BAMBERGER BEITRAGE
ZUR WIRTSCHAFTSINFORMATIK UND ANGEWANDTEN INFORMATIK
ISSN 0937-3349

Nr. 65

Modelling and Validating Business
Collaborations:
A Case Study on RosettaNet

Andreas Schonberger

March 2006

FAKULTAT WIRTSCHAFTSINFORMATIK UND ANGEWANDTE INFORMATIK
OTTO-FRIEDRICH-UNIVERSITAT BAMBERG

Distributed and Mobile Systems Group

Otto-Friedrich Universitdt Bamberg
. Feldkirchenstr. 21, 96052 Bamberg, GERMANY

Prof. Dr. rer. nat. Guido Wirtz

http://www.uni-bamberg.de/en/fakultaeten/wiai/faecher/informatik/lspi/

Due to hardware developments, strong application needs and the overwhelming influence of
the net in almost all areas, distributed and mobile systems, especially software systems, have
become one of the most important topics for nowadays software industry. Unfortunately, distri-
bution adds its share to the problems of developing complex software systems. Heterogeneity in
both, hardware and software, concurrency, distribution of components and the need for inter-
operability between different systems complicate matters. Moreover, new technical aspects like
resource management, load balancing and deadlock handling put an additional burden onto the
developer. Although subject to permanent changes, distributed systems have high requirements
w.r.t. dependability, robustness and performance.

The long-term common goal of our research efforts is the development, implementation and
evaluation of methods helpful for the development of robust and easy-to-use software for com-
plex systems in general while putting a focus on the problems and issues regarding the software
development for distributed as well as mobile systems on all levels. Our current research acti-
vities are focussed on different aspects centered around that theme:

e Robust and adaptive Service-oriented Architectures: Development of design methods, lan-
guages and middleware to ease the development of SOAs with an emphasis on provable
correct systems that allow for early design-evaluation due to rigorous development me-
thods and tools. Additionally, we work on approaches to autonomic components and
container-support for such components in order to ensure robustness also at runtime.

e Agent and Multi-Agent (MAS) Technology: Development of new approaches to use Multi-
Agent-Systems and negotiation techniques, for designing, organizing and optimizing com-
plex distributed systems, esp. service-based architectures.

e Peer-to-Peer Systems: Development of algorithms, techniques and middleware suitable for
building applications based on unstructured as well as structured P2P systems. A specific
focus is put on privacy as well as anonymity issues.

o Context-Models and Context-Support for small mobile devices: Investigation of techni-
ques for providing, representing and exchanging context information in networks of small
mobile devices like, e.g. PDAs or smart phones. The focus is on the development of a tru-
ly distributed context model taking care of information reliability as well as privacy issues.

e Visual Programming- and Design-Languages: The goal of this long-term effort is the uti-
litization of visual metaphores and languages as well as visualization techniques to make
design- and programming languages more understandable and, hence, easy-to-use.

More information about our work, i.e., projects, papers and software, is available at our ho-
mepage. If you have any questions or suggestions regarding this report or our work in general,
don’t hesitate to contact me at guido.wirtz@wiai.uni-bamberg.de

Guido Wirtz
Bamberg, April 2006

Modelling and Validating Business Collaborations:
A Case Study on RosettaNet

Andreas Schonberger

Lehrstuhl fiir Praktische Informatik, Fakultit WIAI

Abstract The way business processes are organised heavily influences the flexibility and the
expenses of enterprises. The capability to address changing market needs in a timely manner
and to provide appropriate pricing is indispensable in a world of internationalisation and gro-
wing competition. Optimising processes that cross enterprise boundaries potentially is a key
success factor in achieving this goal but it requires the information systems of the participa-
ting enterprises to be consistently integrated. This gives rise to some challenging tasks. The
personnel involved in building up business collaborations comes from different enterprises with
different business vocabulary and background which requires extensive communication support.
The lack of central technical infrastructure, typically prohibited by business politics, calls for a
truly distributed and computer-aided collaboration structure, so that the resulting complexity
must be handled somehow. Nevertheless robustness is an important factor in building business
collaborations as these may exchange goods of considerable value.

This technical report proposes the use of a two step modelling approach that separates business
logic, modelled in the so-called centralised perspective (CP), from its distributed implementati-
on, modelled in the so-called distributed perspective (DP). The separation of these perspectives
enables business people to concentrate on business issues and to solve communication problems
in the CP whereas technical staff can concentrate on distribution issues. The use of stringent
modelling rules is advised in order to provide the basis for formal analysis techniques as one
means to achieve robustness.

Considering the choreography of RosettaNet Partner Interface Processes (PIPs) as the sub-
ject of analysis, UML activity diagrams for modelling the CP and WSBPEL for modelling the
DP are described as enabling techniques for implementing the proposed two step modelling
approach. Further, model checking is applied to validate the CP and DP models in order to
detect errors in early design phases. As the adequacy of model checking tools highly depends
on the detailed modelling techniques as well as the properties to be checked, a major part of
our discussion covers relevant properties and requirements for a model checker.

Keywords validation, verification, UML, business process modelling, distributed system,
business to business integration, distributed consensus, RosettaNet, WSBPEL

Contents

1 Introduction

2 Basics
2.1 Model Checking
2.2 RosettaNet

3 An approach for modelling business collaborations

3.1

3.2

3.3

4.1

4.2

The core approach
3.1.1 The centralised perspective
3.1.2 The distributed perspective L.
Using UML activity diagrams for modelling the centralised perspective

Using WSBPEL for modelling the distributed perspective

A RosettalNet use case

The centralised perspective
The distributed perspective
4.2.1 Conceptual modelling

4.2.2 WSBPEL realisation

5 Validating business collaborations

5.1

5.2

2.3

Collaboration properties that should be checked
5.1.1 Sanity of the centralised perspective

5.1.2 Conformance of the distributed implementation to the centralised per-
spective L e e e e

5.1.3 Interference of local business politics with the centralised perspective
Requirements of a model checker 000
Validating the use case

5.3.1 Validating the centralised perspective

12
18

20

23
25
29
29

38

47
47

48

49

5.3.2 Validating the distributed perspective 59

6 Related work 73
7 Conclusion, practical experience and future work 78
Bibliography 80
A Promela validation models 82

B List of previous University of Bamberg reports 111

List of Figures

10

11

12

13

14

15

16

17

18

19

Abstraction of system Sto So)
UML activity diagram visualising the BOV ofa PIP 6
Idealised run of 2PC protocol 10
Coordinator automaton of MCP 15
Participant automaton of MCP oo 16
Use case: Path from state Initial to state Quote 25
Use case: Path from state Quote to state AcceptableQuote 27
Use case: Path from state AcceptableQuote to state ContractOS 28
Use case: Path from state ContractOS to state EndState 29
Sender automaton of a Two-Action Activity 30
Receiver automaton of a Two-Action Activity 31
Sender automaton of a Single-Action Activity 33
Receiver automaton of a Single-Action Activity 34
Message exchange between protocol process and internal process 35
Separate variables for each guard 56
Reuse of variables in guards 57
A loop through PIP 3A7_14 58
Receiver automaton actually validated 67

Sender automaton actually validated 68

List of Tables

1 Media Control Protocol validation levels

2 PIP execution protocol validation levels

List of Abbreviations

2PC
BOV
CPp
CTL
DP
FSV
IF'V
MC
MCP
OIU
PIP
PIPXP
PLTL
RTC
UML
WSBPEL

Two-Phase-Commit Protocol
Business Operational View
Centralised Perspective
Computation Tree Logic
Distributed Perspective
Functional Service View
Implementation Framework View
Micro-choreography

Media Control Protocol

Order Information User

Partner Interface Process

PIP Execution Protocol
Propositional Linear Time Logic
Real Time Clock

Unified Modeling Language

Web Services Business Process Execution Language

1 Introduction

Business processes define how enterprises produce and exchange goods and services. The flow
of information is the main leverage for controlling business processes and heavily influences the
flexibility and the expenses of enterprises. One example for being flexible is giving the customer
the possibility to configure the product himself, e.g. choosing the colour of product parts or
choosing add-ons that provide more functionality. But this requires enterprises to quickly inte-
grate customer preferences in the current production schedule, i.e. the flow of information must
be well-designed and well-managed. One example for reducing costs is minimising the time un-
til goods and services are billed which again requires a well-designed and well-managed flow
of information. Enterprises can use flexibility and minimal expenses to realise strategies like
providing a high customer value or offering the best price. Hence, optimising business processes
is a core technique for enterprises to continue to exist in stiff competition. Optimising business
processes can be done by automating the flow of information. Automating the flow of infor-
mation of business collaborations between enterprises, i.e. optimising cross-enterprise business
processes, still has unexploited potential to furnish competitive advantages but gives rise to
hard challenges as well.

The personnel involved in building up business collaborations frequently comes from different
enterprises with different business vocabulary and background which requires extensive commu-
nication support. The lack of central technical infrastructure, typically prohibited by business
politics, demands for truly distributed computation so that the resulting complexity must be
handled somehow. Nevertheless, robustness is an important factor in building business collabo-
rations as these may exchange goods of considerable value. Therefore we propose the following
approach to building up business collaborations:

1. Modelling a business collaboration from a centralised perspective. Communi-
cation between personnel from different enterprises can be supported by first focussing on
the business logic of the collaboration. The so-called centralised perspective (CP) specifies
the abstract business state of the collaboration, the events that trigger state changes, so-
called micro-choreographies that consistently perform state changes and the control flow
of the collaboration. Interpreting the CP as the common view of all collaboration partici-
pants on the collaboration progress is key to understanding the CP. Thus the state under
consideration reduces to the facts the collaboration participants have to agree upon and
micro-choreographies can be interpreted as single actions that change state leaving out
message passing details. This modelling metaphor makes modelling quite simple and does
not require technical experts, who possibly don’t know business logic very well, to create
the model. Nevertheless, the modelling technique applied should have clear semantics to
avoid misunderstandings between collaboration participants and to provide the founda-
tion of (semi-)automated generation of a distributed implementation. The model of the
CP then gives context to a distributed implementation of the collaboration which is a

similar approach as pursued by WS-CAF/WS-Context ([OAS03]).

2. Modelling a business collaboration from a distributed perspective. The so-
called distributed perspective (DP) models the implementation of the CP in a distributed
environment by specifying a representation of the abstract business state and by spec-
ifying protocols for performing micro-choreographies that ensure distributed consensus.

2 1 INTRODUCTION

Complexity is handled in a twofold way. First, the global view on business logic is already
fixed when modelling the DP, so technical aspects can be focussed. Second, the concept
of micro-choreography helps in unitising the implementation model, which decomposes
the overall task. Further, tasks to be fulfilled on the DP are achieving agreement on the
start of micro-choreographies, proving that the DP conforms to the CP and integrating
local business politics of the collaboration participants.

3. Applying model checking techniques to ensure robustness. Business collabora-
tions possibly exchange goods and services of considerable value. Therefore, a robust
design is needed in order to avoid losses. This means that the protocol to perform a
collaboration should ideally be defined in such a way that errors are only possible by
violating the protocol thus identifying a responsible person to call to account for losses in
case an error occurs. This goal requires to look at all possible protocol runs for a given
environment. As the set of possible runs in a concurrent environment grows quickly, time-
consuming and error-prone manual analysis should be extended by automated analysis
techniques such as model checking. Model checkers compute all possible runs of a given
protocol and offer the possibility to check properties. Model checking is suited to per-
form validation in early design phases because models are relatively small and undetected
errors cause high costs. Major problems in applying model checking techniques are the
identification of relevant properties to check and the choice of the right model checker.
Therefore this technical report gives a taxonomy of relevant properties of business collab-
orations and identifies requirements for model checkers. A core requirement for applying
model checking is that the model checker in use can be applied directly to the models of
the CP and DP or, at least, to enhanced models of the CP and DP because having to
model the collaboration twice would be too costly.

In practice, the approach proposed must be supported by suitable technologies and tools. As
the relationships between enterprises are numerous, i.e. enterprises have many partners, and
dynamic, i.e. enterprises acquire and lose partners, these technologies and tools should be based
on standards. Standards support quick and low-cost automation of business collaborations.
We propose UML activity diagrams ([OMGO03]) and WSBPEL ([IBMO03]) as enabling, but not
exclusive, technologies for modelling the CP and the DP respectively. UML activity diagrams
offer a visual notation which supports the communication functionality of the CP. WSBPEL
and in particular Web Services are platform and programming language independent which is
important for connecting heterogeneous systems. Both, UML activity diagrams and WSBPEL,
rely on standards.

A case study on choreographing RosettaNet Partner Interface Processes (PIPs) is conducted
to evaluate the approach proposed in conjunction with UML activity diagrams and WSBPEL.
RosettaNet suits well as the subject of our case study because it is a standard itself and a
major part of the RosettaNet standard is devoted to standardising message contents of business
collaborations, an important task that is not addressed by our approach. The use of model
checkers, namely TCM/TATD! for validating the CP and SPIN? for validating parts of the
DP,; is shown by applying them to the models of the case study. The use of these tools is not
shown in a general way because model checking depends on the detailed modelling techniques

http://wwwhome.cs.utwente.nl/~tcm/tatd.html
’http://spinroot.com/spin/whatispin.html

http://wwwhome.cs.utwente.nl/~tcm/tatd.html
http://spinroot.com/spin/whatispin.html

as well as the properties to be checked. A more important result of our work is therefore the
creation of a taxonomy of relevant properties for business collaborations and the identification
of requirements for a model checker.

This technical report is structured as follows. Section 2 gives a short introduction to the
technologies applied. Section 3 explains our modelling approach in detail and shows how UML
activity diagrams and WSBPEL can be used for modelling the two complementary perspectives.
Section 4 introduces the use case of the case study and describes the modelling of the use case
in detail. In section 5 the modelling results are validated and a taxonomy of properties as
well as core requirements for a model checker are given. Section 6 then discusses related work.
Finally, section 7 concludes the paper and identifies future work.

4 2 BASICS

2 Basics

The technologies and concepts used in this report range from modelling systems in general, UML
1.5 activity diagrams (JOMGO3]), Web Services® and WSBPEL ([IBMO03]) to model checking as
well as RosettaNet*. A comprehensive introduction to all of these is out of scope of this report.
Therefore, only a short introduction to model checking and RosettaNet is provided here.

2.1 Model Checking

Model checking is a technique for validating finite systems. Finiteness is a requirement because,
in general, the whole state space is being explored for validation purposes. Usually, temporal
logic is used to formulate properties that are then proved to be true or not. Temporal logic
is particularly useful to express relationships between multiple states of the state space under
consideration. The atoms of temporal logic formulae refer to single states of a state space so
that, normally, their formalisation depends on the type of system to be validated.

A model checker is a tool for applying model checking techniques to particular types of systems.
Model checkers differ in input language for specification of systems, in query language for for-
malisation of properties and in algorithms for verifying properties. The main functionality of
a model checker is the application of verification algorithms as well as the translation of input
specifications and properties into a structure suitable for verification. Input and query language
are crucial for intuitive use of a model checker. Frequently, a system must be translated to the
input language of a model checker before it can be validated, so intuitive use is important.
Ideally, the paradigm of the input language fits the system under consideration. For example,
the widely-used model checker SPIN uses the paradigm of concurrent processes that exchange
messages via message channels.

Model checkers are frequently used for validating concurrent systems. As the components of
a concurrent system are asynchronously executed, the state space of such systems usually in-
creases exponentially in the number of components and states of components. This necessitates
the use of automated methods for analysis. Unfortunately, the validation of systems often fails
because available validation resources, in terms of CPU cycles and main memory, do not suf-
fice for the huge state space of concurrent systems. This problem is also known as the state
explosion problem. If the state space of a system is too huge or not finite then abstraction
mechanisms can be applied.

To do so, a system S is translated into an abstract system S’ that typically has a smaller state
space. Then S’ is validated instead of S and the validation results are transferred to S. Figure 1
shows an abstraction example (taken from [BBFO1], p.111). The number of states in the left
system have been reduced by collapsing the states in a dotted area to one state respectively.
The transitions of S have been transferred to S’ according to the following rule: If a transition
starts from/ends in a state in S than it starts from/ends in its corresponding collapsed state in
S’. The result of this abstraction is shown on the right side of the figure. S’ has a smaller state
space than S but it allows for more system runs. Apparently, not all properties that hold for
S’ also hold for S. For example, it can be shown that, only using A transitions, every state in

3http://www.w3.org/2002/ws/
‘http://www.rosettanet.org/

http://www.w3.org/2002/ws/
http://www.rosettanet.org/

2.1 Model Checking 5

Figure 1: Abstraction of system S to S’

S’ is reachable. This property does not hold for S.

In order to decide whether a property can safely be transferred or not, the distinction between
safety properties and liveness properties is useful.

Informally speaking, a safety property expresses that a particular state will never be reached
whereas a liveness property expresses that a particular state will be reached if some conditions
are met. The classification is easier to make following the rule in [BBFO01], p.84, for identifying
safety properties:

[...]when a safety property is violated, it should be possible to instantly notice it. If
this depends on the remainder of the behaviour, then a behaviour which would end
immediately would not violate the safety property. Hence we can only notice it, in
the current state, relying on events which occurred earlier]...]

Safety properties that hold for S’ also hold for S. The reason is that S’ allows strictly more
system runs than S does. This can be shown by the fact that any transition that can be taken
in S can also be taken in S’. The transfer of safety properties from S’ to S is only correct, but
not complete. If a safety property holds in S’ it also holds in S, but if a safety property does
not hold in S’ then it is not necessarily the case that it does not hold in S as well. Generally,
the transfer of liveness properties is not admissible.

In this report, only abstractions that allow for strictly more system runs are used so that the
transfer of properties follows the rules just described.

6 2 BASICS

2.2 RosettalNet

RosettaNet is a non-profit standards organisation dedicated to supporting B2B integration and
endorsed by over 500 companies worldwide. Founded in 1998, RosettaNet defines business
messages and rules for its electronic exchange. Therefore RosettaNet uses technology and ideas
from Open-edi ([ISO04]), UN/CEFACT Modeling Methodology (UMM, [UN/01]) and ebXML?®.
The core RosettaNet standards are Partner Interface processes (PIPs) and the RosettaNet Im-
plementation Framework (RNIF) [Ros02], [Dam04]. PIPs, classified in clusters like cluster
3 Order Management and segments like segment 3A Quote and Order Entry, describe the ap-
plication context, the content and parameters for the electronic exchange of one or two business
documents. The RNIF in turn provides a metamodel for PIPs and details the technology for
their execution.

PIPs describe the exchange of business documents at three levels, namely the Business Oper-
ational View (BOV), the Functional Service View (FSV) and the Implementation Framework
View (IFV).

The BOV describes a PIP from a business perspective. This includes an informal textual de-
scription of the application context of the PIP and an UML activity diagram visualizing the
PIP. In that diagram, the roles of the business partners involved are represented by swimlanes.
The first activity of such a diagram is stereotyped with a Business Transaction Type according
to UMM ([UN/01] chapter 1, p.14 f.)). Figure 2 shows an example of such a diagram that fur-
ther visualises business documents to be exchanged as object flows. Finally, the BOV specifies
start and end states of a PIP execution and Business Process Activity Controls like Time to
Perform for the overall PIP.

For each role of the BOV a component is defined in the FSV that is responsible for exchanging

Buryer Seller
@ START
s ¥)
{ = Pt Conte mAdtaity \.I =< GacureFlows=>
| Request Purchase Order i B E Purchase Order Confirmation
, #
. .
F 3
kﬁuc CESS] [FAIL]]
(@) ENnD (@) FAILED
=<SecureFlow=> i Caonfirm Purchase Order \‘;
Purchase Order Request Ll)
y y

Figure 2: UML activity diagram visualising the BOV of a PIP

business documents as Actions and control messages as Signals. The exchange of each message
is detailed by Message Fxchange Controls and finally the intended order of message exchanges
is represented by an UML sequence diagram.

The main task of the IFV is the detailed specification of the business documents to exchange
which is done in a xsd-file. Moreover the IF'V specifies encryption details of the messages to be

Shttp://www.ebxml.org/

http://www.ebxml.org/

2.2 RosettaNet 7

exchanged.

Apart from defining a metamodel for PIPs; a major part of the RNIF is devoted to specifying
a reliable protocol for exchanging the messages of a PIP. This is different from the information
in the FSV where only the idealised flow of messages is given. RNIF defines four variants of
message exchange protocols as Business Message Patterns ([Ros02] p.75 ff) that can be used
to type a PIP.

8 3 AN APPROACH FOR MODELLING BUSINESS COLLABORATIONS
3 An approach for modelling business collaborations

As already pointed out in the introduction, automating business collaborations needs modelling
support for communication purposes. Models provide this support by defining a unified system
of concepts and sometimes even semantics for these concepts. Models are further useful for
accomplishing analysis, design and documentation tasks. Subsection 3.1 introduces the two-
step modelling approach referred to in the introduction. Subsections 3.2 and 3.3 show how UML
activity diagrams and WSBPEL can be applied to modelling the CP and DP respectively.

3.1 The core approach

The idea for separating the CP and the DP of a business collaboration bases on the insight
that collaboration participants first have to agree upon what to do in a collaboration from a
global point of view before specifying a collaboration from a local point of view. A business
collaboration can be interpreted as a single business process that spans multiple enterprises.
The purpose of the CP is to model this business process by identifying relevant states and
actions. The purpose of the DP is to specify the distributed implementation of the overall
business process.

3.1.1 The centralised perspective

The definition of state is crucial for modelling the CP on business collaborations. The goal of
any business collaboration is achieving a new and common state, e.g. signing a new contract.
Moreover the applicability of transactions and the way transactions are conducted within a
collaboration may depend on what steps have been taken before. The exchange of an order
of goods may require a quote to be exchanged beforehand and refer to prices that are fixed in
the quote. Interpreting a collaboration as a single business process, we decided to model state
explicitly in our approach and to define it as the common view of the collaboration partners on
the progress of the collaboration (process state in the following). A process state is composed
of the relevant attributes of the collaboration, e.g. the information if a contract has already
been signed or if certain resources are free or not. Process states are therefore the basis for
communication between collaboration participants who negotiate which process states should
be reached and which attribute values should be associated with these process states. Clearly,
it is impossible in a truly distributed environment to ensure that the collaboration participants
have the very same view on process states at every point in time. So it is more adequate to
think of a process state as an abstract business state. The collaboration participants always
reside in the same business state or if any participant has changed its state then all other
participants must make a change to the same state in finite time and no further state changes
are allowed until all participants have reached that state. Such a semantics can be achieved
by using distributed consensus mechanisms. An alternative approach is to let the views of the
collaboration participants on progress diverge but then the number of process states to model

3.1 The core approach 9

would possibly grow exponentially. That is why the use of so-called micro-choreographies® is
proposed to consistently change process states by means of two-phase-commit protocols (2PC
in the following). If no communication is possible at all the use of so-called distributed time-outs
is envisaged to make state changes, e.g. for releasing valuable resources of a participant. A
distributed time-out is only allowed if communication was successful beforehand, e.g. it can be
agreed upon the reservation time of a resource reservation while agreeing upon the reservation
itself. The mechanism to negotiate a distributed time-out while performing a 2PC can be found
in the following excursus.

Excursus: Distributed time-out after 2PC. This excursus presents the negotiation of a
distributed time-out during the execution of a 2PC run. A distributed time-out can then be
fired without any further communication.

The discussion of this excursus concentrates on when the collaboration participants have to
activate timers that fire the time-out events. Therefore, figure 3 shows an idealised run of
2PC. The labels used in figure 3 are used in the following discussion where labels tX represent
points in time and labels VR, VC, GC and ACK represent the messages exchanged. The object
instances A and B represent two participants of a 2PC run. To demonstrate the viability of
negotiating a distributed time-out during a 2PC run, two scenarios are analysed:

e Scenario 1. In this scenario, B reserves resources in favour of A. B uses a distributed
time-out to release these resources after a certain amount of time. But in any case, it
should be provided that A can have faith in the reservation by B until A triggers a time-
out event himself. Therefore B has to trigger a time-out event after A does. This can be
accomplished by triggering the timer of A earlier than the timer of B.

The first step in doing so is that B reserves resources immediately before t3. If the 2PC
run ends with a result of Abort afterwards, B releases the resources and no distributed
time-out is needed at all. Otherwise, A activates its timer immediately before t5 whereas
B activates its timer directly after t6. Let the duration of the timers be d. Then the
time-out event of A is triggered at t5 + d at the latest and the time-out event of B is
triggered at t6 + d at the earliest. As t5 necessarily precedes t6, the time-out event of
A is triggered earlier than the time-out event of B if the clock drift of both is acceptable
(see below). Hence, the goal is achieved.

Clearly, message losses must be taken into account. If VR and VC messages are lost,
the emerging situations can easily be handled by aborting the 2PC run. If GC or ACK
messages are lost, the situation is more complex.

The loss of such messages are detected by A by not receiving any ACK messages. In
this case A repeatedly sends GC messages until he either receives an ACK message or
a 2PC timer (not to confuse with the timer for distributed time-outs), activated by A
before sending the first ACK message, has run out. In either case, A then proceeds in
the business collaboration. Even if the 2PC timer mentioned runs out, A can have faith
in the reservation of the resources because B reserved these before t3.

B detects the loss of GC or ACK messages by either never receiving a GC message or by
receiving multiple GC messages. If B receives no GC messages at all in a certain time

6The notion of micro-choreography is inspired by the fact that collaboration participants have to exchange
a set of messages according to some strict rules for implementing consistent changes of process states.

10

3 AN APPROACH FOR MODELLING BUSINESS COLLABORATIONS

A B

Coordinator Farticipant

1 WoteRequest VR

|
|
|
|%|T1
|
|

.

2 ¥oteCommit YC

4

2 GlobalComrmit GC

|

|

|
|_;_|t5

|

|

=

4 Acknowledge ACK
7

T

Figure 3: Idealised run of 2PC protocol

period, manual intervention is needed to resolve the state of A. Duplicate GC messages
can be answered by B with ACK messages but this is not necessary because A can proceed
without ACK messages as well.

If ACK messages are lost A can only proceed after a 2PC timer has run out. In the
meantime, B could already have need in performing further micro-choreographies. In
order to avoid unnecessary delays in the execution of the collaboration, B can stop A from
waiting for ACK messages by using piggy-backing. Therefore B adds an ACK message to
the first message of the new micro-choreography. If A receives the message of the new
micro-choreography it receives the missing ACK message as well and can terminate the
2PC run.

Scenario 2. In this scenario A reserves resources for B. As this a symmetric case to
scenario 1, the timer of B must be activated earlier than the timer of A.

In scenario 2, the reservation of resources is done by A immediately before t5. If the
reservation is not successful A aborts the 2PC run, otherwise Commit is the only possible
result of the 2PC run. B starts its timer immediately before t3 whereas A starts its timer
after successfully having reserved the resources. This means A starts its timer after t4.

3.1 The core approach 11

Let d be the duration of the timers. Then, the time-out event of B is triggered at t3 +
d at the latest whereas the time-out event of A is triggered at t4 + d at the earliest. As
t3 necessarily precedes t4 the time-out event of B is fired earlier than the time-out event
of A if the clock drift of A and B is acceptable (see below). Hence, the goal is achieved.
Clearly, the timer of B can only tentatively be activated and must be deactivated if the
2PC run terminates with a result of Abort. The tentative activation of the timer of B
does not mean B can begin new micro-choreographies assuming that resources are re-
served while the reservation by A fails later on. This situation to happen would require
that B begins a new micro-choreography before the current 2PC run is terminated. To
do so is not allowed.

The correctness of the mechanism for scenario 2 in the case of message losses can be con-
firmed by looking at the properties of 2PC because 2PC already considers message losses.
If A and B detect an Abort result of the 2PC run, then either no timers for distributed
time-out have been activated or the activation has been cancelled. No resources are then
reserved either. If A detects a Commit result and B blocks continuously (because GC
messages get lost), then B cannot use the resources reserved. But this is not a problem
because the collaboration participants must ensure that message losses are not the stan-
dard case. If A and B both detect a Commit result it only has to be considered that
B must activate its timer before he sends the first (of possibly multiple) VC messages.
As the point in time at which the first VC message is sent precedes the point in time at
which the first VC message is received, the time-out event of B is fired earlier as described
above. Further cases do not exist.

It is noteworthy that the mechanism described here does not require the clocks of the partici-
pants to be synchronised. This is because the activation of timers relies on time intervals and on
the order of message dispatch and message receipt. A problem to be handled is clock drift, i.e.
the clock of A could run faster than the clock of B or the other way round. This problem can be
solved by multiplying the timer duration of the participant who reserves resources for the other
participant by a factor of . The value of A\ can be deduced by looking at the maximum clock
deviation of customary Real Time Clocks (RTC in the following). According to manufacturers
of RTCs, the clock deviation ranges between 3 ppm approx. and 100 ppm approx. depending
on the particular RTC product. To safely calculate A, a clock deviation of 300 ppm approx.
is assumed. This means that a RTC runs 0.0003 * 3600 = 1.08 seconds per hour too fast or
too slow as maximum. This means that the clock drift of A and B can be at most approx. 2
seconds per hour. Hence 1.0006 should be a safe value for A. The collaboration participants
have to ensure that the clock deviation assumed is not exceeded. Maybe time buffers have to
be introduced for handling clock deviation excesses.
One could criticise that the proposed mechanism for realising distributed time-outs needs man-
ual intervention in certain situations. But these situations are fairly rare assuming reasonable
investment in communication infrastructure and 2PC is used here at the level of business
processes. Manual intervention can therefore be justified.

end of excursus

Having defined process states and micro-choreographies as core concepts of the CP, the relation
of these concepts has to be clarified. A process state cannot be directly changed into another
process state. Either a global event, i.e. a distributed time-out, or a local event that triggers

12 3 AN APPROACH FOR MODELLING BUSINESS COLLABORATIONS

a micro-choreography must be used to leave a process state. A distributed time-out must have
been agreed upon before by means of distributed consensus and always points to exactly one
other process state. Local events can be detected locally, but after detection of a local event the
execution of a micro-choreography must be negotiated by means of a protocol because another
participant might have detected a local event as well. The execution of a micro-choreography
can lead to multiple process states depending on the content of the business messages that have
to be exchanged during a micro-choreography. It is important to note that no data other than
the content of the business messages that has been agreed upon by 2PC may be used to route
between multiple process states. It is reasonable to divide the result of a micro-choreography
in a technical result and a business result to perform the actual routing. The technical result
is a boolean value that is true whenever all relevant business messages of a micro-choreography
have successfully been exchanged, interpreted and agreed upon by 2PC. It is not sensible to
represent a business result as either SUCCESS or FAILURE because it is not really clear if
a cancellation of an order is a success or a failure nor is the set of possible business results
always restricted to two values, e.g. in a case where an offer may be accepted, rejected or be
decided upon at a later point in time. Finally, it is useful to introduce roles in the CP in order
to prevent the modellers from specifying processes that are extraordinarily hard to implement.
Roles can be used to identify the 2PC coordinator of micro-choreographies, the participant
in charge for detecting local events that trigger micro-choreographies as well as to make clear
whose resources are released by means of distributed time-outs.

3.1.2 The distributed perspective

While the distributed environment of business collaborations can be largely ignored in the
CP, the DP must respect the restrictions of distributed computing. As business collaborations
usually cannot be built on a central technical infrastructure, automation based on the shared
memory paradigm is hardly possible. Considering insecure communication media, e.g. commu-
nication over the internet, the message passing paradigm is adequate for automating business
collaborations. The following constraints must be addressed.

e There are no assumptions about how long a message travels from sender to receiver.
e Messages can overtake each other.
e Messages can be lost or be duplicated.

e Finally the clocks of the collaboration participants must be assumed to be not synchro-
nised.

As already mentioned in the discussion of the CP, such an environment prevents the collabo-
ration participants from having exactly the same view on collaboration progress at every point
in time. But it can be made sure that any local process of a participant is at most one step
behind the local process of another participant by using the well-known 2PC. The detailed
protocols for specifying the implementation of the collaboration, in particular the implemen-
tation of micro-choreographies, depend to some extent on the application domain and on the

3.1 The core approach 13

particular use case. This subsection therefore discusses the tasks for specifying the DP and
gives detailed protocols only where appropriate. Generally speaking, the task of the DP is to
represent the process states of a collaboration and to specify the number, types and order of
messages to be exchanged. This task can be decomposed into the following packages.

Representing process states. Process states are abstract business states. Thus the current
process state can be represented by a single variable of an enumeration type, that contains all
possible process states. The attributes of a process state can then be deduced by relating the
value of the variable to a process state in the CP.

Executing micro-choreographies. The messages to exchange within a micro-choreography
(MC) depend on the state changes that should be performed. Arbitrary business documents
can be exchanged within a MC. No matter what business documents are exchanged, at the
end of a MC a 2PC run has to be performed in order to achieve distributed consensus whether
all business documents have successfully been transmitted and interpreted or not. The coor-
dinator of the 2PC run can be determined by choosing the participant who has received the
last business document. Typically, all business messages then successfully have been exchanged
and interpreted and the only task of the 2PC is to agree upon that. The result of such a 2PC
run then always will be Commit, except communication failures prevent the participants from
concluding such a result. In order to avoid blocking processes, manual intervention is needed in
the typical 2PC blocking situation. The notification of such a blocking situation then must be
performed reliably which can be safely done because the notification can be performed locally.
More detailed treatment can be found in literature (e.g. [TS02], section 7.5.1). Throughout
this technical report the protocol for executing MCs will be called MC' execution protocol.

Triggering the execution of micro-choreographies. A MC is usually triggered by the
collaboration participant who sends the first message of the MC. In some process states there
may be multiple MCs that can be triggered, maybe by different collaboration participants.
As the execution of a MC may lead to new process states where other MCs can be triggered
the participant with the privilege to trigger a MC must be determined by a protocol. Such a
protocol must also take into account that distributed time-outs can lead to process state changes
and thus affect the applicability of MCs. Ideally, such a protocol negotiates an instance number
for the execution of the MC as well. The so-called media control protocol (MCP) is introduced
here to solve these tasks.

The discussion assumes two collaboration participants. In process states in which only one
collaboration participant can trigger new MCs the MCP task is easy to solve. That is why only
the case where both collaboration participants can trigger a MC is described. The protocol
proposed can also be applied to the case where only one participant can trigger a MC. Model
checking has been applied to develop the following protocol. The development and validation
of the protocol is described in section 5.

Considering the constraints of the distributed environment (cf. p.12) the receiver of a message
can hardly be expected to really be ready to receive the message. The reason is that he might
have time-outed before. To be precise the main task of the MCP, i.e. determining who begins

14 3 AN APPROACH FOR MODELLING BUSINESS COLLABORATIONS

the next MC, is redefined as following: At any point in time only one collaboration participant
has the right to trigger a MC| i.e. to send the first message of the MC. If the other participant
still waits for the first message to arrive, i.e. he does not time-out before, and if the message
transmission does not take too long, then the MC can successfully be triggered by delivering
the first message. Clearly, the first message of a former MC could be delivered as well but this
message then has the wrong instance number. The MCP proposed here is not fair, i.e. one
participant can continuously prevent the other from beginning MCs by acquiring the right to
begin MCs himself. Only one participant of a MCP run can prevent the other from triggering
MCs. A MCP run starts when a new process state is reached and it stops when a process state is
left. In the following the privileged participant is called coordinator whereas the disadvantaged
participant simply is called participant.

In order to acquire the right to trigger a MC the coordinator as well as the participant first have
to request their communication right. If they are granted the right to trigger a MC and they
didn’t change their MCP state in the meantime, then they can send the first message of the
MC. Outdated messages of a MCP run are handled by means of sequence ids. To generate these
ids the coordinator as well as the participant hold two sequence counters each. One counter
counts the number of own requests and is incremented before any new request. The second
counter contains the number of requests of the partner. The detailed usage is described below.
Figure 4 shows the protocol machine of the coordinator. The intended behaviour is displayed
in black colour. The states and transitions that are only introduced because of the constraints
of the distributed environment are displayed in blue colour. The coordinator starts the MCP
in state wait_part. If he receives a communication request (com_req) in this state, he has to
check whether the sequence id contained in the request is bigger than the value of the counter
for the participant. If this is the case, the coordinator accepts the request for communication
and sends a grant message to the participant that contains the sequence id of the com_req just
received. Afterwards the coordinator waits for the first message of a MC (mc) that then must
use the sequence number of the grant message. If he receives such a message the MC begins and
the coordinator therefore switches to state partner_mec. At this point the MC is executed. After
the MC has terminated the coordinator switches to state checkInternal and checks if he has to
trigger some MCs on his own. The coordinator also switches to state checkInternal if he time-
outs in state wait_part. If there are no MCs to trigger in state checkInternal, the coordinator
switches to state wait_part and waits for another com_req sent by the participant. Otherwise
the coordinator increments the counter for his own requests and uses it as the sequence id of a
lock_req message he sends to the participant in order to request communication himself. If the
coordinator then receives a lock message that carries a sequence id which has the same value
as the sequence id he used in his last lock_req, the coordinator switches to state my_mc and
then sends the first message of the MC adding the value of his request counter as sequence
id. After the MC has terminated the coordinator switches to state wait_part and checks for
new com_reqs to arrive. All other transitions are used to handle communication errors. To
do so, outdated messages are deleted or states are left by means of time-out because some
expected messages do not arrive. Figure 5 shows the protocol machine of the participant. The
participant starts a MCP run in state checkInternal. If he doesn’t need to execute any MCs, the
participant switches to state wait_lock and waits there for lock_req messages of the coordinator
to arrive. The participant checks if an arriving lock_req message carries a sequence id that is
bigger than his partner counter. If this is the case, the participant updates his partner counter
with the value of the sequence id and sends back a lock message carrying the same value. If no

3.1 The core approach 15

e
@roj’z-.fe
eO{bSQb S,
89’2)39 f@/,}s (mc;pSeqlD)['current(pSeqID)]
“og,
e\ /
wait_mc
(mc;pSeqlD)
[current(pSeqlD)]
checklInternal

h 4

Klock_req;mSeq|D)
partner_mc

(lock;mSeqID)
[current{mSeqID)]
mc;mSeqID)

term
(lock:mSeqID) m
[current(mSeqID}]

timeout

Figure 4: Coordinator automaton of MCP

lock_req message arrives in state wait_lock the participant time-outs and then switches to state
checkInternal to check the need for own MCs again.

If the participant has received a valid lock_req in state wait_lock he switches to state wait_mc.
There, the participant waits for the first message of the negotiated MC (mc) to arrive that must
carry a sequence id that is the same as his partner counter. If such a mc message arrives the
participant switches to state partner_mc and then performs the rest of the MC. After the MC
has terminated, the participant switches to state checkInternal again to check the need for own
MCs. If any MCs ought to be executed the participant increments his request counter and then
uses its value as a sequence id of a com_req message he sends to the coordinator. Afterwards
the participant switches to state wait_grant. If a grant message arrives with a sequence id
that is the same as the participant’s request counter, the participant switches to state my_mc
and performs the MC. After the termination of the MC the participant reaches state wait_lock
again and waits for lock_req messages. In state wait_grant the participant can receive a lock_req
instead of a grant as well. If such a lock_req message contains a valid sequence id the participant
must send back a matching lock message analogously to state wait_lock and then switch to state
wait_me. This behaviour resolves the conflict that emerges from both partners trying to acquire
the right to trigger a MC. All other transitions and states are used to handle communication
errors analogously to the coordinator protocol machine.

16 3 AN APPROACH FOR MODELLING BUSINESS COLLABORATIONS

(grant;mSeqID)

checkinternal UK re
n Ney> Q-,ﬂ
o~ % g ¥0Sey, fg;}wo)
p
%Oag wait_lock
com_Need S
l(com_req;mSeqID) (lock_req;pSeqID) £
= [new(pSeqID)] =
a (lock;pSeqlID)
'gl term
(mc;pSeqlD)
[fcurrent(pSeqID)]
(grant;mSeqID) my_mc
[current(mSeqID)]
{(mc;mSeqID) wait_mc
(lock_req;pSeqID)
[Inew(pSeqlD)]
1 (mc;pSeqlD)
(lock_req;pSeqiD) [current(pSeqID)] term
. [new(pSeqID)] 3
wait_grant I(lock;pSeqID)

partner_mc

(grant;mSeqlD)
[leurrent(mSeqID)]

Figure 5: Participant automaton of MCP

The MCP described so far only ensures that at any point in time at most one communication
partner has the right to trigger a MC, i.e. at most one partner is in the state labelled my_mec.
The second partner would need a permission to enter the same state. But as the first partner
does not handle any requests before the MC has finished (then state my_mc is left), the second
partner cannot gain such a permission.

It has not yet been described in detail how the instance numbers are provided for the execution
of MCs. The communication partners can choose the sequence id of the request message they
used to acquire the right to trigger a MC as an instance number of the MC. These sequence
ids can easily be made unique by using a scheme like the following. The coordinator starts his
sequence id counter (request counter) with a value of 1 whereas the participant starts with 0.
Both partners then always increment their counters by 2.

Distributed time-outs (which lead to new process states) can be handled by checking if the
respective timer has run out in a MCP state that is reached again and again. The start states
of the communication partners can be used for this task, i.e. wait_part for the coordinator and
checkInternal for the participant. If a distributed time-out event is detected, the current MCP
run is terminated, the new process state (not a new MCP state) is entered and a new MCP

3.1 The core approach 17

run is started. As the clocks of the communication partners cannot be assumed to be tightly
synchronised and as the transmission time of messages that are used to negotiate a distributed
time-out beforehand must be considered, a distributed time-out can lead to an intermediate
state. The communication partners then reside in different process states until the second
partner has detected the distributed time-out as well. There could be MCs that are applicable
for a communication partner in both of these process states. Then a MC could be started with
the communication partners assuming different process states which could lead to diverging
local views on the collaboration progress. This clearly is unintended. To avoid diverging views
the current process state can be added to lock_req and com_req messages. If the process state
contained in such a message does not correspond to the local process state when evaluating
such a message, no answer is sent back. The communication partner who has not performed
the distributed time-out will then eventually detect and perform it.

The description how MCs are integrated in the MCP deviates from reality for demonstration
and analysis purposes. The first message of a MC is not transmitted by the MCP as presented
in the protocol machines but by the MC itself. The transmission of the first MC messages is
added to the MCP because otherwise it would not be so apparent when MCs are performed.
Further, the outgoing transitions from my_mc and partner_mc are simplifying reality. Any
MC includes a 2PC run at the end. So, the communication partners could be blocked” while
performing the MC. Then the non-blocking partner could not acquire the right to trigger MCs
because his partner wouldn’t answer. This problem can be solved by piggybacking the result
of the last 2PC run to any new lock_req or com_req message. The blocking partner would then
first read the 2PC result, then switch MCP state and finally evaluate the new request message.

Finally process state changes that emerge from MC runs must be considered. If the result of
a successful MC run leads to a process state change the respective partner would terminate
the current MCP run, switch the process state and eventually start a new MCP run. If the
other partner blocked during the MC run the partners would then reside in different process
states. As opposed to the situation that emerges from distributed time-outs, in this situation,
progress can only be achieved by freeing the blocking partner. But this definitely would lead
to a process state change of the blocking partner as well.

Generating and interpreting business documents. When automating existing business
collaborations, the business logic for generating and interpreting business documents is implic-
itly, i.e. in the heads of business people, or explicitly, i.e. in business software, present. Further
this logic depends on each particular use case. That is why these tasks are not described in
detail in this technical report. Instead, the assumption is made that the evaluation of any
business document can be represented by a finite set of values. It is also noteworthy that the
generation and interpretation of business documents is a lever for applying local business pol-
itics to the collaboration. In this technical report the so-called internal process is responsible
for generating and interpreting business documents.

7At most one partner can be blocked because of 2PC properties

18 3 AN APPROACH FOR MODELLING BUSINESS COLLABORATIONS

Detecting events of the real world and changing the real world. Business collabora-
tions are driven by changes in the real world (events) and affect the real world. It is assumed
that there are already systems that are able to detect events and change the state of the real
world when automating business collaborations. Nevertheless, there must be a clear concept
on how to relate these existing systems to the CP and DP on the collaboration. Details depend
on particular use cases. Thus this report does not provide general integration rules but shows
how such existing systems can be integrated in the use case analysed in section 4. Again, it is
noteworthy that integration of such systems is a lever for applying local business politics to the
collaboration. In this technical report the so-called internal process is responsible for detecting
events of the real world and for changing the real world.

Specifying the control flow of the collaboration. Control flow is needed to route between
process states and MCs. The choice of the MCs to execute depends on events from the real
world. The choice of new process states depends on distributed time-outs and the results of
MC runs. Further constructs like decision, loop, parallel flow or synchronization are needed
to fine-tune the control flow. In this technical report the so-called local process is responsible
for the control flow of the collaboration. This local process, augmented by the MCP and MC
execution protocol will be called the protocol process in this report.

To complete this subsection, an assumption implicitly contained in the approach proposed
here is pointed out. Before any changes to the real world can be made a 2PC run has to be
successfully executed at the end of a MC run. A 2PC run to complete successfully requires that
every business document of a MC has to be successfully exchanged and interpreted. From this
follows that the business documents must be interpreted again (after the 2PC run) to perform
the changes to the real world. The application of 2PC would be useless if business documents
would not be available or could not be interpreted after the 2PC run. Therefore the assumption
must be made that a business document exchanged during a MC is stored safely and that once
a business document was interpreted successfully, it can be interpreted successfully again and
again.

3.2 Using UML activity diagrams for modelling the centralised per-
spective

To efficiently use the concepts introduced, an appropriate modelling language has to be pro-
vided. We found that UML 1.5 activity diagrams are a good choice for the following reasons.
UML 1.5 activity diagrams ([OMGO3]) are a language suitable for modelling business processes
as stated in [DHO1]. Activity diagrams are a visual language thus supporting the commu-
nication task of a model. There’s a large user community using activity diagrams so that a
modelling approach based on activity diagrams can easily be adopted in practice. UML is a
standardised language which provides the evolution and free-of-charge use of the language and
a more or less common meaning of the modelling elements simplifying the exchange of models.
Finally, the artefacts of our modelling approach can easily be mapped to activity diagram el-
ements as described below. This proposal for modelling the behavioural view on the CP with
UML 1.5 activity diagrams can easily be modified to be used with UML 2.0 statecharts.

3.2 Using UML activity diagrams for modelling the centralised perspective 19

Process states can be represented by state machine states as activity diagrams are a special
case of state machines in UML 1.5. Such states can be hierarchically composed. Thus all
attributes that make up the process state of a collaboration can conveniently be modelled as
substates of the state machine state. Any micro-choreography or distributed time-out that can
be applied in a certain process state is connected to that process state by a transition.

Micro-choreographies can be modelled as activities where a single activity models a whole
MC. Note that the way distributed consensus is achieved within the activity is not explicitly
shown. A consistent outcome of the MC is only implicitly required. The point in time at
which MCs get triggered can be captured by events that are added to the transitions that lead
into an activity. Such events are always local to one participant. The name of the participant
who detects the event can be added to the event identifier in order to make clear that he is
responsible for detecting it. Further, guards of incoming transitions to an activity can be used
to condition the triggering of the MC. Variables in such guards can be local to one participant
as this participant can decide upon the triggering of a MC without consulting his collaboration
partners. Activities terminate when the distributed commit protocol that has to be executed
at the end of each MC has finished. Therefore no events are allowed in outgoing transitions of
an activity. The result of a MC can be visualised as an object flow with multiple result types.
The result of a MC execution can then be used in guards to route the collaboration.

Distributed time-outs can be represented as UML when or after events of transitions. Dis-
tributed time-outs are designed for situations where no communication is possible, so these
transitions directly connect two process states. While distributed time-outs are detected in
process states, their corresponding timers are activated in MCs. This leads to unclear seman-
tics that may vary from use case to use case. The following questions therefore have to be
answered. If there are multiple transitions that lead into a process state and are preceded by a
MC, which of these transitions activate timers for a distributed time-out? If there are multiple
distributed time-outs in a process state, must all or only a part of them be activated by a MC?
If there are loops in the collaboration, is the timer of a distributed time-out triggered each time
a MC leads to a process state or only the first time?

The possibility of loops in a collaboration gives rise to another semantics question. If a process
state is left before the timer of a distributed time-out event is detected, should the correspond-
ing timer then continue to progress, should it halt until the process state is reached again or
should it be completely cancelled?

Two hints can be given for answers to this questions without looking at use cases. If the execu-
tion of a MC results in technical failure no timers of distributed time-outs may be affected at
all because in extreme cases a participant may not even have noticed that his partner has tried
to execute a MC. And, if timers are not completely cancelled when leaving a process state, then
the distributed time-out events they fire can only be applied if the collaboration resides in the
corresponding process state or at the moment this process state is reached again.

Control flow is supported by activity diagrams with various node types. Alternative flows of
execution can be visualised by decision and merge nodes whereas parallel flows of execution can
be visualised by fork and join nodes. Further, transitions can be used to specify the relation
between process states and micro-choreographies. Process states may have multiple incoming
and outgoing transitions. Outgoing transitions of a process state always have an event that
shows which real world event leads to the execution of the transition, i.e. local events of the

20 3 AN APPROACH FOR MODELLING BUSINESS COLLABORATIONS

participants that trigger MCs or global distributed time-out events. Transitions accompanied
by local events end in activities whereas transitions accompanied by global events end in new
process states.

Micro-choreographies always have exactly one incoming and one outgoing transition. Such an
outgoing transition ends in a decision process that determines the next process state depending
on the outcome of the micro-choreography. Therefore, the outcome is divided into a technical
and a business result. If the execution of a MC fails technically the process always returns to
the process state from which the MC was initiated. This case can be represented as a guard
with the constant technical failure (TF). If the execution of a MC succeeds technically, the next
process state depends on the content of the business documents that have been exchanged. This
circumstance can be represented by using the names of the relevant business documents as the
initial part of variable names that are evaluated in guards to determine the next process state.
The restriction that there may only be one incoming transition to a micro-choreography is made
to guarantee an unique process state to fall back to in case of a TF. Hence, the same MC may
be modelled multiple times within a collaboration.

Guards can be used as described in the discussion of process states and MCs. Finally transitions
may be accompanied by actions. Actions are useful for manipulating local variables of the
participants for routing purposes. Note that actions may not be used to manipulate process
states because distributed consensus would therefore be needed.

Roles are a means to specify the tasks a collaboration participant is obliged to fulfil and are
useful for the purposes described in section 3.1.1. In activity diagram modelling, swimlanes can
be used to visualise roles. Further, role names can be used as part of event identifiers to meet
the tasks described in section 3.1.1.

Business documents store the information that is negotiated during a collaboration. In
activity diagram modelling, object flows can be used to reference the structural definition of
such documents thus abstracting from the details of such documents.

3.3 Using WSBPEL for modelling the distributed perspective

While a modelling language for the CP must support the communication task of models, it
is the primary task of a modelling language for the DP to provide a concise model that can
easily be executed. WSBPEL is such a language that describes a business collaboration at the
level of Web Service calls. WSBPEL models can be executed by deploying them on adequate
process engines providing the right binding information. WSBPEL is well-suited for modelling
the DP of business collaborations for various reasons. The modeller can take the point of view
of one collaboration participant interacting with his partners of the collaboration via message
exchanges which is precisely the task of modelling the DP. Web Services are platform and
programming language independent thus supporting the integration of heterogeneous systems
which are likely to be found when integrating business processes. And, as well as activity
diagrams, WSBPEL has a large user community and is a standardised language.

The main tasks in modelling the DP have already been identified in subsection 3.1.2. The
task of representing process states can be fulfilled by using a single global variable with an

3.3 Using WSBPEL for modelling the distributed perspective 21

enumeration type that enumerates all possible process states. XML Schema® can be used to
create such an enumeration type. The task of specifying the control flow of the collaboration
can then be accomplished by referencing that global process state variable. The whole business
collaboration from a single participant’s point of view can be represented in WSBPEL as a
WSBPEL while loop waiting for termination of the collaboration. Within this loop a WSBPEL
switch construct can be used to select the right code depending on the content of the global
process state variable. The condition for terminating the collaboration is then manipulated in
process state logic. The WSBPEL scope construct can be used to support the specification of
the process state logic of a particular process state. A WSBPEL scope can be used to restrict
the validity of variables to a particular code fragment and it offers the WSBPEL onAlarm
construct for specifying relative and absolute timers, i.e. timers with a time period or with
a fixed point in time. These timers can be used to model distributed time-outs by writing
appropriate variables when running out. Therefore, it has to be considered that the timer of
a distributed time-out is activated during the execution of a MC that has been triggered in a
different process state. Thus it makes no sense to use relative timers because a collaboration
participant could be blocked during the 2PC run of the MC while his partner is already able
to proceed. As relative timers are activated when the WSBPEL scope of a process state gets
activated, there would be no control over the sequence of starting timers. Absolute timers that
refer to global datetime variables should be used instead. Then an absolute point in time can be
computed for this timer when performing the 2PC run of the respective MC. When such a timer
runs out a variable can be written to store the information that a distributed time-out event
has been fired. Unfortunately, there’s a drawback of this approach. A 2PC run could block that
long that the point in time the timer runs out already has passed when the WSBPEL scope of
the new process state is reached. The WSBPEL standard does not define whether a time-out
event should be fired or not in such a situation which may lead to compatibility problems among
WSBPEL engines. Therefore the assumption is made that a process state is entered before a
respective timer of a distributed time-out, if any, has run out. The fact, that the duration of
a reservation at the level of business processes is long relative to the time needed to perform a
2PC run and resolving blocking situations, justifies this assumption. Special scenarios that do
not meet this assumption need different approaches.

The task of triggering the execution of micro-choreographies is addressed by using the MCP
(p. 13). As already stated above a new MCP run is started each time a new process state is
reached. To represent the MCP in WSBPEL, a loop can be used that is inserted directly within
the WSBPEL scope of a process state. Within this loop different code fragments can be applied
depending on the current process state. MCP states can be represented by a variable with an
enumeration type that enumerates all MCP states. An example of different code fragments
depending on process states is the choice between the coordinator and the participant role of
the MCP. In order to detect distributed time-outs, the variables storing the information about
distributed time-out events can be read before switching over the MCP states in the MCP loop.
Clearly, a distributed time-out can then only be detected when a MCP state changes. A MCP
state change can be deferred if a 2PC run blocks. But then a MC run is just being performed
and distributed time-outs shall not be applied during a MC run.

Finally a WSBPEL model of the DP must also address the tasks of detecting events of the real
world and changing the real world, generating and interpreting business documents as well as

8http://www.w3.org/XML/Schema#dev

http://www.w3.org/XML/Schema#dev

22 3 AN APPROACH FOR MODELLING BUSINESS COLLABORATIONS

executing micro-choreographies identified in subsection 3.1.2. But these tasks are application
dependent. That is why a discussion of these tasks as well as a more detailed treatment of the

tasks above is given in section 4.

23

4 A RosettalNet use case

This section is devoted to the evaluation of the modelling approach proposed in the last section
by applying it to a use case. Application dependent details are discussed as well. We chose
a choreography of RosettaNet PIPs as the subject of our case study for some good reasons.
First of all, RosettaNet is a dedicated B2B integration standard that is in use and has a large
user community including enterprises like Intel or Sony. Thus we do not have to guess business
needs. A large part of the RosettaNet specifications is devoted to the standardisation of the
content of business documents. While such domain specific details are not the focus of our work
they surely have big impact on real-world collaboration scenarios. Hence, analysing RosettaNet
choreographies already takes the next step to applying our modelling approach to real world
scenarios. Finally, there’s a practical need for modelling support in choreographing PIPs as
this task is not standardised yet.

The case study is taken from segment 3A of the PIP directory: Quote and Order Entry and is
composed of 9 different PIPs of this segment. The use case is a binary collaboration of business
partners. The two business partners take the roles of buyer and seller throughout the whole
collaboration. The overall goal of the composition is the negotiation of a contract and of contract
changes. The collaboration terminates as soon as the buyer has received the goods and services
he requested. In a real world scenario more PIPs can be used to define a comprehensive model
of the collaboration including detailed treatment of tasks like transportation and distribution
(segment 3B) or returns and finance (segment 3C). The description of the use case starts with
informally explaining the usage of the selected PIPs. Each PIP is identified by its name and
the respective Business Message Pattern as well as the Business Transaction Type are given in
parentheses.

e PIP 3A1: Request Quote (Asynchronous Two-Action Activity; Request/Con-
firm). This PIP can be used to start the collaboration. The buyer requests a quote for
some particular goods and services. The seller answers with either Quote, NoQuoteAvail-
able or with ReferralToOtherProvider. In the first case the seller reserves resources for
the buyer, but the buyer is not obliged to accept the quote. In case of the other two
answers the collaboration is terminated immediately.

e PIP 3A10: Notify of Quote Acknowledgement (Asynchronous Single-Action
Activity; Notification). If the buyer has received a valid quote he is obliged to use
this PIP to inform the seller whether his quote is generally acceptable or not. If not, the
collaboration is terminated immediately. Otherwise the seller prolongs the reservation of
resources and waits for an order. The buyer is still not obliged to accept the quote.

e PIP 3A4: Request Purchase Order (Asynchronous Two-Action Activity; Re-
quest/Confirm). This PIP can either be used to start the collaboration or to sign a
contract after having confirmed a quote to be acceptable with the help of PIP 3A10. The
buyer sends a quote to the seller that can be answered with either an Accepted, a Rejected
or a Pending message. If the answer is Accepted the parties have signed a legally binding
contract. If the answer is Rejected the collaboration terminates immediately. If the an-
swer is Pending, the buyer waits until the seller notifies him about the decision with PIP
3AT or, after some time has elapsed, the buyer queries the decision with PIP 3A5.

24

4 A ROSETTANET USE CASE

e PIP 3A5: Query Order Status (Asynchronous Two-Action Activity; Query/Re-

sponse). The buyer can use this PIP either if there is a valid contract, or if the decision
of the seller about a quote (PIP 3A4) is still pending or if the decision of the seller about
a contract change request (PIP 3A8) is still pending. The answer of the seller has to be
evaluated depending on which of these situations applies.

In the first case, the seller can either provide new information about order progress or just
tell that no progress has been achieved. In case of the other two situations the seller can
either send an Accepted, a Rejected or a Pending message. If an order has not yet been
decided upon, a new contract is signed (Accepted), the collaboration is terminated imme-
diately (Rejected) or the decision is further postponed (Pending). If a contract change
request has not yet been decided upon, either the current contract is replaced by a new
one (Accepted), the current contract remains valid (Rejected) or the decision is further
postponed (Pending).

PIP 3A6: Distribute Order Status (Asynchronous Single-Action Activity; In-
formation Distribution). If there is a valid contract, the seller can use this PIP to
communicate information about order progress to the buyer.

PIP 3AT7: Notify of Purchase Order Update (Asynchronous Single-Action
Activity; Notification). The seller must trigger this PIP if he has sent a Pending
message in a PIP of type 3A4 or 3A8 before. The seller may only send an Accepted or
a Rejected message, but no Pending message. Analogously to PIP 3A5 a new contract
is then signed (Accepted) or the collaboration is terminated/the current contract remains
valid (Rejected).

Further, the seller can use this PIP to request contract changes on his own. As PIP 3A7
is a Single-Action Activity, i.e. only one business message can be exchanged, the buyer
cannot directly answer such a request. To answer a contract change request, the buyer
should either use PIP 3A8 or PIP 3A9. If the buyer does not so or if the execution of
these PIPs fails, the seller awaits a time-out event and then concludes that the current
contract remains valid.

PIP 3A8: Request Purchase Order Change (Asynchronous Two-Action Ac-
tivity; Request/Confirm). This PIP is usually used by the buyer to request a contract
change. The seller can then either send Accepted to confirm the change, Rejected to keep
the current contract or Pending to postpone the decision. If the seller does not provide a
pending decision in time the buyer awaits a time-out and then concludes that the current
contract is still valid.

Further, this PIP is used to answer a contract change request initiated by the seller with
PIP 3A7. If the buyer wants to reject the change request, he sends a Purchase Order
Change Request message that exactly contains the data of the current contract. The
current contract then remains valid no matter what the seller answers. To be concise the
seller should send a Rejected message. If the buyer is about to accept the change request
of the seller (with modifications) then he sends a Purchase Order Change Request message
(with modifications). The seller may then only respond with an Accepted message to sign
a new contract or with a Rejected message to keep the current contract.

PIP 3A: Request Purchase Order Cancellation (Asynchronous Two-Action
Activity; Request/Confirm). This PIP is usually used by the buyer to cancel a

4.1 The centralised perspective 25

current contract. Further the buyer can offer the cancellation of a contract instead of a
contract change requested by the seller (PIP 3A7).

In both cases the seller can only send an Accepted message to rescind the contract or a
Rejected message to keep the current contract.

e PIP 3A: Notify of Purchase Order Information (Asynchronous Single-Action
Activity; Notification). The buyer uses this PIP to inform a so-called Order Infor-
mation User (OIU) about the conclusion and cancellation of contracts and about new
contract versions.

4.1 The centralised perspective

This subsection models the use case introduced according to the approach proposed. This
detailed description only covers the part of the collaboration that suffices to sign a contract.
The whole model can be provided by the authors upon request. The term PIP used in the
following description is to be interpreted as a special type of the term micro-choreography used
in former sections.

wuye

!

| Initial

Buyer.star(3A1) [MoQuote MoContract FreeResources]

) [|
p I w— | | r—

3A1_RequestQuote ;J ;J)
Buyer-» Seller 34
Bu

QuoteResponse

[TF]

[else] EndState

[NoQuote] [NoContract] [DIUInSync]
~] — l— R O

[QuoteResponse.type == NoQuate

o aften1 =)
OR QuoteResponse.type == [NeOrder]
Refarral]

[FreeResources]
L J L J s

I e .
[QuoteResponse type == Quote] t P type
Seller. aften3 d)

| Quaote I [OrderResponse. type == Ac

[Duote] [NoContract] [ResourcesReser\red]

JL J 1
%
[D

Figure 6: Use case: Path from state Initial to state Quote

Figure 6 shows the initial part of the business collaboration. In state Initial there is neither
a quote, nor an order, nor a contract. The necessary resources for fulfilling a contract are
still free and the OIU has knowledge about the current collaboration progress. The first PIP
of the collaboration can only be triggered by the buyer which is represented by local events
Buyer.start(3A1) and Buyer.start(3A4). If the execution of PIP 3A1 succeeds technically and if
the seller sends a QuoteResponse of type Acceptable, both partners proceed to state Quote. The

26 4 A ROSETTANET USE CASE

Quote state indicates that a quote exists and that the necessary resources for that quote are
reserved. The OIU still has knowledge about the collaboration progress because the exchange of
a contract is not an event he has to be noticed about. If the seller answers with a QuoteResponse
of type Referral to recommend another provider or NoQuote to state he cannot fulfil the request,
then the process is terminated. In this case the transition to state EndState is fired. This state
is only introduced to specify the relevant variable values of the collaboration before termination.
Immediately after having reached state EndState, the transition to the UML activity diagram
end node is fired. If the execution of PIP 3A1 fails (TF), both participants return to process
sate Initial. During the execution of PIP 3A1 the seller reserves resources for the buyer that
can be released by means of the distributed time-out event Seller.after(3d) without additional
communication. Clearly the algorithm for negotiating distributed time-outs (p. 9) has to
be applied. Further, the MCP has to ensure that such a distributed time-out event is not
processed while the participants are executing a PIP. Figure 6 relates UML activities and
PIPs by giving the name of the PIP to the activity. Additionally, the name of the participant
who triggers the PIP is appended followed by the name of the participant who receives the
first business message. Further the object flow QuoteResponse represents the last business
document exchanged during PIP 3A1. Generally the result of a PIP execution can be deduced
from the last business document exchanged during a PIP. This object flow can then be used
in guards to route the control flow of the collaboration according to the business result of the
PIP. In figure 6 the guard QuoteResponse.type == Quote checks if the seller is able to offer
an appropriate quote for the needs of the buyer. type can either be a field of or a function on
QuoteResponse that represents a finite set of values.

Figure 7 shows how state AcceptableQuote can be reached from Quote by executing PIP 3A10.
If this PIP execution fails technically, both participants stay in state Quote. If the execution
succeeds technically the next state to be reached depends on business document QuoteFval that
the buyer sends to the seller. If QuoteFval states that the seller’s quote is basically acceptable
the reservation of resources is prolonged. Thus the distributed time-out event Seller.after(6d)
is defined. If the buyer does not consider the quote of the seller to be acceptable, the next state
is EndState and the collaboration is terminated. The seller can then release his resources.
After having reached state AcceptableQuote the buyer can use PIP 3A10 to terminate the
collaboration by stating that he does not accept the seller’s quote. This enables the seller to
release its resources as soon as possible. In state AcceptableQQuote PIP 3A10 can only be used
to terminate the collaboration. If the execution does not fail technically, state EndState is
necessarily reached.

The last possibility to leave state AcceptableQuote is executing PIP 3A4 in order to conclude a
contract, shown in figure 8. Again, technical failure of the execution forces the participants to
remain in state AcceptableQuote. If the execution succeeds technically the next state depends on
the seller’s response (OrderResponse). If the seller rejects the order of the buyer the participants
stay in AcceptableQuote. The reservation of resources is still valid in this situation. If the seller
accepts the order, both participants reach state ContractOS representing a valid contract. At
the same time the seller starts the processing of the order using the resources reserved. As the
OIU has to be informed about the conclusion of contract, sub state OIUQutOfSync indicates
his information shortcoming.

Finally the seller can postpone his decision by answering Pending which leads to process state

4.1 The centralised perspective 27

W 1
| Quate | [OrderRespanze type == Ac

[Duote] [NoContract] [ResourcesReser\red ‘

| w— | J

Buyer.acknowledge Seller. aftenf d)

Pendin

FA10_MotifyOfQuotefcknomledgemeant [TF]
Buyer-= Product Provider

Qucte E\.raI|

aften1 day) e

[=l=e] r——
[QuoteEval.isAcceptablel) == falze] W

Order Status

(™

[=l=e]

[QuoteEval.isfcceptablel == true]

[TF]

BuyerstapOrdarProcess \r 2A10_NotifyOfQuotefcknowledger

AcceptableQuate Buyer->ProductProvider

[Acceptableﬂuote] [MoContract] [MoOrder]

J L J

[ResourcesResenred] DIUInSyncJ
‘ T T i [OrderStatus.typ

Figure 7: Use case: Path from state Quote to state AcceptableQuote

PendingOrder?2. Except of triggering PIP 3A5 state PendingOrder? is not discussed in detail.
PIP 3A5 can be triggered by two different events. The buyer can query the seller’s decision at
any point in time which is represented by event Buyer.infoRequest. Additionally, the seller’s
decision should be polled for on a daily basis, represented by event after(1d). Clearly, this event
has to be detected by the buyer as well because only the buyer can trigger PIP 3A5.

Process state ContractOS, shown in figure 9, can only be left by executing PIP 3A13. But
PIP 3A13 actually is only designed for communication between buyer and OIU. To preserve
the concept of common global state the implementation of PIP 3A13 is therefore adapted.
This work assumes a 2PC to be run at the end of any PIP. The seller can play the role of a
participant of the 2PC run of PIP 3A13 and thus be informed about OIU synchronisation. If
the execution of PIP 3A13 succeeds, buyer and seller reach state ContractlS representing a
valid contract with a synchronised OIU. This is also the end of the process fragment described
here. In ContractlS, the buyer as well as the seller can request contract changes. The buyer can
further request the cancellation of the contract and query the processing progress. Contractls
is the only process state from which a successful termination of the collaboration is possible.
When the buyer detects the fulfilment of the contract he tries to terminate the collaboration
using PIPs. If there are technical errors in terminating the collaboration the local variable
Buyer.cf.failcount is incremented as a reminder for the need to repeatedly try to terminate
the collaboration. In order to keep the use case in size PIP 3A13 is used to terminate the

28 4 A ROSETTANET USE CASE

BuyaLsOpUIRan e | JJ—\1U_Nom’yUYuuote,‘-\cknow\eugemer\l)
B!

AccaptableQuote uyer>ProductProvider

[Acceptanleouote] [NoContract] [HoOrder]

L J

[ResourcesResemed] DIUInSyncJ
L J

Buyer.makeNewOrder [else]

[OrdeStatus.type == Pending]

344_RequestFurchaseOrder
[OrderStatus.type == Rejected]

ITF] Buyer-> Seller

| [else]

Order Response

3AS_QueryOrderStatus

Buyer-» Seller

OrderStatus l-—

i TF]
) BuyerinfoRequest ITF]

FendingOrder

[Noﬁmtract] [Acceptameounte] [Pendingmda.]

L

[] [olulnSync]

[OrdeResponse type == Pending] [Il]

[OrdeiResponse type == Accepted]

ContractOS

] [Resourcesmlocatad] [Noume.]
J L J1 J

[Nnuuutg] [DIUDutDlSync]

| B L J L J — i

Figure 8: Use case: Path from state AcceptableQuote to state ContractOS

collaboration instead of more appropriate RosettaNet PIPs for stock receipt and factoring.

Apparently, the modelling of the use case widens the notion of process state defined on p. 8
as the common view of the collaboration partners on the progress of the collaboration. This has
been done in order to provide an adequate modelling of the OIU. The OIU does not trigger
PIPs himself but is only informed about contracts and contract changes by the buyer. Strictly
speaking, if the PIPs of the use case were used exactly as proposed then only the buyer would
always have complete knowledge of the collaboration progress because he is the only one to
participate in each PIP execution. The OIU does not actively influence the collaboration and
is only informed about major events. Thus it is acceptable that he has exact knowledge of the
progress only in some process states. To represent the knowledge of the OIU the sub states
O1UInSync and OIUOutOfSync are used. Any process state with sub state OIUOutOfSync can
only be left if PIP 3A13 is successfully executed.

The seller however participates actively in the collaboration and therefore always needs complete
knowledge of the collaboration progress. From a business point of view it is not interesting for
the seller whether the OIU is synchronised or not. But from a protocol point of view the
synchronisation of the OIU is relevant because an unsynchronised OIU could prevent the
buyer from executing PIPs. Without information about OIU synchronisation, the seller cannot
distinguish between ContractOS and ContractlS. So if the buyer was still in state ContractIS,
the seller could trigger PIPs that necessarily would fail technically because the buyer cannot
respond. To avoid this situation the pragmatic approach of integrating the seller into the 2PC

4.2 The distributed perspective 29

Comtract0s ‘ ‘
[Cormrase § [Fesourses Aoated | [FoOrder)
[J L J L J
[Holuate ‘ [EHLIEIutEIfSyr\c‘
S [OrderStarus newlnformation =
1rug]
after1{h)[Buyer.poi.faileaunt > 0]
aftart!){Buyer.poi.failcount == [Edome
Wbl i = el [CormaatFuifiled | [Feduste | [Fobwder
. PAN J 1L J
[R sssssss Released 1 [EIILHnSync\ ater(l) @
3A13_Notify Of Purchase Orderinformation) L J l- J
Buyer -> Purchase Order Information
— =< =

3A13_Natify OFPurshase Orderinformation)

[OrderStatus.newInformation()] Buyer->Purchase Order Information User

[TF1Buyer.of failoourt 4= 1
Buyer.cortractFultiled atter(1 h)[Buyer.cf failcount > 0]

Seller arderStatus Char

Qrder status
Cortractl5
aftenl
3 Cortract] Rezources. Alocated l Mo Order l
T ¢ 1 T 1 T]
pted]

I
(3AG_Ouery Orderstatuz

Buyar -> Seller J Fio Quste TTlinGyne
Buyer, q
ponse type ==

Figure 9: Use case: Path from state ContractOS to state EndState

Seller.shange

run of PIP 3A13 is chosen. Thus the seller can distinguish between ContractOS and ContractlS.

4.2 The distributed perspective

The modelling of the DP has to consider the tasks identified in section 3.1.2. These tasks are
partly addressed in earlier sections as far as they are application independent (cf. section 3.3).

This section introduces concepts for solving the outstanding tasks in section 4.2.1 and provides
a WSBPEL model of the use case in section 4.2.2.

4.2.1 Conceptual modelling

According to section 3.3 the tasks of executing micro-choreographies and of detecting events
of the real world and changing the real world as well as generating and interpreting business
documents still have to be addressed. This section begins with executing micro-choreographies.
In tribute to the use case the protocol for solving this task is called PIP execution protocol here.

PIP execution protocol The goal of the PIP execution protocol is distributed consensus
among the participants of a PIP execution. RosettaNet PIPs can be classified according to
Business Message Pattern (cf. section 2). This section actually introduces a separate protocol
for each of the classes Asynchronous Single-Action Activity and Asynchronous Two-Action
Activity. The remaining classes are seldom used and therefore not discussed here. Each protocol
has been developed and validated with the help of model checking (see section 5 for details).

30 4 A ROSETTANET USE CASE

pip_init Ipip_req timeout
send_requesti
pip_re timeout
4 fpip_req
. pip_regAck
wait_response send_request2
ip_reqAck
pip_rasp timeout
ipip_respAck 4 /pip_req
pip_resp T
fpip_respAck send_request3
L 4 Ip_resp
Ipip_respAck
. timeout
. ip_resp
pip_resp intermed i
Ipip_respAck %OE% -
internal
fvole_
pip_resp i
to_|
vote_requesti
timeout
vole
fglob_ fvote | pip_resp
vois) req
fglob_c Sote vote_request2 imeout
o]
9 meoa fglob_abort
fvote.) pip_resp
wait_globAck Hvote_|
vote vote_request3
fglob ©
timeout .
fglob_c pip_procEmr
glob_ack -~ \

=

Figure 10: Sender automaton of a Two-Action Activity

This section only presents the end version of each protocol.

In order to ensure a consistent outcome of a PIP execution the RosettaNet specification of a
PIP is extended by 2PC. 2PC identifies the roles of 2PC-Coordinator and 2PC-Participant that
are associated with the participants of a PIP execution as follows. The participant who receives
the last business document of the PIP takes the role of 2PC-Coordinator while the remaining
participant takes the role of 2PC-Participant. Naming the sender of the first business document
of a PIP as sender and naming the corresponding partner as receiver, the 2PC-Coordinator
of a Single-Action Activity is the receiver whereas the 2PC-Coordinator of a Two-Action-
Activity is the sender. As the 2PC-Participant cannot terminate before the 2PC-Coordinator
has concluded and distributed the result of the PIP execution, deviating views of the PIP
participants on the PIP result are not possible. This is a key difference to the RosettaNet
standard in use according to which the sender of the last business document (2PC-Participant)
can terminate before the receiver of the last business document has concluded a result.

4.2 The distributed perspective 31

procEl

pip_req _procEmr .
: Pip_req
Ipip_reqhck ipip. resp
intarnal
. fpip_rasp
Pip_raq
oigr reqAck send_ack nd_response
F 3
. meout | Tpip_req
pip_respAck Tnip_resp] |ipip_resp
twopc_init B_resphck end_response.
vole_req pip meout | Pip_req
Hota - ipip_resp} Ipip_res

vots_ro end_response

ivote
-/- : 1e_|
sz Hvota
: _req timeout
vole_reg wait_global hote
hote
r

timqout
gloh_c JamitHang vots_rag
fglob_ack lvole

hang

- gich_c

Jglob_ack

wrong_pip pip_procEmr glob_abort

- T N N

Figure 11: Receiver automaton of a Two-Action Activity

As pointed out before the result of a PIP execution can be divided into technical success and
business success. Technical success means that any business document of a PIP has successfully
been exchanged and evaluated and that the PIP participants have agreed on that. Business
success depends on the evaluation policy for business documents. Moreover it is hard to give
a precise definition for the notion of business success. Therefore the PIP execution protocol
only provides a consistent outcome regarding the technical success. As a 2PC run cannot be
started before the last business document of a PIP has been exchanged the intended result of
the 2PC is fixed in advance. Communication failures are then the only cause for a 2PC run not
to conclude a global commit.

Figure 10 shows the protocol machine of the sender of a Two-Action-Activity. The states
and transitions in green colour represent an ideal protocol run with FIFO channels without
errors and with sufficiently fast PIP participants. In such an ideal run, the sender begins in
state pip_init, sends the first business document and awaits an acknowledgement of receipt
for this business document in state send_request1. If the receiver sends this acknowledgement
(pip_reqAck), the sender switches to state wait_response and waits for the business document

32 4 A ROSETTANET USE CASE

of the receiver. When receiving that business document the sender acknowledges its receipt
with pip_respAck and switches to state intermed. The state intermed represents the process
of evaluating the receiver’s business document and is left when the internal process which is
responsible for evaluating business documents has reported successful processing. The sender
then sends a Vote Request (vote_req) to start a 2PC run and switches to state vote_requestl.
The receiver answers with a vote message causing the sender to send a Global Commit (glob_c)
and to switch to state wait_globAck. Deviating from standard 2PC the receiver’s Vote message
is not divided into Vote-Commit and Vote-Abort because the intended result is always Commit
(see above). The sender leaves state wait_globAck when the receiver has acknowledged the
receipt of glob_c with glob_ack.

All other transitions and states except of state fail are made necessary by the assumptions
made about the environment (cf. p. 12). State fail can also be caused by a processing error
in the internal process. These assumptions necessitate that all states except pip_init, intermed,
success and fail can be left by means of time-out’. When leaving a state with a time-out, the
sender assumes that the receiver didn’t receive his last message and sends it again. If this
occurs repeatedly, the sender finally switches to state fail. If the sender has sent a vote_req
before reaching fail it could be the case that a receiver’s vote message has been lost thus caus-
ing the receiver to block. Therefore the sender sends a glob_abort when firing the transition
from vote_request3 to fail in order to free the receiver. There’s no need for time-outs in pip_init
and in intermed. The sender leaves pip_init immediately after having sent the first business
message. State intermed is left after communication between the PIP execution process and
the internal process which is assumed to be secure.

Some transitions are needed because the sender can receive the same message more than once.
In this case the sender assumes the receiver not to have received a message and resends it.
The receipt of a duplicated receiver’s message also may indicate that the receiver’s protocol
process has not yet terminated. In such a case the sender therefore switches back from state
vote_requests or vote_request? to vote_requestl.

Two different messages could cause the current state to be left in states send_requestX. The re-
ceter sends pip_reqAck and pip_resp in sequence. As pip_resp can only be sent after pip_reqAck
has been sent and as pip_reqAck does not carry a business document to evaluate, the receipt
of pip_resp in states send_requestX directly leads to intermed possibly without ever having
received a pip_reqAck.

The red and blue transitions of the sender automaton are used to handle the receiver’s error
messages. A pip_procErr (blue transitions) announces that the receiver was unable to read
the sender’s business document and therefore has terminated his protocol run. pip_procErr
messages do not have to be processed any more when the sender has reached state intermed
because then the sender has already received a pip_resp. The receiver only sends a pip_resp if
he was able to read the sender’s business document before.

A wrong_pip message announces that the receiver has already terminated its protocol run (by
means of time-outs) and therefore has considered a sender’s message to be outdated. After
having received a vote message the sender does not process any wrong_pip messages because
then the receiver cannot terminate the protocol run by means of time-outs any more.
According to the assumptions made about the environment, messages can overtake each other.
Thus messages of former protocol runs can interfere with messages of the current protocol run.

9Not to confuse with a distributed time-out.

4.2 The distributed perspective 33

To distinguish between the two the MCP provides a PIP instance number that is used to tag
the messages of the current protocol run. If a message carries the wrong PIP instance number,
it is discarded and answered with a wrong_pip carrying the wrong PIP instance number. The
handling of PIP instance numbers is not shown in figure 10.

pip_init Ipip_not imeout
send_notify1
pip_ack timsout
i {pip_not
ip_ack .
wait_vr PP send_notify2
ip_ack
vote_req P timeout
fvole 4 fpip_not
vote_|
Hvote send_notify3 -
w —mq
L ut
. IMeo!
vole_req wait_global vole_req
Arota hrota

e D
fvote

timeout

gloh_c famitHang glob_abort
iglob_ack] hang m
pip_procEmr
L glob_c ~ \
fglob_ack
wrong_pip

success P

Figure 12: Sender automaton of a Single-Action Activity

Figure 11 shows the receiver automaton of a Two-Action Activity. Its structure is complemen-
tary to the sender automaton of a Two-Action Activity. The choice of colours also corresponds.
Therefore only major specialities of the receiver automaton are presented.

The state representing the situation that the internal process evaluates a business document is
called send_ack instead of intermed. From a protocol point of view the major difference is that
the receiver cannot always terminate his protocol run without manual intervention because the
receiver has to wait for the sender’s decision after having sent at least one vote. If the receiver
does not receive an appropriate message, both a Global Abort and a Global Commit decision are
possible. If all vote messages have been lost the sender could conclude Abort by repeatedly fir-
ing time-out transitions. If at least one vote has been received and all glob_c messages have been
lost the sender could also conclude Commit. That is why the receiver leaves state wait_global
by firing a time-out transition that ends in state hang if no glob_c or glob_abort arrive. If a
glob_c or a glob_abort arrives afterwards, the receiver terminates his protocol run according to
the message received. But as there is no guarantee that such a message will eventually arrive,
manual intervention may be needed. Therefore the message emitHang is sent when switching
to state hang. emitHang represents any reliable mechanism to notify a human of the blocking
situation. It is noteworthy that no wrong_pip messages may be processed in state hang because

34 4 A ROSETTANET USE CASE

Figure 13: Receiver automaton of a Single-Action Activity

these messages do not carry information about the success of the PIP execution. The same
holds for state wait_global.

As glob_abort messages may arrive in nearly any state of the receiver automaton the according
transitions in figure 11 have been painted in pink to save labels.

The protocol machines of a Single-Action Activity (figures 12 and 13) are built analogously
to the protocol machines of a Two-Action Activity. A textual description for these automata
is therefore omitted. According to RosettaNet terminology the first business document to be
exchanged is called pip_not as an abbreviation for Notification instead of pip_req (Request).

The protocol machines introduced here do not change the behaviour of the RosettaNet protocol
for executing PIPs in use except for integrating a 2PC run. Therefore the adaptation of existing
implementations should be easily possible.

Finally an implicit assumption of the PIP protocol is that once a business document has been
successfully evaluated, it can repeatedly be evaluated. This assumption is necessary because
the internal process must check readability, e.g. in state intermed, before the global result of
the 2PC run is concluded. The actual processing of the business document and the impact on
the real world however may not be done until the global result already has been concluded.
The assumption makes sure that a PIP may not fail technically after technical success has been
announced.

4.2 The distributed perspective 35

Protocol Process Internal Process

: PipNeedMsg

—

A

N

: BusinessDocMsg

A

3: BusinessResponseMsg

A

4: NewPipMsg R
5: ReservationMsglRasarvationRasuItMig
6: ReservationDurationMsg .
7: ReservationCancellationMsg .
8: PIPCancelledMsg .
9: TellNextStateMsg/NextStateMsg N

10: ChangedStateMsg

L J

11: CommStiillNeededMsg/CommNeadMsg

12: HangMsg

A J

Figure 14: Message exchange between protocol process and internal process

Internal Process In section 3.1.2 the so-called internal process has been assigned the respon-
sibility to address the tasks of detecting events of the real world and changing the real world
as well as generating and interpreting business documents. It has also been pointed out that
probably, there already exist running systems which fulfil these tasks when integrating busi-
ness processes. Therefore in this technical report an interface consisting of a set of messages
is presented to encapsulate the internal process. As WSBPEL is used to model the protocol
process the exchange of these messages by means of Web Services is a natural choice. Figure 14
shows the messages to be exchanged with solid arrows for asynchronous calls and dotted ar-
rows for synchronous calls. The arrows always point to the receiver of the call. The following
description details format and functionality of the calls. Processld and PIPInstanceld are used
as message parts to identify the whole collaboration between seller and buyer or to identify
the PIP instance respectively. The content of a message is informally provided in the format
message name<message componentl, message component2, ...>:

1. PipNeedMsg<Processld, PIP> With this message the internal process declares need
for a particular PIP that should be executed because of an event in the real world. After
having sent this message, the internal process waits until the protocol process announces
the possibility to execute the PIP with an according message. The design of the MCP
forces the internal process to be able to accept other messages as well because the other
collaboration partner could be the first to execute a PIP.

2. BusinessDocMsg<Processld, PIPInstanceld, BusinessMessage> After having

36

4 A ROSETTANET USE CASE

been informed about the possibility to execute a PIP, the internal process uses this mes-
sage to provide the first business document of the respective PIP for the protocol process.
Afterwards the internal process awaits further messages of the protocol process regarding
the PIP execution.

. BusinessResponseMsg<Processld, PIPInstanceld, Valuation, BusinessMes-

sage> The internal process uses this message to inform the protocol process whether it
has been possible to process a message of the collaboration partner or not. The message
part Valuation can either have the value pip_proceed or pip_processing_error to announce
this decision. The message part BusinessMessage contains a business document as the
answer to the collaboration partner’s message. If the respective PIP only specifies one
business document to be exchanged, BusinessMessage may be empty as well.

. NewPipMsg<Processld, PIPInstanceld, PIP, BusinessMessage> The protocol

process uses this message to inform the internal process of a new PIP to be executed. The
message part PIP identifies the type of PIP to be executed, e.g. PIP 3A4. The message
part BusinessMessage carries the partner’s business document. The internal process is
expected to answer with a BusinessResponseMsg after some time. Concurrently, the
internal process must be able to receive further informations like the cancellation of the
PIP.

. ReservationMsg<Processld, BusinessMessage> / ReservationResultMsg<Pro-

cessld, Result> If resources must be reserved during a PIP execution, the protocol
process uses this synchronous call to request the reservation of resources. The message
part BusinessMessage carries the last business document that has been exchanged dur-
ing the current PIP. It is assumed that the internal process can deduce the resources to
reserve from this BusinessMessage. The reservation of resources is not restricted in time
at this point of the PIP execution.

The internal process uses ReservationResultMsg to declare whether the reservation was
possible or not. The message part Result is a boolean value that indicates the success
of reservation. The internal process will receive further reservation information at a later
point of the PIP execution.

. ReservationDurationMsg<Processld, Duration> The protocol process uses this

message to fix the time period of the latest reservation that has been performed. The
message part Duration specifies the duration of the reservation in seconds. The reason for
separating ReservationMsg and ReservationDurationMsg is the protocol for negotiating
distributed time-outs (cf. p. 9).

. ReservationCancellationMsg<ProcessId> The protocol process uses this message

to cancel the latest reservation. This message could be sent because of a distributed
time-out event or because the current PIP execution that lead to the reservation has
failed technically.

. PIPCancelledMsg<Processld, PIPInstanceld > The protocol process uses this mes-

sage to inform the internal process that the current PIP execution failed. The necessity to
free resources cannot be deduced from this message because PIPs can fail before resources
have been reserved.

4.2 The distributed perspective 37

9. TellNextStateMsg<Processld, PIPInstanceld, BusinessMessage> / NextState-
Msg<Processld, ProcessState> The protocol process uses this message to ask the
internal process which is the next process state to be reached after having successfully ex-
ecuted a PIP. The message part BusinessMessage carries the last business document that
has been exchanged during the PIP. The internal process uses this business document to
determine the next process state. The internal process sends the name of the next process
state using the message part ProcessState. At first the sight, it is paradoxical to ask the
internal process to determine the next process state. According to the description above,
this is the task of the protocol process. But the protocol process would need business logic
to evaluate complex business documents to determine the next process state. This busi-
ness logic is already implemented in the internal process. As business documents have to
be evaluated relative to a process state, the internal process must have knowledge about
process states anyway. So the cost for implementing the logic for evaluating transitions
between process states in the internal process should be rather moderate.

10. ChangedStateMsg<Processld, ProcessState> The only situation in which this
message is sent by the protocol process is the transition between two process states be-
cause of a distributed time-out event. The message part ProcessState carries the new
process state.

11. CommStillNeededMsg<ProcessIld, PIP> / CommNeedMsg<ProcessID, Is-
Needed> Before executing a PIP the internal process uses a PipNeedMsg to declare the
need for a certain PIP. Before such a PIP can be executed it could be the case that the
other collaboration participant triggers a PIP execution. Thus the requested PIP execu-
tion might not be needed any more when the protocol process has acquired the right to
execute it. Therefore the protocol process uses this synchronous call to ask the internal
process if the requested PIP is still needed. The internal process uses the boolean field
IsNeeded to state whether the requested PIP is still needed or not. If not, the protocol
process releases his right to execute a PIP.

Otherwise, the internal process is expected to send a BusinessDocMsg with the first busi-
ness document of the PIP to be executed.

12. HangMsg<Processld, PIPInstanceld> The protocol process uses this message to
announce its blocking during a 2PC run. Manual intervention is then needed. This
message represents and can be replaced by any mechanism that reliably detects and
announces blocking situations, e.g. monitoring.

Not only does the interface introduced encapsulate the internal process, it also moves the whole
application specific business logic from the protocol process to the internal process. Thus the
implementation of the protocol process can be automated based on the information of the CP
and the structure of the PIPs (Single-Action/Tow-Action) used. The implementation could
also be done manually, but as the MCP and the PIP execution protocol are highly complex
this is an error-prone task. The next section describes how WSBPEL can be used to specify
the protocol process. It is assumed that communication between protocol process and internal
process is reliable, i.e. message losses, message duplicates and overtaking messages related to
this interface are not dealt with.

38 4 A ROSETTANET USE CASE

4.2.2 WSBPEL realisation

This section details and extends the description of section 3.3 adapting it to the use case
introduced. All relevant concepts are introduced in a general manner and, as far as possible,
discussed at the example of process state PendingOrderl. A model of the whole WSBPEL
process is not given because it can automatically be generated. Process descriptions created
with XML based standards such as WSBPEL typically have a complex structure and are
therefore hard to use. This requires the use of tools to create process descriptions.

The WSBPEL examples below have been created using Cape Clear SOA Editor 4.81° for editing
WSDL interfaces as well as Oracle BPEL Designer for Eclipse 3.0 for editing WSBPEL
processes. The following description requires basic knowledge of WSDL and WSBPEL.

The presentation of the WSBPEL model starts with the global process loop as described in
section 3.3. Listing 1 shows the WSBPEL code of the global process loop. In this and in the
following listings, unimportant code fragments are replaced with XML comments, immediately
closed WSBPEL tags or with WSBPEL empty tags with self-descriptive names.

Listing 1: Global process loop
1 <process>

» <partnerLinks/>

3 <l—— definition of global variables —>

4 <variables>

5 <variable name="procTerminated” type="xsd:boolean”/>

6 <variable name="pState” element="tns:globProcessStates”/>
7 <!—— more variables go here —>

s </variables>

9 <sequence>

10 <!l— global process loop begins here —>

Y

11 <while name="globLoop” condition="boolean (bpws: getVariableData (
procTerminated ’)) ">

12 <switch name="swProcState”>

13 <l—— choice of processState QUOTE —>

14 <case condition="bpws: getVariableData (’pState’) = ’Quote’”>

15 <empty name="quoteCode” />

16 </case>

17 <case condition="bpws:getVariableData (’'pState’,’’,’/tns:
globProcessStates ’) = ’AcceptableQuote ’">

18 <empty name="acceptableQuoteCode”/>

19 </case>

20 <!—— more cases go here —>

21 </switch>

22 </while>

23 <!—— more code —>

24 </sequence>
25 </process>

For leaving the global process loop its condition is manipulated within process state code frag-
ments. The MCP is used within process states to agree upon the collaboration partner to

Onttp://www.capescience.com/soaeditor/
Uhttp://www.oracle.com/appserver/bpel_home.html

http://www.capescience.com/soaeditor/
http://www.oracle.com/appserver/bpel_home.html

4.2 The distributed perspective 39

begin the next PIP. Process states are represented by WSBPEL scopes because these offer the
possibility to define local variables that are only valid within the scope.

Further, onAlarm tags of a WSBPEL scope are useful for implementing timers with relative
time periods or with absolute points in time. These timers can then be used to realise the con-
cept of distributed time-outs by writing a variable whenever a timer runs out. When conceiving
a WSBPEL realisation for distributed time-outs the algorithm for negotiating distributed time-
outs (cf. p. 9) has to be considered. According to this algorithm the distributed time-out of
a process state is negotiated during a PIP execution that has been started in another process
state. As the 2PC-Participant of a respective 2PC run can block it does not make sense to
trigger a relative timer with a static time period when entering the new process state. If the
collaboration participant who needs the resources reserved blocks for a long time, it could be
the case that the timer for the distributed time-out in the new process state does not run out
before the other participant has released his resources. This would violate the goals of the
distributed time-outs introduced. Instead, absolute points in time should be computed during
a 2PC run that are then used as the deadline of an absolute timer of the new process state.
However this method is not absolutely safe either. It could be the case that a collaboration
participant blocks that long that the deadline of the distributed time-out has already passed
when the new process state is reached. The WSBPEL standard does not specify whether a
WSBPEL implementation must trigger a time-out event when an onAlarm tag is activated
after its deadline has passed. This could lead to inconsistencies among different WSBPEL
implementations. Therefore the assumption is made that the deadline of an onAlarm tag for
distributed time-outs has not passed before that onAlarm tag is activated, i.e. before the new
process state is reached. This assumption is sensible because the execution of a 2PC run at the
end of a PIP takes relatively little time compared to the duration of resource reservation, even
if manual resolution of a blocking situation is considered. There might be special cases that
need a different distributed time-out realisation because this assumption does not apply.
Apart from timers a WSBPEL scope also offers onMessage tags to receive event messages.
According to the WSBPEL standard such event messages can be received concurrently while
the actual activities of the scope are performed. onMessage tags thus are well-suited for receiv-
ing PipNeedMsg messages. Unfortunately the WSBPEL standard does not provide a precise
semantics for onMessage tags either. The WSBPEL specification ([IBMO03]) states on p. 83,
section 13.5.4.2 that arbitrarily many messages may be received via onMessage blocks as long
as the activities of the according scope have not finished: “When such an event occurs, the
corresponding activity is carried out. However, the event remains enabled, even for concurrent
use”. When receiving a message via an onMessage block the message to be received is saved
to a variable. As such a variable can be used within onMessage blocks of concurrently active
scopes, WSBPEL provides the variableAccessSerializable attribute for scopes ([IBM03] p.84). If
this attribute is set to true, a WSBPEL implementation must serialise access to such a variable
from tow different scopes. But this does not solve the problem that a single onMessage block
of one and the same scope could be active multiple times at one point in time. If only a single
onMessage block would be used to receive PipNeedMsg messages, it could be the case that two
PipNeedMsg messages requesting different PIPs would write the variable for receiving messages
two times before the according activity is performed. Then only the need for one kind of PIP
would be registered. A solution for this problem is to replace the PipNeedMsg that carries a
PIP parameter with multiple types of PipNeedMsg messages, one for each kind of PIP that can
be requested. The concurrent use of an onMessage block for registering the need for PIPs is

40 4 A ROSETTANET USE CASE

then no problem because the same kind of PIP is requested.

Listing 2 shows the WSBPEL scope for process state PendingOrderl. The eventHandlers tag
enumerates the events that are waited for during this scope is active. The onMessage tag
in listing 2 is used to register the need for execution of PIP 3A7. The attributes of this tag
identify the Web Service that is used to receive the corresponding message. The Web Service
itself is described in a separate WSDL file. When the onMessage tag for requesting PIP 3A7
is executed the need for PIP 3A7 is recorded in a variable that is valid in the whole WSBPEL
process. Thus the PIP can be executed in another process state without requesting it again,
provided that it is applicable in that other process state.

The onMessage tag is followed by an onAlarm tag. This onAlarm tag specifies the timer
for the distributed time-out of process state PendingOrder1'?. The variable psPendingCon-
tract1_expireTime has been written before during the execution of a PIP that led to process
state PendingOrderl.

The next onAlarm tag is used for implementing the transition between process state Pendin-
gOrderl and PIP 3A7 that is annotated with after(1 hour) [Seller.pendingOrder.failcount > 0]
in the CP. The variable clockTickOneHour that is local to scope PendingOrderl is therefore
set to true after one hour and it is evaluated appropriately in the scope activities.

Listing 2: Scope for representing a process state

1 <scope name="PendingOrderl”>
<variables>

2

3 <!l—— wvariables only visible within PendingOrderl —>

1+ <variable name="leaveState” type="xsd:boolean”/>

5 <variable name="swState” element="tns:mcStatesParticipant”/>
6 <!—— more variables go here —>

7 </variables>

s <eventHandlers>

9 <onMessage partnerLink="internalProcessLink” portType="tns:

SellerPortType” operation="receive_a7Need” variable="
temp_a7rec”>

10 <assign name="setComNeed”>

1 <copy> <!—— remember need for PIP 3A7 —>
12 <from expression="true”></from>

13 <to variable="deferredPip3A77/>

14 </copy>

15 </assign>

16 </onMessage>
17 <onAlarm until="bpws: getVariableData (’
psPendingContractl_expireTime ") ">

18 <assign name="setTimeOut”>

19 <copy><!—— excute distributed timeout asap —>
20 <from expression="true”></from>

21 <to variable="procStateTimedOut”/>

22 </copy>

23 </assign>

20 </onAlarm>
25 <onAlarm for=”’'PTI1H’”>
26 <assign name="setClockTick”>

12PendingOrderl does not have a distributed time-out in the CP. It is introduced here only for demonstration
purposes

4.2 The distributed perspective

<copy><!—— one hour has passed —>
<from expression="true”></from>
<to variable="clockTickOneHour”/>
</copy>

</assign>

</onAlarm>

</eventHandlers>
<sequence name="seqPendingOrderl”>

<empty name="scope activities go here”/>

</sequence>
</scope>

41

The activities of a process state scope are organised in a loop that continuously switches over
the states of the MCP. To determine the exact set of states to switch over, the MCP role of

the collaboration participant (Coordinator or Participant) must be known. This role can be

a different one from process state to process state of the protocol process. The seller, whose
protocol process is described here, takes the role of Participant in state PendingOrderl of the
use case. Listing 3 shows the main structure of activities in scope PendingOrderi. After each
MCP state change the distributed time-out event is checked. If it has not yet been registered
the WSBPEL switch mcPartSwitch chooses the next MCP state. Thus a distributed time-out
event can only be detected if a MCP state change occurs. If a PIP execution blocks the next
MCP state change could take a long time. But during a PIP execution, even if blocking, the
processing of distributed time-outs is not allowed, so this adequate for the CP.

Listing 3: Loop within a process state scope

1 <sequence name="seqPendingOrderl”>

2

3

© 0w N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<l—— wvariable initialization goes here —>
<while name="wPendingOrderl” condition="boolean (bpws:

getVariableData (’leaveState ’)) = false”>
<switch name="pStateTimeout”>
<case condition="bpws:getVariableData (’procStateTimedOut ’)

true”>
<!l—— recognize distributed timeout —>
<assign name="leaveState”>

<copy>

<from expression="true”></from>
<to variable="leaveState”/>
</copy>
<copy>
<l—— switch to next state —>
<from expression=""End’”"></from>
<to variable="pState” query="/tns:globProcessStates”/>
</copy>
</assign>
<!—— inform internal process about new process state —>
</case>
<otherwise>
<switch name="mcPartSwitch”>
<l—— switch between states of media control protocol —>

<case condition="bpws: getVariableData (’swState’,’’,’/tns:

mcStatesParticipant ’) = ’checkInternal ’”>

42 4 A ROSETTANET USE CASE

24 <l—— checkInternal activities go here —>

25 </case>

26 <case condition="bpws:getVariableData (’swState’,’’,’/tns:
mcStatesParticipant ’) = ’wait_grant >

27 <l—— wait_grant activities go here —>

28 </case>

29 <!l—— more cases go here —>

30 </switch>

31 </otherwise>

32 </switch>
33 </While>
30 </sequence>

Listing 4 shows the WSBPEL code for MCP state wait_grant as a representative for MCP
states. In this state the MCP Participant waits for a grant message that provides the right
to trigger a PIP. A lock_req message could arrive concurrently and announce the Coordinator’s
wish to trigger a PIP. If the Participant doesn’t receive a message at all he awaits a MCP
time-out and then switches to MCP state checkInternal. The task of providing an adequate
WSBPEL implementation for this behaviour is to choose between two messages and a time-out.
The WSBPEL pick tag does exactly that. Within a pick multiple onMessage tags for receiving
different types of messages and at most one onAlarm tag for specifying a relative or absolute
timer can be used. If there are multiple onMessage branches the first branch in the code is the
first to be checked at runtime. Alternatively, a single onMessage branch can be used to receive
a general message container and the right code for processing the various message types within
the container could be chosen depending on its content.

Nevertheless the WSBPEL pick tag does not suffice to implement MCP state wait_grant because
outdated messages must be handled. These outdated messages possibly cause the pick tag to
be executed multiple times. A WSBPEL while loop is used to reactivate the pick block each
time an outdated message has been processed. Each time the pick block is reactivated, its
onAlarm timer is reactivated too. A relative timer with a static duration therefore is not
adequate because then the time needed until a time-out event is fired would greatly depend on
the number of outdated messages that arrive. Alternatively, one could try to use an absolute
timer with a deadline. This approach fails either because WSBPEL does not specify what to
do if a deadline has already passed when an onAlarm tag gets activated. Thus it could be the
case that the deadline is passed while an outdated message is processed. In such a case, if no
further messages arrive, then the protocol process could block permanently.

In order to provide an appropriate implementation for a MCP wait_grant state a separate
WSBPEL scope is used. A relative onAlarm timer of that scope is used to detect the MCP
time-out for wait_grant. Within this scope, a pick block is put into a while block for being able
to repeatedly process incoming messages. Further the onAlarm branch of the pick is used to
specify a relative timer with a short duration. Each time this timer runs out, the MCP time-out
for wait_grant is checked for. Listing 4 shows the mechanism in WSBPEL.

Listing 4: Representation of state wait_grant

1 <case condition="bpws:getVariableData (’swState’,’’,’/tns:
mcStatesParticipant ’) = ’wait_grant’”>

2 <scope name="sWaitGrant >

3 <variables>

4.2 The distributed perspective 43

<variable name="wg_timedOut” type="xsd:boolean”/>

4

5 <variable name="wg_leave” type="xsd:boolean”/>
6 <variable name="temp” messageType="tns:containerMessage”/>
7 </variables>

s <eventHandlers>

9 <onAlarm for=”’PT30S’”>

10 <assign name="setTimeout”>

11 <copy>

12 <from expression="true”></from>

13 <to variable="wg_timedOut”/>

14 </copy>

15 </assign>

16 </onAlarm>

17 </eventHandlers>

18 <sequence name="seqWaitGrant”>

19 <!l—— initialize variables —>

20 <while name="waitForMessages” condition="(bpws:getVariableData
(’wg_timedOut ’) = false) and (bpws:getVariableData(’wg_leave
') = false)”>

21 <pick name=”"pickMessage”>

22 <onMessage partnerLink="buyerLink” portType="tns:
SellerPortType” operation="receiveBuyerMessage” variable="
temp >

23 <!—— message handling depends on message content —>

24 </onMessage>

25 <onAlarm for="’PT5S’”">

26 <empty name="pollStateTimeout”/>

27 </onAlarm>

28 </pick>

29 </while>

30 <!—— more code goes here —>

31 </sequence>
32 </scope>
33 </case>

After having used the MCP to negotiate the triggering of a PIP, the PIP execution protocol has
to be applied. A WSBPEL scope is used to represent a PIP execution in order to define local
variables. The detailed actions of the PIP execution protocol depend on the Business Message
Pattern of the PIP (Single-Action/ Two-Action Activity) and the role of the process within the
PIP (Sender/Receiver). The general structure however can be organised in a loop that switches
between the different PIP execution protocol states in each cycle. This loop terminates when
the technical success of the PIP has been decided. In process state PendingOrderl the seller
takes the sender’s role in PIP 3A7. Listing 5 shows the WSBPEL model of PIP 3A7. PIP
execution states send_notifyX have been merged to a single state send_notify with a variable
to count the number of business documents that already have been sent. Analogously to MCP
state wait_grant, a separate scope is used for representing a single PIP execution state if multiple
message receipts and a time-out can occur.

Listing 5: Representation of PIP 3A7

1 <scope name="do3A77>
2 <variables>

44 4 A ROSETTANET USE CASE

3 <variable name="result” type="xsd:string”/>
4 <!—— scope variables go here—>

5 </variables>

6 <sequence name="seqPIP”>

7 <assign name="initPipVars”>

8
9

<l—— initialize variables here —>
</assign>
10 <while name="pipStateLoop” condition="bpws: getVariableData (’
result ’) = 'undecided ’”>

11 <switch name="switchPipStates”>

12 <case condition="bpws: getVariableData (’pip_state’,’’,’/tns:
piplActionStatesSender’) = ’'pip_init ">

13 </case>

14 <case condition="bpws:getVariableData (’pip_state’,’’,’/tns:
piplActionStatesSender’) = ’'send_notify ">

15 </case>

16 <l—— more cases go here —>

17 </switch>

15 </while>
19 </sequence>
20 </scope>

If a protocol process takes the sender’s role during a PIP execution, it has to ask the internal
process in state pip_init if the execution of the PIP is still necessary. If this is not the case
the while loop surrounding scope is directly terminated. Otherwise either PIP execution state
fail or success will eventually be reached. Depending on these states various variables for the
MCP and local process are set and messages are sent to the internal process. In the case of
state success the internal process is asked which process state should be reached next and the
variable for controlling the global process loop is accordingly manipulated. Further, if the pro-
tocol process takes the sender’s role in the PIP, the variable for registering the need for the
respective PIP has to be set to false (deferred PIP3A7 in case of PIP 3A7). If a PIP should be
repeatedly triggered (once per hour in case of PIP 3A7) in case of a failed PIP execution, the
failure has to be registered in an appropriate variable.

Resource reservations cannot be dealt with in states success and fail because the algorithm
for negotiating distributed time-outs (cf. p. 9) has to be applied. Considering PIP 3A7 this
means that resources have to be reserved before the first vote message in PIP execution state
send_notify or wait_vr has been sent. If reservation of resources fails the seller does not send
a vote and the PIP execution fails as well. If the reservation is successful the seller waits until
he has reached state success before he sends the duration of reservation to the internal process.
This is done because the reserved resources must not be released before the buyer has con-
cluded they are not reserved any more. When reaching state fail a ReservationCancellationMsg
message must not be sent to the internal process because fail can be reached without having
reserved resources before. Therefore ReservationCancellationMsg must be sent after an error
in states wait_global or hang has occurred.

It is noteworthy that the implementation of PIP state hang does not have an onAlarm branch.
This is done to implement the blocking situation in a 2PC run. Despite the fact that no loop
is used in state hang the processing of messages from outdated protocol runs is possible. After
having processed such a message in state hang the implementation of the PIP execution pro-

4.2 The distributed perspective 45

tocol routes the control flow back to state hang automatically. Listing 6 shows the WSBPEL
code of hang.

Listing 6: Representation of state hang

1 <case condition="bpws:getVariableData (’pip_state’,’’,’/tns:

4

10
11
12

13
14

15

piplActionStatesSender’) = ’hang’”>

<sequence xmlns="http://schemas.xmlsoap.org/ws/2003/03/business—

process/” name="sequence —1">

<receive createlnstance="no” name="recHangMessage” partnerLink="

buyerLink” portType="tns:SellerPortType” operation="
receiveBuyerMessage” variable="partContTemp”/>

<switch name="oldMsg”>

<case condition="bpws: getVariableData (’partContTemp’,’ container
', /newPipEnv/pipInstanceNumber ’) = bpws: getVariableData (’
pipInstanceNumber ’) ">
<sequence name="handleNew ”>
<l—— some code omitted here —>
<switch xmlns="http://schemas.xmlsoap.org/ws/2003/03/business
—process/” name="whichMessage”>

<case condition="(bpws:getVariableData (’partnerContainer’,’

container ’,’ /newPipEnv/pipProtocolMsg’) = ’glob_abort ’)”>
<!l— handle global abort message —>
</case>

<case xmlns="http://schemas.xmlsoap.org/ws/2003/03/business—
process/” condition="bpws: getVariableData (’

partnerContainer ', ’ container ’,’ /newPipEnv/pipProtocolMsg
') = ’vote_request ">
<l—— handle vote_request message —>
</case>

<case xmlns="http://schemas.xmlsoap.org/ws/2003/03/business—
process/” condition="(bpws:getVariableData (’
partnerContainer ’,’ container ’,’ /newPipEnv/pipProtocolMsg
") = ’glob_¢) ">
<!—— handle global commit message —>
</case>
</switch>
</sequence>
</case>
<otherwise>
<!l—— handle message from previous protocol run —>
</otherwise>

</switch>
</sequence>

26 </case>

The approach introduced uses the PIP execution protocol within the MCP. Thus one collabora-
tion participant could block at the level of the PIP execution protocol while the other participant
already sends messages at the level of the MCP again. Generally, the blocking participant then
cannot react to these MCP messages because their receipt is not expected at the level of the
PIP execution protocol. As stated above, this problem can be addressed using the concept of
piggybacking and can be implemented using a common message container for MCP and PIP
execution protocol. This container consists of the process instance id, the current process state,

46 4 A ROSETTANET USE CASE

a MCP sequence number, type of MCP message and a PIP envelope. Generally, at the level
of the MCP all message parts except the PIP envelope are processed whereas at the level of
the PIP execution protocol, only the PIP envelope is processed. Only when sending com_req
or lock_req messages (MCP level), the latest PIP envelope that has been sent is sent again.
Considering the message order of the PIP execution protocol this PIP envelope either contains
a glob_abort or a glob_c message. If the receiver of such a message container is still blocked,
he first checks the PIP envelope and is then freed again. A PIP envelope consists of PIP type
(e.g. 3A4), the PIP execution protocol message type (e.g. pip_req), the PIP instance id and, if
necessary, a business document.

Particularities of the WSBPEL realisation Even though FIFO channels without message
losses and duplicates are assumed for communication between protocol process and internal
process, the PIP instance id of these messages must be evaluated. The reason for that is the
concurrent receipt of messages by the protocol process from the collaboration partner and the
internal process. For example in PIP state send_ack the receiver’s protocol process can receive
both wrong_pip messages from the collaboration partner and a BusinessResponseMsg from the
internal process. If a wrong_pip arrives earlier than a BusinessResponseMsg then the PIP
execution is terminated and the BusinessResponseMsg is delivered next time an appropriate
state is reached. But then the BusinessResponseMsg is outdated and must be deleted.

The WSBPEL model described here does not use message correlation ([IBMO03], p.45-52), a
mechanism for correlating messages and WSBPEL process instances. For binary collaborations
such as the use case described here WS-Addressing ([Ora05], section 6-7) can be used instead.
If the use of correlation sets is intended, then the PIP instance id must not be part of a
collaboration set. Otherwise outdated messages from former protocol runs could not be handled.

Finally there is no default functionality in WSBPEL for manipulation of datetime values, e.g.
for computing the deadline for process state timers. To solve this problem embedded Java
can be used in some WSBPEL engines but then processes in use are not WSBPEL compliant
any more. Alternatively the problem can be solved by manipulating string variables or by
implementing a dedicated Web Service for datetime operations.

A7
5 Validating business collaborations

From our point of view validation in early design phases is a key success factor in building
complex systems. Design errors are costly if they are detected late in the development cycle.
Model checking is a technique that supports detecting errors by completely exploring the state
space of a system. That is why errors that emerge from very improbable situations are more
easily found because they are not simply overlooked. Thus we have applied model checking
techniques to our case study as well. Model checking is frequently applied by formalising
properties one suspects to hold for a certain model. The model checker then either verifies the
property or finds an execution that violates the property (or it runs out of resources). For the
interested reader more information about model checking can be found in ([BBFO01], [CGP99],
[Hol03]).

The rest of this section first identifies and classifies relevant properties for the use case in
section 4. Then requirements of a model checker to reliably validate these properties are
discussed. Finally we describe the use of TCM/TATD and SPIN for model checking our use

case.

5.1 Collaboration properties that should be checked

Before identifying relevant properties of a model it should be clear that the analysis of a property
depends on the amount of information in the model. Therefore some very interesting properties
of the use case in section 4 cannot be model checked. A very apparent case is the legitimacy
of decisions of a collaboration participant. It would probably be illegitimate if a seller does
not accept the purchase order of a buyer if the buyer exactly obeys the rules of a quote he has
received from the seller beforehand. To do such an analysis, detailed information about the
structure of business documents would be necessary, not to mention a formal definition of the
notion of exactly obeying the rules of a quote.

A less apparent case of properties that cannot be analysed with our model can be encountered
when looking at events. Imagine a process state in which a buyer can initiate two different
PIPs, one to notify the success of a collaboration and one to cancel the whole collaboration.
Assume further that the buyer has detected success and hence triggers a local event to notify
his collaboration partner. Then he surely would not try to cancel the collaboration afterwards.
In our model there’s no information if such event sequences are admissible or not. This means
that the system we model allows more executions than are possible in the real world. This
has consequences depending on what kind of property is analysed, i.e. if the property to be
analysed is a safety or a liveness property. According to [BBF01], p.84, the truth value of a
safety property can be decided in any particular state of the state space only by looking at the
sequence of states that led to that particular state. If this is not the case, i.e. if the truth value
depends on future states, the property under consideration is a liveness property. Assuming
no modelling mistakes have been made, successfully verifying a safety property means that the
property also holds in the real world whereas not being able to do so not necessarily means
the property does not hold in the real world. Regarding liveness properties theoretically no
results at all can be carried over to the real world from verifying a given property in the model.

48 5 VALIDATING BUSINESS COLLABORATIONS

Accepting these restrictions we still claim that model checking is useful for finding errors in our
model.

As the identification of properties to check, probably one of the most important parts in validat-
ing systems, is not inherently supported by model checking, validating systems still requires the
validator to have a lot of experience and analytical skills. We propose a taxonomy of relevant
properties to at least help the validator in finding the right properties to check. An intuitive
approach to identifying relevant properties of a given system is looking at its purpose in detail
and trying to derive properties that ensure that purpose.

There are three main aspects of business collaborations which are relevant for validation.

e Sanity of the centralised perspective
e Conformance of the distributed implementation to the centralised perspective

e Interference of local business politics with the centralised perspective

5.1.1 Sanity of the centralised perspective

In essence, sanity of the CP amounts to a sensible order of process states, PIPs (respectively
MCs) as well as local events and distributed time-outs. This description only suffices to clarify
the scope of sanity of the CP, so a more detailed classification of relevant properties is given in
the following.

Generic properties refer to the process nature of a model and should hold in any model that
represents a process. A frequently demanded property of process models is absence of livelocks
and deadlocks to ensure that progress is eventually achieved. [Esh02], p.171, defines further
properties that should hold in a process model. A property that is closely related to absence of
deadlocks and livelocks is that processes should always terminate in a defined end state. This
is only possible if absence of deadlocks and livelocks is given. If it does not hold that processes
always terminate in a defined end state then it must be at least provided that this is possible.
A further property in [Esh02] refers to processes that are modelled with activity diagrams and
requires that any state of a process model can be reached and that any transition of the model
can be fired. Finally [SO00] demands for activity diagram models that lack of synchronisation
should be impossible, i.e. there should be no situation in which two instances of the same node
are active.

Domain specific properties refer to the details of B2B integration. Most business processes
require resources to be reserved. So one important property is that at the end of any business
process, all resources should be free. A further property is that a state should only be reachable
if all its substates have been created by an appropriate micro-choreography execution or by a
distributed time-out, i.e. there should be no state changes without distributed consensus. From
our point of view the creation of a more comprehensive set of properties is the task of B2B
standards consortia such as RosettaNet. [JM99] defines property patterns that could be applied
to find the right properties. These patterns are Sequence, Combined Occurrence/Exclusion,
Consequence and Precedence.

5.1 Collaboration properties that should be checked 49

Application specific properties cannot be defined before a specific application context is
given, but finding properties can be supported by looking at the purpose of a collaboration as
proposed above and by applying the patterns just named. One property that should hold in
our use case is that a process state with a signed contract should only be reachable if PIP 344
Request Purchase Order has been executed successfully.

5.1.2 Conformance of the distributed implementation to the centralised perspec-
tive

This aspect can be investigated at two levels. The first is application dependent and checks
whether the same process states are reachable in the CP and DP and whether the same tran-
sitions can be fired. In other words, the equality of the CP and DP on a particular use case
can be analysed. Formal methods that stem from the area of process algebra can be applied
to this question. The approach proposed here, suggests a (semi-)automatic generation of the
DP based on the information in the CP. Assuming this generation to be correct, addressing
conformance on this level has minor priority and is not further investigated here.

Rather, the aspect of conformance is researched at the second level of application independent
infrastructure functionality. This infrastructure functionality is obliged to ensure the assump-
tions made in the CP regarding the execution of PIPs (MCs), the triggering of PIPs (MCs) and
the management of distributed time-outs. The MCP and the PIP execution protocol are as-
signed to this task and therefore have to be analysed. But before identifying relevant properties,
assumptions about the environment in which these protocols operate should be clarified.

Assumptions about the environment

Section 3.1.2 defines important assumptions about the communication facilities the participants
of the business collaboration use. These constraints have to respected when validating the MCP
and the PIP execution protocol.

Further, assumptions about time-outs have to be made. Section 3.1.1 only states that the
participant who reserves resources for his partner has to maintain this reservation longer than
his partner. The correctness of the algorithm for negotiating distributed time-outs is also
informally explained in that section. Therefore the general assumption is made that time-outs
can occur at any point in time. According to p. 5 the proof of liveness properties then only
has limited validity because non-deterministic choice of time-outs generates a state space that
allows more protocol runs than concrete choice of timer values would do. Assuming fixed timer
values, the Coordinator of a MCP run for example maybe would always generate a time-out
event in state wait_pip before the Participant of the MCP run sends a pip message after having
received an appropriate grant. The Participant would then be unable to execute a PIP. On the
other hand the right choice of time-outs may also guarantee that each participant of the MCP
can trigger a PIP in finite time and thus solve the MCP fairness problem.

The assumptions introduced in section 3.1.2 and in this section are an important parameter
in validating the use case because they heavily influence which properties can be verified and
which not. For example there shouldn’t be a blocking situation in the PIP execution protocol

50 5 VALIDATING BUSINESS COLLABORATIONS

if no messages get lost. Therefore it is sensible to perform the validation in multiple steps with
different assumptions and different properties.

Relevant properties of the MCP

Absence of deadlocks is a frequently postulated property for protocols. This property is also
required for the MCP because the collaboration participants have to negotiate the triggering
of PIPs repeatedly. Considering the functionality of the MCP, extensively discussed in sec-
tion 3.1.2, the property that at any point of time only one collaboration participant has the
right to trigger a PIP, must be validated. Further, it can be presumed that each collabora-
tion participant will be allowed to trigger a PIP after finite time if only the communication
medium is error-free and protocol states are not left prematurely by the participants. This
presumption should also be analysed with the help of model checking. Finally, the MCP must
consider distributed time-outs. Processing such a distributed time-out event leads to leaving
the current process state as well as terminating the current and starting a new MCP run. If
both participants detect a distributed time-out at the same time, this behaviour is no problem.
If not, the situation arises where participants execute different MCP runs in different process
states. As long as this is the case, MCP messages cannot be processed because they do not
carry the expected process state names. It has already been informally pointed out on p. 16
that including process state names in MCP messages suffices to correctly handle distributed
time-outs. Analysis with means of model checking is therefore omitted.

Table 1 shows the validation levels of the MCP. Successful triggering of PIPs is omitted on
level two, because the possibility of loosing messages prevents that the acquisition of the right
to trigger PIPs can be guaranteed.

’ Level | Environment | Property ‘
1 e No message losses e Absence of deadlocks
e FIFO channels e Mutual exclusion
e Finite message transmission time regarding the right
e Duplicate messages to trigger PIPs
e Time-outs at arbitrary points in | ¢ PIPs can successfully be triggered, if
time Coordinator and Participant do not
leave state wait_pip prematurely
2 o Message losses e Absence of deadlocks
e Overtaking messages e Mutual exclusion
e Arbitrary message transmission time regarding the right
e Duplicate messages to trigger PIPs
e Time-outs at arbitrary points in
time

Table 1: Media Control Protocol validation levels

Relevant properties of the PIP execution protocol The functionality of the PIP execu-
tion protocol is extensively discussed in section 4.2.1. The distinction between the two protocol
variations for Single-Action Activity PIPs and Two-Action Activity PIPs is not relevant for the

5.1 Collaboration properties that should be checked 51

purpose of identifying properties, because these variations only differ in the number of messages
to exchange but not in the goals that should be achieved. The most important property of the
PIP execution protocol is guaranteeing a consistent outcome of a PIP execution. This property
is required to hold no matter in which environment the collaboration participants interact. In
order to guarantee a consistent outcome, blocking situations must be accepted. Therefore the
termination of the PIP execution protocol can only be demanded for if messages are assumed
not to get lost and to be delivered in finite time (otherwise the 2PC-Participant could block
in state hang). The last property to validate is that technical success of the PIP execution
protocol is possible, i.e. both participants reach state success. Clearly this property does not
have very big significance. Nevertheless it is postulated because executing a 2PC at the end of
a PIP constrains the PIP execution and must not prohibit success entirely.

There are two assumptions that cannot be checked because the model introduced here does
not contain enough information. First, a consistent business result depends on the application
of a uniform evaluation function to the business documents by both participants. Second, a
business document that can be read once must be readable again and again (cf. p. 34). Apart
from that, timers for generating distributed time-out events must be activated. The correctness
of the algorithm for appropriately activating such timers is informally discussed in section 3.1.1
and is not validated here. Finally the 2PC of PIP 3A13 has been extended to include three
participants, especially the seller. Special treatment of this extension is omitted.

Table 2 shows the validation levels of the PIP execution protocol.

’ Level | Environment | Property
1 e No message losses e Consistent outcome
e FIFO channels e Both participants terminate
e Finite message transmission time e Technical success possible
e Duplicate messages
e Time-outs at arbitrary points in
time
2 e No message losses e C(Consistent outcome
e Overtaking messages e Both participants terminate
e Finite message transmission time e Technical success possible
e Duplicate messages
e Time-outs at arbitrary points in
time
3 e Message losses e C(Consistent outcome
e Overtaking messages e 2PC-Coordinator terminates
e Arbitrary message transmission time | @ 2PC-Participant terminates
e Duplicate messages or reaches hang
e Time-outs at arbitrary points in | @ Technical success possible
time

Table 2: PIP execution protocol validation levels

52 5 VALIDATING BUSINESS COLLABORATIONS

5.1.3 Interference of local business politics with the centralised perspective

The modelling of a business collaboration introduced in this report bases on the CP and its
implementation specified in the DP. Local business politics of the collaboration participants
are not explicitly modelled. Rather they are encapsulated by means of the internal process
interface (cf. p. 35). The internal process is responsible for detecting events of the real world
and changing the real world as well as generating and interpreting business documents. These
tasks clearly affect properties of the CP like absence of deadlocks and livelocks. A detailed
analysis of how local business politics affect properties of the CP is helpful for optimising local
business processes without breaking the whole collaboration and therefore a valuable source of
information. This analysis is still ongoing work and therefore omitted here.

5.2 Requirements of a model checker

Applying methodologies efficiently and reliably needs tool support. That is why we identify core
requirements that any model checker should meet for efficient use. Clear and well-documented
formal semantics, simulation capabilities as well as resource usage feedback are frequently pos-
tulated requirements for model checkers. In our opinion any model checker should also fulfil
the following requirements.

Model building support is needed because any model checker needs some input language
it works with. Support can be given in different flavours. When building models from scratch
a visual input language is useful as well as consistency checks. There should also be some
well-documented patterns to help the inexperienced user to start building validation models.
When validating existing models there should be a way to (semi-) automatically translate or
import the existing model into the input language of the model checker.

Query building support is frequently given by offering some kind of temporal logic. This
surely is a step in the right direction but temporal logic is still hard to use for non computer
scientists. Verifying properties sometimes fails not because of errors in the model but because
of errors in the formalisation of properties.

More requirements come into play when choosing an appropriate model checker for a given
model. We claim that the following requirements should be satisfied for validating models that
have been created according to our modelling approach with activity diagram modelling.

Adequacy of input language. For model validation to be successful, the description of the
original model should be similar to the paradigm of the model checker input language. Ideally
the model to be validated should already be described with the input language of the model
checker, but this is rarely the case. The reason for this requirement is that the translation from
one model to another is an error-prone task and that it is hard to justify that verification results
for the transformed model are also amenable to the original model. The bigger the difference
in paradigms between the original and the transformed model, the harder is the translation
process and the transfer of verification results. For our case study it would be best if the
respective model checkers would accept activity diagrams as an input language for checking the

5.3 Validating the use case 53

CP and a state machine based input language for checking the DP.

Adequacy of query language. As stated above, formalising properties needs support. First
of all the query language must offer predicates to relate the atoms of formulae to modelling
elements of the input language. Assuming activity diagrams as the input language of the
model checker an example for such a predicate is the control flow is in node X. Assuming a
state machine based input language such predicates should be capable to capture the current
state of a process, the state of message buffers or the value of control variables.

It would be best if the query language of a model checker was extensible because different
application domains potentially need different predicates. Regarding the CP of our use case
as an application domain it would very helpful to have an open type system for states and
for micro-choreographies. As aforementioned, PIPs can be put multiple times in a model, so
having the possibility to refer to the type of PIPs would greatly simplify validations that are
only related to certain kinds of PIPs, e.g. a PIP of type A is never directly executed after
a PIP of type B. Otherwise one would have to collect all occurrences of a PIP of a certain
kind in a model by hand which is part of the property to be verified. Another requirement for
the efficient formalisation of properties according to our modelling approach is a predicate to
capture PIP-executions with a certain result. The formalisation of properties like if a PIP of
type A has never been executed with result B then state C is never reached could then easily
be done.

Finally the query language should be as expressive as possible. Model checkers frequently only
offer some type of propositional temporal logic for query purposes but the availability of pred-
icate logic or a higher order logic would facilitate query building. Clearly, the more expressive
a query language is the harder is the verification problem, but this is another topic. Regarding
the DP of our use case the formalisation of the MCP property that PIPs can successfully be
triggered could be facilitated by having the possibility to use quantifiers in logic formulae. Thus
the fact that a request for triggering a PIP with a fixed, but arbitrary sequence id z is followed
by a permission message to trigger a PIP with the same sequence id z could be more easily
formalised.

5.3 Validating the use case

The properties identified in subsection 5.1 have been validated on a pentium 2.4 GHz machine
with 1 GB RAM and Windows XP Professional installed. VM Ware Workstation 4.5.2 was used
to install Fedora Linux Core 3 as a guest OS on this machine. The Fedora installation was
assigned 604 MB of RAM. The following subsections discuss the validation of the CP and DP
respectively.

54 5 VALIDATING BUSINESS COLLABORATIONS

5.3.1 Validating the centralised perspective

The validation of the CP has been performed using TCM/TATD!? (version 2.20), a tool that
has been extended with prototype model checking functionality by Hendrik Eshuis during a
Phd project ([Esh02]). TATD internally uses NuSMV!* (installed in version 2.1.0) for valida-
tion purposes. We used TATD in our case study because it is directly applicable to activity
diagrams and it uses a dedicated formal activity diagram semantics ([Esh02]). In principle
the requirement of adequacy is therefore met. As a prototype tool TATD does not fully meet
some important requirements like simulation capabilities or resource usage feedback but it is
sufficient for evaluation purposes. It is necessary to explain the basics of Eshuis’ semantics
in order to talk about validation with TATD. Roughly speaking, the semantics used is based
on the notions of configuration and step. A configuration is a bag of activity nodes and state
nodes that are active at a certain point in time. Steps transform configurations in other con-
figurations by computing and firing maximal sets of transitions that can be fired in parallel.
The computation of new configurations is based on the presence of events and the valuation of
guards. Non-determinism is used to simulate events of the outside world and to determine the
value of guards. The state space of models is explored by computing all possible sequences of
configurations.

TATD offers two quite expressive kinds of temporal logic, namely subsets of PLTL and CTL
(cf. [BBFO1], p. 35-37, for both), for formalising properties. In order to relate formulae to
models, TATD offers the IN(node name) predicate to state that a node with name node name
is part of the current configuration and the use of boolean guard variables.

A noteworthy feature of TATD is the usage of strong fairness. Speaking in terms of activity
diagrams, strong fairness means that if a guard!® potentially will be evaluated infinitely often
or if the presence of an event potentially is tested infinitely often then, eventually, that guard
will be evaluated to true or the event will occur. Thus a loop with a guard that never becomes
true or an event that never occurs cannot prevent the termination of a process. Generally,
a verification run with TATD only considers system runs that are strongly fair. Adding the
assumption of TATD that any activity instance will eventually terminate this means that the
property of termination of processes can potentially be proven to be true with TATD. If the
validator does not need or want strong fairness, it can also be turned off during validation.

Modelling with TATD TATD does not fully support UML 1.5 activity diagrams nor does
it provide XMI import/export functionality. This is why the remodelling of the use case needs
some clarification. The following discussion only refers to changes that are relevant for valida-
tion purposes. TATD does not support substates in state machine states, so process states are
modelled without substates. This makes the formalisation of properties harder because sub-
states cannot be referenced directly but only indirectly via their superstates. The collaboration
in itself remains the same.

Events are not transferred from the CP to the TATD model. Thus, if there are multiple outgo-
ing transitions of a process state then TATD chooses the transition to fire non-deterministically.
From the point of view of TATD functionality this is nearly the same as if events would be

Bhttp://wwwhome.cs.utwente.nl/~tcm/tatd.html
Yhttp://nusmv.irst.itc.it/
15 contradictions excluded

http://wwwhome.cs.utwente.nl/~tcm/tatd.html
http://nusmv.irst.itc.it/

5.3 Validating the use case 55

used in the TATD model because events are produced non-deterministically either. Only events
that are generated by firing a transition do not occur non-deterministically, but such events
are not part of the CP. So the only difference that emerges from not modelling events is that
in verification runs without strong fairness a process cannot be prevented from terminating by
an event that never occurs. In the CP events are used to leave process states. If events do
not occur a process can block in a particular process state. This is an evident result and does
not need support from a model checker. Whether events are modelled in the TATD model or
not is therefore irrelevant for the use case of this report. From the point of view of the CP a
non-deterministic choice of transitions is also adequate because the internal process, which is
responsible for generating events, is encapsulated. Assumptions about its behaviour are there-
fore hard to make. The effect of this encapsulation has already been discussed on page 47. A
positive side effect of not modelling events in the TATD model is state space reduction during
validation because the order of event generation does not have to be considered.

Finally guards are transferred from the CP to the TATD model as follows. TATD only allows
boolean variables within guards. For the use case of this report all guards can be built from
boolean variables. As all boolean variables of a TATD model have global scope, modelling
guards as presented in figure 15 is intuitive at first sight. The figure shows two sections of
the TATD model that determine the result of a PIP execution. As variables have global scope
the result of PIP 3A7 is determined by other variables (techFail_8, rejected_8) as the result of
PIP 3A5 (techFail 9, rejected_9)' in order to avoid side effects. But the TATD mechanism
for determining variable values does not need that separation. TATD determines the value of
variables non-deterministically. This is adequate for the use case of this report because the
business logic for evaluating business documents is encapsulated within the internal process. A
variable in a TATD model is assigned a value by an activity node if the variable is used within
a guard of a transition that either ends in the activity node or starts from the activity node.
In the case of outgoing transitions the variable is assigned a value before firing a transition, in
the case of incoming transitions the variable is assigned a value after firing a transition. Thus
variables for determining the result of activity nodes can be reused because each activity node
assigns a new value to a reused variable. Note that reuse of variables is only allowed in the
use case of this report because the control flow of the use case is never split and thus variables
cannot be updated by two different activity nodes at the same time. Figure 16 shows reuse of
variables rejected and techFuail for modelling the example of figure 15. Reuse of variables heavily
influences execution time of validation runs. This has been empirically deduced by validating
simple formulae like F' FINAL for an extract of the CP with and without reuse of variables.
For this particular extract of the CP some validation runs without reuse of variables needed
approx. 50 times more time than validation runs with reuse of variables.

Validation results Regarding our classification of relevant properties, TATD checks an es-
sential generic property by default, i.e. the reachability of every node and the possibility to fire
every transition. Other generic properties like absence of deadlocks have to be encoded with
temporal logic. The formula

G (FINAL Vv (X true))

16 ¢lse is a predefined expression that evaluates to true if all other guards of a decision node evaluate to false

56 5 VALIDATING BUSINESS COLLABORATIONS

[perding| 2]

PendingOrder! & PIF3AT_8

[techFail 3]

ﬁ |pending] 5]
PIP3AS_a }\

[else]
X

ftechFzil_8)

[else]

\k [rejected_a] EndState_NoSuccess2

Figure 15: Separate variables for each guard

encodes absence of deadlocks by stating that at any point in time (G!7) either an end state
is reached (constant FINAL) or there is a transition to the next state (X true'®). Absence of
deadlocks can be verified for the use case described here.

Termination of processes can be validated by checking formula

F FINAL

with strong fairness turned on. In this case the property turns out to be true for the use case
described here. If strong fairness is turned off then at least possible termination can be proved
be verifying formula

E F FINAL.

From a practical point of view it is much more interesting to falsify a formula like
G —IN (EndState_Success)

because the falsification of this formula does not only prove that termination is possible but
also furnishes a counter example that leads to termination.

Finally, absence of livelocks cannot be verified for the given use case. Livelocks occur when
particular states of a system are reached infinitely often. Livelocks cannot be avoided in the use
case of this report because the internal processes are modelled non-deterministically. According
to the CP it is possible that a buyer triggers PIP 3A5 infinitely often in process state ContractIS
and that the execution of PIP 3A5 repeatedly fails. This results in a loop through ContractIS
and PIP 3A5. As absence of livelocks cannot be verified at all, at least the whole set of
possible loops should be determined in order to give hints for a an adequate implementation
of the internal process. When running TATD with strong fairness turned on no loops at all

17G(lobally) is implicitly preceded by A(lways), i.e. in all possible runs at any point in time
18in the neXt state, the constant true holds

5.3 Validating the use case 57

[pending]

i

R -
PendingOrder1 [« '@m_&)
DR L

[techFajl]

f—-\.\l [pending] ([techFail]

PIP3AS_3 e
[else] [else]
\(([else]
rejecte
feloe] [rejecter]
‘([rejectad] EndState_NoSuccess2

Figure 16: Reuse of variables in guards

can be detected because any guard will eventually become true and any event will eventually
be generated. When running TATD with strong fairness turned off always the same loop is
detected. In order to detect more loops formulae of the type

-G F (IN (nodeName))

can be used. Such a formula states that node nodeName cannot be reached infinitely often
(=G F). If this is not the case, there must be a livelock that TATD presents as a counter
example!®. Figure 17 shows such a loop that has been detected by validating formula

~G F (IN (PIP3A7_14))

in red and blue colour. But figure 17 also shows that this approach does not detect all possi-
ble loops in a process specification because multiple loops could run through the same node.
For example the loop consisting of nodes ContractlS, PIP3A7_14, PendingContractChangeSI,
PIP3A8_21 contains node PIP3A7_14 as well. All in all manual detection of loops is a very
cumbersome task that should be done in an automated manner by a tool instead.

The validation of domain specific and application specific properties can be done with TATD
in theory but in practice the formalisation of properties frequently is clumsy because the query
language of TATD is not adapted to the specific needs of the use case, i.e. states and PIPs
cannot be typed and there’s no predicate for referring to a PIP execution with a certain outcome.
For example the property if state ContractlS is ever reached then PIP 3A4 must have been
successfully executed before can be encoded as follows:

PIP3A4 execution - step 1:
Fa — (maU (bVcVdVe)

19Gtrong fairness has to be turned of therefore.

58 5 VALIDATING BUSINESS COLLABORATIONS

(ContractlS)

(Pip3A4-2) N X (= techFail N — rejected N — pending)
(Pip3A4_5) N X (= techFail N — rejected N — pending)
(
(

IN
= IN
IN
IN (PendingOrderl)
:= IN (PendingOrder2)

o a0 oo
|

PIP3A4 execution - step 2:
Ff—(=fUyg)
f = IN (PendingOrderl) V IN (PendingOrder2)
g = IN(Pip3A4.2) V IN (Pip3A4_5)

The first step tests the reachability of node ContractlS without neither successful execution
of a PIP of type PIP3A4 (formula b, c¢) nor reaching a process state of type PendingOrder
(formula d, e). The second step then tests if a state of type PendingOrder can be reached
without executing a PIP of type PIP3A4 before. techFuil, rejected and pending are boolean
variables that represent the result of an execution of PIP3A4. The X operator refers to the
state in the next configuration whereas the U operator states that its left-hand-side holds until
its right-hand-side holds and that the right-hand-side will hold finally. The semantics of the
U operator requires the use of the implications because the case where state ContractlS is
never reached would not be allowed otherwise. One may wonder why the outcome of a PIP
is not directly encoded with the intended result but with the conjunction of the negations of
the alternative results. The reason for this is that each boolean variable of a guard is assigned
a truth variable independently. This means that for example variable rejected and variable
pending for determining the outcome of PIP3A4_2 can be true at the same time. The actual
result then depends on the order in which the variables are tested.

Ip

I PendngfantraciChanges Sl

Figure 17: A loop through PIP 3A7_14

Judgement The verification of generic properties is supported by TATD to a large extent.
The verification of domain and application specific properties with TATD basically is possible as
well but the formalisation of properties is not sufficiently supported. Availability of substates

5.3 Validating the use case 59

for process states and availability of types for activities and states is needed for formalising
properties more efficiently and more reliably. In practice, the way of formalising domain and
application specific properties presented in this report is too error-prone and cumbersome. Fur-
ther, simulation capability and detailed resource usage feedback would be needed in practice.
When judging TATD, it must be considered that it is a prototype implementation and that im-
plementations of various UML activity diagram semantics are rather rare. Serious alternatives
to using TATD could not be found.

5.3.2 Validating the distributed perspective

As already pointed out in subsection 5.1.2, the validation of the DP is only performed at the level
of application independent infrastructure functionality, i.e. the properties identified for MCP
and PIP execution protocol in table 1 and 2 are validated. The validation has been performed
on the machine described on page 53. SPIN in version 4.2.5 has been chosen as model checker
for validation. XSPIN in version 4.2.3 has been used as a visual frontend to SPIN. SPIN suits
well for validating the MCP and PIP execution protocol specifications because the paradigm of
SPIN of communicating automata is basically the paradigm of these specifications. SPIN is a
widely spread and well documented model checker. A detailed description of SPIN functionality
and in particular a detailed description of SPIN’s input language PROMELA is omitted here. A
detailed introduction to SPIN can be found in the SPIN reference ([Hol03]) and on the SPIN
homepage®. In the following, knowledge of SPIN and PROMELA is presumed.

Duplicate messages are not included in the validation models of the MCP and the PIP execution
protocol. As soon as an original message has been sent, a duplicate message can be delivered
at any point in time. Thus, the size of validation models that consider duplicate messages is
frequently prohibitive for available validation resources. On the other side duplicate messages
can easily be handled. The protocol machines cannot discriminate whether an original message
or its duplicate message is received first and a duplicate message cannot be delivered before its
corresponding original message has been sent. Thus the analysis of duplicate messages can be
reduced to the case of receiving a message a second time. Looking at the protocol machines of
the use case, it is apparent that any message (i.e. a message type with particular content, not a
message instance) causes at most one state transition in the protocol machines. If a message is
delivered a second time, it is ignored in the MCP and the PIP execution protocol either ignores
the message or sends a message that has already been sent again. Thus, duplicate messages do
not have essential influence on the functionality of the protocol machines. Sending a message
a second time in case of the PIP execution protocol can be interpreted as a duplicate message
as well. Hence, duplicate messages can be left out in the validation models of the use case
without limiting the validity of validation results. Clearly this is only true if the argumentation
just presented is true. From the model checking method point of view leaving out duplicate
messages is not allowed because this constrains the state space of the validation models. This
theoretical limitation is accepted in order to fulfil resource restrictions.

Messages from past protocol runs are not included in the validation models either. Such mes-
sages can be easily identified looking at the process state field of MCP messages or looking at
the PIP instance id field of PIP execution protocol messages. The MCP protocol machines can

20nttp://spinroot.com

http://spinroot.com

60 5 VALIDATING BUSINESS COLLABORATIONS

simply ignore messages from past protocol runs. When receiving a message from a past protocol
run, PIP execution protocol machines answer with a wrong_pip message that carries the PIP
instance id of the received message. wrong_pip messages with an outdated PIP instance id are
simply discarded by the receiving protocol machine and therefore do not affect the protocol run
during which they are sent. Messages from past protocol runs can therefore be excluded from
validation models without restricting the validity of validation models. wrong_pip messages
are excluded from validation models for the same reasons. Clearly, from a methodical point of
view, the excluded message types must be considered as not validated and as a potential source
for errors.

MCP The validation of the MCP is being discussed using the final version of the MCP.
Instead of discussing the validation of prior versions of the MCP, a major bug of a prior version
is presented that has been detected using model checking.

When the Participant of the MCP waits for a grant message in state wait_grant he can be
interrupted by a lock_req message of the C'oordinator that must be handled with higher priority.
Intending to alleviate this disadvantage of the Participant a prior version of the MCP had the
Participant remind such an interruption. In case of such an interruption and a time-out event
in the subsequent state wait_pip the Participant should directly return to state wait_grant to
await the outstanding grant message instead of switching to state checkInternal. That version
did not guarantee mutual exclusion for the right to trigger a PIP execution which can be shown
by the following scenario.

The Participant begins with sending a com_req message and then switches to state wait_grant
to await a matching grant message. The Coordinator receives the com_req message in state
wait_part, sends a matching grant message back and then switches to state wait_pip. There,
the Coordinator detects a time-out event and then sends a lock_req message. As the lock_req
message travels faster than the grant message, the lock_req message arrives first. The Participant
sends a lock message when receiving lock_req and then switches to state wait_pip. There the
Participant detects a time-out event and then directly switches back to state wait_grant because
he has been interrupted before. There the Participant receives the outstanding grant message
and thus switches to state my_pip. The Coordinator receives the lock message and thus switches
to state my_pip too. Hence, both have the right to trigger a PIP.

Before describing the validation of the properties of table 1, a general problem in validating
the MCP must be discussed. Theoretically, the validation of the MCP is not possible at all
because its model is not finite. This infinity is caused by the use of sequence ids that can
grow arbitrarily. The sequence ids correlate request and permission of the right to trigger PIP
executions and therefore provide essential functionality of the MCP that cannot be excluded
from the validation model. The MCP model can be transformed into a finite model according
to the following possibilities.

The first possibility is to define an upper bound for sequence ids. Then the behaviour of the
MCP protocol machines must be adapted for the case of reaching that bound. New requests
could then always carry the same sequence id or no more requests at all could be sent. In either
case the state space of the MCP validation model would be changed such that it allows other
system runs than the original MCP model. Thus, any validation results from a model with an
upper bound for sequence ids rely on the assumption that the property under consideration is

5.3 Validating the use case 61

not affected by that bound.

The second possibility is to build an abstraction of the MCP model that only captures the
relations between the sequence ids of the MCP protocol machines. The idea of this approach is
that the actual value of a sequence id is not relevant but only if it is the biggest sequence id up
to the point of consideration or if it equals another sequence id. These sequence id predicates
can be captured by boolean variables that then must be manipulated accordingly during state
transitions and process local actions. For example a boolean variable with global scope could be
introduced into a PROMELA model that tells whether it is possible that the MCP Participant
knows the current value of the MCP Coordinator sequence id. This variable would have to be
set to false whenever the Coordinator increments its sequence id locally and it would have to be
set to true whenever the Participant receives a lock_req message. [FJ00] describes how to build
an abstraction for a PROMELA model that is quite similar to the MCP model. The problem
with building an abstract model like this is that the abstract model allows more system runs
than the original model. According to section 2.1 the proof of liveness properties is therefore
not admissible using an abstract model. The proof of safety properties is only sound but not
complete using an abstract model. Yet another problem is that building the abstract model
is an error-prone process which further restricts the validity of validation results. Building
abstract models in a sensible way needs formal foundation in order to ensure conformance
between abstract and original model. Such foundation is omitted in [FJ00]. [Wol86] also
treats abstraction and is frequently cited in this work area. Unfortunately, its results are not
applicable because it only handles the abstraction of variables that do not affect the control
flow of a protocol.

MCP, validation level 1 With respect to the properties to validate, for the first validation
level of the MCP an upper bound has been defined for sequence ids to make the validation
model finite. According to [BBFO01], p. 84, the property of successful triggering a PIP under
certain circumstances is not a safety property. If it was a safety property it would have to be
decidable in any state of the validation state space without looking at future states. Assume
that the MCP Coordinator has received a valid lock message and that the MCP Participant is
in state wait_pip. If the Participant leaves the state because he detects a time-out event, the
property is violated. But if the Participant stays in wait_pip until he receives a pip message,
the property holds. Hence the property is not a safety property. This, in turn, is a reason for
not building an abstract model because only safety properties can be analysed then.

Clearly, using an upper bound for sequence ids restricts the validity of a verified property to
protocol runs that only use sequence ids smaller than the bound. When reaching the bound
for sequence ids the validation protocol machines are designed to keep on sending requests with
the bound as the sequence number because this disables the smallest number of transitions of
the original MCP protocol machines.

The complete validation model for the first validation level of the MCP can be found in appen-
dix A in listing 13. The MCP is modelled in PROMELA with a separate process for Participant
and Coordinator respectively. The states of the protocol machines are represented using labels
in the process definitions. State transitions are realised using goto statements and the property
of PROMELA models of being processed top-down. The MCP must consider the need for PIP
execution that is declared by the internal process. As the internal process is encapsulated in

62 5 VALIDATING BUSINESS COLLABORATIONS

this report, non-determinism is used to model the need for PIP execution. Further, the MCP
functionality is basically independent of particular PIP types, so the need for PIP execution
can be represented by two boolean variables pComNeed and cComNeed that indicate whether
the Participant and the Coordinator respectively have need for PIP execution or not. Once
the need for PIP execution is declared, it is kept until a PIP has been successfully triggered.
The code in listing 7 is therefore used to set the boolean variables respectively (the example
shows the Participant need) when the Participant or the Coordinator enters state checkInter-
nal. According to PROMELA semantics, both branches of the if construct depicted are always
executable. Hence the branch to execute is chosen non-deterministically. The first branch
sets the need for PIP execution. The second branch simply keeps the old value of the PIP
need variable. cComNeed and pComNeed are not set back to false until the respective process
reaches label my_pip, i.e. until the need for PIP execution has been satisfied. The validation
model thus represents an internal process that declares the need for PIP execution at arbitrary
points in time and keeps this need until a PIP could be successfully triggered. Even the case of
PIP execution that failed technically is represented by this simple model. A technical failure
means that the need for PIP execution is not satisfied. As the next time the code in listing 7 is
executed potentially results in the first branch to be chosen this case is covered as well. Listing
13 shows this code in lines 62-65 and 117-120.

Listing 7: Non-deterministic declaration of the need for PIP execution
if
pComNeed = true;
skip;

L S

fi;
Sequence ids are represented by two process-scope byte variables mySeqld and otSeqld for each
process. mySeqld represents the sequence id of the requests of the owning process whereas
otSeqld keeps the biggest sequence id of a request of the respective other process. A separate
message buffer is used for each different message type in order to optimise the PROMELA model.
Thus, the order of different message types in a message buffer does not have to be considered
during validation (cf. [Hol03], p. 123 f.). The bound of the sequence ids and the size of message
buffers is determined by the available computing resources.

The results of validating the PROMELA model in listing 13 are the following. SPIN checks
absence of deadlocks by default, so a simple verification run without any PLTL property suffices

to prove absence of deadlocks.
The SPIN formula

]! (participant[1]@my_pip && coord[0]Qmy_pip)

has been used to prove mutual exclusion with respect to the right to trigger PIPs. The SPIN
formula corresponds to the PLTL formula G = (p A ¢) which means that at no point in time
both, p and ¢, may be true. Atoms p and ¢ are used to reference PROMELA labels. To do so
the SPIN construct

Process name [Process id] QLabel

can be used. participant[1]@my_pip states that the control flow of the participant process
(which carries process id 1 as the second process in the PROMELA model) is currently at label

5.3 Validating the use case 63

my_pip. Being at label my_pip corresponds to having the right to trigger PIPs. The property of
mutual exclusion can be verified in a SPIN run. Note that SPIN implicitly checks the formula
for all possible system runs. This corresponds to an implicit quantification of the formula with
the CTL A operator.

The property that PIPs can be successfully triggered if Coordinator and Participant do not leave
wait_pip prematurely is the hardest to validate. The first problem is formalising the property in
a general way. A PIP execution can be successfully triggered if a request with sequence id z is
answered with a permission message with the same sequence id z and if the respective process
does not leave state wait_pip prematurely. A general formulation of the property would require
to make a statement for arbitrary z but this would require the availability of predicate logic
style quantifiers. SPIN only offers PLTL. Instead the formula can iteratively be checked for a
particular value of z. The next problem is that the property cannot be formalised in a single
formula because the complexity of the verification problem grows with the length of the formula
to verify. For the validation resources available such a formula would be too long. Instead the
property is formalised separately for the Participant and the Coordinator process. Concerning
the Participant, he can successfully trigger a PIP if he does not leave state wait_grant because
of a time-out event after having sent a com_req message. Further the Participant must receive a
matching grant message and the Coordinator mustn’t leave wait_pip until having received a pip
message. Finally the Participant mustn’t be interrupted in state wait_grant by a Coordinator
lock_req message. For the purpose of presentation the formula to validate this property is
decomposed. The actual formula is given in PLTL syntax whereas its atoms are given in SPIN
constructs:

TimeoutP: G ((a ANb) — (mcU (d N e)))
a := coord|0|Quait_pip

b := coord|0] : otSeqld ==

c coord|[0]QcheckInternal

d = coord|0]Qrec_pip
e = coord|0] : temp ==

InterruptP: G- f
f = participant[1]Qinterrupt

SuccessP: (TimeoutP A InterruptP) — G ((9 AN h) — F (i A k))
g := participant[1]@Qsent_com_req
h := participant[l] : mySeqld ==
i := coord|0]Q@Qpartner_pip
k := coord|0] : otSeqld ==

Referencing labels with SPIN constructs has already been introduced above. The value of
process-scope variables can be captured in a similar way by using the following syntax:

Process name [Process id] : Variable denominator

The whole formula SuccessP is an implication. The right-hand side formalises successfully
triggering a PIP. A PIP can be successfully triggered, if a request with a particular sequence

64 5 VALIDATING BUSINESS COLLABORATIONS

id sent by the Participant (¢ A h), at any point in time (G), eventually (F') will be followed
by the state in which the Coordinator has received a PIP with the same sequence id (i A k).
The left-hand side of the implication captures conditions for a successful triggering of a PIP by
the Participant. Formula InterruptP states that the Participant mustn’t be interrupted by a
grant message. Formula Timeout P states that the Participant does not leave state wait_grant
prematurely by means of a time-out event and that the Coordinator does not leave sate wait_pip
prematurely either.

The formula for the Coordinator can be formalised analogously, except that the Interrupt
formula is not needed. A detailed discussion is therefore omitted here.

TimeoutC: G ((a ANb) — (mcU (d N e)))

a := participant|[1l|Quait_pip

b := participant[l] : otSeqld ==

¢ := participant[1l]|QcheckInternal
d := participant[1]|Qrec_pip

e := participant[1] : temp ==

SuccessC: TimeoutC — G ((f N g) — F (h N 1))
:= coord|0]@sent_lock,eq

:= coord|0] : mySeqld == 3

:= participant[1|@Qpartner_pip

i = participant[1] : otSeqld ==

>

Both formulae, SuccessP and SuccessC, can be verified if weak fairness is turned on during a
SPIN run. Weak fairness guarantees that a process will not be prevented from taking a single
step forever. Weak fairness is frequently needed for verifying liveness properties.

Note that successfully verifying formulae SuccessP and SuccessC' is of limited value. Both
formulae are implications, i.e. they can only evaluate to false if the left-hand sides of the
implications evaluate to true. It can be proved that these left-hand sides can evaluate to true
by falsifying the negations of the left-hand sides. Nevertheless, the left-hand sides heavily
constrain the set of possible system runs without requiring the processes to communicate.
Formulae SuccessP and SuccessC do not really prove that successfully triggering PIPs can be
guaranteed, rather they identify sufficient, not necessarily necessary, conditions for successfully
triggering a PIP.

MCP, validation level 2 The second level of MCP validation adds message duplicates,
overtaking messages and long travelling messages to the validation problem. This leads to
a heavy increase in size of the validation model that cannot be handled with the available
resources. In order to get a sufficiently small validation model, abstraction techniques can be
applied according to [FJ00]. Not only restricts such an abstraction strategy the validity of
validation results, but it also adds to the distance between original model and validation model
as it requires another abstraction step. If this additional abstraction step does not have formal
semantics, it is a very error-prone task to build the final validation model. From a practical

5.3 Validating the use case 65

point of view the benefit of doing so is questionable. This step is therefore omitted here. A
model for validation level 2 based on abstraction can be received upon request.

PIP execution protocol The PIP execution protocol comprises two variants for appro-
priately handling Single-Action-Activities and Two-Action-Activities. Both variants have the
same goals, so the properties to check are the same too. The complete validation models of
the Two-Action variant can be found in appendix A, the models of the Single-Action variant
can be received upon request. In this section, only the validation of the Two-Action variant
(PIPXP in the following) is discussed in detail. Analogously to the validation of the MCP, the
validation of early versions of the PIPXP is omitted. Instead the following major bug that has
been detected using model checking is discussed:

As already pointed out above, the intended result of a 2PC run at the end of PIPXP is always
Commit. This can lead to assuming that Global Abort messages are not obligatory. But leaving
out Global Abort messages leads to more blocking situations than necessary as can be seen from
the following scenario. Suppose a communication media that does not lose messages and deliv-
ers any message after finite time. Suppose further that a 2PC-Coordinator sends a Vote Request
several times. As the 2PC-Coordinator does not receive a response message, he finally decides
to switch silently (Global Abort is excluded from the protocol) to state fail. In this situation
it could be the case that the 2PC-Participant receives the Vote Requests and replies to them
with Vote messages. After having sent the first Vote message, the 2PC-Participant cannot
terminate its protocol run without receiving a Global Commit (or a Global Abort) message. As
the transmission of a Vote message may take longer than the time-out of the 2PC-Coordinator,
the 2PC-Participant would get stuck without Global Abort messages despite the fact that every
message is eventually delivered.

The validation of PIPXP is basically possible because its state space is finite. Further, PLTL
is sufficiently powerful to formalise properties of table 2. In practice, a problem in validating
the PIPXP is to avoid exhausting the given resources by keeping the validation model in size,
particularly for validation levels two and three. That is why the following modifications have
been applied to the PIPXP (state and message identifiers are taken from the protocol machines):

1. In sender’s state vote_requestX the receipt of pip_resp messages is not responded to in-
stead of sending a vote_req message. The reason for that is that vote_req messages are
possibly sent multiple times anyway. Accordingly, the transitions from vote_request2 to
vote_request] and from wvote_requests to vote_requestl are removed either.

2. Analogously to state wvote_requestX, in receiver’s state send_responseX the receipt of
pip_req messages is not responded to because pip_resp messages (triggered by pip_req
messages in the original model) are possibly sent multiple times anyway. The transitions
from send_response2 to send_responsel and from send_response3 to send_responsel are
removed either.

3. In sender’s state wait_globAck, glob_c messages are not sent as a reaction to vote messages
because glob_c messages can be sent multiple times nevertheless.

4. States send_request3, vote_request3 and send_response3 are removed from the validation
model because they just represent a message retransmission. Transitions from these states

66 5 VALIDATING BUSINESS COLLABORATIONS

to state fail are replaced by transitions to state fail from send_request2, vote_request?2 and
send_response2.

5. Finally, a modification is applied that is not visible in the protocol machines. When
delivering a message to the respective receiver’s buffer it is tested if the buffer already
contains a message with the same content. This massively reduces the size of message
buffers as each distinct message is buffered at most once. Note that the number of
different messages amounts to the number of different message types because the PIP
instance id can be neglected when analysing a single protocol run. Note also, that this
does not exclude duplicate messages from the model because a message can be delivered
to a buffer after the consuming process already has taken a message with the same content
from the buffer.

Theoretically, the validity of validation results is affected by the measures just described because
the state space of the validation allows strictly less protocol runs than the original model.
Practically, the loss of validity is marginal because the number of message retransmissions
must be limited anyway for model checking purposes. Determining the exact value of this limit
is rather a problem of available resources than a problem of protocol correctness. Figures 18
and 19 show the automata actually validated as opposed to the original automata shown in
figures 11 and 10.

For presentation purposes the automata depicted in figure 18 and figure 19 are used as a common
model for the validation levels identified in table 2. The formalisation of model properties to
check is the same for every validation level as well.

The property consistent outcome is checked by introducing a separate PROMELA process as
depicted in listing 8. The most important part of this process is the assert statement. If the
boolean expression of a PROMELA assert statement is not true when executing the assert in a
verification run, SPIN detects an error. The expression

resultS == 0 || resultR == 0 || resultS == resultR

represents the condition for a consistent outcome of a protocol run. The content of the ex-
pression is that either, the outcome of the sender process (resultS) or of the receiver process
(resultR) is not yet decided, or, that the outcome of both processes is the same. According to
PROMELA semantics the code for checking the assert statement can be executed at any point in
time. Thus, if there is a situation that contradicts the consistency condition then this situation
will be detected in a verification run. The atomic construct is not necessary for ensuring consis-
tency but only an optimisation that reduces the state space of the validation model according
to [Rui01], p. 151f.

Listing 8: Process ensuring the consistency of PIPXP runs

1 active proctype consistent (){
2 end:
s atomic {!(resultS = 0 || resultR = 0 || resultS = resultR) —
1+ assert (resultS = 0 || resultR = 0 || resultS = resultR)};
5

}

5.3 Validating the use case

procEm

pip_req Ipip_procEmr
Ipip_reqhck

intarnal
. fpip_rasp
Pp_raq 2
oip. reqAck ’ send_ack

meout
M =
irespAck [Cond responsel)

twopc_init e
vole_req)
~ota pip_respAck
vots_rag
Hote
< vote_req
hote
vole_req wel
Note

it_global

glob_c
/glob_ack

Jglob_ack

pip_procEmr glob_abort

N

Figure 18: Receiver automaton actually validated

The termination property of table 2 can simply be formalised by introducing a label in the
sender and receiver processes and stating that this label must eventually be reached. Using
PLTL syntax for the formula and SPIN expressions for its atoms this property can be formalised

as follows:

Termination: (F'p) N (Fq)
p = send|0]Qterm
q = rec[l]@Qterm

68 5 VALIDATING BUSINESS COLLABORATIONS

oot D

timeout
send_requesti

ﬁqieout
4 fpip_req

wait_response send_request2

pip_resp
Ipip_respAck

pip_resp
Ipip_respAck L 4
intermed

timeout
glob_abort

pip_procEm

N

glab_ECk -=

Figure 19: Sender automaton actually validated

This formula must be slightly adapted for the third validation level, because the PIPXP Receiver
can get stuck in state hang:

Termination3: (F'p) N (F (¢ V)
p = send|0]Qterm
q = rec[l]@Qterm
r = rec[l]@hang

The last property of possible success of PIPXP cannot be directly formalised in PLTL, because
PLTL does not support existential expressions. A PIP execution is successful if both result
variables indicate success. In order to verify that success is possible, it can equivalently be

5.3 Validating the use case 69

falsified that the negation of success always holds. Therefore the following formula has to be
falsified for proving that success is possible:

PossibleSuccess: G- (p A q
p = resultS ==
q = resultR ==

PIP execution protocol, validation level 1 The complete validation model for level 1 can
be found in appendix A, listing 14. Sender and receiver are modelled as a separate process each.
Labels are used to structure these processes according to their protocol states. Analogously to
the MCP validation, the interaction between the PIPXP and the sender’s/receiver’s internal
processes is modelled by means of non-determinism. An example for using non-determinism is
depicted in listing 9 that shows the evaluation of the PIP’s first business document. Accord-
ing to PROMELA semantics, statements rToEvelpip_procErr, representing a processing error,
and goto send_response, representing successful processing, are always executable. Hence the
PROMELA ¢ f construct chooses non-deterministically between the two options. Note that the
first statement is always executable because the buffer of the respective message channel will
never be full.

Listing 9: Non-deterministic processing of business documents
1 send_ack:

2 do

3 :: eveToPipReq?pip_req, temp —>

4 if

5 temp = pipld —> rToEve!pip_reqAck, pipld;
6 ;. else;

7 fi;

8 rToEve! pip_procErr, pipld; goto failure;

9 goto send_response;

10 Od;

Analogously to the MCP validation, a separate message channel is defined for each pair of
message type and message sender. A difference to the MCP is the introduction of separate
processes for message channel manipulation (eve processes in the following). The eve processes’
task is to model the insufficiencies of the communication media, particularly for validation levels
2 and 3. Their only task on this validation level is to ensure that messages with same content
are at most contained once in a receiver’s message buffer. Listing 10 shows the procedure for
dispatching vote_req messages by an eve process. If there is already a wvote_req in Receiver’s
message buffer (line 2), the message is discarded. Otherwise (line 3), the message is put into
Receiver’s message buffer.

Listing 10: Filtering messages
if
eveToVoteReq?[vote_req, eval(temp) |;

else —> eveToVoteReq! vote_req, temp;
fi;

=W N =

70 5 VALIDATING BUSINESS COLLABORATIONS

Property Termination of table 2 can successfully be verified while process consistent ensures a
consistent outcome of the sender and receiver process. Formula PossibleSuccess can be falsified
which proves the possibility of successful PIP execution.

PIP execution protocol, validation level 2 The complete validation model for level 2 can
be found in appendix A, listing 15. The difference to validation level 1 is that messages can
overtake each other. Listing 11 shows an extension to the eve processes for modelling overtaking
messages. In each iteration of an eve process’ loop a message can either be processed by the
dispatching procedure of level 1 or it can be put at the end of the message queue. Thus a
message can be overtaken by any other message. Whether every possible order of message
delivery can be produced with the model of listing 11 depends on the number of messages and
buffer length. Suppose channel sToFve has a buffer length of two, then there is no possibility
that the first two messages of the sender are overtaken by all other messages of the sender.

Listing 11: Modelling overtaking messages

1 do

> :: atomic{sToEve?msg, temp —> sToEve!msg, temp };

3 if

4 /¥ Dispatch messages depending on message typex/
5 fi;

6 od;

Except for Termination, the verification of model properties furnishes the same results as on val-
idation level 1. The problem with verifying Termination is caused by the model for overtaking
messages. Line 2 of listing 11 is possibly executed infinitely often. Thus arbitrary transmission
time is modelled as well, but it shouldn’t. To overcome this problem, the Termination formula
can be extended by a condition that prohibits arbitrary transmission time:

FiniteMsgTravel: (FGp) N (FGQq)
p = len(sToEve) ==
q = len(rToEve) ==

Taking FiniteMsgTravel as the precondition of an implication, Termination can be proved:
FiniteM sgTravel — Termination

The formula of FiniteMsgTravel is based on the observation that messages in the validation
model under consideration have finite transmission time if and only if message channels sToFEve
and rToEve eventually (F') get empty permanently (G). This claim can be justified by the
following informal proof?!:

If a message buffer eventually gets empty permanently, then a message cannot be taken from and
put into the same buffer again and again. Otherwise the message buffer would not eventually
get empty permanently.

21The proof can be done with SPIN for the less complex model Single-Action PIP execution protocol

5.3 Validating the use case 71

Sender and receiver only send a finite number of messages. None of these messages may be
taken from und put into the same buffer again and again. Hence, rToEve and sToEve eventually
get empty permanently.

PIP execution protocol, validation level 3 Validation level 3 differs from level 2 in
arbitrary message transmission times and lost messages. This adds to the complexity of the
verification problem. As the validation of level 2 is quite close to exhaust available validation
resources, the model of the eve processes is adapted as shown in listing 12. The resulting
new model allows messages to be delivered to the receiving process at most once. As multiple
delivery of the same message only triggers resending messages and does not cause state changes
(cf. above), the use of this new model does not constrain the validity of validation results. The
new model contains boolean variables to remember that a message has already been delivered.
When receiving a message the eve processes decide non-deterministically whether the message
gets lost or not. This is done using a PROMELA inline statement (chooseVal). In order to
include overtaking messages, line 16 of listing 12 contains a PROMELA skip statement. A
message can be prevented from being delivered by repeatedly executing this skip statement.
Thus, messages can overtake each other. As line 16 can be executed infinitely often, arbitrary
transmission times are modelled as well. Note further, that the new model allows for arbitrary
message ordering as opposed to the model of validation level 2 (cf. p. 70).

Listing 12: Model of communication media for PIPXP validation level 3

1 do

2 :: atomic{sToEve?pip_req, temp —> chooseVal(gotPipReq);};

3 atomic{sToEve?pip_respAck, temp —> chooseVal(gotRespAck);};

4 atomic{sToEve?vote_req, temp —> chooseVal(gotVoteReq);};

5 atomic{sToEve?glob_c, temp —> chooseVal(gotGlobC);};

6 atomic{sToEve?glob_abort , temp —> chooseVal(gotGlobAbort);};

7 atomic{sToEve?pip_procErr, temp —> chooseVal(gotProcErr);};

s :: else —>

9 if

10 :: gotPipReq && !sentPipReq —> eveToPipReq!pip_req, temp;
sentPipReq = true;

11 :: gotRespAck && !sentRespAck —> eveToPipRespAck!pip_respAck,
temp; sentRespAck = true;

12 ;. gotVoteReq && !sentVoteReq —> eveToVoteReq! vote_req, temp;
sentVoteReq = true;

13 i1 gotGlobC & !sentGlobC —> eveToGlobC!glob_c, temp; sentGlobC
= true;

14 :: gotGlobAbort && !sentGlobAbort —> eveToGlobAbort!glob_abort ,
temp; sentGlobAbort = true;

15 :: gotProcErr && !sentProcErr —> eveToRProcErr!pip_procErr, temp
; sentProcErr = true;

16 ;1 skip; /*Messages can travel arbitrarily longx/

17 fi;

18 Od;

20 inline chooseVal(cVar){
21 if

22 :: cVar = true;

72 5 VALIDATING BUSINESS COLLABORATIONS

23 :: skip; /«Messages can be lostx/
24 fi;

25}

Model properties Termination3 and PossibleSuccess can be verified using SPIN. Again a con-
sistent outcome of the sender and the receiver process is ensured by process consistent.

Judgement All in all, SPIN suits well for validating concurrent systems. The necessity
for heavily adapting the MCP emerges from the general need for finite models when using
model checking and not from insufficiencies of SPIN. The validation of the MCP shows that
there are properties that cannot be formalised because the expressiveness of the SPIN query
language PLTL is restricted. Apart from that, SPIN is ready to be used in practice as it
offers high-performance verification algorithms, an adequate query language that considers
the trade-off between expressiveness and validation complexity, simulation functionality and a
comfortable front-end for analysing counter-examples. The main problem in using SPIN (as in
using any other model checker) is providing a model that does not exhaust validation resources.
This may introduce subtle intricacies as well as validating a system that does not match the
communicating automata approach would do.

73

6 Related work

First of all we want to emphasize that the idea of transforming consistent states into consistent
states by means of transactional activities is well-known from database theory. But we apply
this concept in the domain of B2B integration by defining abstract business states as the
common view of collaboration partners on the progress of the collaboration.

Regarding the centralised perspective, we defined a business collaboration as a single business
process and we modelled state explicitly as the common view of the collaboration partners on
the progress of the collaboration. Further, we defined transactional micro-choreographies to
consistently change these process states. To our knowledge, this way of modelling business
collaborations has not been proposed before. Nonetheless there are two standards suited for
modelling business collaborations that use some similar concepts.

The Web Services Choreography Description Language Version 1.0 WS-CDL 1.0 [W3C05] is a
Candidate Recommendation of the W3C?? that can be used to describe collaborations

by defining, from a global viewpoint, their [i.e., the collaboration participants] com-
mon and complementary observable behaviour; where ordered message exchanges
result in accomplishing a common business goal.

([W3CO05], section Abstract). A WS-CDL description is composed of structural and behavioural
elements. Role types, relationship types and participant types are the main structural descrip-
tion elements. A role type describes a publicly visible unit of behaviour by referring to WSDL?
interfaces. A relationship type relates exactly two role types and optionally identifies subsets
of the behaviour of role types that can be used within that relationship type. Participant types
offer the possibility to combine multiple role types in one logical unit.

The main behavioural description elements are choreographies and activities. These elements
refer to structural description elements. The root of a WS-CDL description is a choreography®*.
Choreographies are composed of activities. There are multiple types of activities. The atomic
unit of WS-CDL descriptions are interaction activities that define the exchange of messages
between role types and therefore refer to relationship types. Perform activities can be used to
define the execution of a choreography within another choreography, which means that chore-
ographies can be hierarchically composed. Ordering structures can be used to define the control
flow of activities whereas work units can be used to group activities together and to condition-
ally execute them depending on the evaluation of guards.

Before starting the actual comparison between the approach introduced in this report and WS-
CDL, remember that the discussion is targeted at the centralised perspective of the approach
introduced and note that this perspective does not necessarily use UML activity diagrams. In-
teraction activities and choreographies resemble micro-choreographies described in this report.
A consistent outcome of interaction activities and choreographies can be achieved by setting
the align attribute or the coordination attribute respectively to true. As opposed to our micro-
choreographies, a consistent outcome is not required for every interaction/choreography as both

2nttp://www.w3.org
Zhttp://www.w3.org/2002/ws/desc/
24 Actually, the root is a package, but logically a choreography can be thought of as the root

http://www.w3.org
http://www.w3.org/2002/ws/desc/

74 6 RELATED WORK

align and coordination default to false. Clearly, this can be specified nonetheless. WS-CDL
does not define common states of the collaboration participants that should be achieved after
having executed an interaction/choreography, but using the align and coordination attribute,
local variables of collaboration participants can be required to hold the same value. Thus the
process states of the centralised perspective can be emulated. In this report, events haben been
proposed to trigger the execution of micro-choreographies. WS-CDL does not use events to
trigger interactions/choreographies but uses an initiate attribute for interactions instead. If set
to true, the initiate indicates that the surrounding choreography can be started by the first
message of the interaction. So events and the initiate attribute somehow have the same purpose.
The main difference comes into play, when the party to trigger the next micro-choreography
or interaction/choreography is not unique and more than one collaboration participant tries to
trigger the next micro-choreography or interaction/choreography at the same time. The ap-
proach introduced in this paper requires that the right to trigger executions must be negotiated
(cf. p. 12) whereas WS-CDL states that in case two interactions are marked as initiators the
first performed interaction establishes the collaboration (cf. [W3CO05], section 5.7 Choreogra-
phy Life-line). As the right to trigger a micro-choreography must be negotiated the approach
introduced in this paper can handle concurrent events. WS-CDL runs into problems if the
choreography under consideration is not a top-level choreography. If it is top-level, then two
choreographies might actually be installed. But if it is not a top-level choreography, then the
participants would surely want to stay in the same collaboration. But if so, how is it determined
which of two concurrent interactions has been triggered first? One solution is to allow multiple
initiating interactions only for top-level choreographies but then events cannot be emulated for
process states. Finally there is no built-in support in WS-CDL for distributed time-outs as
specified in this report. There is a timeout element for interactions, but it applies to interac-
tions and not to process states.

Summing up, most of the concepts of the approach introduced here can be emulated by WS-
CDL but the main difference is the level on which both operate. The centralised perspective of
this report requires the modeller to think in micro-choreographies, process states, events and
distributed time-outs. Particularly, micro-choreographies can be used in an abstract manner.
WS-CDL, however, requires the modeller to think in WSDL interfaces, message exchanges and
much more technical detail. So it is reasonable to think of the centralised perspective more
in terms of business process modelling and to think of WS-CDL more in terms of technical
specification.

The second standard suitable for modelling business collaborations is the ebXML BPSS v2.0.2
standard?®. BPSS models a collaboration based on Business Transactions that exchange busi-
ness documents and then composes Business Collaborations out of Business Transactions. Busi-
ness Collaborations can be composed hierarchically. BPSS Business Transactions are quite sim-
ilar to micro-choreographies of this report and BPSS Business Collaborations resemble compo-
sitions of micro-choreographies. Further the notion of state the BPSS specification uses is quite
similar to the notion used in this report.

The state of the Business Collaboration is logical between the parties interacting
in a peer-to-peer rather than a controlled environment. The virtual state of the

Zhttp://www.oasis-open.org/committees/tc_home.php?wgabbrev=ebxml-bp, ebXML BPSS v2.0.2 is
not yet an official specification

http://www.oasis-open.org/committees/tc_home.php?wg abbrev=ebxml-bp

75

Business Collaboration lies with the involved partners. (cf. [Oas06], section 3.4.1)
BPSS also identifies state as a key element of collaborations.

The choreography is specified in terms of Business States, and transitions between
those Business States. (cf. [Oas06], section 3.4.11.1)

Unfortunately, state is not explicitly modelled in BPSS as the common view of the collabora-
tion participants on the progress of the collaboration. This is a major difference to the work
presented here. Further, BPSS does not define an event concept for triggering Business Trans-
actions and does not specify the need for a protocol for negotiating the right to trigger Business
Transactions. BPSS also defines the need for reliable messaging in section 3.2.

The ebXML Message Service Specification provides a reliable messaging infrastruc-
ture. This is the basis upon which the ebBP technical specification builds its pro-
tocol for business state alignment using Business Signals. (cf. [Oas06], section 3.2)

The need for such a service could be overcome by implementing a 2PC on top of an unreliable
medium, so defining this requirement constrains the class of distributed systems that BPSS
collaborations can be built on. This report shows how a collaboration can be implemented on
top of an unreliable communication medium using WSBPEL without requiring the application
programmer to code the 2PC implementation himself. Nonetheless, requiring a reliable mes-
saging infrastructure surely is an admissible design decision. Another design decision is that
Business Transactions must either fail or succeed from a business point of view.

A Business Transaction MUST succeed or fail from both a technical and business
protocol perspective. (cf. [Oas06], section 3.4.2)

P. 12 of this report explains reasons why such a requirement does not make sense in every
collaboration setting.

We defined the distributed perspective of this report as the implementation of the CP that uses
the CP as its context. We further stated that message passing is a suitable paradigm for realising
this implementation. Clearly the idea of implementing a business collaboration using message
passing is not new. But the work in this report simplifies the implementation as the global
view on business logic is already completely fixed when it comes to do the implementation.
Another approach that is quite similar to ours in the sense of defining a context for distributed
implementations can be found in [OAS03], but the definition of context is left unspecified. Note
further, that as opposed to many other approaches our proposal for implementing the DP does
not need a reliable messaging infrastructure nor does it need synchronized clocks. We also
proposed the MCP for negotiating the right to trigger the next micro-choreography. Looking
at the case study, the assumptions we made surely do not make the task of programming a
business collaboration very easy but truly reliable systems are hard to build and the protocol
process encapsulates large parts of the complexity.

76 6 RELATED WORK

Regarding the whole approach of modelling business collaborations of this report, ebXMIL?26
offers similar functionality in the sense of providing a common model of the collaboration
(i.e. BPSS as already discussed) and functionality for implementing a distributed system that
conforms to that common model (i.e. the ebXML Messaging Services 2.0 [Oas02]). The com-
parison between the CP of this work and BPSS applies. Further this report does not offer a
general-purpose messaging facility as ebXML messaging does but only defines the requirement
for ensuring a consistent outcome of micro-choreographies and for negotiating the triggers of
these. Standard 2PC and the MCP are proposed for fulfilling this requirement. Particularly,
an equivalent to the MCP cannot be found in ebXML.

A lot of related work is done by the Web Services community with respect to composing services
(e.g. [BCHO5], [SG04]). The composition of services definitely is necessary for integrating
businesses but the approaches (excluding WS-CDL) we know all act on the level of single
service calls and not on the level of transactional micro-choreographies as we do.

Looking at RosettaNet as our use case, [Dog02] have proposed a framework for executing
multiple PIPs, but they did not define a modelling approach for creating PIP compositions.
RosettaNet itself has not yet defined a standard for composing PIPs either.

Regarding the validation of UML activity diagrams, the basis for doing so is defining a suitable
semantics as Rik Eshuis did. Alternative semantics have been defined ([Por01], [BCR00]),
particularly the UML 1.5 standard itself defines an activity diagram semantics in terms of
Statecharts. Unfortunately, theses semantics are either not implemented or respective tools are
not freely available.

Further, there are some taxonomies of properties for model checking properties ([JM99], [Esh02]),
but these differ from ours in being not that detailed or are defined for a different application
area.

Regarding the validation of the DP we followed the approach of building an abstract model
of the infrastructure protocols and validating these using SPIN. [FBS04] presented a way for
applying model-checking directly to WSBPEL specifications. This potentially can be used for
analysing how the local business politics of collaboration partners in the distributed perspective
interfere with business properties in the centralised perspective which is future work.

Summing up, the main contributions of the work presented in this report are:
e An easy-to-use approach for modelling business collaborations from a centralised perspec-
tive that respects a distributed execution environment.

e A clear definition of the tasks that have to be fulfilled when implementing a business
collaboration in a distributed environment with respect to the centralised perspective.

e Protocols for negotiating the right to trigger a micro-choreography and for agreement
upon distributed time-outs during the execution of a 2PC.

e A case study on RosettaNet using UML activity diagrams and WSBPEL that proves that

2nttp://www.ebxml.org/

http://www.ebxml.org/

7

the modelling approach is viable and the application of model checking techniques to the
models produced.

e A taxonomy of properties that should be checked when modelling business collaborations
and a collection of model checker requirements.

78 7 CONCLUSION, PRACTICAL EXPERIENCE AND FUTURE WORK

7 Conclusion, practical experience and future work

Our approach proposes the modelling of business collaborations from a centralised and a dis-
tributed perspective. For the centralised perspective, a modelling concept based on common
business states and transactional micro-choreographies to change these states was introduced.
We also showed how this concept can be visualised by UML 1.5 activity diagrams and we
described how RosettaNet PIP choreographies can be built following these ideas. Modelling
according to stringent rules, as we did in our case study, forms the basis for (semi-) automatic
validation and execution of models. For the distributed perspective, the core tasks for build-
ing an implementation model were identified and the MCP was introduced for negotiating the
triggering of micro-choreographies. In the case study, it was shown how WSBPEL can be used
for implementing infrastructure functionality and that a reliable communication medium is not
necessarily required. Further, an interface for separating that infrastructure functionality from
the internal process, i.e. the tasks of generating and interpreting business documents as well as
detecting events of the real world and changing the real world, was defined.

We identified and classified core properties that should hold in business collaborations and we
identified important requirements that a model checking tool should meet to enable efficient
and reliable validation. Evaluation results from using a prototype model checker, TATD, and
a state-of-the-art model checker, SPIN, show that, in principle, model checking is helpful for
detecting bugs in early design phases. Execution of models can be achieved by defining map-
pings from process states and micro-choreographies to implementations. Considering our case
study, micro-choreographies can be implemented by using RosettaNet PIP implementations.
Note that our modelling approach is inherently model-driven. The centralised perspective only
specifies the business logic of a collaboration that can be implemented by various technologies,

e.g. Web Services and WSBPEL.

Applying model checking to a system requires the system to be appropriately modelled as well
as the identification of relevant properties. In this context, appropriate means that automatic
processing of the model of a system must be possible. Practical experience shows that adher-
ing to this condition already helps in detecting errors. Further, identifying relevant properties
forces the modeller to precisely formulate the goals of a model and to align the actual model
with these goals.

In this report, WSBPEL was used to model the use case from a distributed perspective. As
WSBPEL models are executable if the right binding information is provided, they can also be
interpreted as distributed implementations. That is why great care has been applied to the
translation of the protocol machines to WSBPEL. Thus, bugs in the WSBPEL specification re-
garding timers with deadline-valued expressions and regarding the receipt of multiple messages
within one onMessage event handler of a single scope have been detected.

Finally, complexity can be greatly reduced by separating a centralised and a distributed per-
spective. While, the business logic can be focussed from the centralised perspective, the imple-
mentation aspects, particularly with respect to an unreliable communication medium, can be
focussed from the distributed perspective.

Future work is required to extend the proposed modelling approach for multi-party collabo-
rations and a hierarchical composition technique should be defined. For validating models, a
more detailed taxonomy of business collaboration properties is desirable as well as an intuitive

79

approach to formalise these properties. Access to advanced validation technology for business
people is a long-term goal. Moreover it is desirable to know how the local business politics
of collaboration partners in the distributed perspective interfere with business properties in
the centralised perspective. Applying model checking techniques directly to WSBPEL models
therefore should be explored. Finally, researching the strengths and weaknesses of different
modelling languages in representing our modelling concept is an interesting area of ongoing
work.

80 REFERENCES

References

[BBFO1] B. Berard, M. Bidoit, and A. Finkel et. al. Systems and Software Verification :
Model-Checking Techniques and Tools. Springer-Verlag, Berlin, 1 edition, August
2001.

[BCHO5] D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web service interfaces. In Proc. of
the 14th internat. conference on World Wide Web, pages 148-159. ACM Press, 2005.

[BCRO0] Egon Boerger, Alessandra Cavarra, and Elvinia Riccobene. An ASM Semantics for
UML Activity Diagrams. In AMAST °00: Proceedings of the 8th International Con-
ference on Algebraic Methodology and Software Technology, pages 293-308, London,
UK, 2000. Springer-Verlag.

[CGP99] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

[Dam04] Suresh Damodaran. B2B integration over the Internet with XML: RosettaNet suc-
cesses and challenges. In Proc. of the 13th international World Wide Web conference
on Alternate track papers € posters, pages 188-195, New York, 2004. ACM Press.

[DHO1] M. Dumas and A. H. M. ter Hofstede. UML Activity Diagrams as a Workflow
Specification Language. Lecture Notes in Computer Science, 2185, 2001.

[Dog02] A. Dogac et. al. An ebXML Infrastructure Implementation through UDDI Registries
and RosettaNet PIPs. ACM SIGMOD Internat.l Conference on Management of Data,
2002.

[Esh02] H. Eshuis. Semantics and Verification of UML Activity Diagrams for Workflow
Modelling. PhD thesis, University of Twente, Netherlands, 2002.

[FBS04] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting BPEL web services.
In WWW °04: Proceedings of the 15th international conference on World Wide Web,
pages 621-630, New York, NY, USA, 2004. ACM Press.

[FJOO] Elena Fersman and Bengt Jonsson. Abstraction of Communication Channels in
Promela: A Case Study. In Proceedings of the 10th SPIN Workshop, pages 187-204,
Portland, Oregon, USA, 2000.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker. Addison-Wesley Pearson Education,
September 2003.

[(IBM03] IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. Business Process Ezecution
Language for Web Services, 1.1 edition, May 2003.

[ISO04] ISO/IEC. Information technology - Open-edi reference model. 1SO/IEC, 2 edition,
May 2004.

[JM99] W. Janssen and R. Mateescu et. al. Model Checking for Managers. In Proc. of the

5th and 6th Internat. SPIN Workshops, pages 92—-107. Springer-Verlag, 1999.

REFERENCES 81

[Oas02]

[OAS03]
[Oas06]

[OMG03]

[Ora05]

[Por01]

[Ros02]

[Rui01]

[SGO4]

[SO00]

[TS02]

[UN/01]

[W3C05]

[Wol86]

Oasis Open. ebXML Message Service Specification. Oasis Open, 2.0 edition, April
2002.

OASIS Open. Web Services Composite Application Framework (WS-CAF), 2003.

Oasis Open. ebXML Business Process Specification Schema Technical Specification.
Oasis Open, 2.0.2 edition, January 2006.

OMG. OMG Unified Modeling Language Specification. Object Management Group,
Inc., 250 First Ave. Suite 100 Needham, MA 02494, U.S.A., 1.5 edition, March 2003.

Oracle. Oracle BPEL Process Manager Developers Guide 10g Release 2. Oracle,
June 2005.

Ivan Porres. Modeling and Analyzing Software Behavior in UML. PhD thesis, Abo
Akademi University, Finland, November 2001.

RosettaNet, www.rosettanet.org. RosettaNet Implementation Framework: Core
Specification, v02.00.01 edition, March 2002.

T. Ruijs. TOWARDS EFFECTIVE MODEL CHECKING. PhD thesis, University
of Twente, Netherlands, 2001.

David Skogan and Roy Gronmo et. al. Web Service Composition in UML. In Proc. of
the Enterprise Distributed Object Computing Conference, Fighth IEEE International
(EDOC"04), pages 47-57, 2004.

W. Sadiq and M. E. Orlowska. Analyzing process models using graph reduction
techniques. Information Systems, 25(2):117-134, 2000.

Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems - Principles and
Paradigms. Prentice Hall, Upper Saddle River, NJ, 2002.

UN/Cefact. UN/CEFACT’ s Modelling Methodology N090 Revision 10, November
2001.

W3C. Web Services Choreography Description Language. W3C, 1.0 edition, Novem-
ber 2005.

P. Wolper. Expressing interesting properties of programs in propositional temporal
logic. In POPL °86: Proceedings of the 15th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 184-193, New York, NY, USA, 1986.
ACM Press.

82 A PROMELA VALIDATION MODELS

A Promela validation models

Listing 13: MCP, validation level 1

1 #define SEQBOUND 6

2 #define incr(x) X++;

3

4+ mtype = {pip, com_req, grant, lock_req, lock};
5

¢ chan toPartLockReq = [5] of {mtype, byte};

7 chan toPartGrant = [5] of {mtype, byte};

s chan toPartPip = [5] of {mtype, byte};

9

[
o

[5] of {mtype, byte};
5] of {mtype, byte};
] of {mtype, byte};

chan toCoordComReq =
chan toCoordLock = |
chan toCoordPip = [5

=
—

o
»

=
w

bool cComNeed = false ;
bool pComNeed = false ;

[
'S

-
o

=
(=]

/x #### COORD #4# /)

active proctype coord() {
byte mySeqld = 0, otSeqld = 0, temp;
bool runOut = false;

-
~

-
oo

-
©

[™)
(=]

[
-

N
[

xr toCoordComReq;
xr toCoordLock;
xr toCoordPip;

NN
=W

[
o

xs toPartLockReq;
xs toPartGrant ;
xs toPartPip;

NN NN
© w N O3

wait_part:

w
o

31 if

32 atomic { nempty(toCoordComReq) —> toCoordComReq??com_req,
temp; }

33 if

34 :: temp > otSeqld —> otSeqld = temp; toPartGrant!grant,

otSeqld;

35 sent_grant: goto wait_pip;

36 :: else —> goto checklInternal;

37 fi;

38 :: atomic {else —> goto checkInternal;}

39 fi;

41 wait_pip:

2 do

13 :: atomic { nempty(toCoordPip) —> toCoordPip??pip, temp;}
14 TEC_pPIip:

15 atomic {

16 if

47 :: temp = otSeqld; goto partner_pip;

48 ;1 temp < otSeqld;

19 :: temp > otSeqld; assert (temp <= otSeqld);
50 fi;

51

52 :: atomic{ else —> goto checkInternal;};

53 od ;

55 partner_pip :
56 goto checkInternal;

ss checkInternal :
59 Progress:
6o atomic {

61 if

62 :: cComNeed = true;

63 ;. skip;

64 fi;

65}

66 if

67 :: atomic {!cComNeed —> goto wait_part;};
68 :: atomic{ else —> incr (mySeqld);

69 if

70 :: mySeqld > SEQBOUND —> mySeqld = mySeqld — 1; runOut = true
71 :: else —> skip;

72 fi;

73

74 toPartLockReq!lock_req , mySeqld;

75 sent_lock_req: goto wait_lock;

76 fi;

s walt_lock :

79 do

80 :: atomic{ nempty(toCoordLock) —> toCoordLock??lock, temp;};

s1 got_lock:

82 atomic {

83 if

84 :: temp = mySeqld && !runOut —> goto my_pip; /xrunOut needs
to be considered because a lock can be delivered after a
second lock—req —> SEQID-BOUNDx/

85 ;1 temp = mySeqld && runOut —> goto wait_part;

86 ;1 temp < mySeqld;

87 :: temp > mySeqld; assert (temp <= mySeqld);

88 fi:

89

90 :: atomic {else —> goto wait_part;};

91 od ;

92

93 My_pip:

oa toPartPip!pip, mySeqld; cComNeed = false;
95 goto wait_part;

96

or term: skip; /xthis code is never reached x/

83

84 A PROMELA VALIDATION MODELS

98}

99

100

w1 /x #### PARTICIPANT #4444 */

102 active proctype participant () {

103 byte mySeqld = 0, otSeqld = 0, temp;
104 bool runOut = false;

105

16 xr toPartLockReq;

107 xr toPartGrant;

108 xr toPartPip;

110 xs toCoordComReq;
111 xs toCoordLock;
112 xs toCoordPip;

113

114 checkInternal :

s atomic {

116 if

117 :: pComNeed = true;

118 .. skip;

119 fi;

120 }

121 dO

122 :: atomic {nempty(toPartGrant) —> toPartGrant??grant , temp;};

123 rec_grant_old: skip;

124 ;. else —>

125 if

126 :: atomic { !pComNeed —> goto wait_lock;};

127 :: atomic {else —> incr(mySeqld);

128 if

129 :: mySeqld > SEQBOUND —> mySeqld = mySeqld — 1; runOut =
true;

130 :: else —> skip;

131 fi;

132 }

133 toCoordComReq! com_req, mySeqld;

134 sent_com_req: goto wait_grant ;

135 fi;

136 od;

137
s walt_lock :

139 dO

140 :: atomic { nempty(toPartLockReq) —> toPartLockReq??lock_req,
temp; }

141 if

142 :: temp > otSeqld —> otSeqld = temp; toCoordLock!lock, otSeqld

; goto wait_pip;

143 ;. else;

144 fi;

145 :: else —> goto checklInternal;

e od;

147

85

s wait_pip:

149 dO

150 :: atomic { nempty(toPartPip) —> toPartPip??pip, temp;}
151 Tec_pip : atomic {

152 if

153 :: temp = otSeqld —> goto partner_pip;

154 i temp < otSeqld;

155 :: temp > otSeqld; assert (temp <= otSeqld);
156 fi;

157 }

158 :: atomic { else —> goto checkInternal; }

159 od;

160
161 wait_grant:

162 do
163 :: atomic { nempty(toPartLockReq) —> toPartLockReq??lock_req ,
temp ; } ;
164 if
165 :: temp > otSeqld —> otSeqld = temp;
166 interrupt: toCoordLock!lock, otSeqld; /xinterrupt = true;x/ goto
wait_pip;
167 i1 else;
168 fi;
169 :: else —>
170 if
171 :: atomic { nempty(toPartGrant) —> toPartGrant??grant, temp;};
172 Tec_grant : atomic {
173 if
174 :: temp =— mySeqld && !runOut —> goto my_pip; /+xrunOut needs
to be considered because a lock can be delivered after a
second lock—req —> SEQID-BOUND«/
175 :: temp =— mySeqld && runOut —> goto checkInternal;
176 i1 temp < mySeqld;
177 :: temp > mySeqld; assert (temp <= mySeqld);
178 fi;
179 }
180 :: else —> goto checkInternal;
181 fi;
182 od ;

183

184 partner_pip:

155 goto checkInternal;

186

187 MYy_pip :

188 toCoordPip!pip, mySeqld; pComNeed = false; goto wait_lock;
189

o term: skip; /xthis code is never reached x/

191

192 }

86

A PROMELA VALIDATION MODELS

Listing 14: Two-Action PIP execution protocol, validation level 1

1 #define doTimeout else
2 #define E_BUF 2
s #define incr(x) x++;

4

5

© 0 N O

10
11

12

14
15
16
17
18
19
20
21
22
23
24
25
26

40
41
42
43
44
45
46

47

mtype = {pip_req, pip-reqAck, pip_resp, pip_respAck, pip_procErr,
vote_req, vote, glob_c, glob_abort, glob_ack};

/* to eve x/
chan sToEve = [3] of {mtype, byte};
chan rToEve = [3] of {mtype, byte};

/+* eve to Rec x/

chan
chan
chan
chan
chan
chan

eveToPipReq = [E.BUF| of {mtype, byte};
eveToPipRespAck = [E.BUF]| of {mtype, byte};
eveToVoteReq = [E.BUF| of {mtype, byte};
eveToGlobC = [EBUF] of {mtype, byte};
eveToGlobAbort = [E.BUF| of {mtype, byte};
eveToRProcErr = [EBUF] of {mtype, byte};

/xeve to Sendx/

chan eveToPipReqAck = [E.BUF] of {mtype, byte};

chan eveToPipResp = [EBUF] of {mtype, byte};

chan eveToVote = [EBUF| of {mtype, byte};

chan eveToGlobAck = [EBUF] of {mtype, byte};

chan eveToSProcErr = [EBUF] of {mtype, byte};

byte resultS = 0, resultR = 0; /x0=Undecided, 1=Success, 2=Failed
o/

/4 SENDER 4 /

active proctype send(){
byte pipld = 1;
byte retries = 0;
byte temp;

pip-

init: sToEve!pip_req, pipld; incr(retries);

send_request :

do

if

atomic{nempty (eveToSProcErr) —> eveToSProcErr?pip_procErr,
temp; }
if
temp = pipld —> goto failure;
else; /xother process must be in fail anywayx/
fi;
else —>

atomic {nempty(eveToPipReqAck) —> eveToPipReqAck?pip_reqAck

, temp;};
if

48
49
50

51

87
88
89
90
91
92
93

temp =— pipld —> goto wait_response;
else;
fi;
: atomic {nempty(eveToPipResp) —> eveToPipResp?pip_resp, temp

b

if
temp = pipld —> sToEve!pip_respAck, pipld; goto intermed
else;
fi;
:: doTimeout —>
if
d_step{retries < 2; incr(retries);} sToEve!pip_-req, pipld
)
;. retries =— 2; goto failure;
fi;
fi;
od;

wait_response :

do
atomic{nempty (eveToSProcErr) —> eveToSProcErr?pip_procErr
temp;
if
temp = pipld —> goto failure;
:: else;
fi;}
;. else —>
if
atomic{ nempty(eveToPipResp) —> eveToPipResp?pip_resp , temp
31
if
temp =— pipld —> sToEve!pip_respAck, pipld; goto intermed
else;
fi;
doTimeout —> goto failure;
fi;
od;
intermed :
do

atomic{ nempty(eveToPipResp) —> eveToPipResp?pip_resp, temp
3}
if
temp = pipld —> sToEve!pip_respAck, pipld;
else;
fi;
sToEve!pip_procErr, pipld; goto failure; /+«processingErrorx/
goto vote_request;
od;

87

88

102
103
104

105

106
107
108

110
111
112
113

114

115
116
117
118
119
120
121
122

123

124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139

140

/%

A PROMELA VALIDATION MODELS

; vote_request :

sToEve! vote_req , pipld;
retries = 1;

do
atomic{ nempty(eveToPipResp) —> eveToPipResp?pip_resp , temp

iof

;0 temp == pipld —> sToFvel!vote_req, pipld; goto wvote_request;

;o oelse;

fi; =/ /*x#CHANGE# vote_reqs are being sent multiple times
anyway */

:: atomic{ nempty(eveToVote) —> eveToVote?vote, temp;};
if
d_step{ temp = pipld —> retries = 0;} sToEve!glob_c, pipld
; goto wait_globAck;

;. else;
fi;
:: doTimeout —>
if
d_step{retries < 2; incr(retries);} sToEve!vote_req, pipld;
d_step{retries = 2; retries = 0;} sToEve!glob_abort, pipld
; goto failure;
fi;
od;

wait_globAck:

retries = 1;

do
atomic{ nempty(eveToGlobAck) —> eveToGlobAck?glob_ack , temp
b
if
atomic{temp =— pipld —> goto success;}
else;
fi;
:: atomic {nempty(eveToVote) —> eveToVote?vote, temp};
iof
temp == pipld —> sToFEve!glob_c, pipld;
;o oelse;
fi;x/ /*#CHANGE# glob_cs are being sent multiple times anyway
*/
:: doTimeout —>
if
retries < 2 —> sToEve!glob_c, pipld; incr(retries);
atomic{retries = 2; goto success;}
fi;
od;

1 failure : resultS = 2; goto term ;

142

143 success: resultS = 1; goto term;

144

145 term: skip;

146 }
147

148

149 />k

RECEIVER . /

150 active proctype rec(){

153

byte pipld = 0; /xto be initialisedx/
byte retries = 0;
byte temp;

155 pip_init :

if

atomic{nempty (eveToPipReq) —> eveToPipReq?pip_-req, temp;};
pipld = temp; rToEve!pip_reqAck, temp; goto send_ack;
doTimeout —> goto failure;

fi;

162 send_ack:

163

165

167
168
169
170
171
172
173

do

eveToPipReq?pip_req , temp —>

if
temp = pipld —> rToEve!pip_reqAck, pipld;
else;

fi;

rToEve! pip_procErr , pipld; goto failure;
goto send_response;

od;

174 send_response :

175
176
177

179
180
181
182

183

184
185
186
187
188
189

190 /*

rToEve! pip_resp , temp; retries = 1;
do
atomic{nempty (eveToRProcErr) —> eveToRProcErr?pip_procErr ,
temp; } ;
if
temp = pipld —> atomic{retries = 0; goto failure;}
else;
fi;
atomic{nempty (eveToGlobAbort) —> eveToGlobAbort?glob_abort ,
temp ; } ;
if
temp = pipld —> atomic{retries = 0; goto failure;}
else;
fi;
else —>
if

atomic{nempty (eveToPipReq) —> eveToPipReq?pip_req, temp

3

89

90

191
192

193

194

196
197

198

200

201

202

203
204
205
206
207
208
209
210
211
212
213
214

215

216
217
218
219
220

221
222
223
224
225
226
227

228
229
230
231
232
233
234

235

A PROMELA VALIDATION MODELS

iof

:: temp == pipld —> rToEve!pip_resp, pipld; goto
sendResponse;
else;

fi; =/ /x #CHANGE# pip_resps are being sent multiple times
anyway*/

atomic{nempty (eveToPipRespAck) —> eveToPipRespAck?
pip_respAck , temp;};
if
temp =— pipld —> atomic{retries = 0; goto twopc_init;}
else;
fi;
: atomic{nempty (eveToVoteReq) —> eveToVoteReq?vote_req, temp

&

if
temp = pipld —> rToEve!vote, pipld; atomic{retries = 0;
goto wait_global;}
else;
fi;
:: doTimeout —>
if
retries < 2; rToEve!pip_resp, pipld; incr(retries);
atomic{retries = 2; retries = 0;} goto failure;
fi;
fi;
od;
twopc_init :
do
atomic{nempty (eveToRProcErr) —> eveToRProcErr?pip_procErr
temp; };
if
temp =— pipld —> goto failure;
;. else;
fi;
: atomic{nempty(eveToGlobAbort) —> eveToGlobAbort?glob_abort ,
temp; };
if
temp =— pipld —> goto failure;
else ;
fi;
:: else —>
if
atomic{ nempty(eveToVoteReq) —> eveToVoteReq?vote_req, temp
i}
if
temp = pipld —> rToEve!vote, pipld; goto wait_global;
else;
fi;
doTimeout —> goto failure;
fi;

od;

91

236 wait_global:

237
238

239
240
241
242
243
244
245
246
247
248
249

250

252
253
254
255
256
257
258
259
260
261
262
263
264
265

267
268
269

271
272
273

274
275
276
277
278
279
280
281
282
283

fi;

fi;

od;

atomic{nempty (eveToGlobAbort) —> eveToGlobAbort?glob_abort ,
temp ; };

if

temp =— pipld —> goto failure;

else;

atomic{nempty (eveToGlobC) —> eveToGlobC?glob_c, temp;};
if
temp = pipld —> rToEve!glob_ack, pipld; goto success;
else;
fi;
: atomic{ nempty(eveToVoteReq) —> eveToVoteReq?vote_req, temp

Pt

if
temp =— pipld —> rToEve!vote, pipld;
else;
fi;
doTimeout —> goto hang; /+xhang notification omittedx/
fi;

od ;

hang:

atomic {nempty (eveToGlobC) —> eveToGlobC?glob_c, temp;};
if
temp = pipld —> rToEve!glob_ack, pipld; goto success;
else;

atomic{nempty (eveToGlobAbort) —> eveToGlobAbort?glob_abort ,
temp ; };

if

temp =— pipld —> goto failure;

else;

)

else —>

if

atomic{nempty (eveToVoteReq) —> eveToVoteReq?vote_req, temp

i

if
temp =— pipld —> rToEve!vote, pipld;
;. else;
fi;
else — skip;
fi;
failure: atomic{ resultR = 2; goto term };

284 success: atomic{ resultR = 1; goto term };

92

285

A PROMELA VALIDATION MODELS

286 term: skip ;

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

323

324

325
326
327
328
329
330
331
332
333
334
335

}
/*

SENDER TO RECEIVER */

act
XS
XS
XS
XS
XS
XS
XT

byt

ive proctype eveSToR(){
eveToPipReq;
eveToPipRespAck;
eveToVoteReq;
eveToGlobC;
eveToGlobAbort ;
eveToRProcErr;

sToEve;

e temp = 0;

mtype msg = 0;

end :

if

if

do
atomic{ sToEve?pip_req, temp —>
if

eveToPipReq?[pip_-req, eval(temp) |;
:: else —> eveToPipReq!pip_req, temp;
fi;}
: atomic{ sToEve?pip_respAck, temp —>
if

eveToPipRespAck ?[pip_respAck , eval(temp)];

:: else —> eveToPipRespAck!pip_respAck, temp;
fi;}
: atomic{ sToEve?vote_req, temp —>

eveToVoteReq?[vote_req, eval(temp)];
:: else —> eveToVoteReq!vote_req, temp;
fi;}
: atomic{ sToEve?glob_c, temp —>

eveToGlobC?[glob_c, eval(temp) |;

:: else —> eveToGlobC!glob_c, temp;

fi;}
atomic{ sToEve?glob_abort, temp —> eveToGlobAbort!glob_abort ,
temp; }

atomic{ sToEve?pip_procErr, temp —> eveToRProcErr!pip_procErr
, temp;}

od;

}

/%

RECEIVER TO SENDER %/

act
XS
XS
XS
XS
XS

ive proctype eveRToS () {
eveToPipReqAck;
eveToPipResp;
eveToVote;
eveToGlobAck;
eveToSProcErr;

336

93

337 Xr rToEve;

338

330 byte temp

I
o

320 mtype msg = 0;

341

342 end :

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

359

fi;}
if

if

do
atomic{ rToEve?pip_reqAck, temp; —>
if
eveToPipReqAck ?[pip_reqAck , eval(temp) |;
else —> eveToPipReqAck!pip_reqAck ,temp;

atomic{ rToEve?pip_resp, temp; —>

eveToPipResp ?[pip_resp, eval(temp) |;
else —> eveToPipResp! pip_resp ,temp;

atomic{ rToEve?vote, temp; —>

eveToVote?[vote, eval(temp) |;
:: else —> eveToVote!vote ,temp;
fi;}
atomic{ rToEve?glob_ack, temp; —> eveToGlobAck!glob_ack ,temp
3
atomic{ rToEve?pip_procErr, temp; —> eveToSProcErr!
pip_procErr ,temp;}

360 od;

361 }

362
363

364 active proctype consistent (){

365 end :

ses atomic{ !(resultS = 0 || resultR = 0 || resultS = resultR) —>

367 }

assert (resultS = 0 || resultR = 0 || resultS = resultR)

}s

94

1
2

3

[I

10
11

12

14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47

A PROMELA VALIDATION MODELS

Listing 15: Two-Action PIP execution protocol, validation level 2

#define doTimeout else
#define E_BUF 2
#define incr(x) x++;

mtype = {pip_req, pip-reqAck, pip_resp, pip_respAck, pip_procErr,
vote_req , vote, glob_c, glob_abort, glob_ack};

/x to eve %/
chan sToEve = [3] of {mtype, byte};
chan rToEve = [3] of {mtype, byte};

/x eve to Rec x/

chan eveToPipReq = [E.BUF| of {mtype, byte};
chan eveToPipRespAck = [EBUF] of {mtype, byte};
chan eveToVoteReq = [E.BUF| of {mtype, byte};
chan eveToGlobC = [E_.BUF| of {mtype, byte};
chan eveToGlobAbort = [EBUF] of {mtype, byte};
chan eveToRProcErr = [EBUF] of {mtype, byte};

/xeve to Sendx/

chan eveToPipReqAck = [E.BUF] of {mtype, byte};
chan eveToPipResp = [E.BUF| of {mtype, byte};
chan eveToVote = [EBUF| of {mtype, byte};
chan eveToGlobAck = [E.BUF]| of {mtype, byte};
chan eveToSProcErr = [EBUF| of {mtype, byte};

byte resultS = 0, resultR = 0; /«0=Undecided, 1=Success, 2=Failed
*/

/x SENDER b /
active proctype send(){

byte pipld = 1;

byte retries = 1;

byte temp = 1;

pip_init: sToEve!pip_req, pipld;

send_request :

do
atomic{nempty (eveToSProcErr) —> eveToSProcErr?pip_procErr ,
temp ;
if
temp = pipld —> goto failure;
:: else; /xother process must be in fail anywayx/
fi;}
:: else —>
if

atomic {nempty(eveToPipReqAck) —> eveToPipReqAck?pip_reqAck
, temp;

a8 if

49 :: temp = pipld —> goto wait_response;

50 :: else;

51 fi ;}

52 :: atomic {nempty(eveToPipResp) —> eveToPipResp?pip_resp , temp
1%

53 if

54 :: temp = pipld —> sToEve!pip_respAck, pipld; goto intermed

55 ;. else;

56 fi;

57 :: doTimeout —>

58 if

59 ;i d_step{retries < 2; incr(retries);} sToEve!pip_req, pipld

)

60 :: retries = 2; goto failure;

61 fi;

62 fi;

63 od;

64

65

66 walt_response:

v do /x loop is needed to remove messages from former protocol

runsx/
68 :: atomic{nempty (eveToSProcErr) —> eveToSProcErr?pip_procErr ,
temp ;
69 if
70 :: temp =— pipld —> goto failure;
71 ;. else;
72 fi;}
73 :: else —>
74 if
75 :: atomic{ nempty(eveToPipResp) —> eveToPipResp?pip_resp , temp
i}
76 if
77 :: temp = pipld —> sToEve!pip_respAck, pipld; goto intermed
)
78 i1 else;
79 fi;
80 :: doTimeout —> goto failure;

81 fi;
82 od;

g5 intermed :

86 do

87 :: atomic{ nempty(eveToPipResp) —> eveToPipResp?pip_resp , temp
s

88 if

89 ;. temp = pipld —> sToEve!pip_respAck, pipld;

90 :: else;

91 fi;

92 :: sToEve!pip_procErr, pipld; goto failure; /«processingErrorx/

96

105

106

107
108

110
111
112
113
114

115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

134
135
136
137
138
139

140

od ;

A PROMELA VALIDATION MODELS

goto vote_request;

)

vote_request :
sToEve! vote_req , pipld;

/%

re

do

if

if

od;

tries = 1;
atomic{ nempty(eveToPipResp) —> eveToPipResp?pip_resp , temp
:
iof
:: temp == pipld —> sToFvelvote_req, pipld; goto vote_request;

::oelse —> skip;

fi; x/ /*#CHANGE# vote_reqs are being sent multiple times
anyway*/

atomic{ nempty(eveToVote) —> eveToVote?vote, temp;};

d_step{ temp =— pipld —> retries = 0;} sToEve!glob_c, pipld
; goto wait_globAck;
else;

fi;

doTimeout —>

d_step{retries < 2; incr(retries);} sToEve!vote_req, pipld;
d_step{retries = 2; retries = 0;} sToEve!glob_abort, pipld
; goto failure;

fi;

)

wait_globAck:

re

do

if

od:

tries = 1;

atomic{ nempty(eveToGlobAck) —> eveToGlobAck?glob_ack , temp;
if

temp =— pipld —> goto success;
;. else;
fis}
:: atomic {nempty(eveToVote) —> eveToVote?vote, temp};
iof

temp == pipld —> sToEve!glob_c, pipld;
else —> skip;

fi;*x/ /*#CHANGE# glob_cs are being sent multiple times anyway
*/

doTimeout —>

retries < 2 —> sToEve!glob_c, pipld; incr(retries);
atomic{retries =— 2; goto success;}
fi;

I

141
142
143
144
145
146
147
148
149
150

151

153

164

166
167
168
169
170
171
172
173
174
175
176

178
179

180
181

182

184

185

186

187

188

190

failure : atomic{resultS = 2; goto term ;}
success: resultS = 1;

term: skip;

}

/* RECEIVER /
active proctype rec(){
byte pipld = 0; /«xto be initialisedx/
byte retries = 1; /xthe first message transmission is already
accountedx*/
byte temp = 1;

pip_init :
if
atomic{nempty (eveToPipReq) —> eveToPipReq?pip_req, temp;
pipld = temp;}; rToEve!pip_reqAck, temp; goto send_ack;
doTimeout —> goto failure;

fi;
send_ack:
do
eveToPipReq?pip_req , temp —>
if
temp = pipld —> rToEve!pip_reqAck, pipld;
else;
fi;
rToEve! pip_procErr, pipld; goto failure;
goto send_response;
od ;

send_response :
rToEve! pip_resp , temp;

do
atomic{nempty (eveToRProcErr) —> eveToRProcErr?pip_procErr ,
temp ;
if
temp = pipld —> retries = 1; goto failure;
else;

fi;}
: atomic{nempty (eveToGlobAbort) — eveToGlobAbort?glob_abort ,
temp;
if
temp =— pipld —> retries = 1; goto failure;
;. else;
fi;}
i1 else —>
if

97

98 A PROMELA VALIDATION MODELS

191 /% :: atomic{nempty (eveToPipReq) —> eveToPipReq?pip_req, temp
’.};

192 if

193 :: temp == pipld —> rToEve!pip_resp, pipld; goto
sendResponse;

194 :: else —> rToFEve!wrong_pip, temp;

195 fi; =/ /«#CHANGFE# pip_resps are being sent multiple times
anywayx/

196 :: atomic{nempty (eveToPipRespAck) —> eveToPipRespAck?

pip_respAck , temp;

197 if

108 :: temp = pipld —> retries = 1; goto twopc_init;

199 ;. else;

200 fi;}

201 :: atomic{nempty(eveToVoteReq) —> eveToVoteReq?vote_req, temp

3}

202 if

203 :: temp =— pipld —> rToEve!vote, pipld; atomic{retries = 1;
goto wait_global;}

204 ;. else;

205 fi;

206 :: doTimeout —>

207 if

208 ;i retries < 2; rToEve!pip_resp, pipld; incr(retries);

209 :: atomic{retries = 2; retries = 1; goto failure;}

210 fi;

211 fi;

212 od;

213
214 twopc_init :

215 dO

216 :: atomic{nempty (eveToRProcErr) —> eveToRProcErr?pip_procErr ,
temp ;

217 if

218 :: temp = pipld —> goto failure;

219 ;. else;

220 fi;}

221 :: atomic{nempty(eveToGlobAbort) —> eveToGlobAbort?glob_abort ,
temp ;

222 if

223 :: temp = pipld —> goto failure;

224 55 else;

225 fi ;}

226 ;. else —

227 if

228 :: atomic{ nempty(eveToVoteReq) —> eveToVoteReq?vote_req, temp

i}

229 if

230 :: temp = pipld —> rToEve!vote, pipld; goto wait_global;

231 ;. else;

232 fi;

233 :: doTimeout —> goto failure;

234 fi;

235

236

od;

)

237 wait_global:

238

239

240
241
242
243
244
245
246
247
248
249
250

252
253
254
255
256
257

259
260
261
262
263
264
265
266

267

268

270
271
272
273

274

276
277
278
279
280
281
282

283

do

fi;}

if

od

do

fi;

fi;}

atomic{nempty (eveToGlobAbort) —> eveToGlobAbort?glob_abort ,
temp ;
if
temp = pipld —> goto failure;
else;

else —>

atomic{nempty (eveToGlobC) —> eveToGlobC?glob_c , temp;};
if
temp = pipld —> rToEve!glob_ack , pipld; goto success;
else;
fi;
: atomic{ nempty(eveToVoteReq) —> eveToVoteReq?vote_req, temp

7}’

if
temp = pipld —> rToEve!vote, pipld;
else;
fi;
doTimeout —> goto hang; /+xhang notification omittedx/
fi:
)

hang :

atomic{nempty (eveToGlobC) —> eveToGlobC?glob_c, temp;};
if
temp = pipld —> rToEve!glob_ack, pipld; goto success;
else;

atomic{nempty (eveToGlobAbort) —> eveToGlobAbort?glob_abort ,
temp ;
if
temp = pipld —> goto failure;
else;

else —>

if

od

atomic{nempty (eveToVoteReq) —> eveToVoteReq?vote_req, temp
i1
if
temp — pipld —> rToEve!vote, pipld;
else;
fi;
else;
fi;

)

failure: atomic{ resultR = 2; goto term };

99

100

284
285
286
287
288
289

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

318

319

320
321
322
323
324
325
326
327
328
329
330
331
332
333

334

A PROMELA VALIDATION MODELS

success: resultR = 1;

term :

}
/%

skip ;

SENDER TO RECEIVER * /

active proctype eveSToR(){
byte temp = 1;
mtype msg = 0;

end_us: do

}

/%

if

if

if

atomic{sToEve?msg, temp —> sToEve!msg, temp };
if

atomic{ sToEve?pip_req, temp —>

if

eveToPipReq?[pip_-req, eval(temp) |;
:: else —> eveToPipReq!pip_req, temp;

fi;}
: atomic{ sToEve?pip_respAck, temp —>

eveToPipRespAck?[pip_respAck, eval(temp)];
;. else —> eveToPipRespAck! pip_respAck, temp;
fi;}
: atomic{ sToEve?vote_req, temp —>

eveToVoteReq?[vote_req, eval(temp)];
:: else —> eveToVoteReq!vote_req, temp;
fi;}
: atomic{ sToEve?glob_c, temp —>

eveToGlobC?[glob_c, eval(temp) |;
:: else —> eveToGlobC!glob_c, temp;
fi;}
atomic{ sToEve?glob_abort, temp —> eveToGlobAbort!
glob_abort , temp;}

atomic{ sToEve?pip_procErr, temp —> eveToRProcErr!
pip_procErr, temp;}

fi;

od;

RECEIVER TO SENDER */

active proctype eveRToS(){
byte temp = 1;
mtype msg = 0;

end_us: do

atomic{rToEve?msg, temp —> rToEve!msg, temp;};
if

atomic{rToEve?pip_reqAck, temp; —>

if

101

335 :: eveToPipReqAck?[pip_reqAck , eval(temp)];
336 :: else —> eveToPipReqAck!pip_reqAck ,temp;
337 fi;}
338 :: atomic{rToEve?pip_resp , temp; —>
339 if
340 :: eveToPipResp ?[pip-resp , eval(temp)];
341 :: else —> eveToPipResp!pip_resp ,temp;
342 fi ;}
343 :: atomic{rToEve?vote, temp; —>
344 if
345 :: eveToVote?[vote, eval(temp) |;
346 :: else —> eveToVote!vote ,temp;
347 fi ;}
348 :: atomic{rToEve?glob_ack, temp; —> eveToGlobAck!glob_ack ,temp
b
¥
349 :: atomic{rToEve?pip_procErr, temp; —> eveToSProcErr!
pip_procErr ,temp;}
350 fi;
351 od;

352 }

353

354

355 active proctype consistent (){

356 end :

357 atomic{ !(resultS = 0 || resultR = 0 || resultS = resultR) —>
assert (resultS = 0 || resultR = 0 || resultS = resultR)
}s
358 }

102 A PROMELA VALIDATION MODELS

Listing 16: Two-Action PIP execution protocol, validation level 3

inline chooseVal(cVar){
if
cVar = true;
skip; /+*messages can get lostx/
fi;
¥

#define doTimeout else

#define E_BUF 2

10 #define incr(x) x++;

11

12 mtype = {pip_req, pip_-reqAck, pip_resp, pip_respAck, pip_procErr,
vote_req, vote, glob_c, glob_abort, glob_ack};

© o N O ks W N

1 /x to eve x/

15 chan sToEve = [3] of {mtype, byte};

16 chan rToEve = [3] of {mtype, byte};

17

18 /* eve to Rec x/

1v chan eveToPipReq = [E.BUF| of {mtype, byte};

20 chan eveToPipRespAck = [EBUF] of {mtype, byte};
21 chan eveToVoteReq = [E.BUF]| of {mtype, byte};
22 chan eveToGlobC = [E.BUF| of {mtype, byte};

23 chan eveToGlobAbort = [E.BUF] of {mtype, byte};
24 chan eveToRProcErr = [E.BUF] of {mtype, byte};
25

26 /xeve to Sendx/

27 chan eveToPipReqAck = [E.BUF] of {mtype, byte};
2s chan eveToPipResp = [E.BUF]| of {mtype, byte};
20 chan eveToVote = [E.BUF| of {mtype, byte};

so chan eveToGlobAck = [E.BUF| of {mtype, byte};
s1 chan eveToSProcErr = [E.BUF] of {mtype, byte};
32

33 byte resultS = 0, resultR = 0; /x0=Undecided, 1=Success, 2=Failed
*/

35 /% s - SENDER i b /
36 active proctype send(){

37 byte pipld = 1;

3s byte retries = 0;

39 byte temp;

s pip_init: sToEve!pip_req, pipld; incr(retries);

44 send_request :

5 do

46 :: atomic{nempty(eveToSProcErr) —> eveToSProcErr?pip_procErr ,
temp; }

a7 if

48 :: temp = pipld —> goto failure;

49
50
51
52

53

54
55
56
57

58

60

61
62
63
64

65

66
67
68
69
70
71

72

74

76
77
78
79
80
81

82

83

if

fi;}

if

103

else; /xother process must be in fail anywayx/

fi:
else —>
atomic {nempty (eveToPipReqAck) —> eveToPipReqAck?pip_reqAck
, temp;};
if
temp =— pipld —> goto wait_response;
else;
fi;
: atomic {nempty(eveToPipResp) —> eveToPipResp?pip_resp, temp
51
if
temp = pipld —> sToEve!pip_respAck, pipld; goto intermed
)
else;
fi;
:: doTimeout —>
if
d_step{retries < 2; incr(retries);} sToEve!pip_req, pipld
:: retries = 2; goto failure;
fi;
fi;

wait_response :
do /x loop is meeded to remove messages from former protocol

runs */
atomic{nempty (eveToSProcErr) —> eveToSProcErr?pip_procErr ,
temp;
if
temp =— pipld —> goto failure;
else;

else —>

atomic{ nempty(eveToPipResp) —> eveToPipResp?pip_resp , temp

’}’

if
temp = pipld —> sToEve!pip_respAck, pipld; goto intermed
else;
fi;
doTimeout —> goto failure;
fi;

od;

intermed :

atomic{ nempty(eveToPipResp) —> eveToPipResp?pip_resp, temp

104 A PROMELA VALIDATION MODELS

it

94 if

95 :: temp = pipld —> sToEve!pip_respAck, pipld;

96 ;. else;

97 fi;

08 :: sToEve!pip_procErr, pipld; goto failure; /«xprocessingErrorx/
99 :: goto vote_request;

100 od;

101

102

103 vote_request :

104 sToEve!vote_req, pipld;

105 retries = 1;
106
107 do
108 /% :: atomic{ nempty(eveToPipResp) —> eveToPipResp?pip_resp
temp ;};
109 if
110 :: temp == pipld —> sToFvel!vote_req, pipld; goto
vote_request ;
111 ::oelse;
112 fi; =/ /x #CHANGE# vote_reqs are being sent multiple times
anyway */
113 :: atomic{ nempty(eveToVote) —> eveToVote?vote, temp;};
114 if
115 :: d_step{ temp = pipld —> retries = 0;} sToEve!glob_c, pipld
; goto wait_globAck;
116 ;. else;
117 fi;
118 :: doTimeout —>
119 if
120 ;i d_step{retries < 2; incr(retries);} sToEve!vote_req, pipld;
121 ;i d_step{retries = 2; retries = 0;} sToEve!glob_abort, pipld
; goto failure;
122 fi;
123 od;

124
125

126 wait_globAck:

127 retries = 1;

128

129 do

130 :: atomic{ nempty(eveToGlobAck) —> eveToGlobAck?glob_ack , temp
};

131 if

132 :: atomic{temp — pipld —> goto success;}

133 ;. else;

134 fi;

s /% :: atomic {nempty(eveToVote) —> eveToVote?vote, temp};

136 if

137 :: temp == pipld —> sToFve!glob_c, pipld;

138 6186,‘

139 fi;*x/ /«#CHANGE# glob_cs are being sent multiple times anyway

140

141

160

170

172
173
174
175
176
177
178
179
180
181

182

184

185

186

187

188

190

. /% RECEIVER

*/

doTimeout —>

if
retries < 2 —> sToEve!glob_c, pipld;
atomic{retries = 2; goto success;}
fi;
od;
failure resultS = 2; goto term ;
success: resultS = 1; goto term;

term: skip;

}

incr(retries);

active proctype rec(){
byte pipld = 0;
byte retries =
byte temp;

0;

pip_init :
if

atomic{nempty (eveToPipReq) —> eveToPipReq?pip_req, temp;};

pipld = temp; rToEve!pip_reqAck, temp; goto send_ack;

doTimeout —> goto failure;

pipld;

fi;
send_ack:
do
eveToPipReq?pip_req, temp —>
if
temp = pipld —> rToEve!pip_reqAck,
else;
fi;
rToEve! pip_procErr, pipld; goto failure;
goto send_response;
od;

send_response:
rToEve! pip_resp , temp; retries = 1;

do
atomic{nempty (eveToRProcErr) —> eveToRProcErr?pip_procErr ,
temp ; } ;
if
temp =— pipld —> atomic{retries = 0; goto failure;}
else;

fi;

atomic{nempty (eveToGlobAbort) —> eveToGlobAbort?glob_abort ,

105

106 A PROMELA VALIDATION MODELS

temp ; };
191 if
192 :: temp =— pipld —> atomic{retries = 0; goto failure;}
193 ;. else;
194 fi;
195 ;. else —>
196 if
197 /% :: atomic{nempty (eveToPipReq) —> eveToPipReq?pip_req, temp
,.};
198 if
199 :: temp == pipld —> rToFEve!pip_resp, pipld; goto
sendResponse;
200 :ooelse;
201 fi; =/ /x #CHANGE# pip_resps are being sent multiple times
anyway*/
202 :: atomic{nempty(eveToPipRespAck) —> eveToPipRespAck?
pip-respAck , temp;};
203 if
204 :: temp = pipld —> atomic{retries = 0; goto twopc_init;}
205 ;. else;
206 fi;
207 :: atomic{nempty(eveToVoteReq) —> eveToVoteReq?vote_req, temp
i}
208 if
209 :: temp = pipld —> rToEve!vote, pipld; atomic{retries = 0;
goto wait_global;}
210 5 else;
211 fi;
212 :: doTimeout —>
213 if
214 :: retries < 2; rToEve!pip_resp, pipld; incr(retries);
215 :: atomic{retries = 2; retries = 0;} goto failure;
216 fi;
217 fi;
218 od;

219
220 twopc_init :

221 do

222 :: atomic{nempty (eveToRProcErr) —> eveToRProcErr?pip_procErr ,
temp ; };

223 if

224 :: temp = pipld —> goto failure;

225 ;. else;

226 fi;

227 :: atomic{nempty(eveToGlobAbort) —> eveToGlobAbort?glob_abort ,
temp ; };

228 if

229 :: temp = pipld —> goto failure;

230 ;. else;

231 fi;

232 ;. else —>

233 if

234 :: atomic{ nempty(eveToVoteReq) —> eveToVoteReq?vote_req, temp

107

i}
235 if
236 :: temp = pipld —> rToEve!vote, pipld; goto wait_global;
237 ;. else;
238 fi;
239 :: doTimeout —> goto failure;
240 fi;
241 Od;
242
243 wait_global:

244 do

245 :: atomic{nempty(eveToGlobAbort) —> eveToGlobAbort?glob_abort ,
temp ; } ;

246 if

247 :: temp = pipld —> goto failure;

248 ;. else;

249 fi;

250 :: else —

251 if

252 :: atomic{nempty(eveToGlobC) —> eveToGlobC?glob_c, temp;};

253 if

254 :: temp = pipld —> rToEve!glob_ack, pipld; goto success;

255 ;. else;

256 fi;

257 :: atomic{ nempty(eveToVoteReq) —> eveToVoteReq?vote_req, temp

i1

258 if

259 :: temp = pipld —> rToEve!vote, pipld;

260 i else;

261 fi;

262 :: doTimeout —> goto hang; /xhang notification omitted*/

263 fi;

264 0d;

265

266 hang :

267 dO

268 :: atomic{nempty (eveToGlobC) —> eveToGlobC?glob_c, temp;};

269 if

270 ;. temp = pipld —> rToEve!glob_ack, pipld; goto success;

271 :: else;

272 fi;

o3 :: atomic{nempty (eveToGlobAbort) —> eveToGlobAbort?glob_abort ,
temp ; } ;

274 if

275 :: temp =— pipld —> goto failure;

276 ;. else;

277 fi;

278 ;. else —>

279 if

280 :: atomic{nempty(eveToVoteReq) —> eveToVoteReq?vote_req, temp

31
281 if

282 :: temp =— pipld —> rToEve!vote, pipld;

108

283
284
285
286
287
288

290
291
292
293
294

295

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

325

326

327

328

329

330

A PROMELA VALIDATION MODELS

else;
fi;
else;
fi;
od;
failure: atomic{ resultR = 2; goto term };
success: atomic{ resultR = 1; goto term };
term: skip;
¥
5 /% SENDER TO RECEIVER */

active proctype eveSToR(){
xr sToEve;

bool
bool
bool
bool
bool
bool

bool
bool
bool
bool
bool
bool

byte

end :

g

otPipReq = false;
gotRespAck = false;
gotVoteReq = false;
gotGlobC = false;
gotGlobAbort = false;
gotProcErr = false;

sentPipReq = false;

sentRespAck = false;
sentVoteReq = false;
sentGlobC = false;
sentGlobAbort = false;
sentProcErr = false;
temp = 1;
do

atomic{sToEve?pip_req, temp —> chooseVal(gotPipReq);};
atomic{sToEve?pip_respAck, temp —> chooseVal(gotRespAck);};
atomic{sToEve?vote_req, temp —> chooseVal(gotVoteReq);};
atomic{sToEve?glob_c, temp —> chooseVal(gotGlobC);};
atomic{sToEve?glob_abort , temp —> chooseVal(gotGlobAbort);};
atomic{sToEve?pip_procErr, temp —> chooseVal(gotProcErr);};

i else —>
if

gotPipReq && !sentPipReq —> eveToPipReq!pip_req, temp;
sentPipReq = true;

gotRespAck && !sentRespAck —> eveToPipRespAck!pip_respAck,
temp; sentRespAck = true;

gotVoteReq && !sentVoteReq —> eveToVoteReq!vote_req, temp;
sentVoteReq = true;

gotGlobC && !sentGlobC —> eveToGlobC!glob_c, temp;
sentGlobC = true;

gotGlobAbort && !sentGlobAbort —> eveToGlobAbort!glob_abort
, temp; sentGlobAbort = true;

gotProcErr && !sentProcErr —> eveToRProcErr!pip_procErr

369

371

372

373

374

375

376
377

od;
¥

temp; sentProcErr = true;
skip; /*Messages can have arbitrary transmission timesk/

fi;

/%

st RECEIVER TO SENDER UBLAALL s /

active proctype eveRToS(){
xs eveToPipReqAck;

xs eveToPipResp;

xs eveToVote;

xs eveToGlobAck;

xs eveToSProcErr;

xr rToEve;

bool gotReqAck = false;
bool gotPipResp = false;
bool gotVote = false;
bool gotGlobAck = false;
bool gotProcErr = false;
bool sentReqAck = false;
bool sentPipResp = false;
bool sentVote = false;
bool sentGlobAck = false;
bool sentProcErr = false;
byte temp = 1;
end: do
atomic {rToEve?pip_reqAck, temp —> chooseVal(gotReqAck);}
atomic {rToEve?pip_resp, temp —> chooseVal(gotPipResp);};
atomic {rToEve?vote, temp —> chooseVal(gotVote);};
atomic {rToEve?glob_ack , temp —> chooseVal(gotGlobAck);};
atomic {rToEve?pip_procErr, temp —> chooseVal(gotProcErr);};
: else —>
if
gotReqAck && !sentReqAck —> eveToPipReqAck!pip_reqAck,
temp; sentReqAck = true;
gotPipResp && !sentPipResp —> eveToPipResp!pip_resp, temp;
sentPipResp = true;
gotVote && !sentVote —> eveToVote!vote, temp; sentVote =
true;
gotGlobAck && !sentGlobAck —> eveToGlobAck!glob_ack , temp;
sentGlobAck = true;
gotProcErr && !sentProcErr —> eveToSProcErr!pip_procErr
temp; sentProcErr = true;
;0 skip; /«Messages can have arbitrary transmission timesx/
fi;

od;

109

110 A PROMELA VALIDATION MODELS

378 }

379

380

ss1 active proctype consistent ()

ss2 end :

ss3 atomic{ !(resultS = 0 || resultR = 0 || resultS = resultR) —
assert (resultS = 0 || resultR = 0 || resultS = resultR)
}s

384 }

B List of previous University of Bamberg reports

Bamberger Beitradge zur Wirtschaftsinformatik

Nr

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.
Nr.

Nr.

.1 (1989)

2 (1990)

3 (1990)

4 (1990)

5 (1990)

6 (1991)

7 (1991)

8 (1991)

9 (1992)

10 (1992)

11 (1992)

12 (1992)

13 (1992)

14 (1992)

15 (1992)
16 (1992)

17 (1993)

Stand Marz 16, 2006

Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universitdt Bamberg (Nachdruck Dez.
1990)

Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle fir PROLOG

Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen

Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990)

Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM)

Augsburger W., Rieder H., Schwab J.: Systemtheoretische Reprasentation von
Strukturen und Bewertungsfunktionen (ber zeitabhangigen betrieblichen numeri-
schen Daten

Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrie-
val statistischer Daten mit EISREVU / Ein Verarbeitungsmodell fiir eine modulare
Bewertung von Kennzahlenwerten fir den Endanwender

Schwab J.: Ein computergestiitztes Modellierungssystem zur Kennzahlenbewertung

Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell
in das Strukturierte Entity-Relationship-Modell

Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell
(SERM)

Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmo-
dells

Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas
aus dem Modell der betrieblichen Diskurswelt

Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell

Esswein W.: Das Rollenmodell der Organsiation: Die Beriicksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen

Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch

Schwab K.: Die Implementierung eines relationalen DBMS nach dem
Client/Server-Prinzip

Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stlitzten Birovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Uberwachung von Vorgéngen. Dissertation

111

112 B LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Nr. 18 (1993) Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells

Nr. 19 (1994) Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based
Business Process Modeling Using the SOM Approach

Nr. 20 (1994) Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of
Distributed Business Application Systems - An Object-Oriented Approach -. 1%
edition, June 1994

Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models
and Distributed Business Application Systems - An Object-Oriented Approach -.
2" edition, November 1994

Nr. 21 (1994) Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschaftsprozessen

Nr. 22 (1994) Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for
Modeling Information Systems

Nr. 23 (1994) Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle

Nr. 24 (1994) Sinz E.J.: Das Informationssystem der Universitat als Instrument zur zielgerichteten
Lenkung von Universitatsprozessen

Nr. 25 (1994) Wittke M., Mekinic, G.: Kooperierende Informationsrdume. Ein Ansatz fir ver-
teilte Fihrungsinformationssysteme

Nr. 26 (1995) Ferstl O.K., Sinz E.J.: Re-Engineering von Geschaftsprozessen auf der Grundlage
des SOM-Ansatzes

Nr. 27 (1995) Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995

Nr. 28 (1995) Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach

Nr. 30 (1995) Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge
bei der computergestiitzten kooperativen Arbeit

Nr. 31 (1995) Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschéftsprozesse

Nr. 32 (1995) Gunzenhduser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H.,
Schwab H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von
Walter Augsburger

Nr. 33 (1995) Sinz, E.J.: Kann das GeschaftsprozeBmodell der Unternehmung das unterneh-
mensweite Datenschema abldsen?

Nr. 34 (1995) Sinz E.J.: Ansdtze zur fachlichen Modellierung betrieblicher Informationssysteme -
Entwicklung, aktueller Stand und Trends -

Nr. 35 (1995) Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstiitzung
durch workflow-orientierte Anwendungssysteme

Nr. 36 (1996) Ferstl O.K., Sinz, E.J., Amberg M.: Stichwdrter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Disseldorf 1996

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

37 (1996)

38 (1996)

39 (1996)

40 (1997)

41 (1997)

42 (1997)

43 (1997):

44 (1997)

45 (1998)

46 (1998)

47 (1998)

48 (1998)

49 (1998)

Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996

Ferstl O.K., Schafer R.: Eine Lernumgebung fir die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996

Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Manage-
ment dargestellt an Fuzzy-System-Konzepten fiir Portfolio-Ansétze

Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, Miinchen 1997

Sinz E.J.; Analyse und Gestaltung universitarer Geschaftsprozesse und Anwen-
dungssysteme. Angenommen fir: Informatik *97. Informatik als Innovationsmotor.
27. Jahrestagung der Gesellschaft fiir Informatik, Aachen 24.-26.9.1997

Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects —
fachliche Bausteine furr die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen fiir. HMD - Theorie und Praxis der Wirtschaftsinformatik.
Schwerpunkheft ComponentWare, 1997

Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object
Model (SOM) — A Methodological Framework - . Accepted for: P. Bernus, K.
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems.
International Handbook on Information Systems, edited by Bernus P., Blazewicz
J., Schmidt G., and Shaw M., Volume I, Springer 1997

Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using (SOM), 2™ Edition.
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectu-
res of Information Systems. International Handbook on Information Systems, edi-
ted by Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume |, Springer
1998

Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebun-
gen. In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin — Metho-
den, Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. — 7.
Juni 1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung

Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik,
Oldenbourg-Verlag, Minchen 1998

Sinz E.J.: ProzelRgestaltung und ProzeRunterstiitzung im Prifungswesen. Erschie-
nen in: Proceedings Workshop ,,Informationssysteme fir das Hochschulmanage-
ment“. Aachen, September 1997

Sinz, E.J.;, Wismans B.: Das ,,Elektronische Priifungsamt“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998

Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Know-
ledge and Data Engineering

Henrich, A.: Applying Document Retrieval Techniques in Software Engineering
Environments. In: Proc. International Conference on Database and Expert Systems

113

114 B LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lec-
ture Notes in Computer Sciences, No. 1460

Nr. 50 (1999) Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Genera-
tion Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel,
July, 1999 (Springer, Lecture Notes)

Nr. 51 (1999) Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European
Conference on Advances in Databases and Information Systems — ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science)

Nr. 52 (1999) Sinz E.J., Béhnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems fur Hochschulen. Angenommen fiir: Workshop ,,Unternehmen Hoch-
schule” im Rahmen der 29. Jahrestagung der Gesellschaft fur Informatik, Pader-
born, 6. Oktober 1999

Nr. 53 (1999) Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfu-
gig modifizierter Fassung angenommen fir: Rechenberg P., Pomberger G. (Hrsg.):
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, Miinchen
1999

Nr. 54 (1999) Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation.

Nr. 55 (2000) Bohnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing.
Modellierung und Architektur

Nr. 56 (2000) Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der
Virtuellen Hochschule Bayern (vhb). Angenommen fiir Workshop "Unternehmen
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik,
Berlin 19. - 22. September 2000

Nr. 57 (2000) Bohnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from
Business Process Models.

Nr. 58 (2000) Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten.

Nr. 59 (2001) Sinz E.J., Bohnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines
verteilten Data-Warehouse-Systems fiir das Hochschulwesen. Angenommen fur:
WI-IF 2001, Augsburg, 19.-21. September 2001

Nr. 60 (2001) Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen.
Angenommen fur: Workshop ,,Unternehmen Hochschule 2001“ im Rahmen der
Jahrestagung der Gesellschaft fur Informatik, Wien 25. — 28. September 2001

Anderung des Titels der Schriftenreihe Bamberger Beitrage zur Wirtschaftsinformatik in Bamberger
Beitrage zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61

Bamberger Beitrage zur Wirtschaftsinformatik und Angewandten

Informatik

Nr. 61 (2002)

Nr. 62 (2002)

Nr. 63 (2005)
Nr. 64 (2005)

Nr. 65 (2006)

Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002),
Copenhagen, July 2002.

Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in
einem landesweiten Data-Warehouse-System fir das Hochschulwesen. Erscheint
in: Beitrdge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut fir
Hochschulforschung und Hochschulplanung, Miinchen 2002

Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions

Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und
Strukturwandel, S. 247 — 263; Reihe education quality forum, herausgegeben durch
das Centrum flr eCompetence in Hochschulen NRW, Band 2, Minster/New
York/Minchen/Berlin: Waxmann 2005

Schonberger, Andreas: Modelling and Validating Business Collaborations: A Case
Study on RosettaNet

115

	1 Introduction
	2 Basics
	2.1 Model Checking
	2.2 RosettaNet

	3 An approach for modelling business collaborations
	3.1 The core approach
	3.1.1 The centralised perspective
	3.1.2 The distributed perspective

	3.2 Using UML activity diagrams for modelling the centralised perspective
	3.3 Using WSBPEL for modelling the distributed perspective

	4 A RosettaNet use case
	4.1 The centralised perspective
	4.2 The distributed perspective
	4.2.1 Conceptual modelling
	4.2.2 WSBPEL realisation

	5 Validating business collaborations
	5.1 Collaboration properties that should be checked
	5.1.1 Sanity of the centralised perspective
	5.1.2 Conformance of the distributed implementation to the centralised perspective
	5.1.3 Interference of local business politics with the centralised perspective

	5.2 Requirements of a model checker
	5.3 Validating the use case
	5.3.1 Validating the centralised perspective
	5.3.2 Validating the distributed perspective

	6 Related work
	7 Conclusion, practical experience and future work
	Bibliography
	A Promela validation models
	B List of previous University of Bamberg reports

