories to derive detailed contribution statistics
on the development activity in these OSS projects. Then, in the second step, we collected
information about OSS developers’ geographic dispersion. To do so, we worked together with
the project manager of a KDE community site where KDE developers can create a profile page
on which they can also share their address information. For our research, the project manager
of this site gave us full access to this location data. In the last step of our data extraction, we
used these data to identify those KDE projects for which we had location information on at least
75 per cent of all issued code commits during January 1st 2009 and April 27th 2013. The six
KDE projects which fulfilled this criteria are: ‘KDE PIM’ (a personal organizer), ‘DigiKam’ (a
photo management suite), ‘KDELibs’ (cross-application libraries), ‘Calligra’ (an office suite),
‘KDE Workspaces’ (a desktop organizer), and ‘Kate’ (a text editor).

Based on the derived contribution statistics, we looked at the collaboration activities of these
six KDE projects in detail. As in the evaluation by Kuk (2006), we noticed a very high developer
fluctuation in the KDE projects. The high fluctuation essentially creates every week a new team
configuration in the examined KDE projects. This allows us to study various team
configurations by partitioning the derived contribution history of each KDE project into weekly
samples. Because we are only interested in the collaboration of OSS developers, we filtered out
all periods where none or only one developer had been active. Figure 2 visualizes our sampling
strategy. In this example, Mark, Carl, Joe, and Alex are all active developers in the ‘KDE PIM’
project in July 2011. However, on taking a closer look one can see that over the four weeks in
July 2011 there have been various permutations of inactive and active developers. Applied to
the six KDE projects, this sampling strategy resulted in 648 data samples (N).

3.2 Measurement

3.2.1 Dependent Variable
With respect to previous evaluations, we assess the productivity of OSS teams (prodt) based
on the number of issued code commits in period t (Singh et al. 2011b). Code commits are a well
suited indicator for this as they either add new functionality to the OSS project or modify
existing code. To account for changing team sizes, we measure OSS teams’ productivity using

Figure 2. Deriving the Data Sample

Paper IV

Developer Management in FLOSS Projects 123

the average number of issued code commits per developer. To calculate this measure, we
identify for each period t the set of active developers (teamt). Then, we sum up the number of
issued code commits (ci,t) of each developer i in period t. Finally, we divide this aggregated
number through the number of developers (team_sizet) in t.

 𝑝𝑟𝑜𝑑𝑡 = (∑ 𝑐𝑖,𝑡
𝑖∈𝑡𝑒𝑎𝑚𝑡

) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (22)

3.2.2 Independent Variables
To measure OSS teams’ spatial distance (spatial_distt), we draw on a method which was
originally proposed by Scellato et al. (2010). This method builds on the spatial distance (disti,j)
between every two active OSS developers i and j. To calculate this distance, we use the
Haversine formula (Gellert et al. 1989) that very efficiently computes the distance between two
points on a sphere. Although the earth is not a perfect sphere, the Haversine formula provides
an appropriate and efficient way to approximate spatial distances on earth (Sinnott 1984). Next,
the proposed method uses the factor β to smooth out very long and very short distances. Finally,
Scellato et al. (2010) recommend calculating the exponential decay of the resulting term
because distance does not have a proportional effect on individuals’ interactions. While it makes
a considerable difference for individuals to meet if they work 1 or 1,000 miles apart from each
other, there is only a marginal change in individuals’ ability to meet with each other if they
work 100,000 or 101,000 miles apart. Scellato et al. (2010) used their measure to examine the
influence of spatial distances on the formation of friendship in Social Networking Sites (SNS).
While the relevance of individuals’ spatial distance is considered symmetric for their SNS
activity, this is not necessarily the case for OSS developers. Instead, OSS developers who are
highly active in a particular period can assist other developers much better than developers who
only show a little commitment to the OSS project in that period. To account for this aspect, we
weight an OSS developer’s spatial distance to another team member (j) by her share of commits
in the particular period (wj,t). At the same time, we assume that team members who are more
active in the particular period are more likely affected by spatial distances because they have to
coordinate more with other developers. Hence, we compute the spatial distance of an OSS team
as the average spatial distance weighted by developers’ share of commits.

 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑡 = ∑  𝑗∈𝑡𝑒𝑎𝑚𝑡 ∧ 𝑖≠𝑗 𝑒−𝑑𝑖𝑠𝑡𝑖,𝑗/𝛽 × 𝑤𝑗,𝑡 (23)

 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑡 = (∑ 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑡𝑖∈𝑡𝑒𝑎𝑚𝑡
 × 𝑤𝑖,𝑡) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (24)

For OSS developers’ temporal distance (temporal_disti,t), we modify the measure as originally
proposed by Colazo and Fang (2010). This measure approximates OSS developers’ temporal
distance based on the variance in the time of their first code commit each day. Alas, this measure
is based on two important assumptions. The first assumption is that OSS developers’ temporal
distance to all team members is equally important. Second, the measure assumes that all project
members spend similar amounts of time on the OSS project each day. However, both
assumptions are not consistent with the unequal work distributions commonly found in OSS
projects (Toral et al. 2010). To address these aspects, we modified the original measure of

Chapter III: Developer Integration

 124 Andreas Schilling

Colazo and Fang (2010) in the following way: Rather than comparing a single point in time,
we assess members’ temporal distance by counting the number of overlapping working hours
(overlapi,j,d) between every two team members i and j on each day (d) in t. To do so, we
reconstruct the daily working hours of OSS developers based on the UTC-timestamps of their
first and last project commit each day. As for spatial distances, we weight OSS developers’
temporal distance to team members based on their share of commits in the particular period
(wj,t). Finally, in order to assess the temporal distance for the OSS team (temporal_distt), we
calculate the average temporal distance per developer weighted by members’ commitment in
period t.

 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑡 = ∑ (
𝑗∈𝑡𝑒𝑎𝑚𝑡 ∧ 𝑗≠𝑖

∑ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑖,𝑗,𝑑𝑑∈𝑡) × 𝑤𝑗,𝑡 (25)

 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑡 = (∑ 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑡𝑖∈𝑡𝑒𝑎𝑚𝑡
 × 𝑤𝑖,𝑡) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (26)

In line with our conceptualization, we draw on research by Hofstede to assess an OSS team’s
cultural distances (cultural_distt). Based on a multinational study with 116,000 IBM
employees Hofstede derived national index scores for each of the four cultural dimensions.
These index scores are: Power Distance Index (PDI), Uncertainty Index (UI), Masculine Index
(MI), and Individuality Index (II). Following their original publication by Hofstede (1980),
these index scores were evaluated and largely supported in numerous subsequent studies
(Kirkman et al. 2006). Most recently, the scores have been refined by Hofstede himself
(Hofstede and Minkov 2010). To evaluate OSS developers’ cultural distance, we use Hofstede’s
national index scores in the following way: We begin by estimating KDE developers’
nationality using the address details provided in their online profiles12. Next, we merged KDE
developers’ nationality with Hofstede’s cultural index scores. While Hofstede’s research
provides index scores for most of the countries in our study sample, there are some countries,
especially in Eastern Europe, which were not covered. For these countries, we draw on research
by Huettinger (2008), who extended Hofstede’s index scores to Eastern European countries.
Finally, as proposed by Malik and Zhao (2013), we assess OSS developers’ cultural differences
(cultural_disti,j) by calculating the absolute difference between their PDI, UI, MI, and II values.
We assume that cultural differences are especially relevant towards those developers who are
highly active in the OSS project in a given period. Therefore, we weight OSS developers’
cultural differences to every other member (j) by her share of commits in the particular period
(wj,t). Finally, to assess cultural distance on the team-level, we average OSS developers’ cultural
distance weighted by their commitment in t.

 𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑗 = ∑ (
𝑗∈𝑡𝑒𝑎𝑚𝑡∧𝑗≠𝑖

∣∣𝑃𝐷𝐼𝑖 − 𝑃𝐷𝐼𝑗∣∣ + ∣∣𝑈𝐴𝐼𝑖 − 𝑈𝐴𝐼𝑗∣∣ + ∣∣𝐼𝐼𝑖 − 𝐼𝐼𝑗∣∣ + ∣∣𝐼𝐷𝑉𝐼𝑖 − 𝐼𝐷𝑉𝐼𝑗∣∣) × 𝑤𝑗,𝑡 (27)

 𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑡 = (∑ 𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑠𝑡𝑖,𝑡𝑖∈𝑡𝑒𝑎𝑚𝑡
 × 𝑤𝑖,𝑡) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (28)

12 To ensure the validity of this approach we confirmed it using a random sample of 71 KDE developers. These
KDE developers provided us with information about their location and their nationality. The results of this test
support our assumption and show that our estimation matched the developers’ nationality in 66 cases (90.1 per
cent).

Paper IV

Developer Management in FLOSS Projects 125

To evaluate OSS teams’ direct offline ties (OTt), we examine developers’ attendance to coding
sprints of the particular KDE project. To extract this information, we first queried the central
KDE community webpage for developer sprints (https://sprints.kde.org/sprint/all). As this
webpage was not launched until April 2011, it did not cover coding sprints which occurred
between January and April 2011. Moreover, not all KDE projects used this community page to
organize their sprint events right after its launch, but instead waited several months before using
it. Hence, we also visited the homepage of each examined KDE project and looked for
information about past coding sprints. In this way we could retrieve a dedicated attendee list
for the overwhelming majority of all sprint events. In the few cases in which we found no
attendance list, we reconstructed it based on a labeled group photo or a blog post of the sprint.
Drawing on this attendance information, we derived the network structure of OSS developers’
offline relationships. To do so, we created a tie between two developers if they attended the
same coding sprint. For our modeling, however, we do not consider the productivity gains of
these offline meetings to be symmetrically distributed. Instead, we suppose that the productivity
and coordination benefits which OSS developers can derive from their offline interactions
depend on their own and their interaction partners’ level of expertise. Figure 3 visualizes this
modeling approach with the four developers Anna, Mark, Carl, and Joe. In this example, Anna
and Mark meet at a sprint event. Mark is relatively new to the OSS project and not as
experienced as Anna. Hence, he can benefit substantially from meeting Anna while she benefits
only marginally from this meeting. Instead, Anna benefits much more from her meeting with
Carl at some other event, because he has a much higher level of expertise than she does. To
account for this asymmetric productivity gains, we model OSS developers’ direct offline
interactions as a directed graph. In this graph, an edge (ηi,j,t) between developers is weighted by
the number of previous offline interactions (meetupi,j,t) between them until period t and the level
of project expertise of the developer one met (expertisej,t). Based on this directed graph, we
measure OSS teams’ level of direct offline ties by calculating the average degree of outgoing
links at period t.

 𝜂𝑖,𝑗,𝑡 = 𝑒𝑥𝑝𝑒𝑟𝑡𝑖𝑠𝑒𝑗,𝑡 × 𝑚𝑒𝑒𝑡𝑢𝑝𝑖,𝑗,𝑡 (29)
 𝑂𝑇𝑡 = (∑ ∑ 𝜂𝑖,𝑗,𝑡𝑗∈𝑡𝑒𝑎𝑚𝑡 ∧ 𝑗≠𝑖𝑖∈𝑡𝑒𝑎𝑚𝑡

) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (30)

Figure 3. Modeling Resource Access in Offline Social Networks

https://sprints.kde.org/sprint/all

Chapter III: Developer Integration

 126 Andreas Schilling

3.2.3 Control Variables
We measure OSS projects’ team size (team_sizet), by determining the cardinality of the
developer team in period t. To assess team experience (team_expt) we average the number of
overlapping days between every two developers until period t (Di,j,t). Likewise, we measure
developers’ project experience (proj_expt) by determining the average number of days they
have already been active in the OSS project (Di,t). To evaluate project size (proj_sizet), we
determine OSS projects’ lines of code at the beginning of t. Finally, we assess project age
(proj_aget) by counting the number of days (NoDt) between the project’s inception and the
beginning of t.

 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 =∣ 𝑡𝑒𝑎𝑚𝑡 ∣ (31)
 𝑡𝑒𝑎𝑚_𝑒𝑥𝑝𝑡 = (∑ ∑ 𝐷𝑖,𝑗,𝑡𝑗∈𝑡𝑒𝑎𝑚𝑡 ∧ 𝑗≠𝑖𝑖∈𝑡𝑒𝑎𝑚𝑡

) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (32)
 𝑝𝑟𝑜𝑗_𝑠𝑖𝑧𝑒𝑡 = 𝐿𝑜𝐶𝑡 (33)
 𝑝𝑟𝑜𝑗_𝑒𝑥𝑝𝑡 = (∑ 𝐷𝑖,𝑡𝑖∈𝑡𝑒𝑎𝑚𝑡

) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (34)

 𝑝𝑟𝑜𝑗_𝑎𝑔𝑒𝑡 = 𝑁𝑜𝐷𝑡 (35)

4 Results

4.1 Descriptive Statistics and Variable Transformation
Before we started our evaluation, we checked the cross-correlations of all independent
variables. Thereby, some independent variables showed a relatively strong cross-correlation,
which posed the danger of multi-collinearity. To address this threat, we followed the advice of
Aiken and West (1991) and mean-centered and scaled all variables. This transformation
reduced the correlations between the independent variables substantially, so that most
correlation coefficients are now below 0.15 (see Table 1). To ensure that the remaining
correlations do not cause problems of multi-collinearity, we calculated the Variance Inflation
Factor (VIF) for each independent variable. This factor measures the degree to which the
variance of an independent variable is caused by collinearity. As listed in Table 1, the VIF of
all the transformed variables is well below the required threshold of 10 and also lower than the
recommended threshold of 4 (Greene 2003). Hence, we can ensure discriminant validity for the
measures used.

Table 1: VIF and Cross Correlations
 VIF 1 2 3 4 5 6 7 8

1. team_size 2.99
2. team_age 2.39 0.43***
3. project_size 2.59 0.47*** 0.41***
4. project_age 2.03 -0.55*** -0.34*** -0.43***
5. project_exp 2.25 -0.22*** 0.48*** 0.16*** 0.05
6. spatial_dist 1.84 -0.30*** -0.22*** -0.46*** 0.15*** -0.28***
7. temporal_dist 1.37 0.16*** 0.20*** 0.26*** -0.09* 0.05 -0.04
8. cultural_dist 1.62 -0.31*** -0.09* -0.13*** 0.02 -0.08* 0.46*** -0,03
9. OT 2.87 0.13*** -0.02 -0.30*** -0.19*** -0.13*** 0.16*** 0.22*** -0.12

Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001

Paper IV

Developer Management in FLOSS Projects 127

4.2 Hypotheses Testing

To evaluate our research model, we compiled three regression models, which we assessed using
Ordinary Least Squares (OLS) regression. Table 2 summarizes the results of these three
regressions.

The baseline model which consists exclusively of the control variables already explains the
productivity of OSS teams to a moderate degree (R2 = 0.300). In this model, team size has no
significant effect on productivity (β = -0.061, p = 0.223). In contrast, team experience has a
weak negative effect on productivity (β = -0.106, p = 0.029), suggesting that OSS developers
become less productive, the longer they are working with each other. Moreover, project size
has a strong positive effect on productivity (β = 0.402, p < 0.001), indicating that the size of a
project’s codebase stimulates OSS developers’ productivity. Project age has a weak positive
effect on OSS developers’ productivity (β = 0.189, p < 0.001). This suggests that developers
are more productive in older OSS projects. Finally, developers’ level of project experience has
a moderate positive effect on their productivity (β = 0.402, p < 0.001), indicating that OSS
developers with more project experience are more productive.

The second regression model adds OSS developers’ spatial, temporal, and cultural distances to
the control variables and has a considerably higher explanatory power for OSS teams’
productivity (R2 = 0.513). The results of this regression model suggest that each of the three
distance forms has a distinct effect on OSS team productivity. Spatial distances between OSS
developers have a moderate negative effect on team productivity (β = -0.298, p < 0.001). This
supports hypothesis 1, which states that OSS team productivity decreases, the more developers
work spatially apart from each other. Furthermore, OSS teams’ temporal distances have a
moderate positive effect on their work productivity (β = 0.334, p < 0.001). However, our
measure is inverse as it considers the overlap of developers’ working hours. Thus, this result,
suggests a negative effect between developers’ non-overlapping working hours and their
productivity, which is in line with hypothesis 2. Finally, cultural distances have a weak negative
effect on the productivity of OSS teams (β = -0.200, p < 0.001). This finding supports
hypothesis 3 which states that cultural distances hinder OSS teams’ productivity. Beside the
influence of the three distance forms, team size has a moderate negative effect on OSS team’
productivity (β = -0.307, p < 0.001) while team experience has no significant effect on OSS
team productivity (β = -0.026, p = 0.532). Project size has a weak positive effect (β = 0.219, p
< 0.001) and project age a weak positive influence (β = 0.089, p = 0.011) on team members’
productivity. As in the baseline model, OSS developers’ level of project experience has a weak
positive effect on their collaboration productivity (β = 0.225, p < 0.001).

In the third regression model, we examine the interaction effect of OSS developers’ direct
offline ties on the negative effects of spatial, temporal, and cultural distances on OSS teams’
productivity. This model has the highest explanatory power of all OLS regression models (R2
= 0.532). As in the second regression model, spatial distances have a moderate negative effect
(β = -0.310, p< 0.001) on OSS teams’ productivity. Moreover, members’ temporal and cultural
distances have a moderate positive, respectively, weak negative effect on team productivity (β

Chapter III: Developer Integration

 128 Andreas Schilling

= 0.307, p < 0.001; β = -0.145, p < 0.001). Developers’ direct offline ties have a weak positive
effect on OSS teams’ productivity (β = 0.170, p < 0.001). In addition, the regression analysis
reveals an interaction effect between OSS developers’ direct offline ties and their spatial and
cultural distances. The multiplication term of developers’ spatial distance and their offline ties
has a weak positive effect on their productivity (β = 0.067, p = 0.028). This indicates that the
negative effects of developers’ spatial distances on team productivity are not only reduced but
even slightly reversed through direct offline interactions between OSS developers, which
supports hypothesis 4. Similarly, the interaction term between OSS developers’ cultural
distances and their direct offline ties has a weak positive effect on productivity (β = 0.083, p =
0.030). This finding supports hypothesis 6 by providing evidence that developers’ direct offline
contact mitigates and even slightly reverses the productivity deficits caused by their cultural
distances. However, there is no significant interaction between OSS developers’ temporal
distances and their direct offline ties (β = -0.006, p = 0.628), which does not support hypothesis
5.

4.3 Post-Hoc Analysis on Offline Tie Efficacy

The results of our regression analysis suggest that direct offline relationships mitigate and even
slightly reverse some of the problems associated with geographically dispersed teamwork. To
achieve a better understanding of the stimulating effects of direct offline ties on OSS teams’
productivity, we perform several post-hoc analyses. In particular, we seek to identify those
situations in which OSS teams benefit most from direct offline relationships between
developers. To do so, we examine closely the interaction effect of offline ties with spatial and
cultural distances. Moreover, with respect to research by Singh et al. (2011b), we examine if
there is a similar interaction effect for team members’ level of project experience. For this
analysis, we segment the three variables spatial distance (spatial_dist), cultural distance

Table 2: OLS Regression Results (n = 648)

 Model 1
(Baseline)

Model 2
(Geo. Dispersion)

Model 3
(Geo. Dispersion + OT)

Control Variables
team_size -0.061 -0.307 *** -0.298 ***
team_exp -0.106 * -0.026 -0.024
project_size 0.402 *** 0.219 *** 0.284 ***
project_age 0.189 *** 0.089 * 0.172 ***
project_exp 0.402 *** 0.225 *** 0.215 ***
Geo. Dispersion
spatial_dist -0.298 *** -0.310 ***
temporal_dist1 0.334 *** 0.307 ***
cultural_dist -0.200 *** -0.145 ***
OT 0.170 ***
Interaction
OT X spatial_dist 0.067 *
OT X temporal_dist -0.006
OT X cultural_dist 0.083 *
R2 0.300 0.513 0.532
Δ R2 0.213 *** 0.019 ***
Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001,

1 = temporal_dist measures members’ time overlap, hence a positive coefficient represents a negative relationship
between ‘temporal distance’ and productivity

Paper IV

Developer Management in FLOSS Projects 129

(cultural_dist), and project experience (project_exp) into four equally sized subgroups based
on their quartiles. Next, we examine how the average team productivity in each of the different
subgroups changes with an increasing level of direct offline ties among OSS developers. We
refer to the formed subgroups in the following as: ‘low’ (0 – 0.25 percentile), ‘mid low’ (0.25 –
0.50 percentile), ‘mid high’ (0.50 – 0.75 percentile), and ‘high’ (0.75 – 1.00 percentile). Figure
4 depicts the interaction plots for each of these subgroups.

The effects of direct offline ties differ based on OSS teams’ level of spatial distances. If there
is no direct offline contact, OSS teams with ‘low’ spatial distances perform best followed by
teams with ‘mid low’, ‘mid high’ and ‘high’ spatial distances. However, this picture changes
substantially with the existence of direct offline ties among developers. OSS teams with ‘mid
high’ and ‘high’ spatial distances profit the most from direct offline ties among developers and
soon take the lead productivity-wise while teams with ‘low’ spatial distances benefit only
marginally.

A similar effect can be observed for cultural distances. In situations when developers have no
direct offline contact with each other, those OSS teams with the lowest degree of cultural
distances perform best, followed by teams with ‘mid low’, ‘mid high’, and ‘high’ cultural
distances. However, this order is completely reversed if there are some direct offline ties among
developers. Then, the teams with the highest degree of cultural distances become the most
productive ones, followed by teams with ‘mid high’ and ‘mid low’ degrees of cultural distances.
In contrast, teams with ‘low’ cultural distances perform lowest as soon as OSS developers have
a low degree of direct offline ties.

Finally, we look at whether there is a similar interaction between team members’ project
experience and their offline ties. It turns out that when there are no direct offline ties among
developers, those teams with ‘mid high’ and ‘high’ project experience perform best, followed
by OSS teams with, ‘mid low’, and ‘low’ project experience. The teams with ‘low’ project
experience benefit most from direct offline ties, while teams with ‘mid low’ and ‘high’ levels
of project experience also experience performance gains but to a lesser degree. Surprisingly,
we observe that the productivity of OSS teams with ‘high’ levels of project experience is not
stimulated by developers’ direct offline ties but instead decreases.

a) Spatial Distance b) Cultural Distance c) Project Experience

Figure 4. Visualization of the Interaction Effects

Chapter III: Developer Integration

 130 Andreas Schilling

5 Discussion

With the massive growth of OSS initiatives and their geographically dispersed developer base,
OSS projects are considered to be forerunners for virtual teams and global communities in
general (Malone 2004). Yet, the most essential question of whether the experienced
productivity gains in OSS projects can be attributed to developers’ geographic dispersion or
rather to a particular project means, remains unclear. In this research, we tried to open the black
box of the effects posed by geographical dispersion on OSS teams’ productivity. Building on
organizational literature, we consider geographic dispersion as a multi-dimensional construct
encompassing spatial, temporal, and cultural distances. We suppose that each of these distances
hinders OSS teams’ productivity in a distinct way. As a potential counter measure, we propose
and evaluate the use of direct offline interactions between OSS developers. Our empirical
evaluation of 648 OSS teams within KDE largely supports our research hypotheses and
provides further insights into overcoming the challenges associated with OSS developers’
geographic dispersion. In this section, we summarize the key findings of our research and
outline theoretical and practical implications for the OSS and the organizational domain.

5.1 Key Findings

 Geographic dispersion is a multi-dimensional construct

Our empirical evaluation suggests that geographic dispersion should not be reduced to one
particular dimension (i.e. spatial or temporal) but instead should be considered as a multi-
dimensional construct. In our analyses there is little cross-correlation among OSS developers’
spatial, temporal, and cultural distances, which in turn supports our assumption that each of
these geographic distances has a distinct effect on OSS developers’ collaboration. The high
explanatory power of our second regression model (R2 = 0.513), which considers OSS
developers’ spatial, temporal, and cultural distances and the controls, further underlines the
relevance of this conceptualization. This high level of explanatory power is especially salient
compared to other regression analyses in the OSS context (Daniel et al. 2013, Colazo and Fang
2010) which considered only one aspect of geographic dispersion.

 Spatial, temporal, and cultural distances mitigate OSS teams’ productivity

Another important takeaway of our empirical analysis is that, spatial, temporal, and cultural
distances, overall, hinder the productivity of OSS teams. In particular, spatial and temporal
distances pose high burdens for the productive interplay of OSS developers. In comparison,
cultural distances have a negative effect, too, but to a lesser degree.

 Direct offline ties between OSS developers reverse the negative effects of spatial and
cultural distances

Our regression analysis reveals a negative interaction between OSS developers’ direct offline
ties and their spatial and cultural distances. Direct offline relationships not only reduce the
negative effects of these distances but even transform them into positive effects for OSS teams’

Paper IV

Developer Management in FLOSS Projects 131

productivity. Alas, our analysis suggests that direct offline ties are no help for OSS teams in
overcoming temporal distances.

 OSS teams with high spatial distances outperform teams with low spatial distances as
soon as there are few direct offline ties between the involved developers

Our post-hoc analysis reveals that there is no unitary interaction between OSS developers’
spatial distances and their direct offline ties. In situations when there is no offline contact,
spatial distances between OSS developers go hand in hand with performance deficits. However,
as soon as OSS developers establish a low degree of direct offline interactions, teams with high
and mid-high spatial distances outperform teams with low and mid-low spatial distances.

 Cultural distances become synergetic for OSS teams’ productivity as soon as there is a
low degree of direct offline ties among the involved OSS developers

Another key insight of our evaluation is that OSS teams can reverse the negative effects of
cultural distances as soon as developers have at least a few direct offline ties with each other.
As for spatial distances, OSS teams with the less cultural distances perform better when there
are no direct offline ties among OSS developers. If there is at least some direct offline
interaction between developers, this picture changes completely. From this point on, the teams
with more cultural distances perform best.

 Direct offline interactions are especially valuable for OSS teams whose developers have
little experience with the OSS project

Finally, our post-hoc analysis reveals an unexpected interaction effect between OSS
developers’ level of project experience and their direct offline ties. Specifically, our evaluation
suggests that those OSS developers with low, mid-low, and mid-high project experience benefit
most from an increasing degree of direct offline ties. Conversely, offline relationships reduce
the productivity of teams whose members have a high project experience. An explanation for
this effect could be that once OSS developers are experts in the project they might consider
offline interactions solely as social events and consequently be less motivated to actively
contribute to the project than to stay only active to keep connected with each other.

5.2 Limitations
There are several limitations in our research which we would like to point out. First, there are
various ways of looking at geographic dispersion in OSS teams. While we draw on central
lessons from teamwork literature, we do not claim that our multi-dimensional conceptualization
is complete or that it is the only way to look at geographic dispersion in OSS teams. Instead,
our analysis provides grounds for thorough OSS and organizational studies on geographically
dispersed teamwork. Besides complementing our conceptualization with further geographic
dimensions like developers’ experience within the OSS domain, future studies could use other
methodological approaches for evaluating geographic distances in OSS teams. Specifically,
future studies could examine if the number and size of spatial, temporal, and cultural clusters
also affect the performance of OSS teams.

Chapter III: Developer Integration

 132 Andreas Schilling

Secondly, we focus in our research on the role of direct offline relationships between OSS
developers. We do this because we posit that it is the enhanced abilities to transfer knowledge
and build social relations in face-to-face interaction which help OSS developers to overcome
the productivity deficits caused by their geographic dispersion. However, by doing so, we
disregard the effects of OSS developers’ indirect offline relationships. In light of recent research
by Zhang and Venkatesh (2013), which suggests an interaction between team members’ direct
and their indirect offline relationships, this shortcoming provides various opportunities for
future OSS studies. Beside evaluating whether a similar interaction effect can be observed in
the OSS domain, future research could build on Singh et al. (2011a) and elaborate on the effects
of structural holes and of average shortest paths in OSS developers’ offline interaction
networks.

The third limitation concerns our conceptualization and measurement of cultural distance for
which we rely on research by Hofstede (1980). While Hofstede’s research is supported by
various studies in the management field, it is widely used but not fully accepted (Kirkman et al.
2006). A particular critique is that it over-simplifies individuals’ culture and ignores cultural
differences within countries. Beside this conceptual limitation, our measure for cultural
distances is based on KDE developers’ location data. Although a test with a random sample of
KDE developers revealed an overwhelming overlap between KDE developers’ country of
residence and their nationality, we cannot rule out that this estimation biased the validity of our
evaluation. Future research should, therefore, complement our findings by adopting other
conceptualizations and dedicated measures for cultural differences among OSS developers.

Finally, our concentration on OSS teams within KDE limits the generalizability of our research
results. Although this concentration provides several advantages for our evaluation (i.e. shared
conventions for coding, code submissions, collaboration, etc.), it reduces the ability to
generalize our findings for other OSS projects. Future research may address this shortcoming
and examine the role of geographic dispersion and direct offline interactions with a more
diversified sample of OSS projects.

5.3 Implications for the OSS Domain
Our study contributes to the emerging literature which examines the role of team characteristics
on OSS teams’ productivity. To do so, we seek to understand if and how OSS developers’
geographic dispersion affects their productive interplay. As one way to overcome the negative
effects of geographic dispersion, we suggest and evaluate the use of direct offline interactions
between OSS developers. To the best of our knowledge, this is the first empirical evaluation in
the OSS domain which looks at geographic dispersion as a multi-dimensional construct. By
doing so, our research helps to bring together the findings of prior OSS studies which focused
on only one of these distances (Colazo and Fang 2010, Padmanabha 2007, Daniel et al. 2013)
and helps to derive a comprehensive understanding of the nuanced effects of OSS developers’
geographic dispersion. In line with our theorizing, the results of our empirical evaluation
suggest that the productivity of OSS teams can be explained to a considerable degree by
developers’ spatial, temporal, and cultural distances. Thus, future studies should not only

Paper IV

Developer Management in FLOSS Projects 133

account for the effects of these distances when examining the productivity of OSS teams, but
also examine whether similar geographic effects can be observed for the attraction and retention
of OSS developers.

Our research opposes the conventional wisdom that OSS teams are immune to the negative
effects of geographic dispersion. Instead, our study suggests that spatial and cultural distances
have neither a solely positive nor a solely negative effect on OSS teams’ productivity. In line
with conceptual research by Ågerfalk et al. (2005), our evaluation supports the notion of spatial
and cultural distances as both a gain and a burden for effective teamwork in OSS projects.
Spatial and cultural distances provide substantial benefits for effective collaboration, such as
the possibility to lever a global workforce or to combine a variety of skills and expertise, though
our evaluation suggests that these productivity gains require direct offline interactions among
members. If there is no offline contact between OSS developers, the negative aspects of spatial
and cultural distances prevail and complicate effective teamwork. This observation backs
previous OSS studies which suggest that OSS developers’ spatial (Hu et al. 2012) and cultural
distances (Daniel et al. 2013) constrain productive teamwork. However, with offline
interactions among developers, the positive aspects of spatial and cultural distances soon
outweigh the downsides and make OSS teams with those distances become most productive.
While our evaluation can only attest to this interaction, future studies should examine how
offline interactions unleash these productivity gains. In light of team cognition literature, it
seems likely that offline interactions help OSS developers to establish a better mutual
understanding and interpersonal relationships, which in turn helps them to mitigate the
problems associated with spatial and cultural distances. However, future studies should look
more closely into this aspect. It seems to be particularly worthwhile to examine if and how
offline relationships foster the formation of cognitive and affective trust among OSS developers
(McAllister 1995) and if such trust relationships transform into productivity gains. Irrespective
of OSS developers’ offline interactions, our evaluation suggests that temporal distances
throughout have a negative effect on the productivity of OSS teams. This is contrary to study
results by Colazo and Fang (2010), which instead suggest that developers’ temporal distances
stimulate their productive collaboration. An explanation for this discrepancy could be the use
of different measures for assessing temporal distances in OSS teams. While Colazo and Fang
(2010) measure temporal distance based on the variance in the time of OSS developers’ first
code commit each day, our measure assesses and weights the actual overlap in OSS developers’
working hours. Considering the common skewed work distribution in OSS projects (Toral et
al. 2010), and the associated heterogeneous coordination needs, we argue that our measure
captures temporal distances in OSS teams better and recommend it to future studies. Another
explanation for the discrepancy could be that the OSS teams studied by Colazo and Fang (2010)
were more effective in coping with the problems of temporal distances than teams within KDE.
This would raise the question of how OSS projects can overcome the negative effects of
temporal distances and why KDE teams are more affected by them than other OSS teams.

Finally, our research adds to literature by bringing together OSS developers’ offline and online
interaction contexts. While previous evaluations by Singh et al. (2011a) stress the importance
of OSS developers’ online relatedness, we examine the role of their offline connectedness in

Chapter III: Developer Integration

 134 Andreas Schilling

achieving effective collaboration. Following Crowston et al. (2007), we argue that offline
meetings provide OSS developers with a rich interaction context and social relationships which
help them mitigate the productivity challenges of their geographic dispersion. As far as we
know, our study offers the first empirical evaluation of the effects of OSS developers’ offline
relationships. In particular, our findings empirically support the assumptions of prior interview
studies and reveal that direct offline contact between OSS developers indeed helps overcoming
and even slightly reverses the collaboration problems caused by spatial and cultural distances.
Future research may draw on our findings to study if there is a similar interplay of offline and
online interactions which affects OSS developers’ attraction and retention.

Beside these implications for OSS literature, our evaluation provides several managerial lessons
for OSS projects. Most importantly, OSS project managers should not take the effective
interplay between OSS developers for granted but instead consider it as contingent upon their
spatial, temporal, and cultural distances. Moreover our evaluation stresses the need for project
managers to base their staffing decisions on the ability to conduct offline meetings between the
involved developers. If offline meetings are not possible, OSS projects are better off bringing
together developers with little spatial and cultural distances. For such endeavors a ‘cathedral-
like’ development approach can be appropriate if code is developed in private and only
published with a software release (Raymond 1999). However, if it is possible to arrange offline
meetings, project managers should favor a spatially and culturally dispersed developer base,
which can typically achieved by developing code openly in a ‘bazar-like’ approach (Raymond
1999). In addition, OSS projects can employ a combination of both approaches, such as a
‘cathedral-like’ approach with a globally dispersed developer group which meets regularly
offline or a ‘bazar-like’ approach within geographic borders such as OSS projects which are
only shared within a university intranet.

5.4 Implications for the Organizational Domain

Considering the explicit recommendation from scholars to consider knowledge workers as
volunteers (Drucker 2002) and the notion of OSS teams as prime examples of virtual
collaboration within corporations (Malone 2004), the results of our empirical study also
contribute to the organizational domain. Specifically, our study addresses a fundamental
shortcoming of most teamwork studies which is the uni-dimensional and dichotomous
differentiation of team members’ geographic dispersion (Cummings et al. 2009, Hinds and
Mortensen 2005, O'Leary and Cummings 2007). Instead, our multi-dimensional
conceptualization of geographic dispersion in terms of spatial, temporal, and cultural distances
offers grounds for bringing the isolated findings of previous studies together and helps to derive
an integrated understanding of the distinct effects of geographic dispersion. The results of our
evaluation provide empirical support to the use of this multi-dimensional conceptualization and
highlight its relevance for understanding members’ effective interplay. Future studies
examining aspects of geographic dispersion should, therefore, employ a similar
conceptualization. Beside the evaluation of other distance forms (i.e. organizational
boundaries), future research could use our results as a foundation for elaborating organizational
strategies on the most effective way to lever a global workforce.

Paper IV

Developer Management in FLOSS Projects 135

In addition, we contribute to organizational research by revealing that geographic dispersion
per se is neither a catalyst for nor a barrier to productive teamwork. Instead, it depends on the
existence of prior offline interactions between the involved members whether their geographic
dispersion is a gain or a hindrance to productive teamwork. Spatial and cultural distances pose
a barrier to effective collaboration if team members have not met offline with each other. This
supports organizational studies which warn of the effects of combining members from different
regions and cultures. However, as soon as there is little offline interaction among the members
involved, this picture is inverted and team members’ spatial and cultural distances become a
facilitator for team productivity. The ambivalent role of spatial and cultural distances not only
offers a possible explanation for the mixed findings in previous evaluations but provides further
avenues for future studies. One possible topic is the elaboration of members’ cognitive and
affective experiences in offline interactions which convert their spatial and cultural differences
into productivity boosts. Based on such an evaluation, other studies could then examine if there
is an alternative to offline interactions to help achieve similar productivity gains.

Furthermore, our study contributes to organizational literature by examining the specific
situations under which offline interactions stimulate the productivity of geographically
dispersed teams. Specifically, we observe that team members with little project experience
benefit most from direct offline ties, which is consistent with the advice given by Siebdrat et al.
(2009) to organize offline meetings when members are new to the project. Interestingly, we
observe that more offline meetings are not always a gain for productive teamwork. Conversely,
it turns out that offline meetings mitigate the productivity of teams whose members are highly
experienced with the project. Apart from examining whether similar effects can be also
observed in corporate teams, future studies should use a relational perspective to find out which
team or individual behavior underlies this effect.

Finally, our study complements organizational research which predominantly focused on either
team members’ online or offline interactions. Prior studies which sought to combine these two
domains such as research by Kirkman et al. (2004) were the exception. By drawing on research
by Zhang and Venkatesh (2013), our empirical evaluation uncovers an important interaction
between team members’ direct offline interaction and their spatial and cultural distances which
helps increase understanding of the contradictory results of previous studies. By doing so, our
study supports the advice of Faraj and Johnson (2011) to consider the network type for
understanding the different characteristics of individuals’ interactions and reveals the
complementary character of offline interactions for members’ online behavior. Future studies
should draw on our findings and examine whether members are aware of the distinct
characteristics of their offline and online interactions and whether the observed complementary
effects between both domains are noticed.

Considering the common escalation and underperformance of software projects in the
organizational domain (Keil and Mann 2000, Solomon 2010), our research also offers some
practical advice for the staffing and management of geographically dispersed teams in
corporations. Most importantly, our evaluation stresses the importance of basing staffing
decisions for such teams on the ability to arrange offline meetings. If offline meetings are not

Chapter III: Developer Integration

 136 Andreas Schilling

possible, managers should minimize the spatial and cultural distances between members.
However, if offline interactions between team members are possible, project managers should
adopt completely the opposite approach and bring together members with high spatial and
cultural distances because direct offline interactions transform these distances into productivity
gains. For all team configurations, it is advisable that temporal distances among members
should be avoided as they considerably harm the effective interplay of team members.

6 Conclusion

In this research, we examine if and how geographic dispersion mitigates the productivity of
OSS teams and propose that direct offline relationships among the involved developers can
compensate for these deficits. To examine this research question, we draw on teamwork
literature and consider geographic dispersion as a multi-dimensional construct encompassing
spatial, temporal, and cultural distances. An empirical investigation of 648 teams developing
OSS provides evidence that spatial, temporal, and cultural distances have a negative yet distinct
effect on team productivity. Furthermore, our study results show that only a small degree of
direct offline contact is necessary for OSS teams to transform developers’ spatial and cultural
distances into synergies for effective collaboration. Finally, our empirical evaluation highlights
the value of offline meetings for OSS developers who have little experience with the project.

7 References

Ågerfalk, P. J., B. Fitzgerald, H. Holmström, B. Lings, B. Lundell, E. Ó. Conchúir. 2005. A
framework for considering opportunities and threats in distributed software development.
In Proceedings of the International Workshop on Distributed Software Development, 47–
61.

Aiken, L. S., S. G. West. 1991. Multiple regression: Testing and interpreting interactions.
Sage, Newbury Park, California.

Bayazit, M., E. A. Mannix. 2003. Should I Stay or Should I Go?: Predicting Team Members'
Intent to Remain in the Team. Small Group Research 34(3) 290–321.

Bird, C., N. Nagappan. Who? Where? What? Examining distributed development in two large
open source projects 9th IEEE Working Conference on Mining Software Repositories
(MSR), 237–246.

Colazo, J. A., Y. Fang. 2010. Following the Sun: Temporal Dispersion and Performance in
Open Source Software Project Teams. Journal of the Association for Information
Systems 11(12) 684–707.

Cramton, C. D. 2001. The Mutual Knowledge Problem and Its Consequences for Dispersed
Collaboration. Organization Science 12(3) 346–371.

Paper IV

Developer Management in FLOSS Projects 137

Crowston, K., J. Howison, C. Masango, U. Eseryel. 2007. The Role of Face-to-Face Meetings
in Technology-Supported Self-Organizing Distributed Teams. IEEE Transactions on
Professional Communication 50(3) 185–203.

Cummings, J. N., J. A. Espinosa, C. K. Pickering. 2009. Crossing Spatial and Temporal
Boundaries in Globally Distributed Projects: A Relational Model of Coordination Delay.
Information Systems Research 20(3) 420–439.

Daniel, S., R. Agarwal, K. J. Stewart. 2013. The Effects of Diversity in Global, Distributed
Collectives: A Study of Open Source Project Success. Information Systems Research
24(2) 312–333.

Deshpande, A., D. Riehle. 2008. The Total Growth of Open Source. B. Russo, E. Damiani, S.
Hissam, B. Lundell, G. Succi, eds. Open Source Development, Communities and Quality.
Springer US, Boston, MA, 197–209.

Drucker, P. F. 2002. They're not Employees, They're People. Harvard Business Review 80(2)
70–77.

Espinosa, A., E. Carmel. 2003. The impact of time separation on coordination in global
software teams: a conceptual foundation. Software Process: Improvement and Practice
7(1).

Espinosa, J. A., J. N. Cummings, C. Pickering. 2012. Time Separation, Coordination, and
Performance in Technical Teams. IEEE Transactions on Engineering Management 59(1)
91–103.

Espinosa, J. A., W. DeLone, G. Lee. 2006. Global boundaries, task processes and IS project
success: a field study. Information Technology & People 19(4) 345–370.

Faraj, S., S. L. Johnson. 2011. Network Exchange Patterns in Online Communities.
Organization Science 22(6) 1464–1480.

Gellert, W., S. Gottwald, M. Hellwich, H. Kästner, H. Küstner. 1989. The VNR concise
encyclopedia of mathematics, 2nd ed. Van Nostrand Reinhold, New York.

Gibson, C. B., J. L. Gibbs. 2006. Unpacking the Concept of Virtuality: The Effects of
Geographic Dispersion, Electronic Dependence, Dynamic Structure, and National
Diversity on Team Innovation. Administrative Science Quarterly 51(3) 451–495.

Goth, G. 2007. Sprinting toward Open Source Development. IEEE Software 24(1) 88–91.

Greene, W. H. 2003. Econometric analysis, 5th ed. Prentice Hall, Upper Saddle River, N.J.

Hinds, P. J., M. Mortensen. 2005. Understanding Conflict in Geographically Distributed
Teams: The Moderating Effects of Shared Identity, Shared Context, and Spontaneous
Communication. Organization Science 16(3) 290–307.

Chapter III: Developer Integration

 138 Andreas Schilling

Hofstede, G. 1980. Culture's consequences: International differences in work-related values.

Hofstede, G. J., M. Minkov. 2010. Cultures and organizations: Software of the mind ;
intercultural cooperation and its importance for survival, 3rd ed. McGraw-Hill, New
York, NY.

Hu, D., J. L. Zhao, Chen Jiesi. 2012. Reputation Management in an Open Source Developer
Social Network: An Empirical Study on Determinants of Positive Evaluations. Decision
Support Systems 53(3) 526–533.

Huettinger, M. 2008. Cultural dimensions in business life: Hofstede's indices for Latvia and
Lithuania. Baltic Journal of Management 3(3).

Kankanhalli, A., B. C. Tan, K.-K. Wei. 2007. Conflict and Performance in Global Virtual
Teams. Journal of Management Information Systems 23(3) 237–274.

Keil, M., J. Mann. 2000. Why Software Projects Escalate: An Empirical Analysis and Test of
Four Theoretical Models. Management Information Systems Quarterly 24(4) 631–664.

Kirkman, B. L., K. B. Lowe, C. B. Gibson. 2006. A quarter century of Culture's
Consequences: a review of empirical research incorporating Hofstede's cultural values
framework. Journal of International Business Studies 37(3) 285–320.

Kirkman, B. L., B. Rosen, P. E. Tesluk, C. B. Gibson. 2004. The Impact of Team
Empowerment on Virtual Team Performance: The Moderating Role of Face-to-Face
Interaction. Academy of Management Journal 47(2) 175–192.

Kuk, G. 2006. Strategic Interaction and Knowledge Sharing in the KDE Developer Mailing
List. Management Science 52(7) 1031–1042.

Malik, T. H., Y. Zhao. 2013. Cultural distance and its implication for the duration of the
international alliance in a high technology sector. International Business Review 22(4)
699–712.

Malone, T. W. 2004. The future of work: How the new order of business will shape your
organization, your management style, and your life. Harvard Business School Press,
Boston, Mass.

Martins, L. L., L. L. Gilson, M. T. Maynard. 2004. Virtual Teams: What Do We Know and
Where Do We Go From Here? Journal of Management 30(6) 805–835.

Maznevski, M. L., K. M. Chudoba. 2000. Bridging Space Over Time: Global Virtual Team
Dynamics and Effectiveness. Organization Science 11(5).

McAllister, D. J. 1995. Affect-and Cognition-Based Trust as Foundations for Interpersonal
Cooperation in Organizations. Academy of Management Journal 38(1) 24–59,
10.2307/256727.

Paper IV

Developer Management in FLOSS Projects 139

Nurmi, N. 2010. Work stressors related to geographic distance and electronic dependence in
virtual teams. International Journal of Business and Systems Research 4(3) 311.

O'Leary, M. B., J. N. Cummings. 2007. The Spatial, Temporal, and Configurational
Characteristics of Geographic Dispersion in Teams. Management Information Systems
Quarterly 31(3) 433–452.

Padmanabha, R. 2007. FLOSS (Free/Libre Open Source Software): A Theme for Cultural
Differences Study, Jindal Global Law School (JGLS), Jindal Global University (JGU),
New Delhi.

Raymond, E. S. 1999. The cathedral and the bazaar: Musings on Linux and open source by
an accidental revolutionary, 1st ed. O'Reilly, Sebastopol.

Scellato, S., C. Mascolo, M. Musolesi, V. Latora. 2010. Distance matters: geo-social metrics
for online social networks. USENIX Association, ed. Proceedings of the 3rd conference
on Online social networks.

Siebdrat, F., M. Hoegl, H. Ernst. 2009. How to Manage Virtual Teams. MIT Sloan
Management Review 50(4).

Singh, P. V., Y. Tan, V. Mookerjee. 2011a. Network Effects: The Influence of Structural
Social Capital on Open Source Project Success. Management Information Systems
Quarterly 35(4) 813–829.

Singh, P. V., Y. Tan, N. Youn. 2011b. A Hidden Markov Model of Developer Learning
Dynamics in Open Source Software Projects. Information Systems Research 22(4) 790–
807.

Sinnott, R. W. 1984. Virtues of the Haversine. Sky and Telescope 63(3) 159.

Solomon, C. 2010. The Challenges of Working in Virtual Teams, http://rw-
3.com/2012VirtualTeamsSurveyReport.pdf.

Stewart, K. J., S. Gosain. 2006. The Impact of Ideology on Effectiveness in Open Source
Software Development Teams. Management Information Systems Quarterly 30(2) 291–
314.

Subramanyam, R., M. Xia. 2008. Free/Libre Open Source Software development in
developing and developed countries: A conceptual framework with an exploratory study.
Decision Support Systems 46(1) 173–186.

Toral, S., M. Martínez-Torres, F. Barrero. 2010. Analysis of virtual communities supporting
OSS projects using social network analysis. Information and Software Technology 52(3)
296–303.

Chapter III: Developer Integration

 140 Andreas Schilling

Zhang, X., V. Venkatesh. 2013. Explaining Employee Job Performance: The Role of Online
and Offline Workplace Communication Networks. Management Information Systems
Quarterly 37(3) 695–722.

Paper V

In the Spotlight -

Evaluating How Celebrities Affect FLOSS
Developers’ Participation Motivation

Andreas Schilling
University of Bamberg

andreas.schilling@uni-bamberg.de

Sven Laumer
University of Bamberg

sven.laumer@uni-bamberg.de

Tim Weitzel
University of Bamberg

tim.weitzel@uni-bamberg.de

In: Proceedings of the 21st European Conference on Information System (ECIS 2013), Utrecht,
Netherlands

The publication is available under:

http://aisel.aisnet.org/ecis2013_cr/208

http://aisel.aisnet.org/ecis2013_cr/208

Chapter III: Developer Integration

 142 Andreas Schilling

Abstract

This study examines the influence of geographic dispersion on the productive collaboration of
Open Source Software (OSS) developers. Building on teamwork literature, we consider OSS
developers’ geographic dispersion as a multi-dimensional construct consisting of spatial,
temporal, and cultural distances. We posit that each of these distances has a distinct negative
effect on OSS developers’ productive interplay by reducing their level of shared knowledge
and social relatedness. As a potential strategy for OSS teams to overcome the productivity
deficits of these geographic distances, we evaluate the role of direct offline interactions which
take place in sprint events. The results of our empirical evaluation with 648 OSS teams largely
support our research hypotheses and suggest: (i) geographic dispersion should be considered as
a multi-dimensional construct, (ii) spatial, temporal, and cultural distances have a distinct
negative effect on OSS teams’ productivity, (iii) direct offline interactions between developers
transform the productivity deficits of spatial and cultural distances into productivity gains for
OSS teams, (iv) direct offline interactions are especially valuable for the productive interplay
of developers who have little experience with the particular OSS project. Finally, we compare
the results of our research with previous research in the organizational and OSS domain, which
has generally focused only on one particular dimension of geographic dispersion. Thereby, we
derive possible questions for future studies and delineate specific practical advice.

Paper VI

In Goods We Trust -
Are OSS Teams With Reputable Developers More

Productive?13

Andreas Schilling
University of Bamberg

andreas.schilling@uni-bamberg.de

Sven Laumer
University of Bamberg

sven.laumer@uni-bamberg.de

Tim Weitzel
University of Bamberg

tim.weitzel@uni-bamberg.de

13 The term OSS has been used instead of FLOSS in order to align with related articles in the
targeted journal and not to express any theoretical difference.

Chapter III: Developer Integration

 144 Andreas Schilling

Abstract

In this study, we examine if and how reputable developers increase the productivity of teams
developing Open Source Software (OSS). Building on the social practice view of OSS
development, we suppose that reputable developers stand out not only for their technical and
behavioral competences but also for a deep internalization of the OSS culture. Because of this,
we suppose that reputable developers increase members’ technical competences and foster their
sense of belonging to the OSS team. To our surprise, an empirical evaluation of 749 OSS team
configurations reveals that reputable developers increase OSS teams’ productivity only
marginally. In order to understand the underlying reasons of this weak effect, we employed an
individual-centric post-hoc analysis. The results of this dedicated post-hoc evaluation with 80
OSS developers indicate that reputable developers directly increase members’ level of cognitive
trust in the OSS team, but this form of trust is not directly linked to their individual productivity.
Instead, it is members’ level of affective trust in the OSS team which directly facilitates their
individual productivity. However, this form of trust is not directly linked to the involvement of
reputable OSS developers. Based on our multi-level evaluation, we propose a refinement to the
definition of internal goods within the social practice view of OSS development. Moreover, our
evaluation brings to the fore that the effects of team and project characteristics on individual
behavior can be distinct from and even opposite of the effects on collective behavior. Finally,
we point out that managers of online communities who wish to enhance effective collaboration
should focus on activities which strengthen individuals’ social bonds rather than bringing in
reputable individuals.

Keywords: Open Source Software, Social Practice View, Reputation, Cognitive Trust,
Affective Trust, Productivity, Multi-Level Evaluation.

‘There is no 'I' in team but there is in win.’ Michael Jordan

1 Introduction

In OSS (Open Source Software) development projects, individuals who are dispersed around
the world collectively develop software by relying on computer mediated communication
(CMC). During the last decade, software developed through such initiatives flourished, with
code creation growing at exponential rates (Deshpande and Riehle 2008). Based on these high
growth rates, researchers consider OSS development a prime example for effective knowledge
sharing and virtual collaboration (von Krogh and von Hippel 2006) - a key challenge which is
innate to the value creation process of most online communities (McLure Wasko and Faraj
2000). Though, a closer look reveals that most OSS projects are struggling for developer
contributions (Fang and Neufeld 2009). Although, it has been shown, in this context, that
reputable developers provide valuable assets for attracting new developers (Hu et al. 2012) and
enhancing members’ collaboration (Li et al. 2006, Kuk 2006, Schilling et al. 2013, Casaló et
al. 2009) it remains to be seen if these assets also make OSS teams more productive. Such
understanding, is of high practical relevance in helping managers of OSS initiative deriving
specific actions to foster productive interplay among involved members.

Paper VI

Developer Management in FLOSS Projects 145

In the following, we examine if and how reputable developers help OSS teams becoming more
productive. To do so, we bring together individual- and structural-centric research approaches.
We start from an individual-centric perspective to understand the collaboration benefits which
can result from involving reputable OSS developers. To do so, we build on the social practice
view of OSS development (von Krogh et al. 2012) and suppose that reputable developers foster
members’ technical competences as well as their feelings of belonging to the team. To evaluate
our research hypothesis, we performed an empirical analysis of 749 OSS team configurations,
based on the community endorsement of the involved developers and archival records from
their previous contributions. With respect to the supposed cognitive and affective assets which
reputable developers provide for OSS teams’ productivity, we examine the research question:
‘Are OSS teams with reputable developers more productive?’

Our work has various implications for OSS research. Foremost, our empirical evaluation of 749
OSS team configurations provides evidence that reputable developers increase OSS teams’
productivity, but only to a marginal degree. Our individual-centric post-hoc evaluation with 80
OSS developers uncovers a reason for this marginal effect: having reputable OSS developers
on a team only increases the level of cognitive trust among team members (their belief in their
colleagues’ competence), but this type of trust has no direct effect on their individual
productivity. Instead, it is OSS developers’ level of affective trust (their feeling of belonging)
towards the OSS team which makes them more productive. However, this form of trust is not
directly linked to the involvement of reputable developers. Building on this insight, we propose
refining the definition of internal goods within the concept of the social practice view. In
addition, our work provides lesson for managers of OSS projects such as to focus on activities
which strengthen developers’ personal bonds rather than bringing in reputable developers to
make their teams more productive.

Moreover, our research has implications for the value creation in online communities. In
particular, our multi-level research provides evidence that the effects of project and team
characteristics on individual behavior can be distinct from and even opposite of the effects on
collective behavior. In addition, our evaluation emphasizes the need to create a collective
identity among community members to foster their engagement. Building on this insight, we
recommend managers of online communities to focus on means which highlight members’
shared interests rather than bringing in reputable individuals to facilitate effective collaboration.

This paper is structured as follows: After summarizing the current state of research on OSS
team productivity, we develop our research hypothesis in Chapter 2. In Chapter 3, we outline
our research methodology and our study of the collaboration experiences of 749 OSS teams.
To better understand the results of this study, we perform a dedicated post-hoc analysis in
Chapter 4. Finally, we conclude our work by discussing its implications for OSS projects,
organizations and online communities.

Chapter III: Developer Integration

 146 Andreas Schilling

2 Current State of Research on OSS Team Productivity

Literature on OSS team productivity is characterized by a duopolistic research approach, taking
either an individual- or a structural-centric research perspective.

Individual-centric OSS studies commonly examine the particular motives that lead developers
to engage in OSS projects. Most of these studies are based on Self-Determination Theory (SDT)
(Ryan and Deci 2000). The basic tenet of SDT is that there are two motivation forms: intrinsic
and extrinsic. Intrinsic motivation arises naturally; individuals with this motivation adopt a
particular behavior not primarily for the outcomes which are associated with it but because of
the satisfaction they derive from it. In contrast, behavior motivated extrinsically is adopted due
to external stimuli (Ryan and Deci 2000). Various evaluations support the relevance of these
different motivation forms for OSS developers’ project behavior. Shah (2006) highlights that
OSS developers need to perceive joy from their project work. At the same time, Roberts et al.
(2006) provide evidence that monetary rewards are another effective stimulus for OSS
developers’ commitment. Moreover, studies provide evidence for the existence of various other
extrinsic motives for OSS developers’ project behavior, such as self-esteem (Ke and Zhang
2010, Stewart and Gosain 2006, Xu and Jones 2010). Despite the broad adoption of SDT in
OSS literature, it is not without critics. One particular critique concerns the concrete stimulation
of these motives between SDT and observations from the OSS domain. While SDT suggests
that pecuniary rewards strengthen individuals’ extrinsic motives and weaken their intrinsic
motives, such effect cannot be observed within the OSS context (Roberts et al. 2006). Another
critique concerns the basic assumption of SDT that individuals search for immediate outcomes
of their behavior. However, in the OSS context, individuals engage in project work not only
because of the immediate return but also due to social and ideological beliefs (Stewart and
Gosain 2006). With respect to these critiques, OSS research recommends shifting away from
considering OSS developers’ motivation the pivotal point for their project commitment (von
Krogh et al. 2012). Instead, recent studies emphasize the role of OSS developers’ interactions
with other team members to understand their commitment to the project. For example, Fang
and Neufeld (2009) suggest that the motivations of OSS developers fluctuate and that their
interactions with team members strengthen their sense of belonging to and identification with
the OSS team, which in turn make them more productive. The important role of team members’
relationships to each other is supported by Stewart and Gosain (2006). Despite the recent shift
to OSS developers’ interactions, it is unclear from an individual perspective which specific
factors facilitate these interactions. According to Schilling et al. (2013), reputable OSS
developers play a key role for team members’ identification with and sense of belonging to the
developer group. However, it remains to be seen if these positive effects also result in increased
teamwork productivity.

In contrast, OSS studies taking a structural perspective abstract from individuals’ perceptions
and focus on the effects of project characteristics and topological aspects of team members’
relationships to each other. By taking such a perspective, OSS studies have shown that the target
audience, the operating system, and the software license have an important influence on OSS
teams’ productivity (Subramaniam et al. 2009). In addition, studies examining the structural

Paper VI

Developer Management in FLOSS Projects 147

characteristics of OSS developers’ relationships to each other provide evidence for two distinct
effects. In line with individual-centric studies, Singh et al. (2011a) provide evidence that strong
relationships among team members foster their productive interplay. Furthermore, the authors
reveal that OSS teams are most productive when their members have only moderately strong
relations to developers outside their project. In their study, Grewal et al. (2006) take a closer
look at these relationships and conclude that especially developers who had previously been
involved in well-known OSS projects increase an OSS team’s productivity. However, the way
in which these studies infer relationships among OSS developers is not without criticism. In
particular, Hu et al. (2012) point out that the approximation of personal relationships via
membership overlaps seems to be rather weak. For example, such modeling approach does not
differentiate between the resulting relationships among OSS developers if they have
collaborated on a project for 100 days or only for 1 day. An empirical study by Hu and Zhao
(2009) supports this critique by providing evidence that relationship networks derived through
project affiliations differ substantially from networks which are based on developers’ personal
evaluations. While recent OSS studies have used conversational data to bridge this gap and
better understand how team members’ relationships to each other affect their productivity
(Qureshi and Fang 2010, Singh et al. 2011b, Kuk 2006) there is to the best of our knowledge,
no study which used more reliable data to examine how members’ peer evaluation affect OSS
teams’ productivity.

This research uses a multi-level evaluation approach to examine if and how reputable
developers make OSS teams more productive. To do so, we build on individual-centric research
and consider OSS developers’ interactions with each other central for their project commitment.
Our theoretic foundation draws on the social practice view of OSS development (von Krogh et
al. 2012), which takes a long-term view on individuals’ project behavior and explicitly
considers the effects imposed on them by their relationships to team members as well as their
ethical considerations. In a second step, we evaluate our research hypothesis by performing an
empirical evaluation based on 749 OSS teams, using developers’ community endorsement and
archival records from their previous contributions. In the next section, we detail the theoretic
foundation on which we build and develop our research hypothesis.

3 Hypothesis Development

In this section, we develop our research hypothesis. We begin by outlining the social practice
view of OSS development on which we build to understand the process of reputation building
in OSS communities and the resulting cognitive and affective assets reputable developers
provide to make OSS teams more productive.

3.1 The Social Practice View of OSS Development
In their recent work, von Krogh et al. (2012) base the social practice view of OSS development
on the seminal work of Alasdair MacIntyre (1981). In contrast to motivation theories, which
focus on people’s search for immediate outcomes of their behavior, the proposed social practice
view takes a long-term perspective on individuals’ behavior and also considers the surrounding

Chapter III: Developer Integration

 148 Andreas Schilling

ethical aspects relevant to their behavior in the community. Another distinction to motivation
theories is the assumption that individuals do not strive solely for immediate returns but also
wish to achieve personal development. In the following, we present the central building blocks
of MacIntyre’s theory and their implications for the OSS domain as proposed by von Krogh et
al. (2012).

The central building block of the theory is the social practice. According to MacIntyre (1981)
a social practice is ‘any coherent and complex form of socially established cooperative human
activity through which goods internal to that form of activity are realized in the course of trying
to achieve those standards of excellence which are appropriate to, and partly, definitive of, that
form of activity’ (MacIntyre 1981, p. 187). In line with this generic definition, von Krogh et al.
(2012) describe the social practice of OSS development as individuals’ engagement in teams
with related, relatively flat, peer-oriented, and decentralized communities. Thereby, the
standards of excellence which OSS developers adhere to and apply encompass technical as well
as behavioral guidelines. By pursuing a social practice, individuals generate internal and
external goods. Internal goods are beneficial to all participants of the social practice as well as
the community as a whole. In the context of OSS development, internal goods refer to the
resulting code (if licensed appropriately), the joy of working with others and the enrichment of
the OSS project with new features. In contrast, external goods are privately owned by the
involved individuals. In the OSS context, such external goods are the derived individual
reputation gains and the solution to one’s particular software problem. Another distinction
between internal and external goods concerns their provision. While internal goods are derived
in the course of the social practice by adhering to the standards of excellence, external goods
are provided by institutions (MacIntyre 1981). MacIntyre characterizes these institutions as
organizations in which human cooperation is governed by rules and routines that exist beyond
the presence and efforts of each individual (MacIntyre 1981, von Krogh et al. 2012). Applied
to the OSS context, von Krogh et al. (2012) suggest considering the OSS movement itself an
institution because it ensures that code contributed by developers can be studied openly by
others, allowing them to derive reputation gains from their contributions. Despite their distinct
provision, internal and external goods are not mutually exclusive but rather resemble two sides
of the same coin. According to MacIntyre (1981) external goods cannot be acquired without
the creation of internal goods and vice versa.

3.2 Reputation Building in OSS Communities
In the following, we build on the social practice view of OSS development to understand how
developers build reputation in the OSS community. In contrast to previous evaluations which
simply consider reputation gains as a result of OSS developers’ contributions (Daniel et al.
2013, Grewal et al. 2006), we take a broader view and propose that OSS developers have to
demonstrate not only their technical but also their collaboration competences in order to become
reputable.

According to the social practice view of OSS development (von Krogh et al. 2012), developers
enhance their community reputation through the positive evaluation of their work by members

Paper VI

Developer Management in FLOSS Projects 149

of the OSS community. Like the standards of excellence, this evaluation process applies not
only to OSS developers’ coding, but also to their collaboration behavior. In his comment on
OSS development, Raymond (1999) points out that peers judge OSS developers not only based
on their technical abilities but also considering their ‘awareness and acculturation’ with the OSS
culture (Raymond 1999, p. 94). As a consequence, the standards of excellence are not only the
basis for OSS developers’ derivation of internal goods, but also define the ways in which their
work is evaluated by members of the OSS community. Thus, by adhering to the standards of
excellence, OSS developers produce in the course of their project work not only internal but
also external goods. Because of this, we suppose that reputable developers stand out not only
due to their technical and behavioral competence but also due to their internalization of the
values and believes of OSS development. Another important aspect for OSS developers’
reputation building is that not all community members are equally eligible to evaluate others.
According to Raymond (1999) only OSS developers who are trusted to follow the code of
excellence should evaluate others. The general validity of this advice for OSS communities is
supported by the work of Stewart (2005). In this research, Stewart provides evidence that the
reputation gains resulting from a positive evaluation are contingent on the evaluator’s reputation
in the OSS community.

With this take on reputation building in OSS communities, we reject the common notion that
reputable OSS developers solely shine through their technical abilities and argue that their
behavioral competences and their identification with the norms and beliefs of the OSS culture
are also critical factors. Based on this nuanced view on reputable OSS developers, we outline
in the next section their value for OSS teams’ productivity.

3.3 Collaboration Assets of Reputable Developers
To understand how reputable developers can enhance OSS teams’ productivity, we draw on the
social practice view of OSS development and the reputation building process, which we
outlined above. By doing so, we assume that reputable OSS developers are deeply familiar with
the standards of excellence for OSS development. Thus, these developers know not only how
to build code efficiently but also which collaboration processes facilitate productive OSS
teamwork. Moreover, because these individuals enjoy a strong reputation in the OSS
community, we suppose that they have the necessary power and respect to implement the
necessary changes in OSS teams. Building on research by Schilling et al. (2013) and Kuk
(2006), we suppose that reputable developers increase OSS teams’ productivity through
enhancing members’ competencies and feelings of relatedness, rather than through providing
short term incentives such as greater visibility. In the following, we outline the various
advantages for productive teamwork resulting from having reputable developers in an OSS
team.

With their rich OSS experience, reputable developers know how to use programming tools very
well and implement functionality efficiently (Singh et al. 2011b). Thus, the work of such
developers alone increases the productivity of an OSS team. In addition to their individual
coding, we suppose that reputable OSS developers provide various cognitive assets for OSS

Chapter III: Developer Integration

 150 Andreas Schilling

teams’ productivity. One way is by assisting team members. Due to their rich OSS experience,
we suppose that reputable developers deeply believe in the values of sharing and caring (Stewart
and Gosain 2006) and thus assist their colleagues in their project work and advise them on
strategic decisions. For example, reputable developers could help their colleagues use a
particular tool better or increase their skill in writing modular code, which in turn makes it
easier for other developers to make additions and modifications to the codebase (Baldwin and
Clark 2006). Schilling and Laumer (2012) support the positive effects of such helping behavior
by providing evidence that OSS developers acquire considerably more knowledge when they
are assisted by reputable developers. As Singh et al. (2011b) suggest, these knowledge gains,
in turn, make members more productive because OSS developers with greater knowledge
contribute more code in a given amount of time. Moreover, reputable developers can enhance
the cognitive processes in OSS teams by establishing and maintaining a culture of regular work
updates. By cultivating such information exchange, team members become aware of their
colleagues’ work and expertise. Such awareness benefits team members’ effective collaboration
twofold. First, it enhances their situational knowledge about the current work of their
colleagues. This form of knowledge is particularly helpful for OSS developers to identify
conflicts among their work at an early stage and to become aware of the problems their
colleagues are struggling with. As a result, such work updates can considerably reduce the level
of perceived uncertainty towards colleagues, which is considered an essential constraint for
OSS developers’ project commitment (Shah 2006). Second, these work updates make OSS
developers aware of their colleagues’ expertise, which helps them to identify the members who
can assist them in their project work and thus reduce the time they are struggling with particular
issues.

Beside these cognitive assets, we suppose that reputable developers provide various affective
assets to enhance OSS teams’ productivity. For example, by creating and cultivating open
exchange among team members, reputable developers make their colleagues aware that they all
share the wish to make the OSS project succeed. As Xu and Jones (2010) point out, the
realization of such common goal can foster OSS developers’ sense of belonging to and
identification with the team. Moreover, we suppose that reputable developers foster this
identification process by emphasizing the relevance of one’s contribution for the project and its
value to other members of the OSS community. Schilling et al. (2013) support this by providing
evidence that reputable OSS developers help team members perceive their project work as
meaningful and personally important. As Xu and Jones (2010) and Ke and Zhang (2010)
suggest, such identification, leads OSS developers to increase their working efforts for the OSS
project. Another way in which reputable developers can foster affective feelings among team
members is by avoiding disputes from escalating. Debates between OSS developers can soon
become heated and emotional (Bergquist and Ljungberg 2001), in such cases reputable
developers can use their standing in the OSS community to objectify such discussion. If this is
not possible, reputable developers can draw on their rich project experience to mitigate the
caused damage for example by helping team members filtering out relevant critiques to their
posts and ignoring destructive comments. Finally, we suppose that reputable OSS developers
nurture feelings of relatedness among team members by increasing the derived enjoyment from

Paper VI

Developer Management in FLOSS Projects 151

their collaboration. This is because OSS developers derive satisfaction from acquiring and
applying new knowledge (Fang and Neufeld 2009). Thus, reputable developers’ assistance not
only enhances members’ competencies but also raises the derived satisfaction from their project
work (Casaló et al. 2009). Moreover, reputable developers can pass on the OSS value of
‘sharing and caring’ to their team members and thus create a supportive team atmosphere. Such
atmosphere not only makes it easier for team members to ask for help and increase their
knowledge, but it also increases the level of satisfaction of the helper. With respect to the
various cognitive and affective collaboration assets which can be levered in OSS teams through
reputable OSS developers, we hypothesize that:

Hypothesis: The involvement of reputable OSS developers increases an OSS team’s
productivity.

In addition to controlling for the involvement of reputable developers, we control for various
team and project characteristics which have been shown to affect OSS teams’ productivity. In
line with research by Colazo and Fang (2010), we suppose that a larger team size increases
OSS teams’ productivity because it enables developers to work on several aspects at the same
time. Moreover, following Singh et al. (2011a), we suppose that OSS teams are more productive
the more their members have worked with each other in the past. Thus, we control for OSS
developers’ team experience. Furthermore, we account for the effects of developers’ project
experience, as Singh et al. (2011b) provide evidence that OSS developers become more
productive the longer they are actively contributing to an OSS project. Moreover, we control
for two characteristics of the particular OSS project. Because OSS projects with bigger
codebases provide more possibilities for OSS developers to add and modify code, we control
for the project size of an OSS project. Finally, with respect to research by Singh et al. (2011a),
we control for the project age, as code of mature OSS projects is often better documented and
structured, which in turn makes it easier for developers to add and modify code (Sen et al.
2008).

4 Research Methodology

To evaluate our research hypothesis, we study the collaboration experiences of OSS teams
within the ‘K Desktop Environment’ (KDE). KDE is a popular desktop environment for UNIX
systems and includes a wide spectrum of OSS projects, such as games, organizers, and even
entire office suites. By focusing on developer teams within KDE, we are able to study the
collaboration experiences of a variety of OSS projects which share the same development
context (i.e. programming language, licensing, tool chain, version control system, etc.). This
benefits our evaluation substantially because it guarantees that the various team configurations
in our study share the same ‘standards of excellence’ and ‘institutional’ characteristics in terms
of the social practice view of OSS development. In the following, we outline the details of our
data collection and the measures used in our evaluation.

Chapter III: Developer Integration

 152 Andreas Schilling

4.1 Data Sample

The data used in our evaluation was extracted from two distinct sources. To derive statistics on
KDE developers’ contribution behavior, we downloaded the code repositories of all 65 KDE
projects and wrote programming routines which analyzed the log files of the Version Control
System (VCS) of these projects. In addition, we queried the Social Network Site (SNS)
Ohloh.com for information on KDE developers’ community endorsement. Using Ohloh.com,
OSS users and developers can create a profile page and send each other ‘Kudos’, which are a
form of appreciation for the work or the provided support (Hu et al. 2012). To extract this
information, we queried the public Application Programming Interface (API) of Ohloh.com
with developers’ full name and the SHA-1 hash of the email address, which we extracted from
their code commits. Moreover, we recursively extracted the Kudos received by each Kudo
sender, in order to derive a comprehensive picture for the endorsement of all considered
community members. In order to derive a comprehensive picture for OSS developers’
community endorsement, we recursively extracted also the Kudos received by each Kudo
sender. In total, this procedure led to the extraction of 8,195 Ohloh profiles and 34,300 Kudo
relationships. In a second step, we identified those KDE projects for which we could assign at
least 75 percent of all submitted code commits between January 1, 2011 and November 1, 2013
to developers with Ohloh accounts. This is the case for the following seven KDE projects:
‘KDELibs’ (cross-application libraries), ‘KDE Workspaces’ (a desktop organizer), ‘Calligra’
(an office suite), ‘DigiKam’ (a photo management suite), ‘KDE PIM’ (a personal organizer),
‘Plasma-Mobile’ (a desktop for mobile devices), and ‘Akonadi’ (a storage service for personal
information).

Similar to Kuk (2006), we observe that there is a new combination of active developers at the
KDE projects every week. This enables us to study various team configurations at the projects
every week. Based on these team configurations and previous research by Singh (2010) we
segmented our project data into weekly samples. As we are interested in OSS developers’
collaboration, we filtered out all team configurations with fewer than three developers. After
applying this filter, our study sample encompasses 749 team configurations (N). Figure 1
illustrates our sampling strategy using a fictitious example of four KDE developers. In this
example, Mark is a frequent contributor and works one week with Carl and another week with
Joe.

Figure 1: Sampling strategy

Paper VI

Developer Management in FLOSS Projects 153

4.2 Measurement

4.2.1 Dependent Variable
In line with previous OSS studies, we assessed the productivity (prod

t) of an OSS team based
on the average number of submitted code commits in period t (Singh et al. 2011a, Grewal et al.
2006). In order to account for changing team sizes, we computed the average number of code
commits per developer. To do so, we determined those developers who were active in the
project that week (teamt) and then aggregated the number of code commits each developer
submitted that week (cit). Finally, we divided the total number of commits by the number of
active developers in t (team_sizet).

 𝑝𝑟𝑜𝑑𝑡 = (∑ 𝑐𝑖
𝑡

𝑖∈𝑡𝑒𝑎𝑚𝑡
) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (1)

4.2.2 Independent Variables
In order to assess OSS developers’ community reputation (comm_rept), we transformed the
extracted data from Ohloh.com in three distinct stages. In the first step, we constructed a global
evaluation graph. In this directed graph, nodes represent OSS developers and edges between
them resemble a positive evaluation (Kudo) of the receiving node by the sending node. Based
on this evaluation graph, we computed each developer’s reputation by employing a rank based
measure. We do so, because a rank-based measure weights the effects of links based on the
ranks of their originating node. In comparison, a degree based measure (e.g. the average in-
degree), would treat all links in the graph as equally important. However, this would be
inconsistent with our theorizing in which we consider that the resulting reputation gains from a
positive evaluation are contingent on the community reputation of the evaluator (see Section
3.2). In particular, we rely on the PageRank algorithm proposed by Brin and Page (1998). This
rank-based measure is a variant of the eigenvector centrality measure and uses the damping
factor (d) to account for the decay in a node’s influence on the ranks of subsequent nodes. This
is consistent with our theorizing, as we suppose that members’ endorsement by reputable OSS
developers enhances their reputation, but it does not give them the same standing as that of their
evaluators. Figure 2 depicts the evaluation graph, and visualizes the key difference between
nodes’ PageRank and their in-degree. In this example, the three nodes a, b, and c share the same
in-degree, while their PageRank values differ substantially (a = 0.128, b = 0.076, c = 0.068).
There are two more aspects which make the PageRank algorithm well-suited for our evaluation.
First, the algorithm is a very efficient method for computing ranks in large datasets. This eases
the computation of the ranks for the more than 8,000 nodes in our evaluation graph, which we
calculate for each week between January 1, 2011 and November 1, 2013. Second, the PageRank
algorithm is very robust against reciprocal linking (Gayo-Avello 2013). This topological
characteristic describes the phenomenon that a node links to another node to get back a link
from the receiver. Because reciprocal linking was also discovered in the Ohloh network (Hu et
al. 2012), it is important to rely on a measure which is robust against such phenomenon. With
regard to these benefits, we calculated the community reputation (comm_repit) for all members
of the OSS community (commt) by computing their PageRank value at period t. Based on this

Chapter III: Developer Integration

 154 Andreas Schilling

calculation, we assessed an OSS team’s community reputation (comm_rept) by calculating the
average community reputation of the developers involved in period t.

𝑐𝑜𝑚𝑚_𝑟𝑒𝑝𝑖

𝑡 =
1 − 𝑑

∣ 𝑐𝑜𝑚𝑚𝑡 ∣
+ 𝑑 × ∑

𝑐𝑜𝑚𝑚_𝑟𝑒𝑝𝑗
𝑡

𝑘𝑢𝑑𝑜𝑠𝑗∀𝑗∃𝑘𝑢𝑑𝑜𝑗,𝑖∧𝑗∈𝑐𝑜𝑚𝑚𝑡

(2)

𝑐𝑜𝑚𝑚_𝑟𝑒𝑝𝑡 = (∑ 𝑐𝑜𝑚𝑚_𝑟𝑒𝑝𝑖

𝑡

𝑖∈𝑡𝑒𝑎𝑚𝑡
) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡

(3)

4.2.3 Control Variables
We measured an OSS project’s team size (team_sizet) by determining the cardinality of its set
of active developers in period t (teamt). To calculate OSS developers’ team experience
(team_expt), we averaged the number of days that they have previously worked with each other
(Dti,j) before period t. To assess OSS developers’ project experience (proj_expt) we determined
the average number of days (Dti) they had been active in the project prior to period t. To measure
the project size (proj_sizet), we computed the total number of Lines of Code (LoCt) of the OSS
project’s codebase in t. Finally, we assessed the project age (proj_aget) based on the number
of days (NoDt) since the project’s inception.

 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 =∣ 𝑡𝑒𝑎𝑚𝑡 ∣ (4)

 𝑡𝑒𝑎𝑚_𝑒𝑥𝑝𝑡 = (∑ ∑ 𝐷𝑖,𝑗
𝑡

𝑗∈𝑡𝑒𝑎𝑚𝑡∧𝑗≠𝑖𝑖∈𝑡𝑒𝑎𝑚𝑡) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (5)

 𝑝𝑟𝑜𝑗_𝑒𝑥𝑝𝑡 = (∑ 𝐷𝑖
𝑡

𝑖∈𝑡𝑒𝑎𝑚𝑡) / 𝑡𝑒𝑎𝑚_𝑠𝑖𝑧𝑒𝑡 (6)

 𝑝𝑟𝑜𝑗_𝑠𝑖𝑧𝑒𝑡 = 𝐿𝑜𝐶𝑡 (7)

 𝑝𝑟𝑜𝑗_𝑎𝑔𝑒𝑡 = 𝑁𝑜𝐷𝑡 (8)

5 Results

5.1 Variable Transformation

Before we started our evaluation, we checked the cross-correlation of all independent variables.
This check revealed some cross-correlations between the independent variables, which may
result in multi-collinearity. To address this potential threat to validity, we followed the advice

Figure 2: Evaluation graph

Paper VI

Developer Management in FLOSS Projects 155

of Aiken and West (1991) by mean-centering and scaling all variables. To ensure that the
remaining cross-correlations do not bias our evaluation results, we checked the Variance
Inflation Factor (VIF) for each independent variable. The VIF describes the degree to which a
variable’s variance is influenced by another variable. As illustrated in Table 1, the VIF values
of all independent variables in our sample are far below the required threshold of 10 and also
below the recommended value of 3 (Greene 2003). Thus, we can ensure discriminant validity
for all variables.

5.2 Hypotheses Testing

To test our research hypotheses, we applied Ordinary Least Squares (OLS) regression analysis.
Table 2 lists the results of this evaluation. Our regression model explains a substantial amount
of variance in OSS teams’ productivity (R2 = 0.278). In particular, team size has a weak
negative effect on OSS teams’ productivity (β = 0.099, p = 0.025), which suggests that smaller
OSS teams are slightly more productive than larger ones. Further, the regression analysis
reveals that the project size has a strong stimulating effect on OSS teams’ productivity (β =
0.465, p < 0.001), which in turn indicates that OSS teams working on a larger codebase are
more productive than teams working on smaller codebases. In contrast, the project age has a
moderate negative effect on OSS teams’ productivity (β = -0.287, p < 0.001), which suggests
that teams at younger OSS projects are more productive than when working on older projects.
OSS developers’ level of project experience has no significant effect on their effective
collaboration (β = 0.007, p < 0.307). In contrast, developers’ level of team experience has a
moderate positive effect on OSS teams’ collaboration productivity (β = 0.189, p = 0.005). This
indicates that OSS teams are more productive the more the involved developers have worked
with each other in the past. Finally, our evaluation supports our hypothesis that reputable OSS
developers make OSS teams more productive. However, the revealed positive effect is
marginally weak (β = 0.095, p = 0.008).

Table 2: OLS regression (N = 749)

Team size -0.099 *

Team exp. 0.189 **

Project age -0.287 ***

Project size 0.465 ***

Project exp. 0.071

Comm rep -0.095 **

Note: * = p < 0.05, ** = p < 0.01, *** = p < 0.001

Table 1: VIFs and cross-correlations
 VIF 1 2 3 4 5
1. Team size 1.738
2. Team exp. 2.994 0.25***
3. Project age 2.326 0.51*** 0.47***
4. Project size 1.722 0.38*** 0.35*** 0.48***
5. Project exp. 2.819 -0.11*** 0.71*** 0.15*** 0.23***
6. Comm rep 1.414 -0.02 0.29*** 0.10*** 0.39*** 0.42***
Note: * = p < 0.05, ** = p < 0.01, *** = p < 0.001

Chapter III: Developer Integration

 156 Andreas Schilling

To understand why the involvement of reputable OSS developers increase the productivity of
OSS teams so little, we employ in the following a detailed post-hoc analysis.

6 Post-Hoc Analysis

To better understand the results of our structural evaluation, we take in the following an
individual-centric research approach and examine if reputable developers provide the supposed
cognitive and affective assets for team members’ collaboration and if these assets make
individuals more productive. In particular, we argue that the collaboration assets which are
provided by reputable OSS developers are reflected by increased levels of cognitive and
affective trust among team members which, in turn, enhance their individual productivity. After
describing our research model, we detail our evaluation methodology and our evaluation results.

6.1 Research Model
In the following, we build on the trust framework proposed by McAllister (1995) and argue that
the supposed collaboration assets which are provided by reputable OSS developers increase
team members’ level of cognitive and affective trust towards their colleagues. In line with this
framework and previous evaluations from the OSS context, we assume further that these two
forms of trust increase team members’ individual productivity. Figure 3 illustrates our research
model.

Reputable Developers and Cognitive Trust

Cognitive trust arises between individuals through their rational assessment of each other’s
competence and through the conviction that the other will not misbehave (McAllister 1995). In
the OSS context, we suppose that the involvement of reputable developers fosters such
favorable assessment, for example by assisting team members in their work. Reputable OSS
developers can not only prevent team members from making the same mistakes as they did, but
they can also advise them in strategic decisions. Study results by Schilling and Laumer (2012)
support this and suggest that team members build considerable more knowledge if they are
assisted by reputable developers. We suppose that these knowledge gains do not go unnoticed
and lead team members to be more confident in each other’s work and thus foster their level of
cognitive trust. Moreover, reputable developers can raise members’ level of cognitive trust in

Figure 3: Post-hoc research model

Paper VI

Developer Management in FLOSS Projects 157

the OSS team by creating and maintaining a practice of regular work updates. Compared to
regular project members, reputable OSS developers are not only more familiar with the culture
of sharing in OSS development but also have the necessary standing to cultivate such behavior
in the team. The practice of regular work updates enables team members to see what their
colleagues are currently working on and enhances their awareness for the problems their
colleagues mastered in the past. As a consequence, team members are not only more confident
in their colleagues’ work, but also aware that they all share the goal of making the project
succeed. For OSS developers, such awareness is an essential determinant for the creation of
cognitive trust (Xu and Jones 2010). Finally, because of their rich project experience, reputable
OSS developers can prevent their team members from having unrealistically high expectations
of the work outcomes of their colleagues. Especially less experienced OSS developers are often
constrained in their work by contribution barriers of the project, like a complex code
architecture or intertwined modules (von Krogh et al. 2003). As a result, they are often less
productive than team members with more experience. In such cases, reputable developers can
draw on their collaboration experience and prevent their team members from having unrealistic
expectations of novices’ work, which cannot be met. With respect to the various ways reputable
OSS developers can strengthen team members’ perceived competence and transparency of each
other’s actions, we suppose that:

Hypothesis 1: Reputable OSS developers increase members’ level of cognitive trust towards
the OSS team.

Reputable Developers and Affective Trust

In addition, we suppose that the involvement of reputable OSS developers raises team
members’ level of affective trust towards each other. Affective trust stems from the emotional
attachment of a ‘trustor’ towards the ‘trustee’ (McAllister 1995). One way reputable developers
can foster such intense relationships between team members is through building and promoting
a culture of open information exchange. This team communication fosters the awareness among
members that their colleagues share the same helping values as they do. In consequence, this
awareness strengthens team members’ feelings of belonging to each other and, thus, their level
of affective trust (Stewart and Gosain 2006). Another aspect in which an open discussion
culture helps to build affective trust is through making apparent that team members share a
commitment to the project’s development. With this awareness, it is much more likely that team
members consider themselves as belonging to the team. Xu and Jones (2010) support this by
providing evidence that the perceived overlap of goals among team members is an important
facilitator for the formation of affective trust. In addition, reputable developers can enhance
team members’ collaboration behavior both passively and actively. On the one hand, reputable
developers can actively protect team members when they feel that they have been criticized
unjustly or stop flame-wars from rising by deescalating mailing list disputes. Such intervention
by reputable developers can help team members to look beyond such disputes and realize that
they all share the common wish to make the project succeed. On the other hand, reputable
developers can take passive means and exemplify good behavior, for instance in terms of caring
about others. Such positive example may be followed by members and lead to a supportive

Chapter III: Developer Integration

 158 Andreas Schilling

group atmosphere. Stewart and Gosain (2006) support this by highlighting that team members
build affective trust with each other when they perceive that the team as a whole values
members’ helping and sharing behavior. With respect to the different ways in which reputable
developers can foster the formation of affective trust within an OSS team, we suppose that:

Hypothesis 2: Reputable OSS developers increase members’ level of affective trust towards
the OSS team.

Cognitive Trust as a Facilitator for Affective Trust

In line with McAllister (1995), we suppose further that cognitive trust is a facilitator for
affective trust. This is because individuals need to rationally evaluate team members’ integrity
and competence before they can feel emotionally connected with them. In line with
McAllister’s research, Stewart and Gosain (2006) and Xu and Jones (2010), provide evidence
that cognitive trust fosters the level of affective trust between OSS developers. Thus, building
on the original framework of McAllister (1995) and with respect to previous evaluations within
the OSS domain, we hypothesize that:

Hypothesis 3: OSS developers’ level of cognitive trust amplifies their level of affective trust
towards the OSS team.

Cognitive Trust and OSS Developers’ Individual Productivity

The perceived uncertainty regarding the behavior of colleagues is a high productivity barrier
for OSS developers. As Shah (2006) points out, OSS developers only commit themselves to a
project if they believe the project will succeed. In this regard, we assume that cognitive trust
provides the necessary foundation for OSS developers to increase their commitment. Moreover,
we suppose that this form of trust fosters team members’ individual productivity because it
mitigates their need to monitor the work of their colleagues (McAllister 1995), which in turn
gives them more time for their own coding. Another benefit of cognitive trust is that team
members know whom to ask for help to quickly solve an issue. Finally, if team members have
cognitive trust in each other, they are less reluctant to contact each other because they know
that their colleagues want the project to succeed as much as they do, which in turn helps to
avoid problems in the first place. With respect to these gains for OSS developers’ individual
productivity, we suppose that:

Hypothesis 4: OSS developers’ level of cognitive trust in their team increases their individual
productivity.

Affective Trust and OSS Developers’ Individual Productivity

Moreover, we suppose that OSS developers’ level of affective trust in each other fosters their
individual productivity. With affective trust, there is an intense relationship between team
members, which leads to the formation of a group identity (Xu and Jones 2010). With such
group identity, members perceive themselves to be similar to each other and different from
individuals outside the OSS team. As a consequence, OSS developers put more efforts into their

Paper VI

Developer Management in FLOSS Projects 159

project work because they do not want to disappoint their team members. Another consequence
of affective trust is that team members believe that they are not being left on their own with a
problem, but believe that others will care about them. This belief makes team members much
more willing to share their problems with each other. As a result, team members do not delay
potential problems but bring them to the fore when they occur and, by doing so, find a solution
in a timely manner. In addition, affective trust fosters the satisfaction OSS developers derive
from their project work, which in turn makes them willing to engage even more in the project
in the future. In line with our reasoning, Xu and Jones (2010) and Stewart and Gosain (2006)
support the stimulating effects of affective trust on OSS teams’ productivity. With respect to
the positive effects on individuals’ productivity, we suppose that:

Hypothesis 5: OSS developers’ level of affective trust in their team increases their individual
productivity.

6.2 Research Methodology
To evaluate our post-hoc research model, we surveyed KDE developers on their interpersonal
relationships towards their team members. To do so, we created an online survey to which we
posted invitations at the central KDE developer mailing list and the central community webpage
for KDE projects. In total, 86 KDE developers participated in our online survey. Of all
responses, we had to drop six due to missing and malformed answers. To achieve high
compatibility between this individual-centric study and our previous structural analysis, we
used, as far as possible, the same controls and archival measures. In particular, we assessed the
project age, project size, project experience, team size, team experience, and members’
individual productivity, using the same archival measurement techniques as in our structural
analysis in Section 5. We only modified the evaluation scope of the two experience measures
from the team to the individual level by calculating them only for the particular individual.

In addition, we used perceptive measures to evaluate the involvement of reputable developers
and members’ level of cognitive and affective trust in their colleagues. Each of these constructs
has been assessed using three question items which were answered on a five point Likert scale.
To ensure the validity and reliability of the used measures, we used exclusively question items
which have been used in prior evaluations. To assess the involvement of reputable OSS
developers, we adopted three question items which have previously been used by Schilling et
al. (2013). These are: REP-1: ‘Some of the developers in this project are highly respected by
other developers in the community’, REP-2: ‘Some members of this project are famous in the
community’ and REP-3: ‘Some developers in this project have a strong standing in the
community’. For assessing KDE developers’ level of cognitive trust towards the OSS team, we
rely on question items which have been used by Stewart and Gosain (2006) and Xu and Jones
(2010). These are: COG-1: ‘I trust and respect the members of this project’, COG-2: ‘Members
of this project team regard each other as trustworthy’ and COG-3: ‘Most members of this
project are very competent and approach their work very professional’. Likewise, we draw on
these two studies to assess OSS developers’ level of affective trust towards their team using
the three question items: AFF-1: ‘If I share my problems with others in this project, I know they

Chapter III: Developer Integration

 160 Andreas Schilling

will respond constructively and caringly’, AFF-2: ‘Members of this project have a sharing
relationship with each other. I can freely share my ideas, feelings and hopes’, and AFF-3: ‘On
this project team, I can talk freely with others about difficulties I am having and know that
others are willing to listen’.

6.3 Hypotheses Testing

Before we started evaluating our post-hoc hypotheses, we checked the reliability and validity
of our measurement model. To ensure convergent validity, we tested for each construct (i) the
reliability of the used question items, (ii) its Composite Reliability (CR) and (iii) the Average
Variance Extracted (AVE). In order to assess the reliability of the question items, we checked
that they load on their associated constructs more than 0.7 (Chin 1998), which is the case for
all constructs (see Table 3). Next, we computed the CR for each construct. The CR describes
the degree to which a latent variable is explained through its question items. As listed in Table
3, the CR values for all constructs are above the recommended threshold of 0.7 (Chin 1998).
Finally, we checked each construct’s AVE, which measures the degree to which its variance is
explained through the associated question items in relation to the measurement error. In our
sample, the AVE of all constructs is well above the recommended value of 0.5 (Bagozzi and Yi
1988). Based on these results, we can ensure convergent validity for our measurement model.

To assess discriminant validity, we ensured that each question item loads strongest with its
associated construct. Moreover, we checked that the square root of each construct’s AVE is
higher than the correlation between the particular construct and any other construct (Fornell
and Larcker 1981). As shown in Table 3, all of our constructs pass this test. In this table, we list
each construct’s correlations with the other constructs and list the square roots of the AVE
values on the diagonal cells.

After checking the convergent and discriminant validity of our measurement model, we
compute the strength and significance of the paths in our structural model using Partial Least
Squares (PLS). We used PLS for this evaluation because it requires a relatively small sample
size to provide reliable results (Chin 1998). The PLS evaluation provides evidence that our
model explains a substantial amount of variance in OSS developers’ levels of cognitive (R2 =
0.335) and affective trust (R2 = 0.328) towards their team members as well as their individual
productivity (R2 = 0.368). As we supposed in Hypothesis 1, the evaluation results suggest that
reputable OSS developers have a strong positive effect on members’ level of cognitive trust
towards their team (β = 0.579, p < 0.001). Conversely, we found no evidence that reputable

Table 3: Post-hoc construct consistency
 CA CR AVE 1 2 3 4 5 6 7 Loadings
1. Aff trust 0.81 0.88 0.72 0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.82 - 0.87
2. Rep. devs. 0.87 0.91 0.78 0.44 0.88 0.00 0.00 0.00 0.00 0.00 0.82 - 0.94
3. Cog. trust 0.68 0.82 0.60 0.54 0.58 0.77 0.00 0.00 0.00 0.00 0.76 - 0.82
4. Project age 1.00 1.00 1.00 -0.02 0.24 0.10 1.00 0.00 0.00 0.00 1
5. Project size 1.00 1.00 1.00 -0.03 0.22 0.25 0.48 1.00 0.00 0.00 1
6. Project exp. 1.00 1.00 1.00 0.02 0.03 0.03 0.09 0.18 1.00 0.00 1
7. Team Exp. 1.00 1.00 1.00 -0.01 0.01 0.01 0.04 0.38 0.70 1.00 1
8. Team size 1.00 1.00 1.00 0.02 0.14 0.16 0.20 0.66 0.29 0.58 1

Paper VI

Developer Management in FLOSS Projects 161

OSS developers increase members’ level of affective trust in their colleagues (β = 0.135, p =
0.583), which does not support Hypothesis 2. In line with Hypothesis 3, our evaluation indicates
that members’ cognitive trust has a strong stimulating effect on the formation of affective trust
towards their colleagues (β = 0.483, p < 0.001). Surprisingly, we find no evidence that OSS
developers’ level of cognitive trust in their team increases their individual productivity (β =
0.061, p = 0.583). This does not support Hypothesis 4. However, our evaluation results suggest
that OSS developers’ level of affective trust towards the team stimulates their individual
productivity moderately (β = 0.195, p < 0.001). In addition to these effects, team size (β = -
0.157, p < 0.001) and project age (β = -0.159, p < 0.001) have a weak negative effect on OSS
developers’ individual productivity. Furthermore, developers’ project experience has a strong
stimulating effect (β = 0.737, p < 0.001) while their team experience has a moderate negative
effect on their individual productivity (β = -0.377, p < 0.001). Finally, our evaluation results
suggest that the project size has no effect on OSS developers’ individual productivity (β =
0.091, p = 0.583). Figure 4 visualizes the strength and significance of all examined
relationships.

In the next section, we discuss the implications of our evaluation results for research and
practice.

7 Discussion

In this research, we draw on the social practice view of OSS development (von Krogh et al.
2012) and suppose that reputable OSS developers stand out not only due to their technical and
behavioral competences but also due to their internalization of the OSS culture. Because of
these characteristics, we argued that reputable developers provide various assets which enhance
OSS teams’ productivity. Although, our structural analysis of 749 OSS teams indicates that
reputable developers foster OSS teams’ productivity, it reveals that their stimulating effects are
marginally low. In light of the strong positive effects reputable developers have on the attraction
of new developers (Hu et al. 2012) and on enhancing members’ collaboration (Li et al. 2006,
Kuk 2006, Schilling et al. 2013, Casaló et al. 2009), this marginal effect is even more puzzling.
To understand the underlying reasons for the low productivity gains, we employed an
individual-centric post-hoc analysis. The results of this post-hoc evaluation provide evidence
that reputable developers increase members’ belief in each other’s competence, but also

Figure 4: Evaluation results

Chapter III: Developer Integration

 162 Andreas Schilling

indicates that this form of trust is not directly linked to their individual productivity. Instead it
is only members’ feelings of belonging to the OSS team which have a direct effect on their
individual productivity. However, these feelings are not directly linked to the involvement of
reputable developers. In this section, we discuss the theoretical and managerial implications of
our work for teamwork in OSS projects, organizations, and online communities. Before we do
so, we summarize the key findings of our research.

7.1 Findings

 The involvement of reputable OSS developers has a marginal stimulating effect on OSS
teams’ productivity.

Our structural analysis suggests that reputable developers increase OSS teams’ productivity,
but this effect is marginal. In fact, our analysis of 749 OSS teams, shows that the effect of
reputable developers on OSS teams’ productivity is the weakest of all controlled factors.

 The involvement of reputable OSS developers raises team members’ level of cognitive
trust, but this form of trust has no direct effect on members’ individual productivity.

As we supposed in our post-hoc research model, our evaluation suggests that the involvement
of reputable OSS developers increases members’ level of cognitive trust in the team. However,
this form of trust has no effect on members’ individual productivity. In other words, although
having reputable OSS developers on a team raises the degree to which members consider each
other as competent, but such favorable evaluation does not increase their individual
productivity.

 The involvement of reputable OSS developers does not affect members’ level of affective
trust, but this form of trust directly facilitates members’ individual productivity.

In contrast, our post-hoc evaluation indicates that reputable OSS developers have no direct
effect on team members’ level of affective trust in each other. However, it is this particular form
of trust which fosters members’ individual productivity. Put differently, our individual-centric
study suggests that it is developers’ belonging to the OSS team which fosters their individual
productivity, but this feeling is not directly linked to the involvement of reputable developers.

In addition, our multi-level evaluation reveals that some of the controls in our study have
different effects on the individual- and team-level. While the team size and the project age exert
comparable effects on developers’ individual and collective productivity, this is not the case for
the following three factors:

 OSS developers’ level of project experience is a substantial stimulus for their individual
productivity, but has no significant effect on OSS teams’ productivity.

Although, OSS developers’ project experience is a substantial facilitator for their individual
productivity, it has no measureable effect on OSS teams’ productivity. This indicates that there
are factors or dynamics on the team level which alleviate the productivity gains of members
with extensive project experience.

Paper VI

Developer Management in FLOSS Projects 163

 Developers’ team experience has a strong positive effect on OSS teams’ productivity, but
a strong negative effect on their individual productivity when controlling for cognitive and
affective trust.

While our structural evaluation provides evidence that OSS teams are more productive the
longer the involved developers have worked with each other, our individual-centric analysis
undermines this contention. In fact, developers’ level of team experience has a strong negative
effect on their individual productivity when controlled for the effects of cognitive and affective
trust.

 The size of an OSS project has a strong positive effect on developers’ individual
productivity but no effect on OSS teams’ productivity.

In contrast to our individual-centric analysis which identifies the project size as a substantial
facilitator for individuals’ productivity, our empirical evaluation suggests that these positive
effects alleviate and even disappear on the team level.

7.2 Implications for OSS Projects

Considering that most OSS projects are struggling for developer contributions (Fang and
Neufeld 2009), our research has implications for OSS research and practice.

 Having reputable developers involved increases OSS teams’ productivity only marginally,
as they increase only team members’ level of cognitive but not their level of affective trust.

Although our structural evaluation of 749 OSS teams supports our main hypothesis that
reputable developers increase OSS teams’ productivity, it reveals a very low stimulating effect.
As our post-hoc analysis suggests, a reason for this weak effect could be that reputable
developers directly increase the level to which team members consider each other competent,
but this alone does not make them more productive. Instead, it is their affective feelings towards
their team members which raise their individual productivity, but these feelings are not directly
stimulated by having reputable developers on the team. These distinct consequences of OSS
developers’ types of trust in the team are in line with research by Stewart and Gosain (2006)
and support the authors’ reservation towards involving reputable developers to make OSS teams
more productive. Moreover, these effects explain why the attraction of OSS developers, which
is strongly dependent on the positive assessment of team members’ competence (Shah 2006),
is much more affected by the involvement of reputable OSS developers (Hu et al. 2012).
However, while this explanation seems plausible, it requires future evaluation. Moreover, future
research should examine if reputable developers differ in their predisposition to trust other team
members compared to less reputable developers.

 Our research suggests a refinement to the social practice view of OSS development.

In contrast to studies which focus on OSS developers’ search for immediate outcomes of their
behavior, we take a more nuanced view on their project behavior, and focus on their interactions
with their team members and their ethical considerations. Building on the social practice view

Chapter III: Developer Integration

 164 Andreas Schilling

of OSS development (von Krogh et al. 2012) and the peer evaluation process in OSS
communities (Raymond 1999), we argued that reputable developers help OSS teams in assisting
members in their coding and also pass on central values of the OSS culture, like ‘sharing and
caring’. However, our evaluation reveals that reputable developers only foster members’ belief
in each other’s competence but not their feelings of belonging to each other. At closer look,
these findings are not too surprising. In his original publication, MacIntyre (1981) distinguishes
between two basic forms of internal goods. The first type of internal goods refers to the
performance itself and the associated product while the second type of internal good concerns
the ‘related kind of life’ (MacIntyre 1981, p. 190). While the first form of internal good can be
derived through pursuing a social practice in line with the standards of excellence, the second
type requires individual self-reflection of project work. In this regard, the distinct effects posed
by reputable developers become even more plausible, as they may enhance OSS developers’
competencies, but it is up to them to find overlaps between their own and their colleagues’ lives.
In line with MacIntyre (1981), we thus propose to distinguish within the OSS context between
internal goods which can be directly obtained in the course of the social practice (i.e. code,
experience) and internal goods which depend on individuals’ self-reflection (i.e. sense of
belonging). Figure 5 visualizes the supposed refinement of internal goods in the context of the
social practice view of OSS development. This distinction is especially helpful for future
research to derive new ways on how to enhance OSS developers’ collaboration.

 Managers should favor dedicated teambuilding activities over bringing in reputable
developers to enhance OSS team productivity.

Finally, our work provides lessons for managers of OSS projects. Most importantly, our
research suggests that involving reputable developers enhances OSS teams’ productivity only
marginally. This is because, reputable developers only increase members’ cognitive trust, the
belief in each other’s competence, however, it is their level of affective trust, their feelings of
belonging to each other, which have a direct effect on their productivity. Thus, managers of
OSS teams who wish to enhance their teams’ productivity should rather offer team building
activities which strengthen members’ interpersonal bonds, like conducting release parties or
arranging social events in the context of developer sprints, rather than bringing in reputable
developers.

Figure 5: Suggested refinement

Paper VI

Developer Management in FLOSS Projects 165

7.3 Implications for Organizations

With respect to researchers’ advice to consider knowledge workers volunteers (Drucker 2002),
our work provides also implications to teams in organizations.

 Use of the social practice view to understand collaborations within organizations.

In line with Beadle (2006) we suppose that the social practice view provides valuable grounds
for understanding effective collaborations in organizations. One central advantage over
motivation theories, which focus on the immediate outcomes associated with individuals’
behavior, is that MacIntyre’s theory considers individuals’ ethical beliefs and their long term
goals to understand their project behavior. This shift in perspective, however, requires a new
understanding of designing a supportive organizational environment which much more
emphasizes employees’ work-life balance. In this regard, our work provides first grounds for
future organizational literature not to focus only on employees’ teamwork competencies but to
consider also their sense of belonging. In other words, our results stress that organizational
research needs to focus on why employees work and not only what they work.

 Managers should not rely on scoring systems in their staffing decisions and favor
teambuilding activities over bringing in reputable individuals to enhance their teams’
productivity.

Finally our research provides several practical lessons for organizations. Foremost, our work
adds to research on the value added of external (e.g.: LinkedIn endorsements) and in-house
scoring systems (e.g.: IBM Connections). In line with the social practice view, we expect that
individuals gain a positive score in these systems through making positive experiences when
working together (assuming that their organizations allow them to share their work experiences
openly with others internal or external to the organization). Although our research suggests that
reputable individuals increase team productivity, this effect is much lower than for example
their positive effect on the equity price of knowledge-intensive firms (Erden et al. 2014). While
there are only few levers for firms to get such attention from financial investors, our research
recommends fostering affective trust among members (such as having a beer after work) over
bringing in reputable developers to enhance individuals’ productive interplay.

7.4 Implications for Online Communities
As our evaluation considers the effective virtual collaboration of individuals, which is a key
challenge for online communities (McLure Wasko and Faraj 2000), we delineate in the
following the implications of our work for value creation in online communities.

 Team and project characteristics can have opposite effects on individual and collective
behavior.

A key insight of our work is the notion that the effects of project and team characteristics on
individual behavior can be distinct from and even opposite of effects on collective behavior.
One of these characteristics is developers’ team experience, which stimulates OSS teams’

Chapter III: Developer Integration

 166 Andreas Schilling

productivity, but which has a strong negative effect on members’ individual productivity when
controlling for affective and cognitive trust. An explanation for this discrepancy could be that
OSS developers favor their companionship over their project work, the longer they work
together. As a result, these developers contribute less code to the OSS project but remain
supportive for team members and thus help them to become more productive. From an
aggregated research perspective which we used in our structural analysis, such effect would be
invisible as the productivity deficits of long-term developers could be completely covered under
the productivity gains of new project members. In a similar vein, such multi-level differences
could provide an explanation for the distinct effects individuals’ expertise has on their
individual and collective behavior in online communities (McLure Wasko and Faraj 2005,
2000). Thus, future studies on online communities should be aware of such ambiguous effects
and explicitly check for them.

 Relevance of a social practice view

Likewise to the OSS context, the social practice view proposed by MacIntyre (1981) could
provide valuable grounds for understanding value creation in online communities. In particular,
its distinction between internal and external goods produced in the course of pursuing a social
practice provides a suitable context for understanding the various motives which drive
individuals to participate in online communities (McLure Wasko and Faraj 2000). Moreover,
the social practice view helps to understand why individuals’ interactions and their ethical
considerations play a salient role in their community behavior. Future research adopting the
social practice view in online communities can draw on our work to understand that there are
only some internal goods which can be fostered with the help of others while other internal
goods require individuals’ self-reflection. Another central topic for future research is to identify
the relevant standards of excellence for value creation in online communities.

 Lessons for managers of online communities

Finally our research provides lessons for managers of online communities. Most importantly,
our work indicates that involving reputable developers is not a surefire way to increase value
creation in online communities. Although, our research provides evidence that reputable
developers enhance individuals’ productive interplay, this positive effect is marginally weak.
Instead, our work supports the advice of Ren et al. (2007) to foster the emotional bonds between
community members to enhance their collaboration. Such teambuilding activities could be
arranged with the help of the companies involved. For example, Nike could award members of
its designer community with cards to NBA playoffs (Füller et al. 2007). If such offline events
are not possible, managers should seek to find online alternatives for them which emphasize
members’ shared interests, such as an online chat with Michael Jordan in the case of the Nike
designer community.

7.5 Limitations and Future Research

There are several limitations in our research which we would like to point out. First, team
members’ productive collaboration is only one way to look at value creation in OSS projects,

Paper VI

Developer Management in FLOSS Projects 167

even though we argue that this aspect is inherently intertwined with other value creation
processes in OSS projects, such as innovation and learning (von Krogh et al. 2003). For
example, the innovation process in OSS projects is generally not a fire-and-forget activity, but
requires iterative refinement. This iterative refinement is manifested in a core principle for OSS
development, which is to ‘release early and often’ (Raymond 1999, p. 7). As a result, OSS
projects’ innovation process requires iterative code development. Likewise, team members’
learning is linked to their own as well as other members’ coding. This is because OSS
developers build knowledge through actively developing code for the project or exchanging
with team members, who develop for the project (Fang and Neufeld 2009, Singh et al. 2011b).
Thus, with respect to the interrelation between code development and the innovation and
learning processes in OSS teams, we consider members’ productive interplay as a necessary
but not sufficient aspect to understand value creation in OSS projects and encourage future
research to build on our work to examine if involving reputable developers has similar effects
on the innovation and learning processes in OSS projects.

Another potential limitation of our work is its grounding in the social practice view of OSS
development. Although, the social practice view seems to be an appropriate theoretic
framework to understand how social and environmental influences affect individual behavior,
its use is immature and was only recently applied to the OSS domain (von Krogh et al. 2012).
While our evaluation supports the general reasoning of the social practice view, we cannot
judge the general appropriateness of this concept for OSS development. Moreover, we do not
want to leave unmentioned that MacIntyre’s theory itself is not without criticism (Beadle 2006).

Third, our combination of structural- and individual-centric evaluation approaches is
constrained by non-overlapping study samples. Although we repeatedly promoted our survey
through posts on the KDE developer mailing list and on the central community page, we could
not achieve an overlapping study sample between our two evaluations. Although, all projects
within the KDE framework share the same coding standards and governance processes, we
cannot rule out that the KDE developers in our structural analysis would provide different
survey replies. Moreover, due to the non-overlapping study sample, we had to rely on a
perceptive measure instead of our archival measure to assess the involvement of reputable OSS
developers. We did so because we could not identify the Ohloh accounts for a sufficient number
of team members with whom the surveyed developers had worked. This raises the interesting
question for future research if and to which degree the subjective identification of reputable
developers differs from their archival assessment. Moreover, our evaluation calls for future
research with overlapping samples to study the interrelation between structural- and individual-
centric effects more thoroughly.

Finally, the concentration of our research on data from KDE and Ohloh.com limits the
generalization of our evaluation results. By relying on data from Ohloh.com, our study is
constrained to the effects of OSS developers’ positive community reputation. With prevalently
used peer evaluation in OSS projects, however, developers could also be affected by a negative
community reputation. This raises an intriguing question for future studies: to what degree is
OSS team productivity reduced by the involvement of developers with a negative reputation in

Chapter III: Developer Integration

 168 Andreas Schilling

the OSS community? Moreover, while our focus on KDE projects allows us to study a variety
of different project and team configurations that share the same institutional characteristics and
code of excellence in terms of the social practice view, it reduces our ability to transfer our
findings to other OSS projects. Further, our individual-centric post-hoc analysis is constrained
by the participation of only 86 KDE developers. Thus, future research should seek to examine
our research based on a more diverse and quantitatively richer survey sample.

8 Conclusion

In this multi-level research, we examine if and how reputable developers foster OSS team
productivity. Building on the social practice view of OSS development, we argue that reputable
OSS developers enhance team members’ technical competence and foster their feelings of
belonging to the team. To evaluate our research hypothesis, we performed an empirical
evaluation of 749 OSS teams based on the community endorsement of the involved developers
and archival records of their previous contributions. Although our findings indicate that
reputable OSS developers increase OSS teams’ productivity, this effect is marginal. To
understand the underlying reasons for this marginal productivity gain, we performed an
individual-centric post-hoc analysis. The results of this analysis suggest that members of teams
with reputable OSS developers indeed perceive each other to be more competent. However,
this does not make them more productive. Instead, it is members’ sense of belonging which
makes them more productive, but such feeling is not directly linked to the involvement of
reputable OSS developers.

9 References

Aiken, LS, West, SG (1991) Multiple Regression: Testing and Interpreting Interactions
(Sage, Newbury Park, California).

Bagozzi RP, Yi Y (1988) On the Evaluation of Structural Equation Models. Journal of the
Academy of Marketing Science 16(1):74–94.

Baldwin CY, Clark KB (2006) The Architecture of Participation: Does Code Architecture
Mitigate Free Riding in the Open Source Development Model? Management Science
52(7):1116–1127.

Beadle R (2006) MacIntyre on Virtue and Organization. Organization Studies 27(3):323–340.

Bergquist M, Ljungberg J (2001) The Power of Gifts: Organizing Social Relationships in
Open Source Communities. Information Systems Journal 11(4):305–320.

Brin S, Page L (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems 30(1-7):107–117.

Casaló LV, Cisneros J, Flavián C, Guinalíu M (2009) Determinants of Success in Open
Source Software Networks. Industrial Management & Data Systems 109(4):532–549.

Paper VI

Developer Management in FLOSS Projects 169

Chin WW (1998) Issues and Opinion on Structural Equation Modeling. MIS Quarterly 22(1):
vii–xvi.

Colazo JA, Fang Y (2010) Following the Sun: Temporal Dispersion and Performance in Open
Source Software Project Teams. Journal of the Association for Information Systems
11(12):684–707.

Daniel S, Agarwal R, Stewart KJ (2013) The Effects of Diversity in Global, Distributed
Collectives: A Study of Open Source Project Success. Information Systems Research
24(2):312–333.

Deshpande A, Riehle D (2008) The Total Growth of Open Source. Russo B, Damiani E,
Hissam S, Lundell B, Succi G, eds. Open Source Development, Communities and Quality
(Springer US, Boston, MA), 197–209.

Drucker PF (2002) They're not Employees, They're People. Harvard Business Review
80(2):70–77.

Erden Z, Klang D, Sydler R, von Krogh G (2014) “How can We Signal the Value of Our
Knowledge?” Knowledge-based Reputation and its Impact on Firm Performance in
Science-based Industries. Long Range Planning.

Fang Y, Neufeld D (2009) Understanding Sustained Participation in Open Source Software
Projects. Journal of Management Information Systems 25(4):9–50.

Fornell C, Larcker DF (1981) Structural Equation Models With Unobservable Variables and
Measurement Error Algebra and Statistics. Journal of Marketing Research (JMR)
18(3):382–388.

Füller J, Jawecki G, Mühlbacher H (2007) Innovation Creation by Online Basketball
Communities. Journal of Business Research 60(1):60–71.

Gayo-Avello D (2013) Nepotistic Relationships in Twitter and Their Impact on Rank Prestige
Algorithms. Information Processing & Management 49(6):1250–1280.

Greene, WH (2003) Econometric analysis, 5th ed. (Prentice Hall, Upper Saddle River, N.J).

Grewal R, Lilien GL, Mallapragada G (2006) Location, Location, Location: How Network
Embeddedness Affects Project Success in Open Source Systems. Management Science
52(7):1043–1056.

Hu D, Zhao JL (2009) Discovering Determinants of Project Participation in an Open Source
Social Network Proceedings of the 30th International Conference on Information
Systems (ICIS),

Hu D, Zhao JL, Chen J (2012) Reputation Management in an Open Source Developer Social
Network: An Empirical Study on Determinants of Positive Evaluations. Decision
Support Systems 53(3):526–533.

Chapter III: Developer Integration

 170 Andreas Schilling

Ke W, Zhang P (2010) The Effects of Extrinsic Motivations and Satisfaction in Open Source
Software Development. Journal of the Association for Information Systems 11(12):785–
808.

Kuk G (2006) Strategic Interaction and Knowledge Sharing in the KDE Developer Mailing
List. Management Science 52(7):1031–1042.

Li Y, Tan C, Teo H, Mattar AT (2006) Motivating Open Source Software Developers:
Influence of Transformational and Transactional Leaderships SIGMIS CPR '06, 34.

MacIntyre, AC (1981) After Virtue: A Study in Moral Theory, 1st ed. (University of Notre
Dame Press, Notre Dame).

McAllister DJ (1995) Affect-and Cognition-Based Trust as Foundations for Interpersonal
Cooperation in Organizations. Academy of Management Journal 38(1):24–59.

McLure Wasko M, Faraj S (2000) “It Is What One Does”: Why People Participate and Help
Others in Electronic Communities of Practice. The Journal of Strategic Information
Systems 9(2-3):155–173.

McLure Wasko M, Faraj S (2005) Why Should I Share? Examining Social Capital and
Knowledge Contribution in Electronic Networks of Practice. MIS Quarterly 29(1).

Qureshi I, Fang Y (2010) Socialization in Open Source Software Projects: A Growth Mixture
Modeling Approach. Organizational Research Methods 14(1):208–238.

Raymond, ES (1999) The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary, 1st ed. (O'Reilly, Sebastopol).

Ren Y, Kraut R, Kiesler S (2007) Applying Common Identity and Bond Theory to Design of
Online Communities. Organization Studies 28(3):377–408.

Roberts JA, Hann I, Slaughter SA (2006) Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A Longitudinal Study of the Apache
Projects. Management Science 52(7):984–999.

Ryan RM, Deci EL (2000) Self-Determination Theory and the Facilitation of Intrinsic
Motivation, Social Development, and Well-Being. American Psychologist 55(1):68.

Schilling A, Laumer S (2012) Learning to Remain - Evaluating the Use of Mentoring for the
Retention of FLOSS Developers. Proceedings of the 20th European Conference on
Information System (ECIS),

Schilling A, Laumer S, Weitzel T (2013) In the Spotlight - Evaluating How Celebrities Affect
FLOSS Developers' Participation Motivation. Proceedings of the 21th European
Conference on Information System (ECIS),

Paper VI

Developer Management in FLOSS Projects 171

Sen R, Subramaniam C, Nelson ML (2008) Determinants of the Choice of Open Source
Software License. Journal of Management Information Systems 25(3):207–240.

Shah SK (2006) Motivation, Governance, and the Viability of Hybrid Forms in Open Source
Software Development. Management Science 52(7):1000–1014.

Singh PV (2010) The Small-World Effect. ACM Trans. Softw. Eng. Methodol. 20(2):1–27.

Singh PV, Tan Y, Mookerjee V (2011a) Network Effects: The Influence of Structural Social
Capital on Open Source Project Success. Management Information Systems Quarterly
35(4):813–829.

Singh PV, Tan Y, Youn N (2011b) A Hidden Markov Model of Developer Learning
Dynamics in Open Source Software Projects. Information Systems Research 22(4):790–
807.

Stewart D (2005) Social Status in an Open-Source Community. American Sociological
Review 70(5):823–842.

Stewart KJ, Gosain S (2006) The Impact of Ideology on Effectiveness in Open Source
Software Development Teams. Management Information Systems Quarterly 30(2):291–
314.

Subramaniam C, Sen R, Nelson ML (2009) Determinants of Open Source Software Project
Success: A Longitudinal Study. Decision Support Systems 46(2):576–585.

von Krogh G, Haefliger S, Spaeth S, Wallin MW (2012) Carrots and Rainbows: Motivation
and Social Practice in Open Source Software Development. MIS Quarterly 36(2):649–
676.

von Krogh G, Spaeth S, Lakhani KR (2003) Community, Joining, and Specialization in Open
Source Software Innovation: A Case Study. Research Policy 32(7):1217–1241.

von Krogh G, von Hippel E (2006) The Promise of Research on Open Source Software.
Management Science 52(7):975–983.

Xu B, Jones DR (2010) Volunteers' Participation in Open Source Software Development: A
Study from the Social-Relational Perspective. Database for Advances in Information
Systems 41(3).

Chapter IV:

Developer Retention

Paper VII

Learning to Remain -

Evaluating the Use of Mentoring For the Retention
of FLOSS Developers

Andreas Schilling
University of Bamberg

andreas.schilling@uni-bamberg.de

Sven Laumer
University of Bamberg

sven.laumer@uni-bamberg.de

In: Proceedings of the 20th European Conference on Information System (ECIS 2012),
Barcelona, Spain

The publication is available under:

http://aisel.aisnet.org/ecis2012/148

http://aisel.aisnet.org/ecis2012/148

Chapter III: Developer Integration

 176 Andreas Schilling

Abstract

In this study, we examine if and how reputable developers increase the productivity of teams
developing Open Source Software (OSS). Building on the social practice view of OSS
development, we suppose that reputable developers stand out not only for their technical and
behavioral competences but also for a deep internalization of the OSS culture. Because of this,
we suppose that reputable developers increase members’ technical competences and foster their
sense of belonging to the OSS team. To our surprise, an empirical evaluation of 749 OSS team
configurations reveals that reputable developers increase OSS teams’ productivity only
marginally. In order to understand the underlying reasons of this weak effect, we employed an
individual-centric post-hoc analysis. The results of this dedicated post-hoc evaluation with 80
OSS developers indicate that reputable developers directly increase members’ level of cognitive
trust in the OSS team, but this form of trust is not directly linked to their individual productivity.
Instead, it is members’ level of affective trust in the OSS team which directly facilitates their
individual productivity. However, this form of trust is not directly linked to the involvement of
reputable OSS developers. Based on our multi-level evaluation, we propose a refinement to the
definition of internal goods within the social practice view of OSS development. Moreover, our
evaluation brings to the fore that the effects of team and project characteristics on individual
behavior can be distinct from and even opposite of the effects on collective behavior. Finally,
we point out that managers of online communities who wish to enhance effective collaboration
should focus on activities which strengthen individuals’ social bonds rather than bringing in
reputable individuals.

Appendix

Appendix

Developer Management in FLOSS Projects 179

Publications

Conference Proceedings (Peer-Reviewed)

Schilling, A., 2012. Links to the Source - A Multidimensional View of Social Ties for the
Retention of FLOSS Developers, in: Proceedings of the 2012 ACM SIGMIS CPR
Conference, Milwaukee (WI).

Schilling, A., 2014. What Do We Know about FLOSS Developers' Attraction, Retention, and
Commitment? A Literature Review, in: Proceedings of the 47th Hawaii International
Conference on System Sciences (HICSS), Big Island (HI), pp. 4003 - 4012.

Schilling, A., Laumer, S., 2012. Learning to Remain - Evaluating the Use of Mentoring for the
Retention of FLOSS Developers, in: Proceedings of the 20th European Conference on
Information System (ECIS), Barcelona, Spain.

Schilling, A., Laumer, S., Weitzel, T., 2011. Is the Source Strong with You? A Fit Perspective
to Predict Sustained Participation of FLOSS developers, in: Proceedings of the 32nd
International Conference on Information Systems (ICIS), Shanghai, China.

Schilling, A., Laumer, S., Weitzel, T., 2012. Train and Retain - The Impact of Mentoring on
the Retention of FLOSS Developers, in: Proceedings of the 2012 ACM SIGMIS CPR
Conference, Milwaukee (WI).

Schilling, A., Laumer, S., Weitzel, T., 2012b. Who Will Remain? An Evaluation of Actual
Person-Job and Person-Team Fit to Predict Developer Retention in FLOSS Projects, in:
Proceedings of the 45th Hawaii International Conference on System Sciences 2012
(HICSS), Maui (HI), pp. 3446–3455.

Schilling, A., Laumer, S., Weitzel, T., 2013a. In the Spotlight - Evaluating How Celebrities
Affect FLOSS Developers' Participation Motivation, in: Proceedings of the 21th
European Conference on Information System (ECIS), Utrecht, Netherlands.

Schilling, A., Laumer, S., Weitzel, T., 2013b. Together but Apart - How Spatial, Temporal and
Cultural Distances Affect FLOSS developers' Project Retention, in: Proceedings of the
2013 ACM SIGMIS CPR Conference, Cincinnati (OH).

Schilling, A., Laumer, S., Weitzel, T., 2014. Stars Matter - How FLOSS Developers' Reputation
Affects the Attraction of New Developers, in: Proceedings of the 2014 ACM SIGMIS
CPR Conference, Singapore.

