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1. Introduction

We consider the classical mean regression model

Yt = f(It) + εt with E(εt ∣ It) = 0 a.s., t ∈ Z, (1.1)

where we assume that the regression function f ∶ D → R, D ⊆ Rd, is unknown and

allow for both independent and dependent observations ((Yt, I ′t)′)t (here and in the

sequel, x′ denotes the transpose of a vector x).

Notably, the problem of estimating a regression function subject to shape con-

straints, in the context of time series, has not been addressed adequately in the

literature, to the best of our knowledge. There exist a large body of literature

on estimation and testing for situations where the class of admissible functions f

can be parametrized by a finite-dimensional parameter; see e.g. Escanciano (2006),

Francq and Zakoian (2010) and Shumway and Stoffer (2011) among others. There

are also many results on nonparametric kernel estimators for f relying on the as-

sumption that the covariate vector It has a Lebesgue density. For an overview, we

refer the reader to the monographs by Härdle (1990) and Fan and Gijbels (1996).

On the other hand, there are numerous applications that the covariates do not pos-

sess a density with respect to the Lebesgue measure; a case in point is various count

time series models which have been employed for the analysis of financial data (e.g.

modeling the number of transactions) or biomedical data (e.g. modeling infectious

diseases); see Fokianos et al. (2009) for instance and Sec. 4.2.

The primary aim of this work is to provide integrated L1-loss convergence rate

of a nonparametric estimator of f subject to shape constraints without assuming ad-

ditivity ; in particular we assume throughout this work that the function f in (1.1)

is isotonic. The assumption of isotonicity seems to be appropriate in the context of

many applications and, in fact, some popular parametric models share this property,

for example, autoregressive and GARCH type models with nonnegative coefficients.

Application of standard nonparametric methods such as kernel estimators of the
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function f , proposed e.g. by Mukarjee and Stern (1994), Dette et al. (2006), Cher-

nozhukov et al. (2009), Daouia and Park (2013) or generalized additive modeling

studied by Chen and Samworth (2016) among other references, depends on a data-

driven choice of smoothing parameters, such as a bandwidth. While the simple

leave-one-out cross-validation may fail, the method of leave-k-out cross-validation

involves a choice of k, which in turn requires a difficult subjective decision.

Another popular shape-constrained estimator of the function f is the isotonic

least squares estimator (LSE) f̃n which is given by

f̃n ∈ arg min
g isotonic

n

∑
t=1
(Yt − g(It))2 .

In sharp contrast to usual kernel estimators, the isotonic least squares estimator does

not require the choice of any smoothing parameter since an appropriate tuning of the

degree of smoothing is done automatically. This estimator seems to be less sensitive

to irregularities in the design and if the target function is indeed isotonic then

this estimator is consistent; see e.g. Christopeit and Tosstorff (1987) and references

therein.

Denote by 1(⋅) the indicator function. It is well known that f̃n satisfies at all

observation points x ∈ {I1, . . . , In} the following equations:

f̃n(x) = max
U ∶ x∈U

min
L∶ x∈L

AvY (L ∩U) (1.2a)

= min
L∶ x∈L

max
U ∶ x∈U

AvY (L ∩U), (1.2b)

where

AvY (B) =
∑nt=1 Yt 1(It ∈ B)
#{t ≤ n∶ It ∈ B}

, B ⊆ Rd,

and U and L denote upper and lower sets, respectively; see e.g. Theorem 1 in Brunk

(1955) and Theorem 1.4.4 in Robertson et al. (1988, p. 23). (A set U ⊆ Rd is called an

upper set if x ∈ U and x ⪯ y imply that y ∈ U . Analogously, L ⊆ Rd is called a lower

set if x ∈ L and x ⪰ y imply that y ∈ L. Here, the notation x ⪯ y (x ⪰ y, respectively)

denotes that xi ≤ yi (xi ≥ yi, respectively), for all i = 1, . . . , d.) While f̃n is uniquely
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defined at the observation points, there is some arbitrariness of choosing f̃n between

these points; only the postulated isotonicity has to be satisfied.

For the univariate case, i.e. d = 1, there are already several results reported

in the literature concerning the asymptotic behavior (usually assuming a deter-

ministic regressor) of the classical isotonic least squares estimator f̃n. Pointwise

asymptotic distributions of isotonic least squares estimators assuming short and

long range dependence of the error sequence (εt)t have been derived by Anevski

and Hössjer (2006) and Dedecker et al. (2011). In particular, it is known that this

estimator converges at the optimal rate n−1/3 to f . Zhang (2002, Theorem 2.3)

studies the case of independent but not necessarily identically distributed errors

and shows that (n−1∑ni=1E(f̃n(ti) − f(ti))p)1/p = O(n−1/3), where t1, . . . , tn are val-

ues of a deterministic covariate and 1 ≤ p ≤ 3; see also Chatterjee et al. (2015) for

a refinement in the case that p = 2 but under the assumption of independent and

identically distributed errors. Furthermore, Durot (2002, Theorem 1) proves that

E[∫
1

0 ∣f̃n(x) − f(x)∣dx] = O(n−1/3).

However, much less was known about the asymptotic behavior of f̃n in the case

of multivariate regression models. Hanson et al. (1973, Theorem 5) prove uniform

consistency of f̃n in the case d = 2 under the assumptions of deterministic regressors

and a continuous target function f . Additionally, these authors provide intuition

for the convergence of large deviation probabilities between the estimator and the

true regression function towards zero; see Hanson et al. (1973, Eq. (26)). Robert-

son and Wright (1975, Theorems 2.1 and 2.2) state pointwise consistency for f̃n

in the context of a general partial order for the regressors. Finally, Christopeit

and Tosstorff (1987, Theorem 1) prove a consistency result in the d-dimensional

case. The authors assume that the errors form a martingale difference sequence

and the covariates are continuous and stochastic. Only recently, the empirical L2-

risk n−1∑ni=1E(f̃n(Xi) − f(Xi))2 has been investigated for i.i.d. data by Han et al.

(2019), see also references therein. They derive optimal minimax rates up to a

poly-logarithmic factor for lattice designs and discuss random designs, too. In the



4

latter context, they do not claim optimality of the rates obtained. In particular,

they point out that the entropy of the class of isotonic functions in high-dimensions

is very large. This results is an enormous amount of possible lower and upper sets

involved in computing (1.2a) and (1.2b); see also Gao and Wellner (2007) as well as

the discussion in Section 3 in Wu et al. (2015).

To the best of our knowledge, there are no results concerning the integrated

L1 convergence rate of isotonic LSE in the case of multivariate regression models

available in the literature. Our goal is to fill this gap by proposing a suitable mod-

ification of isotonic LSE, so-called block estimators, as described in Section 2. For

the case of univariate regression we let intact the isotonic LSE f̃n. However, in the

multivariate case we propose a slightly simpler estimator by restricting attention to

lower and upper sets of (hyper-)rectangular type. As we will show, for both cases of

independent regressors (see Theorem 2.1) and dependent data (see Theorem 3.1),

such modification avoids the entropy problem and allows derivation of the desired

convergence rate. Parallel to our work, this new type of estimator has been in-

vestigated by Deng and Zhang (2020) and Han and Zhang (2019) for the case of

independent regressors. While the first paper provides rates of convergence for the

empirical Lq-risk, the latter derives the limit distribution for the block estimator,

after suitable normalization. In sharp contrast to usual nonparametric estimators

and in accordance with the classical isotonic LSE, this estimator does not require

the choice of an appropriate bandwidth. Such choice could cause problems in the

general setting we consider which takes into account possibly irregular distribution

of the explanatory variables and dependence among observations. In addition, we

allow for an inclusion of a deterministic trend component. Such a covariate accom-

modates the case of gradual changes over time in contrast to change-point models

with stationarity between these points of (abrupt) changes.

The paper is structured as follows. We introduce the proposed estimators and

present results on their rate of convergence in Sections 2 (independence case without
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trend component) and 3 (dependence case allowing for a deterministic trend). Nu-

merical examples are discussed in Section 4. All proofs as well as technical auxiliary

results are deferred to Section 5.

2. Multivariate isotonic regression under independence

Recall (1.1) where we now assume that f ∶ [0,1]d → R and (I ′1, ε1)′, . . . , (I ′n, εn)′

are independent and identically distributed random variables on a probability space

(Ω,A, P ). We assume that the conditional mean function f is isotonic, that is,

monotonically non-decreasing in each argument. Following the discussion of Sec-

tion 1, we consider estimators defined at the design points x by

f̂
(max−min)
n (x) = max

a∶a⪯x
min
b∶ b⪰x

AvY ([a, b]) (2.1a)

and

f̂
(min−max)
n (x) = min

b∶ b⪰x
max
a∶a⪯x

AvY ([a, b]), (2.1b)

where, for a, b ∈ [0,1]d, [a, b] = [a1, b1] × ⋯ × [ad, bd]. As pointed out by Deng and

Zhang (2020), (2.1a) and (2.1b) have to be modified for x not being a design point.

Since it could well happen that a rectangle with x ∈ [a, b] does not contain any design

point we set na,b =#{t ≤ n∶ It ∈ [a, b]}, na,∗ =#{t ≤ n∶ a ⪯ It}, n∗,b =#{t ≤ n∶ It ⪯ b}

and define

f̂
(max−min)
n (x) = max

a∶a⪯x,na,∗>0
min

b∶ b⪰x,na,b>0
AvY ([a, b]) (2.2a)

and

f̂
(min−max)
n (x) = min

b∶ b⪰x,n∗,b>0
max

a∶a⪯x,na,b>0
AvY ([a, b]), (2.2b)

It follows from the construction of both f̂
(max−min)
n (x) and f̂

(min−max)
n (x) that they

are isotonic. We define the isotonic estimator f̂n of f by

f̂n(x) = (f̂ (max−min)n (x) + f̂ (min−max)n (x)) /2. (2.3)

In the univariate case, f̂n is equal to f̃n at the observation points. The pro-

posed estimator deviates from f̃n in the multivariate case though. Also note that

f̂
(max−min)
n (x) ≤ f̂ (min−max)n (x) if x is a design point. However, this does in general
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not hold true if x is not a design point; see Deng and Zhang (2020, Section 2) for

an example. The proofs of Theorems 2.1 and 3.1 below show that replacing lower

and upper sets by hyperrectangles in (1.2a) and (1.2b) simplifies the derivation of

the desired rate of convergence and its computation.

Firstly, we study the case of independent and identically distributed variables

(I ′t, εt)′. We impose the following condition.

(A1) (i) The information variables It possess a density p on [0,1]d, such that

C1 ∶= inf
x∈[0,1]d

p(x) ≤ sup
x∈[0,1]d

p(x) =∶ C2,

where 0 < C1 ≤ C2 <∞.

(ii) The error sequence (εt)t∈N satisfies

E (εt ∣ It) = 0 a.s., and E (ε2t ∣ It) ≤ σε2 a.s.,

where σε
2 <∞.

It is well known that the traditional isotonic estimator f̃n(x) is problematic

when x is close to the boundary of the support of the distribution of the It; see

e.g. the discussion in Sampson et al. (2003). The same is true for f̂n at points x

near the boundary of the domain. To fix the bias problem at extreme small and

large design points, Wu et al. (2015) proposed an adequate modification by pulling

up and down the isotonic LSE at these particular locations. This, however, requires

some sort of tuning parameter whose appropriate choice is somewhat subjective. We

show that our estimator f̂n achieves the optimal rate of convergence if we neglect

its behavior near the boundary and focus on estimating f on the set

Dn = (1/Mn,1 − 1/Mn]d with Mn = [n1/(d+2)]. (2.4)

Note that n−1/(d+2) corresponds to an asymptotically mean square error-optimal

bandwidth when the function to be estimated has a degree of smoothness 1. If
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lower and upper bounds f and f for f are known, then we could avoid unsatisfactory

behavior of f̂n near the boundary or if the (random) design is too irregular by setting

̂̂
fn(x) = min{max{f̂n(x), f} , f} .

Under minimal assumptions and assuming existence of second moments for the

error terms we prove the following theorem.

Theorem 2.1. Suppose that Assumption (A1) holds true. Then, with λd denoting

the Lebesgue measure on Rd,

(i) ∫Dn
∣f̂n(x) − f(x)∣λd(dx) = OP (n−1/(d+2)).

(ii) If in addition f ≤ f(x) ≤ f for all x ∈ [0,1]d, then

E [∫
[0,1]d

∣ ̂̂fn(x) − f(x)∣λd(dx)] = O(n−1/(d+2)).

Consider the special case of a partially differentiable function f ∶ [0,1]d → R. Then

the assumption of isotonicity implies that

∫
[0,1]d

d

∑
i=1
∣∂if(x)∣λd(dx) ≤ d(sup

x
{f(x)} − inf

x
{f(x)}).

Hence, the degree of smoothness, say β, measured in the L1-norm, is equal to 1. It

is well known that, under appropriate conditions, the optimal rate of convergence

for the L1-loss is n−β/(2β+d) which reduces to n−1/(d+2), when β = 1; see Stone (1982).

Hence, Theorem 2.1 indicates that f̂n achieves the optimal rate of convergence in

the class of isotonic functions. Recall that in contrast to the classical isotonic LSE

which is obtained by using all possible lower and upper sets in (1.2a) and (1.2b) our

estimator f̂n is based on averages over hyperrectangles only. This reduced complexity

allows us to derive the desired rate of convergence.
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3. Multivariate isotonic regression under dependence

Recall again (1.1) where we now allow the random variables to be dependent. We

assume the information variables to be of the form In,t = (X ′n,t, Z ′n,t)′, where Xn,t is

a d1-dimensional vector consisting of components with values in N0 = {0,1, . . .}, and

Zn,t is a d2-dimensional covariate consisting of variables with continuous marginal

distribution functions and possibly a deterministic trend component t/n. Here, we

allow for d1, d2 ∈ N0 with d = d1 + d2 > 0. Note that by setting d1 = 0 or d2 = 0,

it is possible that In,t is just equal to Xn,t or Zn,t, respectively. More specifically,

we distinguish between two cases: either the covariate vector Zn,t includes a trend

component of the form t/n, i.e. Zt = Zn,t = (Z̃ ′t, t/n)′, where Z̃t denotes the rest

of the covariates, or the covariate vector is free of a trend. In this section, we

consider again the isotonic estimator f̂n defined by (2.3). We show that the results

of Theorem 2.1 can be generalized to the case of strong mixing random variables

provided that we impose some additional assumptions. We suppose that:

(A2) (i) The error sequence (εn,t)t∈N satisfies

E (εn,t ∣ In,1, . . . , In,t, εn,1, . . . , εn,t−1) = 0 a.s.,

E (ε2n,t ∣ In,1, . . . , In,t, εn,1, . . . , εn,t−1) ≤ σε
2 a.s.,

where σε
2 <∞.

(ii) The process (In,t)t∈N is strong (α-) mixing with corresponding mixing

coefficients satisfying

α(r) = O (r−d2−1/2) .

(iii) The function f ∶ D → R, D ⊆ Rd, is bounded.

Having in mind that In,t = (X ′n,t, Z ′n,t)′ contains d1 ≥ 0 components with a discrete

distribution and d2 ≥ 0 components having either a continuous distribution or being

nonrandom such as t/n we impose the following condition:
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(A3) For t = 1, . . . , n and n ∈ N, the random vectors Zn,t consist of components

with continuous marginal distribution functions and/or a deterministic trend

component t/n.

(i) There exist continuous distribution functions G1, . . . ,Gd2 on R and, for

all K ∈ N, constants 0 < C1 = C1(K) ≤ C2 = C2(K) < ∞ such that

∀ k1, . . . , kd1 ≤K,∀ai ≤ bi

C1

d2

∏
i=1
(Gi(bi) −Gi(ai)) − 1

n

≤ 1

n

n

∑
t=1
P (Xn,t = (k1, . . . , kd1)′, Zn,t ∈ (a1, b1] ×⋯ × (ad2 , bd2])

≤ 1

n

n

∑
t=1
P (Zn,t ∈ (a1, b1] ×⋯ × (ad2 , bd2])

≤ C2

d2

∏
i=1
(Gi(bi) −Gi(ai)) + 1

n
.

(ii) There exists some constant C3 < ∞ such that, for all d-dimensional

hyperrectangles C,

P(In,t ∈ C∣In,1, . . . , In,t−d, εn,1, . . . , εn,t−d) ≤ C3 P (In,t ∈ C) .

Before we proceed, some comments on assumption (A3) are in order. Condition

(A3)(i) means that the “average distribution” of the continuous random variables

behaves as a d2-dimensional product distribution which has, after an appropriate

rescaling with G−11 , . . . ,G
−1
d2

, a density bounded away from zero on [0,1]d2 . The

terms ±1/n are needed to accommodate the possible case of a deterministic trend

variable t/n. Also note that assumption (A1)(i) implies the validity of assumption

(A3)(ii). We impose a condition on P (In,t ∈ C ∣ In,1, . . . , In,t−d, εn,1, . . . , εn,t−d) rather

than P (In,t ∈ C ∣ In,1, . . . , In,t−1, εn,1, . . . , εn,t−1) in order to accommodate the case

where In,t = (Yn,t−1, . . . , Yn,t−d)′. Scaling the deterministic trend by n is a common

approach in the literature on non-stationary time series; see e.g. Dahlhaus (1997)

and Dahlhaus and Neumann (2001). Under suitable regularity conditions, it allows
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for the estimation of the influence of the rescaled time component on the regression

function (rescaled to [0,1]) via so-called infill asymptotics.

To simplify the notation, we suppress the index n in Yn,t, In,t and εn,t from here

on, just keeping in mind that also a triangular scheme is allowed, e.g., when a trend

variable t/n is included.

Recall again that the traditional isotonic estimator f̃n(x) is problematic when x

is close to the boundary of the support of the distribution of the It. We neglect the

behavior of f̂n near the boundary and focus primarily on estimating f on

D̃n = {0, . . . ,K}d1 × (G−11 (h̃n),G−11 (1 − h̃n)] ×⋯ × (G−1d2 (h̃n),G
−1
d2
(1 − h̃n)],

where h̃n = 1/M̃n and M̃n = [n1/(d2+2)]. As in Section 2, if lower and upper bounds f

and f for f(x) are known, we can take this into account by setting

̂̂
fn(x) = min{max{f̂n(x), f} , f} .

In this case, we evaluate our estimator
̂̂
fn on the set ̃̃D = {0, . . . ,K}d1 × [0,1]d2 .

Denote by Q1, . . . ,Qd2 the probability measures corresponding to the distribution

functions G1, . . . ,Gd2 , respectively. With µd1 being the counting measure on Nd1
0 ,

define ν = µd1 ⊗Q1 ⊗⋯⊗Qd2 .

Theorem 3.1. Suppose that Assumptions (A2) and (A3) hold true. Then,

(i) ∫D̃n
∣f̂n(x) − f(x)∣ ν(dx) = OP (n−1/(d2+2)).

(ii) If in addition f ≤ f(x) ≤ f for all x ∈ ̃̃D, then

E [∫ ̃̃D
∣ ̂̂fn(x) − f(x)∣ ν(dx)] = O(n−1/(d2+2)).

Some remarks are in order. We point out that the obtained rate of convergence

does not depend on the number of discrete explanatory random variables. This is

explained by the fact that, for any k1, . . . , kd1 ∈ {0, . . . ,K}, the cardinality of the set

{t ≤ n∶ Xn,t = (k1, . . . , kd1)′} is proportional to the sample size n. Therefore, there
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is no need to smooth over the first d1 directions and there is no loss due to a trade-

off between bias and variance that would appear with nonparametric smoothing

techniques.

Properties of the noise process can be taken into account, provided that we have

some prior knowledge. Indeed, if we knew the conditional variance E(ε2t ∣ It), e.g. in

the case of a known distributional family for the errors, then we could replace

the means AvY (B) = ∑nt=1 Yt1(It ∈ B)/#{t ≤ n∶ It ∈ B} by the weighted means

∑nt=1w(It)Yt1(It ∈ B)/∑nt=1w(It)1(It ∈ B), where the weights w(It) are propor-

tional to 1/E(ε2t ∣ It). This corresponds to a weighted least squares estimator in

linear regression. However, our main intention was to produce a general, fully non-

parametric method. Since prior knowledge of E(ε2t ∣ It) is rarely available, we pursue

the approach based on unweighted means.

Example 3.1. Suppose that integer-valued random variables Y0, Y1, . . . , Yn are ob-

served, where

Yt ∣ Ft−1 ∼ Poisson(λt) λt = f(Yt−1, Zt−1),

and Zt is a covariate with values in [0,1]d2 which is independent of Yt, . . . , Y0, Zt−1, . . . , Z0,

Fs = σ(Ys, Zs, . . . , Y0, Z0). Assume that the function f ∶ N0 × [0,1]d2 → [0,M] is iso-

tonic and bounded by M <∞. The information variable at time t is It = (Yt−1, Z ′t−1)′.

We have that

Yt = f(It) + εt,

where

E (εt ∣ It, . . . , I0, εt−1, . . . , ε0) = 0,

E (ε2t ∣ It, . . . , I0, εt−1, . . . , ε0) = f(It) ≤ M.

It can be shown that Assumption (A2)(i) is also fulfilled. Indeed, let Qk
t ∶= P Yt∣Yt−1=k =

∫ Poisson(f(k, z))PZt−1(dz). Since f(k, z) ∈ [0,M] for all values of k and z,

inf
t

inf
k∈N0

Qk
t ({0}) > 0,
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that is, Doeblin’s condition is fulfilled. It follows from Theorem 2.4.1 on page 88 in

Doukhan (1994) that the Markov chain (Yt)t is uniformly (φ-) mixing and, therefore,

absolutely regular with coefficients satisfying

βY (k) ≤ Cρk ∀k ∈ N0,

for some C < ∞ and ρ ∈ [0,1). Since the process (It)t is also a Markov chain, we

obtain that

β (σ(I0, I1, . . . , It), σ(It+k, It+k+1, . . .))

= β (σ(It), σ(It+k))

≤ β (σ(Yt, It), σ(It+k))

= β (σ(Yt), σ(It+k))

= β (σ(Yt), σ(Yt+k−1)) .

(The first and the last but one equalities follows from the Markovian structure;

see also the note after Theorem 7.3 in Bradley (2007). The last one follows from

independence of Zt+k−1 and (Yt, Yt+k−1); see also Theorem 6.2 in Bradley (2007).)

Hence, the coefficients of absolute regularity of the process (It)t satisfy

βI(k) ≤ βY (k − 1) ≤ Cρk−1 ∀k ∈ N.

4. Applications

4.1. Simulations. We illustrate the theoretical results by a simulation study com-

paring the performance of f̂n and the isotonic LSE f̃n in terms of their average biases

and L1, L2 errors over a specified grid. Hence, if x belongs to a rectangular grid G

with B points, we evaluate the average bias by ∑x∈G(f̂n(x) − f(x))/B, the L1 error

by ∑x∈G ∣f̂n(x) − f(x)∣/B and the L2 error by ∑x∈G(f̂n(x) − f(x))2/B for f̂n, and

similarly for f̃n.
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We study an additive and a non-additive model under independence and depen-

dence. Given some parameter values a, b, c, d such that a, b, c, d > 0, consider the

following isotonic functions

f(i1, i2) = (d + 1) + ai1(1 − exp(−bi2)) (4.1a)

and

f(i1, i2) = d + a

1 + exp(−ci1)
+ bi2. (4.1b)

In the case of independent data and for the function (4.1a) we generate data as Yt =

f(It1, It2)+εt, t = 1,2, . . . , n, where the covariates It1 and It2 are independent U(0,1)

random variables and the error process (εt)t consists of iid centered exponential

random variables. Similarly, for the model given by (4.1b) we generate independent

Poisson distributed random variables with mean λt = f(It1, It2). In the time series

cases, set It = (Yt−1, Zt)
′

where Zt = t/n and generate data Yt = f(Yt−1, Zt)+ εt using

(4.1a) by assuming identical error structure and a < 1. Similarly for the Poisson

model we use It = (Yt−1, Zt)
′

and generate data as in the Example 3.1.

We compute the isotonic least squares estimator by using the R package isotonic.pen

which returns the values of the estimated function on an equidistant 21 × 21 grid;

see Wu et al. (2015) for details. Note that the estimator f̂n, defined by (2.3), can

be computed exactly at a given point by a direct approach which requires at most

O(n2) calculations, regardless the dimension d. The total computation time for n

points is O(n3), see also Han and Zhang (2019, page 4). Since the goal of this study

is to compare the risks of the estimators we refrain discussing any computational

algorithms. To compare f̂n with the isotonic LSE we use the grid computed by

isotonic.pen discarding some points so that we bypass possible boundary issues.

To this end, we choose the lower left / upper right corner of the grid such that, on

the one hand, the number of observed information variables within the correspond-

ing rectangle is large and on the other hand, for every grid point there is at least one
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upper and one lower set containing data points. To compare the empirical perfor-

mance of the estimators, we compute the integrated L1, L2 errors and the average

biases, over the grid values, as defined before. This process is repeated 500 times.

Table 1 reports results of this study for the case of the non-additive model (4.1a)

and for a specific choice of parameter values. It is seen that f̂n outperforms the

isotonic LSE in terms of L1 and L2 errors for all sample sizes considered. Both

estimators have positive bias in the case of independent data but this changes for

time series data. Figure 1 shows box plots of the values of integrated L1 error for

three different sample sizes and for different parameter values. These results, which

are obtained by considering time series data, reinforce the previous findings. Similar

results are obtained for the case of the additive model (4.1b) under a conditional

Poisson model, see Table 2 and Figure 2.

f̂n f̃n

Sample Size Av. Bias L1 L2 Av. Bias L1 L2

Independent Data

250 0.8393 0.8393 0.7212 0.8856 0.8857 0.8524

500 0.5883 0.5887 0.3705 0.8801 0.8802 0.8256

1000 0.2871 0.2897 0.1041 0.8726 0.8727 0.8167

Time Series Data

250 -0.3277 0.3626 0.2180 0.7396 0.7513 0.7209

500 -0.2827 0.3623 0.2236 0.6874 0.7064 0.6500

1000 -0.2349 0.3625 0.2136 0.6326 0.6579 0.5781

Table 1. Average bias, L1 and L2 error of f̂n and f̃n for the non-

additive model (4.1a) for d = 0.2, a = 0.1 and b = 0.7 and for different

sample sizes under independence and dependence. Data are generated

with centered exponential innovations.
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Figure 1. Box plots of empirical L1 loss values for f̂n and the isotonic

LSE f̃n for the non-additive model (4.1a) for d = 0.2, a = 0.1 and b =

0.2 under dependence. Data are generated with centered exponential

innovations.

4.2. Data Examples. We apply the methodology to biological and financial time

series which exhibit non-stationarity to illustrate the applicability of isotonic estima-

tion. First, we investigate the population growth of whooping cranes that became

nearly extinct during the period 1938-1955. Whooping cranes are one of the largest

birds in North America but also one of the rarest that can be found in the continent.

For some time their population has been constantly decreasing and reached to about

20 individual birds in the world. With the employment of various conservation mea-

sures the population grew over the last years. The data we have are depicted in

Figure 3 which shows the growth of population of whooping cranes between 1938 to

2005; see Int. Recovery Plan (2007). Note that this is a case of an integer valued
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f̂n f̃n

Sample Size Av. Bias L1 L2 Av. Bias L1 L2

Independent Data

250 -0.8999 0.9324 1.0219 0.5771 0.7790 0.9063

500 0.4590 0.5416 0.4575 0.5646 0.7473 0.8017

1000 -0.1573 0.4181 0.2947 0.5633 0.7313 0.7436

Time Series Data

250 -1.0037 1.0207 1.2310 1.0912 1.1292 1.6985

500 -0.6787 0.7823 0.7915 1.0803 1.1218 1.6747

1000 -0.4199 0.6647 0.5707 1.0620 1.1146 1.6664

Table 2. Average bias, L1 and L2 error of f̂n and f̃n for the additive

model (4.1b) for d = 2, a = 0.5 c = 0.3 and b = 1.7 and for different

sample sizes under independence and dependence. Data are generated

according to a Poisson model.

time series. The second example refers to daily net asset value (NAV) of the Black-

Rock Global Allocation Fund during the period 1/4/2016 to 30/1/2018. Here we

note that the series takes values on real numbers.

For both of these data examples, a simple time series plot reveals increasing

trend and strong autocorrelation which decays slowly. The partial autocorrelation

functions shows a strong autocorrelation at lag 1; see the upper panel of Figures 3

and 4. We fit a non-parametric time series model to these data by using isotonic

estimation methods. We include the covariate vector It = (Yt−1, t/n)′, where n is the

number of effective observations (e.g. for the population growth of whooping cranes

the number of observation is equal to 68 but n = 67 because of the inclusion of Yt−1).

We consider again the estimator f̂n and the isotonic LSE f̃n and work the same

way as it was explained in Subsection 4.1 . The lower panels of Figures 3 and 4

show that both estimators are quite close near the observation points, but differ

significantly at some grid points that are located far from the bulk of data. We
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Figure 2. Box plots of empirical L1 loss values for f̂n and the isotonic

LSE f̃n for the additive model (4.1b) for d = 0.5, a = 1.5, c = 0.6 and

b = 2 under dependence. Data are generated according to a Poisson

model.

examine the performance of both methods for estimating the two models. This task

is accomplished by studying the in sample predictive power using the mean absolute

prediction error (MAPE), that is ∑nt=1 ∣Ŷt − Yt∣/n and the mean square error (MSE)

given by ∑nt=1(Ŷt −Yt)2/n Here, Ŷt is obtained by evaluating f̂n and f̃n, respectively,

on a grid point close to (Yt−1, t/n)′. The results are shown in Table 3. Clearly, the

new estimator f̂n performs better in terms of MAPE, but not in terms of MSE.
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Figure 3. (a) Time series plot of the yearly number of whooping

cranes between 1938 to 2005. (b) Autocorrelation function. (c) Partial

autocorrelation function. (d) Plot of isotonic LSE f̃n and the data (red

points). (e) Plot of the estimator f̂n and the data (red points). (f)

Plot of the difference f̃n − f̂n.
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Figure 4. (a) Time series plot of daily NAV prices of BlackRock

Global Allocation Fund during the period 1/4/2016 to 30/1/2018.

(b) Autocorrelation function. (c) Partial autocorrelation function.

(d) Plot of isotonic LSE f̃n and the data (red points). (e) Plot of

the estimator f̂n and the data (red points). (f) Plot of the difference

f̃n − f̂n.
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Example 1 (Whooping cranes) Example 2 (BlackRock Global Allocation Fund)

MAPE MSE MAPE MSE

f̂n 5.916 65.479 0.311 0.158

f̃n 6.002 64.424 0.312 0.156

Table 3. MAPE and MSE of f̂n and the isotonic LSE f̃n after fitting

the isotonic regression models to real data.
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5. Proofs and Auxiliary Results

We prove our main results in Section 5.1. Some auxiliary lemmas are stated and

proved in Section 5.2.

5.1. Proofs of the main results.

Proof of Theorem 2.1. The estimator f̂n is based on means over hyperrectangles.

Note that hn = 1/Mn (with Mn defined in (2.4)) corresponds to an asymptotically

mean square error-optimal bandwidth of a kernel estimator when the function to

be estimated has a degree of smoothness 1. Having this in mind, we define, for

multi-indexes k = (k1, . . . , kd), grid points by

xk = (k1hn, . . . , kdhn)′, (0 ≤ ki ≤Mn ∀i)

and we split [0,1]d into subsets

Bk = (xk−1, xk] = ((k1 − 1)hn, k1hn] ×⋯ × ((kd − 1)hn, kdhn] ∀k ∈Kn,

where Kn = {k∶ 1 ≤ k1, . . . , kd ≤Mn}. We expect a regular behavior of f̂n if there are

sufficiently many observations in each box Bk. Recall that C1 is the lower bound

on the density of the information variables It which is assumed to exist by (A1)(i).

Then, regularity of f̂n is guaranteed to hold, provided that the event

An = {ω∶ #{t ≤ n∶ It(ω) ∈ Bk} ≥ (C1/2)n2/(d+2) ∀k ∈Kn} (5.1)

occurs with probability tending to one. We now prove both assertions of the Theo-

rem.

Proof of (i): In view of assertion (ii), we show a slightly stronger result, namely,

P (Acn) = O (n−1/(d+2)) . (5.2)

Since ∑nt=1P (It ∈ Bk) ≥ nC1hdn ≥ C1n2/(d+2) it suffices to show that

∑
k∈Kn

P (
n

∑
t=1
P (It ∈ Bk) − 1(It ∈ Bk) ≥

C1 n2/(d+2)

2
) = O (n−1/(d+2)) , (5.3)
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where 1(⋅) denotes the indicator function. We obtain from Bernstein’s inequality,

for all k ∈Kn and µn = C1n2/(d+2)/2, that

P (
n

∑
t=1
P (It ∈ Bk) − 1(It ∈ Bk) ≥ µn) ≤ exp{− µ2

n/2
n P (I1 ∈ Bk) (1 − P (I1 ∈ Bk)) + µn/3

}

≤ exp{− C n2/(d+2)} ,

for some C > 0, which proves (5.3) and therefore (5.2).

We analyze the contribution of the stochastic part and the bias of the estimator

separately. For the latter, we exploit the assumed isotonicity in conjunction with

boundedness of f in order to construct an estimate of the integrated bias from above

and below. To this end, denote for an arbitrary function g its positive (respectively

negative) part by g+ (respectively g−). Then, it suffices to show that

E [∫
Dn

(f̂n(x) − f(x))+ λ
d(dx) 1An] = O (n−1/(d+2)) , (5.4a)

and

E [∫
Dn

(f̂n(x) − f(x))− λ
d(dx) 1An] = O (n−1/(d+2)) . (5.4b)

Note that Dn introduced in (2.4) satisfies Dn = ⋃k∶1<k1,...,kd<Mn
Bk. If the event An

occurs then the set (xk, xk+1] is non-empty. Therefore, for x ∈ Bk = (xk−1, xk],

f̂
(max−min)
n (x), f̂ (min−max)n (x) ≤ sup

y⪯xk
AvY ((y, xk+1]),

which implies that

(f̂n(x) − f(x))+ 1An ≤ (sup
y⪯xk

AvY ((y, xk+1]) − f(x))
+
1An

≤ sup
y⪯xk
∣Avε((y, xk+1])∣1An + (f(xk+1) − f(x)) . (5.5)

By Lemma 5.1 and since λd(Bk) = hdn = O(n−d/(d+2)) we obtain for the bias that

∑
k∶1<k1,...,kd<Mn

∫
Bk

(f(xk+1) − f(x)) λd(dx)

≤ ∑
k∶1<k1,...,kd<Mn

(f(xk+1) − f(xk−1)) λd(Bk)

≤ 2d Md−1
n (f(1, . . . ,1) − f(0, . . . ,0)) hdn = O (n−1/(d+2)) . (5.6)
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For the stochastic part, we estimate E[supy⪯xk ∣Avε((y, xk+1])∣]. For this purpose,

we define a dyadic scheme of nested hyperrectangles: For j1, . . . , jd ≥ 0,

B
(j1,...,jd)
k = ((k1 + 1 − 2j1)hn, (k1 + 1)hn] ×⋯ × ((kd + 1 − 2jd)hn, (kd + 1)hn].

(We have in particular B
(0,...,0)
k = Bk+1 andB

(j1,...,jd)
k = ⋃m1,...,md∶0≤mi≤2ji−1B(k1+1−m1,...,kd+1−md).)

Since {y ⪯ xk} ⊆ ⋃j1,...,jd≥0B
(j1+1,...,jd+1)
k ∖ B(j1,...,jd)k and since y ∈ B(j1+1,...,jd+1)k ∖

B
(j1,...,jd)
k implies that (y, xk+1] ⊇ B(j1,...,jd)k we obtain, for all x ∈ Bk,

sup
y⪯xk
∣Avε((y, xk+1])∣1An ≤ ∑

j1,...,jd≥0

sup{∣∑nt=1 εt1(It ∈ (y, xk+1])∣ ∶ y ∈ B(j1+1,...,jd+1)k ∖B(j1,...,jd)k }

#{t ≤ n∶ It ∈ B(j1,...,jd)k }
1An .

Recall that if the event An occurs, then #{t ≤ n∶ It ∈ Bk} ≥ (C1/2)n2/(d+2) for

all k ∈Kn, which implies that

#{t ≤ n∶ It ∈ B(j1,...,jd)k } ≥ (C1/2) 2j1+⋯+jd n2/(d+2).

Furthermore, it follows from Lemma 5.2 that for some C <∞

E [sup{∣
n

∑
t=1
εt1(It ∈ (y, xk+1])∣ ∶ y ∈ B(j1+1,...,jd+1)k }] ≤ C 2(j1+⋯+jd)/2 n1/(d+2). (5.7)

Therefore, we obtain that

sup
x∈Bk

E [sup
y⪯xk
∣Avε((y, xk+1])∣ 1An]

≤ ∑
j1,...,jd≥0

E

⎡⎢⎢⎢⎢⎢⎣

sup{∣∑nt=1 εt 1(It ∈ (y, xk+1])∣ ∶ y ∈ B(j1+1,...,jd+1)k }

#{t ≤ n∶ It ∈ B(j1,...,jd)k }
1An

⎤⎥⎥⎥⎥⎥⎦

= O (n−1/(d+2) ∑
j1,...,jd≥0

2−(j1+⋯+jd)/2) = O (n−1/(d+2)) .

This yields, in conjunction with (5.5) and (5.6), that (5.4a) holds. The proof of

(5.4b) is completely analogous and therefore it is omitted.
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Proof of (ii): We have that

E [∫
[0,1]d

∣ ̂̂fn(x) − f(x)∣λd(dx)]

= E [∫
Dn

∣ ̂̂fn(x) − f(x)∣λd(dx)1An] (5.8)

+ E [∫
Dn

∣ ̂̂fn(x) − f(x)∣λd(dx)1Ac
n
]

+ E [∫
[0,1]d∖Dn

∣ ̂̂fn(x) − f(x)∣λd(dx)] .

By (5.4a) and (5.4b), the first term on the right-hand side is of order O(n−1/(d+2)).

Since f ≤ ̂̂fn(x), f(x) ≤ f for all x ∈ [0,1]d the integrands of the integrals on the

right-hand side are bounded by f − f . Since P (Acn) = O(n−1/(d+2)) by (5.2) and

λd([0,1]d ∖ Dn) = O(n−1/(d+2)) we conclude that the last two terms on the right-

hand side of (5.8) are also of order O(n−1/(d+2)), as required. �

Proof of Theorem 3.1. The proof of this theorem is largely the same as that of The-

orem 2.1. First we split the set ̃̃D = {0, . . . ,K}d1 × [0,1]d2 into subsets which are

adapted to our assumption (A3)(i) on the distribution of the covariates. Recall that

h̃n = 1/M̃n, where M̃n = [n1/(d2+2)]. Let, for multi-indexes k = (k1, . . . , kd) ∈ K̃n =

{0, . . . ,K}d1 × {1, . . . , M̃n}d2 ,

B̃k = {(k1, . . . , kd1)′}×(G−11 ((kd1+1−1)h̃n),G−11 (kd1+1h̃n)]×⋯×(G−1d2 ((kd−1)h̃n),G
−1
d2
(kdh̃n)].

As in the proof of Theorem 2.1, we define a set which describes a “regular” behavior

of the explanatory variables by

Ãn = {ω∶ #{t ≤ n∶ It(ω) ∈ B̃k} ≥ C4 n
2/(d2+2) ∀k ∈ K̃n} , (5.9)

where C4 is some positive constant.

Proof of (i): In what follows we show that

E [∫
D̃n

(f̂n(x) − f(x))+ ν(dx) 1Ãn
] = O (n−1/(d2+2)) , (5.10a)

and

E [∫
D̃n

(f̂n(x) − f(x))− ν(dx) 1Ãn
] = O (n−1/(d2+2)) . (5.10b)
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Since by Lemma 5.3

P (Ãn) Ð→
n→∞

1

we then obtain that assertion (i) holds true. We define grid points

xk =

(k1, . . . , kd1 ,G−11 ((kd1+1 + 1)hn), . . . ,G−1d2 ((kd + 1)hn))
′
,

xk =

(k1, . . . , kd1 ,G−11 ((kd1+1 − 1)hn), . . . ,G−1d2 ((kd − 1)hn))
′
.

We have, for all x ∈ B̃k,

(f̂n(x) − f(x))+ 1An ≤ (sup
y⪯xk

AvY ((y, xk]) − f(x))
+
1An

≤ sup
y⪯xk
∣Avε((y, xk])∣ + (f(xk) − f(x)) . (5.11)

We apply Lemma 5.1 to f̃(x̃1, . . . , x̃d2) = f(k1, . . . , kd1 ,G−11 (x̃1), . . . ,G−1d2 (x̃d2)), (x̃1, . . . , x̃d2)
′ ∈

[0,1]d2 , with M = M̃n. Since νd(B̃k) = h̃d2n = O(n−d2/(d2+2)) we obtain for the bias

that

∑
k∶1<kd1+1,...,kd<M̃n

∫
B̃k

(f(xk) − f(x)) ν(dx)

≤ ∑
k∶1<kd1+1,...,kd<M̃n

(f(xk) − f(xk)) ν(B̃k)

= O (M̃d2−1
n h̃d2n ) = O (n−1/(d2+2)) . (5.12)

We define again a dyadic scheme of nested hyperrectangles: For j1, . . . , jd2 ≥ 0,

B̃
(j1,...,jd2)
k = {(k1, . . . , kd1)′}×((kd1+1+1−2j1)h̃n, (kd1+1+1)h̃n]×⋯×((kd+1−2jd2)h̃n, (kd+1)h̃n]

and

B̃
(j1,...,jd2)
k,0 = {0, . . . , k1} ×⋯ × {0, . . . , kd1} × ((kd1+1 + 1 − 2j1)h̃n, (kd1+1 + 1)h̃n] ×

⋯ × ((kd + 1 − 2jd2)h̃n, (kd + 1)h̃n].
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Since {y ⪯ xk} ⊆ ⋃j1,...,jd2≥0 B̃
(j1+1,...,jd2+1)
k,0 ∖ B̃(j1,...,jd2)k,0 and since y ∈ B̃(j1+1,...,jd2+1)k,0 ∖

B̃
(j1,...,jd2)
k,0 implies that (y, xk] ⊇ B̃(j1,...,jd2)k we obtain, for all x ∈ B̃k,

sup
y⪯xk
∣Avε((y, xk])∣1An ≤ ∑

j1,...,jd2≥0

sup{∣∑nt=1 εt1(It ∈ (y, xk])∣ ∶ y ∈ B̃(j1+1,...,jd2+1)k,0 ∖ B̃(j1,...,jd2)k,0 }

#{t ≤ n∶ It ∈ B̃
(j1,...,jd2)
k }

1An .

Recall that if the event Ãn occurs, then #{t ≤ n∶ It ∈ B̃k} ≥ C4 n2/(d2+2) for all k ∈ K̃n,

which implies that

#{t ≤ n∶ It ∈ B̃
(j1,...,jd2)
k } ≥ C4 2j1+⋯+jd2 n2/(d2+2).

Furthermore, it follows from Lemma 5.4 that for some C <∞

E [sup{∣
n

∑
t=1
εt1(It ∈ (y, xk])∣ ∶ y ∈ B̃(j1+1,...,jd2+1)k,0 }] ≤ C 2(j1+⋯+jd2)/2 n1/(d2+2). (5.13)

Therefore, we obtain that

sup
x∈B̃k

E [sup
y⪯xk
∣Avε((y, xk])∣ 1Ãn

]

≤ ∑
j1,...,jd2≥0

E

⎡⎢⎢⎢⎢⎢⎣

sup{∣∑nt=1 εt 1(It ∈ (y, xk])∣ ∶ y ∈ B̃(j1+1,...,jd2+1)k,0 }

#{t ≤ n∶ It ∈ B̃
(j1,...,jd2)
k }

1Ãn

⎤⎥⎥⎥⎥⎥⎦

= O
⎛
⎝
n−1/(d2+2) ∑

j1,...,jd2≥0
2−(j1+⋯+jd2)/2

⎞
⎠
= O (n−1/(d2+2)) .

This yields, in conjunction with (5.11) and (5.12), that (5.10a) holds. The proof of

(5.10b) is completely analogous and therefore it is omitted.

Proof of (ii): The second assertion follows in the same way as that of Theorem 2.1.

�

5.2. Some auxiliary results.

Lemma 5.1. Suppose that f ∶ [0,1]d → R is isotonic and let, for M ∈ N and k =

(k1, . . . , kd), xk = (k1/M, . . . , kd/M). Then

∑
k∶0<k1,...,kd<M

(f(xk+1) − f(xk−1)) ≤ 2d Md−1 (f(1, . . . ,1) − f(0, . . . ,0)) .
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Proof of Lemma 5.1. Let I0 = {k∶ 0 < k1, . . . , kd < M and kj = 1 for at least one j}.

We estimate the sum by considering the main and minor diagonals as follows:

∑
k∶ 0<k1,...,kd<M

(f(xk+1) − f(xk−1)) = ∑
k∈I0
∑
i≥0
(f(xk+(i+1)1) − f(xk+(i−1)1))

≤ #I0 2(sup
x
{f(x)} − inf

x
{f(x)}) .

The assertion of the lemma follows because #I0 ≤ dMd−1. �

Lemma 5.2. Suppose that the assumptions of Theorem 2.1 hold true. Then, for

arbitrary z ⪯ z with [z, z] ⊆ [0,1]d and some C̄ <∞,

E [ sup
z∶ z⪯z⪯z

∣ 1√
n

n

∑
t=1
εt1 (It ∈ (z, z])∣] ≤ C̄

√
P (I1 ∈ (z, z]) (5.14a)

and

E [ sup
z∶ z⪯z⪯z

∣ 1√
n

n

∑
t=1
εt1 (It ∈ [z, z))∣] ≤ C̄

√
P (I1 ∈ [z, z)). (5.14b)

Proof of Lemma 5.2. We prove only (5.14a) since the proof of (5.14b) is completely

analogous. One of the main tools which is used is given by Bickel and Wichura (1971,

Thm. 1). For this purpose, we adopt some notation from there. A block B in [z, z]
is a subset of [z, z] of the form (u, v] = (u1, v1] × ⋯ × (ud, vd]. For p ∈ {1, . . . , d},

the pth face of B = (u, v] is (u1, v1] × ⋯ × (up−1, vp−1] × (up+1, vp+1] × ⋯ × (ud, vd].

Disjoint blocks B and C are p-neighbors if they are abut and have the same pth

face; they are neighbors if they are p-neighbors for some p. (For example, (u1, v1] ×

⋯ × (up−1, vp−1] × (ũ, ṽ] × (up+1, vp+1] × ⋯ × (ud, vd] and (u1, v1] × ⋯ × (up−1, vp−1] ×

(ṽ, w̃]× (up+1, vp+1]×⋯× (ud, vd] are p-neighbors if 0 ≤ ũ < ṽ < w̃ ≤ 1.) For each block

B = (u, v], let

X(B) = 1√
n

n

∑
t=1
εt1(It ∈ B).
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In what follows we show that condition (2) in Bickel and Wichura (1971, Thm. 1)

is fulfilled. To this end, let B and C be arbitrary neighboring blocks in [z, z]. We

will estimate the expected value of the term

∣X(B)∣2∣X(C)∣2 = 1

n2

n

∑
t1,t2,t3,t4=1

1(It1 ∈ B)1(It2 ∈ B)1(It3 ∈ C)1(It4 ∈ C)εt1εt2εt3εt4 .

Since B and C are disjoint sets it follows that

1(It1 ∈ B)1(It2 ∈ B)1(It3 ∈ C)1(It4 ∈ C) = 0,

if {t1, t2} ∩ {t3, t4} ≠ ∅. Therefore, and by independence of (I ′1, ε1)′, . . . , (I ′n, εn)′,

E [∣X(B)∣2∣X(C)∣2]

= 1

n2 ∑
(t1,...,t4)∶{t1,t2}∩{t3,t4}=∅

E[1(It1 ∈ B)1(It2 ∈ B)εt1εt2] E[1(It3 ∈ C)1(It4 ∈ C)εt3εt4].

Furthermore, again by independence of (I ′1, ε1)′, . . . , (I ′n, εn)′, and since

E[1(Is ∈ B)1(It ∈ B)εsεt] = E[1(Is ∈ C)1(It ∈ C)εsεt] = 0,

if s ≠ t, we obtain that

E [∣X(B)∣2∣X(C)∣2] = 1

n2∑
s≠t
E [1(Is ∈ B)ε2s] E [1(It ∈ C)ε2t ]

≤ σ4
ε P (I1 ∈ B) P (I1 ∈ C). (5.15)

Let m(B,C) =min{∣X(B)∣, ∣X(C)∣}. From (5.15) we obtain by Markov’s inequality

that

P (m(B,C) ≥ ν) ≤ E[m(B,C)
4]

ν4
≤ E[∣X(B)∣

2∣X(C)∣2]
ν4

≤ ν−4 µ(B) µ(C)

for all ν > 0 and the measure µ(⋅) = σ2
εP

I1(⋅). Hence, condition (2) of Bickel and

Wichura (1971, Thm. 1) is fulfilled and it follows that

P ( sup
z∶ z⪯z⪯z

∣ 1√
n

n

∑
t=1
εt1(It ∈ (z, z])∣ ≥ ν) ≤ C̃ ν−4 µ((z, z])2,
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for all ν > 0 and some C̃ <∞. This, however, implies that

E [ sup
z∶ z⪯z⪯z

∣ 1√
n

n

∑
t=1
εt1(It ∈ (z, z])∣]

= ∫
∞

0
P ( sup

z∶ z⪯z⪯z
∣ 1√
n

n

∑
t=1
εt1(It ∈ (z, z])∣ ≥ λ) dλ

≤
√
µ((z, z]) + ∫

∞
√
µ((z,z])

P ( sup
z∶ z⪯z⪯z

∣ 1√
n

n

∑
t=1
εt1(It ∈ (z, z])∣ ≥ λ) dλ

≤
√
µ((z, z]) + 3 C̃

√
µ((z, z]),

which proves the assertion of the lemma. �

Lemma 5.3. Suppose that Assumptions (A2) and (A3) hold true. Let Ãn be defined

as in the proof of Theorem 3.1. Then, for sufficiently small C4 > 0 in (5.9),

P (Ãcn) = O (n−1/(d2+2)) .

Proof of Lemma 5.3. We will show that

max
k∈K̃n

{P (
n

∑
t=1
P (It ∈ B̃k) − 1(It ∈ B̃k) ≥

C1 n2/(d2+2)

2
)} = O (n−(d2+1)/(d2+2)) . (5.16)

Let µn = C1n2/(d2+2)/8 and, for arbitrary k ∈ K̃n, ηt = 1(It ∈ B̃k) − P (It ∈ B̃k). It

follows from the Fuk-Nagaev-type inequality (I.6) of Rio (2000, page 4) that, for all

κ ≥ 1,

P (∣
n

∑
t=1
ηt∣ ≥ 4µn) ≤ (1 +

µ2
n

κ s2n
)
−κ/2

+ n α([µn/κ])
µn

, (5.17)

where

s2n =
n

∑
s,t=1
∣cov(ηs, ηt)∣ .

Since α([µn/κ]) = O(n−(2d2+1)/(d2+2)) we obtain that

n α([µn/κ])
µn

= O (n−(d2+1)/(d2+2)) ,

that is, the second term on the right-hand side of (5.17) is of the required order.
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It remains to estimate s2n/µ2
n. We obtain from a covariance inequality for strong

mixing processes (see e.g. Bradley (2007, Corollary 10.16)) that

∣cov(ηt, ηt+r)∣ ≤ 4 α(r) ∥ηt∥∞ ∥ηt+r∥∞ ≤ 4 α(r).

If d2 = 0, then

s2n ≤ 2n
n−1
∑
r=1

4 α(r) = O(n3/2),

which implies that

s2n
µ2
n

= O (n−1/2) . (5.18)

If d2 ≥ 1, then we distinguish between the two cases of covariates without and with

a trend component. In the first case, we obtain from the upper bound in (A3)(i)

and (ii) that, for all t, r with 1 ≤ t ≤ t + r ≤ n,

∣cov(ηt, ηt+r)∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

O (n−d2/(d2+2)) if 0 ≤ r < d,

O (n−2d2/(d2+2)) if r ≥ d
.

Therefore, with Nn = [nd2/(d2+2)],

s2n ≤ ∑
s,t∶ ∣s−t∣<d

∣cov(ηs, ηt)∣ + ∑
s,t∶ d≤∣s−t∣≤Nn

∣cov(ηs, ηt)∣ + 2n
n−1
∑

r=Nn+1
4 α(r)

= O (n2/(d2+2)) + O (n2/(d2+2)) + O (n N1/2−d2
n )

= O (n2/(d2+2) + n[2+(3/2−d2)d2]/(d2+2)) ,

which implies that

s2n
µ2
n

= O (n−2/(d2+2) + n[(3/2−d2)d2−2]/(d2+2)) . (5.19)

In the case with trend, we get from (A3)(i) that

∣cov(ηt, ηt+r)∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

O (n−(d2−1)/(d2+2)) if 0 ≤ r < d − 1,

O (n−2(d2−1)/(d2+2)) if r ≥ d − 1
.
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On the other hand, we see that It = (Ĩ ′t, t/n)′ /∈ B̃k, and therefore ηt = 0 if t /∈ In,k ∶=

((kd − 1)nhn, kdnhn]. Hence, here with Nn = [n(d2−1)/(d2+2)],

s2n ≤ ∑
s,t∈In,k

∣cov(ηs, ηt)∣

≤ ∑
(s,t)∈In,k ∶ ∣s−t∣<d−1

∣cov(ηs, ηt)∣ + ∑
(s,t)∈In,k ∶ d−1≤∣s−t∣≤Nn

∣cov(ηs, ηt)∣ + nhn
n−1
∑

r=Nn+1
4 α(r)

= O (n2/(d2+2)) + O (n2/(d2+2)) + O (n2/(d2+2) n(3/2−d2)(d2−1)/(d2+2)) ,

which implies that

s2n
µ2
n

= O (n−2/(d2+2)) . (5.20)

We see from (5.18), (5.19) and (5.20) that in all cases the term (1 + µ2
n/(κs2n))−1 is

of order O(n−γ), for some γ > 0. Choosing κ > 2d2/γ we see that (5.16) follows from

(5.17), which completes the proof. �

Lemma 5.4. Suppose that the assumptions of Theorem 3.1 hold true. Define ρn =

n−1∑nt=1P In,t. Then, for arbitrary z ⪯ z with [z, z] ⊆ Nd1
0 ×Rd2 and some C̄ <∞,

E [ sup
z∶ z⪯z⪯z

∣ 1√
n

n

∑
t=1
εt1 (It ∈ (z, z])∣] ≤ C̄

√
ρn ((z, z]) (5.21a)

and

E [ sup
z∶ z⪯z⪯z

∣ 1√
n

n

∑
t=1
εt1 (It ∈ [z, z))∣] ≤ C̄

√
ρn ([z, z)). (5.21b)

Proof of Lemma 5.4. The proof is pretty much the same as that of Lemma 5.2. Since

we impose condition (A3)(ii), we have only a bound for the conditional probability

P (It ∈ C ∣ I1, . . . , It−d, ε1, . . . , εt−d) but not for P (It ∈ C ∣ I1, . . . , It−1, ε1, . . . , εt−1) at

our disposal. In view of this, we consider first the d-thinned partial sums

Xi(B) =
1√
n

∑
s∶ 1≤sd+i≤n

εsd+i 1(Isd+i ∈ B),
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for i = 1, . . . , d, instead of the full partial sums. In analogy to (5.15) in the proof

of Lemma 5.2 we show that, for any neighboring blocks B and C in [z, z] and any

i ∈ {1, . . . , d},

E [∣Xi(B)∣2 ∣Xi(C)∣2] ≤ C̃ ρn(B) ρn(C), (5.22)

for some C̃ <∞.

As in the independent regressors case, we consider again, for arbitrary neighbored

blocks B and C and arbitrary t1, t2, t3, t4 ∈ {1, . . . , n}, the terms E[1(It1 ∈ B)1(It2 ∈

B)1(It3 ∈ C)1(It4 ∈ C)εt1εt2εt3εt4]. Since B and C are disjoint sets it follows as

before that 1(It1 ∈ B)1(It2 ∈ B)1(It3 ∈ C)1(It4 ∈ C) = 0 provided that {t1, t2} ∩

{t3, t4} ≠ ∅. This implies that the above expectation is equal to 0. Moreover, if the

largest index appears only once, then the expectation also vanishes since, by (A2)(i),

E (εt ∣ I1, . . . , It, ε1, . . . , εt−1) = 0. Therefore, we have to examine in more detail two

cases: 1 ≤ t1, t2 < t3 = t4 ≤ n and 1 ≤ t3, t4 < t1 = t2 ≤ n. Hence we obtain that

E [∣Xi(B)∣2∣Xi(C)∣2]

= 1

n
∑

t∶ d<td+i≤n
E

⎡⎢⎢⎢⎢⎣
( 1√

n

t−1
∑
s=0

1(Isd+i ∈ B)εsd+i)
2

1(Itd+i ∈ C)ε2td+i
⎤⎥⎥⎥⎥⎦

+ 1

n
∑

t∶ d<td+i≤n
E

⎡⎢⎢⎢⎢⎣
( 1√

n

t−1
∑
s=0

1(Isd+i ∈ C)εsd+i)
2

1(Itd+i ∈ B)ε2td+i
⎤⎥⎥⎥⎥⎦

≤ σ2
ε

1

n
∑

t∶ d<td+i≤n
E

⎡⎢⎢⎢⎢⎣
( 1√

n

t−1
∑
s=0

1(Isd+i ∈ B)εsd+i)
2

P (Itd+i ∈ C ∣ I1, . . . , I(t−1)d+i, ε1, . . . , ε(t−1)d+i)
⎤⎥⎥⎥⎥⎦

+ σ2
ε

1

n
∑

t∶ d<td+i≤n
E

⎡⎢⎢⎢⎢⎣
( 1√

n

t−1
∑
s=0

1(Isd+i ∈ C)εsd+i)
2

P (Itd+i ∈ B ∣ I1, . . . , I(t−1)d+i, ε1, . . . , ε(t−1)d+i)
⎤⎥⎥⎥⎥⎦

≤ C̃ ρn(B) ρn(C),

as required. Using (5.22) to estimate (5.15), similar to the proof of Lemma 5.2, we

obtain in the same manner that

E [ sup
z∶ z⪯z⪯z

∣Xi ((z, z])∣] ≤ C̄
√
ρn ((z, z]).
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Finally, summing up over i = 1, . . . , d we obtain (5.21a). The proof of (5.21b) is

analogous and therefore it is omitted. �

Acknowledgment . We thank the Associate Editor R. Balan and two anonymous re-

viewers for many constructive comments that improved earlier versions of this work.

This research was partly funded by the German Research Foundation DFG, project

NE 606/2-2 and by the Volkswagen Foundation (Professorinnen für Niedersachsen
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