
BAMBERGER�BEITRÄGE

ZUR�WIRTSCHAFTSINFORMATIK�UND�ANGEWANDTEN� INFORMATIK

ISSN�0937-3349

Nr. 103

Optimized Buffering of
Time-Triggered Automotive Software

Eugene Yip ・ Erjola Lalo ・ Gerald Lüttgen ・ Michael Deubzer ・ Andreas Sailer

September 2018

URN: urn:nbn:de:bvb:473-opus4-529175
DOI: https://doi.org/10.20378/irbo-52917

FAKULTÄT�WIRTSCHAFTSINFORMATIK�UND�ANGEWANDTE� INFORMATIK�

OTTO-FRIEDRICH-UNIVERSITÄT�BAMBERG

tomorrow's software technologies

Lehrstuhl Softwaretechnik & Programmiersprachen
Fakultät Wirtschaftsinformatik & Angewandte Informatik

Optimized Buffering for Time-Triggered

Automotive Software
⇤

Eugene Yip,1 Erjola Lalo,2 Gerald Lüttgen,1 Michael Deubzer,2 Andreas Sailer2

1Otto-Friedrich-Universität Bamberg, 96045 Bamberg, Germany
2Vector Informatik GmbH, Franz-Mayer-Str. 1, 93053 Regensburg, Germany

September 21, 2018

Abstract: The development of an automotive system involves
the integration of many real-time software functionalities, and it
is of utmost importance to guarantee strict timing requirements.
However, the recent trend towards multi-core architectures poses
significant challenges for the timely transfer of signals between
processor cores so as to not violate data consistency.

We have studied and adapted an existing buffering mecha-
nism to work specifically for statically scheduled time-triggered
systems, called static buffering protocol. We developed further
buffering optimisation algorithms and heuristics, to reduce the
memory consumption, processor utilisation, and end-to-end re-
sponse times of time-triggered AUTOSAR designs on multi-core
platforms. Our contributions are important because they enable
deterministic time-triggered implementations to become com-
petitive alternatives to their inherently non-deterministic event-
triggered counterparts. We have prototyped a selection of op-
timisations in an industrial tool and evaluated them on realistic
industrial automotive benchmarks.

⇤Research support was provided by the Bayerische Forschungsstiftung under grant no. AZ-1257-16,
project OBZAS.

Technical Report Contents

Contents

1 Introduction 4

1.1 Contributions . 4
1.2 Report structure and Content . 4

2 Background 6

2.1 AUTOSAR Methodology . 6
2.2 Preemptive Task Scheduling and Data Consistency 7
2.3 Data Protection Mechanisms . 8
2.4 Logical Execution Time (LET) Task Model 8
2.5 Static Scheduling of LET Tasks . 9
2.6 Preservation of LET Communication Semantics 10
2.7 Use of LET as a Design Contract . 11

3 Related Work on Semantics Preserving Buffering 12

3.1 AUTOSAR Implicit Communication . 12
3.2 LET Point-to-Point (PTP) Buffering . 12
3.3 Dynamic Buffering Protocol (DBP) . 13
3.4 Temporal Concurrency Control Protocol (TCCP) 15
3.5 Timed Implicit Communication Protocol (TICP) 15
3.6 Related Buffering Protocols . 15
3.7 Discussion . 16

4 Related Work on Optimising AUTOSAR Designs 17

4.1 Optimising Traditional AUTOSAR Designs 17
4.2 Optimising LET Designs . 18
4.3 Discussion . 20

5 System Model 21

5.1 Software Model . 21
5.2 Hardware Model . 23

6 Overview of Proposed Buffering Optimisations 24

7 Design Phase Optimisations 27

7.1 LET Static Buffering Protocol (SBP) . 27
7.2 Suppression of Unnecessary Writes . 31
7.3 Constructing the SBP Buffering Schedules 34
7.4 Discussion . 36

8 Deployment Phase Optimisations 37

8.1 Realisation of LET Tasks under AUTOSAR 37
8.2 System Model Extensions . 37
8.3 Mixed-Integer Linear Programming (MILP) Formulation 39
8.4 Genetic Algorithm . 43
8.5 Scheduling Hints and Reducing End-to-End Response Times 46
8.6 Refining the SBP Buffering Schedules . 48
8.7 Merging the SBP Buffer Memories . 48
8.8 Discussion . 49

2 of 76

Technical Report Contents

9 Tooling 51

9.1 Software and Hardware Model . 51
9.2 Prototyped Optimisations . 52
9.3 Evaluation Metrics . 52

10 Synthetic Benchmarking 54

10.1 Benchmarking Workflow . 54
10.2 Preliminary Results . 56
10.3 Discussion . 63

11 FMTV Case Study 67

11.1 Preliminary Results . 68

12 Conclusions 71

3 of 76

Technical Report 1 Introduction

1 Introduction

The development of an automotive system involves the integration [OSHK09] of many real-
time software functionalities, where it is critical to guarantee strict timing requirements.
The automotive open system architecture (AUTOSAR) standard [AUT17a] is popular for
developing modular software components with high interoperability. An important type of
requirement, called end-to-end response time, specifies the maximum time that the system
can take to deliver an output to a corresponding input. Such timing requirements are
easier to guarantee with time-triggered implementations because they offer better time-
predictability than their event-triggered counterparts [Kop91]. However, the recent trend
towards multi-core architectures poses significant challenges for the timely transfer of data
and control signals between processor cores so as not to violate data consistency.

In this light, the automotive industry [EKQS18, HvHM+16, RNH+15] has shown great
interest in using the logical execution time (LET) task model [KS12] for designing time-
triggered multi-core systems. A LET task has a statically defined period and block of
time, called the logical execution time, during which the task is allowed to execute its com-
putations. Task communication via signals is limited to the start and end of each LET,
and is idealised to complete in zero time. This ensures time-predictable and deterministic
communication that is unaffected by changes in the underlying platform [HK07]. This plat-
form invariant property is attractive to automotive manufacturers as it greatly simplifies
the migration of legacy single-core software to multi-core platforms [HvHM+16, RNH+15].
The automotive industry is also taking advantage of LET tasks as design contracts be-
tween control and software engineers, and between component suppliers and system integra-
tors [EKQS18]. However, signal buffering is needed to preserve the data- and control-flow
between the tasks [FNG+09], especially when their LETs do not align. Thus, significant
time may be spent on managing the buffers, and significant memory may be needed for the
buffers [FNG+09].

1.1 Contributions
Despite the increasing interest in the LET time-triggered approach, event-triggered systems
remain popular because of their ability to achieve better average-case response times and
resource utilisation [Kop91]. To improve the practicality of the time-triggered approach, we
present an adaptation of the dynamic buffering protocol (DBP) [STC06] that is suitable for
LET communication, and develop buffering optimisation algorithms and heuristics to reduce
the memory consumption, processor utilisation, and end-to-end response times for multi-core
time-triggered AUTOSAR designs. The algorithms and heuristics synthesise the required
buffers and associated accesses for each signal, and the mapping of tasks to processor cores.
When adapting existing buffering protocols to LET tasks, attention is needed to the fact
that LET communication is defined to occur instantaneously at predefined time points. Our
contributions are important to allow time-triggered implementations to become competitive
alternatives to their event-triggered counterparts.

1.2 Report structure and Content
Section 2 recalls (1) the AUTOSAR methodology for developing automotive systems, (2) the
scheduling of LET tasks, and (3) the challenges with implementing a system that preserves
the LET semantics. Section 3 discusses related work on buffering protocols developed for
real-time task communication. We find that DBP is a good candidate for buffering LET
communication. Section 4 presents related work on algorithms and heuristics developed for

4 of 76

Technical Report 1 Introduction

optimising AUTOSAR designs, focussing on the execution time and memory cost of task
communication and on end-to-end response times.

Section 5 discusses the heterogeneous hardware and software architecture that is as-
sumed, followed by an overview of our proposed buffering optimisation approach in Section 6.
Our approach consists of optimisations that are applied during the design and deployment
of an LET system. The overall optimisation goal is to reduce processor and memory util-
isation due to task communication, and to reduce end-to-end response times. The design
phase optimisations (see Section 7) include the adaptation of DBP to statically scheduled
LET tasks (called static buffering protocol, SBP), and the suppression of unnecessary signal
writes. Our optimisations support signals to which multiple task write, and signals that
may be assigned several values before stabilising on a final value. The deployment phase
optimisations (see Section 8) formulate the assignment of signal buffers-to-memory mod-
ules, of tasks-to-cores, and of buffering protocols to each signal as a mixed-integer linear
programming (MILP) problem. Because solving resource allocation problems is NP-hard, a
genetic algorithm of the MILP problem is provided for situations where possibly suboptimal
solutions are acceptable for faster solving time. Once memory allocations are found for the
signal buffers, a heuristic is used to merge buffers with disjoint lifetimes.

We evaluated a selection of the proposed optimisations on synthetic benchmarks, based
on actual airbag, chassis, and engine management systems, and on an industrial engine
management system from the FMTV Challenge [HDK+17]. Section 9 describes the imple-
mentation of the selected optimisations in the TA Tool Suite [Vec18], which aids AUTOSAR
designers in modelling, designing, and analysing the timing behaviour of event-triggered or
time-triggered multi-core automotive software. Sections 10 and 11 explain the setup of
the synthetic and industrial benchmarks, respectively, and discuss preliminary results that
suggest that LET-based AUTOSAR designs with SBP require less memory and execution
time than with the traditional point-to-point communication approach. Finally, Section 12
provides concluding remarks on the optimisation of LET communication in AUTOSAR
designs.

5 of 76

Technical Report 2 Background

Virtual Function Bus

SWC 0

r0 r1 r2

SWC 1

r3 r4 r5

r0

r1
r2
r3
r4
r5

r1 r2

r1

r2

r0
s0

s1
o0

 i0

 s1

s0

Core 0

OSEK OS

t0 r0 t1 r1 t2 r2

Core 1

OSEK OS

t3 r3 t4 r4 r5

Memory 0

(Local to
Core 0)

Memory 1

(Local to
Core 1)

Bus (Round-robin, fixed-priority, or first-come first-served arbitration)

Memory 2

1 void r0(void) {
2 if (s0 < 0) {
3 return -s0;
4 } else {
5 return s0;
6 }
7 }

-9

10

Value
of s0

10 is read

-9 is read

Partial value is read

LET

Initial task offset

Activation offset

Period

Time

(LET start)
Read inputs

(LET end)
Write outputs

WCET

New value for s0
is being written

Times0

0 1

r2

s1

0 1

t0

0 2 4

Time
(ms)

t1

0

1 3

2 41 3

t0

t1

s0 s1
s0 s0

s1 s1

(a) Design phase (r is a runnable).

Virtual Function Bus

SWC 0

r0 r1 r2

SWC 1

r3 r4 r5

r0

r1
r2
r3
r4
r5

r1 r2

r1

r2

r0
s0

s1
o0

 i0

 s1

s0

Core 0

OSEK OS

t0 r0 t1 r1 t2 r2

Core 1

OSEK OS

t3 r3 t4 r4 r5

Memory 0

(Local to
Core 0)

Memory 1

(Local to
Core 1)

Bus (Round-robin, fixed-priority, or first-come first-served arbitration)

Memory 2

1 void r0(void) {
2 if (s0 < 0) {
3 return -s0;
4 } else {
5 return s0;
6 }
7 }

-9

10

Value
of s0

10 is read

-9 is read

Partial value is read

LET

Initial task offset

Activation offset

Period

Time

(LET start)
Read inputs

(LET end)
Write outputs

WCET

New value for s0
is being written

Times0

0 1

r2

s1

0 1

t0

0 2 4

Time
(ms)

t1

0

1 3

2 41 3

t0

t1

s0 s1
s0 s0

s1 s1

(b) Runnable communi-
cation dependencies for
signals s0 and s1.

Virtual Function Bus

SWC 0

r0 r1 r2

SWC 1

r3 r4 r5

r0

r1
r2
r3
r4
r5

r1 r2

r1

r2

r0
s0

s1
o0

 i0

 s1

s0

Core 0

OSEK OS

t0 r0 t1 r1 t2 r2

Core 1

OSEK OS

t3 r3 t4 r4 r5

Memory 0

(Local to
Core 0)

Memory 1

(Local to
Core 1)

Bus (Round-robin, fixed-priority, or first-come first-served arbitration)

Memory 2

1 void r0(void) {
2 if (s0 < 0) {
3 return -s0;
4 } else {
5 return s0;
6 }
7 }

-9

10

Value
of s0

10 is read

-9 is read

Partial value is read

LET

Initial task offset

Activation offset

Period

Time

(LET start)
Read inputs

(LET end)
Write outputs

WCET

New value for s0
is being written

Times0

0 1

r2

s1

0 1

t0

0 2 4

Time
(ms)

t1

0

1 3

2 41 3

t0

t1

s0 s1
s0 s0

s1 s1

(c) Event-chain ec0, with in-
put i0 and output o0.

Virtual Function Bus

SWC 0

r0 r1 r2

SWC 1

r3 r4 r5

r0

r1
r2
r3
r4
r5

r1 r2

r1

r2

r0
s0

s1
o0

 i0

 s1

s0

Core 0

AUTOSAR OS

t0 r0 t1 r1 t2 r2

Core 1

AUTOSAR OS

t3 r3 t4 r4 r5

Memory 0

(Local to
Core 0)

Memory 1

(Local to
Core 1)

Bus (Round-robin, fixed-priority, or first-come first-served arbitration)

Memory 2

1 void r0(void) {
2 if (s0 < 0) {
3 return -s0;
4 } else {
5 return s0;
6 }
7 }

-9

10

Value
of s0

10 is read

-9 is read

Partial value is read

LET

Initial task offset

Activation offset

Period

Time

(LET start)
Read inputs

(LET end)
Write outputs

WCET

New value for s0
is being written

Times0

0 1

r2

s1

0 1

t0

0 2 4

Time
(ms)

t1

0

1 3

2 41 3

t0

t1

s0 s1
s0 s0

s1 s1

(d) Deployment phase (t is a task).

Figure 1: AUTOSAR methodology.

2 Background

This section discusses the challenges surrounding the deployment of AUTOSAR designs onto
multi-core platforms. Of note is the need to ensure data consistency among communicating
tasks, and the desire to maintain time-predictable behaviour among the possible platform
configurations.

2.1 AUTOSAR Methodology
An AUTOSAR design [AUT17a] consists of one or more self-contained software components
(SWCs) that communicate over memory-mapped signals. A software component contains
one or more so-called runnables that each encapsulate the smallest code-fragment that
can be scheduled by an operating system. Figure 1a exemplifies a small design with two
SWCs and six runnables. Runnables communicate over signals, and Figure 1b shows some
dependencies for the signals s0 and s1. For signal s0, runnable r0 is the sole writer and
runnables r1 to r5 are the readers. For signal s1, runnable r1 is the writer and runnable r2
is the reader. Communication dependencies influence the execution order of the runnables,
and cyclic dependencies are broken by delaying one of the communication links.

When deploying an AUTOSAR design, runnables are mapped to operating system tasks.
Due to resource constraints, AUTOSAR-compliant operating systems typically only support
a limited number of tasks and several runnables may be mapped to the same task. The

6 of 76

Technical Report 2 Background

Virtual Function Bus

SWC 0

r0 r1 r2

SWC 1

r3 r4 r5

r0

r1
r2
r3
r4
r5

r1 r2

r1

r2

r0
s0

s1
o0

 i0

 s1

s0

Core 0

AUTOSAR OS

t0 r0 t1 r1 t2 r2

Core 1

AUTOSAR OS

t3 r3 t4 r4 r5

Memory 0

(Local to
Core 0)

Memory 1

(Local to
Core 1)

Bus (Round-robin, fixed-priority, or first-come first-served arbitration)

Memory 2

1 void r0(void) {
2 if (s0 < 0) {
3 return -s0;
4 } else {
5 return s0;
6 }
7 }

-9

10

Value
of s0

10 is read

-9 is read

Partial value is read

LET

Initial task offset

Activation offset

Period

Time

(LET start)
Read inputs

(LET end)
Write outputs

WCET

New value for s0
is being written

Times0

0 1

r2

s1

0 1

t0

0 2 4

Time
(ms)

t1

0

1 3

2 41 3

t0

t1

s0 s1
s0 s0

s1 s1

Figure 2: Example of signal stability and partial reading issues.

mapping also depends on whether a runnable contains specific computations that can only be
executed or accelerated by a particular type of processor core (e.g., floating point or digital
signal processing operations) or needs to access specific peripherals for sensing or actuating.
In such a case, several runnables from different SWCs may need to be mapped to the same
task to be executed by a specific core. Figure 1d shows a possible multi-core deployment
of Figure 1a. It is common for an input signal to be processed by a sequence of runnables,
and an event-chain [KKTM10] can be used to capture the causal relationships between
event occurrences. The event-chain ec0 of Figure 1c defines that input i0 is processed by
runnables r0, r1, and r2 to produce output o0, with intermediate signals s0 and s1 being
produced along the way. The time that an event-chain needs to generate an output from its
input is its end-to-end response-time. Data age constraints [AUT17c], such as r0

s0, ���! r1,
can be specified to enforce that the value of s0 read by r1 must not have been written by r0
more than � time units ago.

After mapping the tasks to a multi-core platform, a scheduling discipline is selected to
manage the sharing of resources (e.g., memory and processor time) among the tasks. Incor-
rect values may be communicated between tasks if insufficient time is given to complete the
communications, or insufficient (buffer) memory is allocated. In such cases, the implemen-
tation is incorrect and must be rectified, e.g., by redesigning the software or by provisioning
more resources. Static timing analysis [WEE+08] is typically performed to validate the
real-time behaviour of the system before it is placed into operation.

2.2 Preemptive Task Scheduling and Data Consistency
AUTOSAR [AUT17a] defines the use of AUTOSAR OS as the basis for fixed-priority pre-
emptive task scheduling [LL73] to preferentially execute higher priority tasks for shorter
response times. When a higher priority task is activated, e.g., by a periodic timer, the
scheduler interrupts the executing task and begins to execute the higher priority task. The
scheduler saves the execution context of the preempted task so that its execution can be
resumed later, after all the higher priority tasks have completed their executions. Preemp-
tion can cause non-deterministic timing behaviours, because task interruptions depend on
their priorities and actual execution times. This results in end-to-end response times with
high jitter, which is undesirable for real-time automotive systems.

Preemptive scheduling can cause signal writes and reads to interleave among the tasks,
leading to inconsistent values being read. For example, in Figure 2, runnable r0’s code for
returning the absolute value of signal s0 is shown on the left side, and s0’s value over time is
shown along the right side. The runnable begins by reading the value 10 for s0, which is a
positive number. It attempts to return the original value of s0, which is updated to �9 in the
meantime. Hence, an incorrect value is returned because s0’s value was unstable during r0’s

7 of 76

Technical Report 2 Background

execution. If instead s0’s value is read while it is updated (e.g., line 3 in Figure 2), then
only a partial value is read. Signal stability and partial reading issues can cause runnables
to branch along incorrect paths or to compute incorrect values for other signals.

When a task needs to read from multiple signals, it is possible that some of the signals
are tightly coupled, e.g., the sampling of an engine’s temperature and rotational speed as
two periodic signals. A task reads such tightly coupled signals in a coherent manner if it
reads the n-th value of each signal together. In any real implementation, it takes time to
deliver sensor values to the tasks. Hence, the system must be robust against delays because
they can cause tasks to read different signal instances together (incoherent reads). It is the
responsibility of the system designer to define the coherent signals. We only address the
concerns for data stability and the prevention of partial reads by using appropriate data
protection mechanisms. Signal coherency builds on top of signal stability and would require
signal instances to be tracked at run-time. We consider signal coherency as future work.

2.3 Data Protection Mechanisms
Data protection mechanisms [HZN+14, Ray13, BCB+08], e.g., locks, are needed to give
tasks exclusive access to signals. However, the use of locks in real-time multi-core systems is
undesirable [HZN+14] because they can cause parallel tasks to block and sequentialise their
executions, to suffer from deadlocks, and to experience priority inversions where higher
priority tasks are blocked by lower priority tasks. Thus, locks introduce additional inter-
core interferences that are complex to analyse [GGL14].

Lock-free methods [Her90] attempt to minimise the blocking time by allowing tasks to
access signals without locks. An access is successful if no other task has updated the signal
at the same time. Otherwise, the access must be retried until successful. The number of
retries can be bounded [Her90] to estimate the worst-case access time. It should be noted
that lock-free methods solve the partial read issue, but do not provide signal stability.

Wait-free methods [Her90] provide a strategy that is based on keeping snapshots of a
signal’s value from different points of time, and tasks access specific snapshots stored in
buffers. This enables tasks to access signals independently and concurrently without having
to block or retry, making wait-free methods amenable to static timing analysis. Once a
snapshot is no longer needed by any task, its buffer element can be reused for a new snapshot.
Since a signal’s value in a snapshot is constant, signal stability can be guaranteed. Compared
to locks and lock-free methods, wait-free methods provide short predictable access times and
signal stability, but may require significant buffer memory to be allocated. Section 3 reviews
a selection of wait-free methods developed for real-time systems.

2.4 Logical Execution Time (LET) Task Model
The LET task model [KS12] was originally developed as part of the time-triggered Giotto
language [HHK01]. It is being used by the automotive industry to enhance legacy em-
bedded control software with real-time behaviour [RNH+15] and to parallelise their execu-
tion [HvHM+16]. Figure 3 illustrates the parameters of a LET task: the period contains a
block of time, called the logical execution time (LET), during which the task can execute its
computations for up to its worst-case execution time (WCET). If the task fails to complete
before the end of its LET, i.e., the task’s deadline, then a timing error occurs and it must
be handled by the run-time (e.g., by dropping the task instance). The start of the LET
is determined by an activation offset, which can be zero. All tasks start their first period
together when the system is initialised. A positive initial task offset can be specified to

8 of 76

Technical Report 2 Background

Virtual Function Bus

SWC 1

r1 r2 r3

SWC 2

r4 r5 r6

r1

r2

r3

r4

r5

r6

r2 r3

r2

r3

r1
s1

s2

o1

 i1

 s2

s1

Core 1

OSEK OS

t1 r1 t2 r2 t3 r3

Core 2

OSEK OS

t4 r4 t5 r5 r6

Memory 1

(Local to
Core 1)

Memory 2

(Local to
Core 2)

Bus (Round-robin, fixed-priority, or first-come first-served arbitration)

Memory 3

1 void r1(void) {
2 if (s1 < 0) {
3 return -s1;
4 } else {
5 return s1;
6 }
7 }

-9

10

Value
of s1

10 is read

-9 is read

Partial value is read

LET

Initial task offset

Activation offset

Period

Time

(LET start)
Read inputs

(LET end)
Write outputs

WCET

New value for s1
is being written

Times1

1 2

r3

s2

1 2

t1

0 2 4

Time
(ms)

t2

0

1 3

2 41 3

t1

t2

s1 s2
s1 s1

s2 s2

Figure 3: Parameters of a LET task.

delay the start of the task’s first period. The end of a task’s period coincides with the start
of its next period. The following constraints can be used to validate a task’s parameters:

• period � activation offset + LET: Ensures that the period is long enough to contain
the LET;

• LET � WCET: Ensures that the LET provides enough time to execute the task’s
computations.

The task reads its input signals at the start of its LET and their values remain constant
throughout the LET. The task writes its output signals at the end of its LET. The writing
and reading of signals at the LET boundaries is idealised to occur instantaneously in zero
time, thus guaranteeing by design that signal values are updated atomically and remain sta-
ble during task execution. Because task communication only occurs at the LET boundaries,
the task’s input/output behaviour is time-predicable and decoupled from the task’s com-
putation time. Although this greatly simplifies the static analysis of end-to-end response
times, it also imposes an artificial delay on signal communication, which the implementation
must preserve.

2.5 Static Scheduling of LET Tasks
AUTOSAR [AUT17a] defines the use of schedule tables (for each core) to implement time-
triggered systems. A schedule table defines a sequence of task activations to be performed
at predefined times, and can be constructed using the base-period [YKRB14] or hyper-
period [YKRB14, CM05] approach. In the base-period approach, time is divided into equally
sized slots, called the base-period, in which tasks are allocated some time to execute their
computations. As a result, tasks are executed preemptively in a time-sliced manner. Its
main advantage is the ability to reuse the slack that builds up at the end of each base-
period, so as to support variable task periods [YKRB14]. However, scheduling overheads
become significant when the base-period is much shorter than the task periods. The hyper-
period approach constructs longer schedules that contain consecutive instances of each task.
The hyper-period approach allows for better schedulability than the base-period approach,
because computations can be scheduled over the entire task period, such that unnecessary
time-slicing preemptions are avoided.

For this work, LET tasks are statically scheduled using the hyper-period approach be-
cause support for variable task periods is not needed. Figure 4 shows a 6 ms hyper-period
schedule for the tasks in Table 1. The first step in constructing a hyper-period schedule is
to allocate the WCET of each task (shaded segments in Figure 4) within the LET of their
initial period. Subsequent task instances are appended to the schedule until all tasks end

9 of 76

Technical Report 2 Background

Table 1: Example timing information (in ms) for the tasks in Figure 1d

Task Period LET WCET Initial Offset Activation Offsets

t0 1 0.5 0.25 0 0

t1 1.2 1 0.25 0 0

t2 1.5 1 0.5 0 0

t3 2 1.5 1 0 0

t4 6 4 2 0 0

t0
0 1 2 3 4 5 6 7 8

t1
0 1.2 2.4 3.6 4.8 6 7.2

t2
0 1.5 3 4.5 6 7.5

t3
0 2 4 6 8

t4
0 6

t0
1

0 1 2 3 4 5 6

2 3 4 5 6

t1
0

0 1.2 2.4 3.6 4.8 6

1 2 4 5

t2
0

0 1.5 3 4.5 6

2 3 5

t3
0

0 2 4 6

2 4

t4
0

0 6

0 ? ? ?
ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

0 1 ? ?

ne
xt

,
pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

0 1 2 ?Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s initial
state (0 ms)

Buffer’s state at
2 ms

ne
xt

pr
ev

t1 t2,t3

Buffer’s state at
0.5 ms

Time (ms)

Time
(ms)

C
or

e
0

C
or

e
1

t0
1

0 1 2 3 4 5

2 3 4 5 Time
(ms)t0

t1

s0

t1
1 2 4

0 31.5 4.5

t0
1

0 1 2 3 4 5

2 3 4 5 Time
(ms)

t1
1 2 4

tw
1

0 2 4

2 Time
(ms)

tr
0 1

Reader and
Writer needs
input and output
buffering

tw

0

0 2 4

1

Time
(ms)

tr

1 2
Writer needs
output buffering

0 31.5 4.5

0 31.5 4.5

0 31.5 4.5

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

e 3 ?

0
p
?
n

1
p

?
?

n
2
p

n
3
p

?
n

4
p

?
n

5
p

?
n

6
p

Figure 4: Hyper-period schedule of 6 ms for the tasks in Table 1. Execution times allocated
in each LET are indicated by shaded segments.

their last period together. Thus, the duration of the resulting hyper-period schedule is equal
to the least common multiple (LCM) of the task periods. At run-time, if the boundaries of
multiple LETs occur together, then the writes always precede the reads. This ensures that
the latest value of each signal can be read.

System schedulability is demonstrated by constructing a hyper-period schedule that
provides enough time for tasks to execute at their WCET during their LET. The guarantee
of signal stability and the absence of partial reads by the LET semantics allow tasks to
be scheduled preemptively for improved schedulability [KS12]. A LET in the hyper-period
schedule contains slack if it is not completely allocated to execute tasks. For Core 1 in
Figure 4, task t3’s third LET contains slack. Note that there is no slack in t3’s first two
LETs and in t4’s first LET because those time periods are allocated completely to execute t3
and t4. If every LET contains slack, then the system’s end-to-end response times can be
reduced by scaling down the timing parameters of all tasks until a task no longer has any
slack. This results in a shorter hyper-period. However, absolute timing behaviour is not
preserved by this approach.

2.6 Preservation of LET Communication Semantics
One key benefit of using the LET task model is that its formal semantics [HHK01] facilitates
the formal verification [CW96] of a system’s functionality and timing behaviour against its

10 of 76

Technical Report 2 Background

requirements. An implementation that preserves the LET semantics does not need to be
verified, since its behaviour would be identical to that of the original design. When given
the same sequence of (timestamped) inputs, a semantics preserving implementation and
its original design would produce the same sequence of (timestamped) outputs, i.e., the
data-flow and its timing are preserved. However, the idealised instantaneous writing and
reading of signals at LET boundaries cannot be realised by any implementation; time is
always needed. Thus, a correct implementation must ensure that sufficient time is provided
to access signals so as to preserve the original data-flow and its timing.

2.7 Use of LET as a Design Contract
The automotive industry is actively exploring [EKQS18] the use of the LET task model as a
design contract between control engineers, who demand information on the delays that their
control loop could experience, and software engineers, who are responsible for implementing
the control algorithms such that they run at their designed rate. The control and soft-
ware engineers would negotiate on how the control algorithm is to be mapped as sequences
of runnables to LET tasks, and on the LET timing characteristics. The mapping has to
consider the resource needs of each runnable, which may be restricted to specific processor
cores, e.g., signal processing execution units, or peripherals for sensing and actuating. Once
the contract is settled, the control and software engineers could start working independently
of each other. The control engineers would design their algorithm, knowing the expected
end-to-end response times of the final implementation with high confidence. The software
engineers could explore different implementation options with minimal risk in affecting the
control quality. Consequently, it is undesirable to later modify the runnable-to-task map-
pings, because the end-to-end response times may be greatly affected, warranting a full
redesign of the control algorithm.

11 of 76

Technical Report 3 Related Work on Semantics Preserving Buffering

Table 2: Categorisation of the semantics preserving protocols reviewed in Section 3

Centralised:

Dynamic buffering protocol (DBP) [STC06]
Temporal concurrency control protocol (TCCP) [WNSV07]
Timed implicit communication protocol (TICP) [KQBS15]
Decentralised:

AUTOSAR implicit communication [AUT17a]
LET point-to-point (PTP) buffering [RNL17, HvHM+16, RNH+15]

3 Related Work on Semantics Preserving Buffering

This section reviews the wait-free buffering protocols that have been proposed for AU-
TOSAR task communication [AUT17a], and for time-triggered communication based on
LET semantics [KS12] and the closely related synchronous-reactive semantics [BCE+03]. A
buffering protocol defines the necessary actions that the run-time and tasks need to take to
manage and access a buffer’s content. The protocol guarantees that the signal writer and
readers always access the same buffer elements at disjoint times, and that the freshest value
is always read. Typically, a buffer is created for each signal and its value is written by the
output of a dedicated task, called the writer of the signal. A task that reads the signal’s
value as input is called a reader of the signal. Note that a task can write to or read from
multiple signals.

Table 2 categorises buffering protocols as being centralised [KQBS15, WNSV07, STC06]
or decentralised [RNL17, HvHM+16, AUT17a, RNH+15] depending on the buffer’s location
in memory. Centralised protocols use a buffer that is located in global memory. With
decentralised protocols, a signal’s value is written to the writer’s local buffer, and the readers
are responsible for copying the value into their own local buffers. Although centralised
protocols can be more memory efficient than decentralised protocols, accessing global buffers
can be more time consuming for frequent signal accesses.

3.1 AUTOSAR Implicit Communication
AUTOSAR supports the decentralised buffering of signals via so called implicit communi-
cation [AUT17b]. For each runnable, the AUTOSAR run-time environment copies its input
signals into local variables before the runnable is executed, and writes its output signals
after the runnable has terminated. Runnables access their own copy of inputs during execu-
tion. Thus, signal stability and the absence of partial reads is guaranteed by the run-time.
However, even on the same platform, the run-time does not guarantee the timing or ordering
in which the inputs and outputs are copied. Hence, implicit communication is inherently
non-deterministic and, thus, unsuitable for preserving LET semantics.

3.2 LET Point-to-Point (PTP) Buffering
Buffering protocols proposed for LET systems are based on a decentralised point-to-point
(PTP) approach [RNL17, HvHM+16, RNH+15]. These protocols are designed for systems
that use priority-based task scheduling, such as OSEK OS [OSE05]. A task’s output signal
is computed and stored in a local buffer, and only made available at the end of its LET.
When a reader of the signal starts its LET, it stores a copy of the signal in its own local
buffer. Thus, the collective buffer size for a signal is equal to R+ 1, where R is the number

12 of 76

Technical Report 3 Related Work on Semantics Preserving Buffering

Table 3: Example timing information (in ms) from Table 1 for the tasks in Figure 1d

Task Period WCET

t0 1 0.25

t1 1.2 0.25

t2 1.5 0.5

t3 2 1

t4 6 2

of readers and “1” is needed for the writer, although this can be reduced by performing
buffer analysis [RNL17, RNH+15] to identify the tasks that do not require buffering for
semantics preservation. The analysis also identifies tasks that can share a global buffer
without affecting the communication behaviour, resulting in a more centralised protocol.

3.3 Dynamic Buffering Protocol (DBP)
In contrast to LET tasks, where outputs are expected at predefined times, the outputs
of synchronous-reactive tasks [BCE+03] are assumed to be produced instantaneously (in
zero time) when inputs arrive. However, in any real implementation, tasks need time to
compute their outputs. In addition, a task’s computation time can vary from one instance
to another. Thus, buffering is needed to ensure that tasks read from the correct output
instances [NWV08, STC06] in order to preserve the synchronous communication semantics.
Sofronis et al. [STC06] propose a dynamic buffering protocol (DBP) that is memory optimal
in the sense that only the output instances needed for semantics preservation are buffered,
with no assumptions made on task activation or completion times. The writing task uses a
next pointer to track the buffer element that will hold the new value being computed, and
a prev pointer to track the buffer element of its previously computed output. Each time
the writing task is activated, it assigns next to prev, and an algorithm is executed to find
a free buffer element that is not used by a reading task or pointed to by prev. The next

pointer is updated to point to the free buffer element. When a reading task is activated
(at the start of its period), it copies the address held in next. This address specifies the
buffer element that the reading task uses throughout its computation. The address held in
prev is copied instead if the reading task has a higher priority than the writing task. Buffer
elements are freed and reused when their values are no longer needed by the readers.

Figure 5 demonstrates DBP for signal s0 from Figure 1b, using the task periods and
WCETs from Table 3 (i.e., treating them as ordinary tasks without LET semantics). The
task priorities, in descending order, are t0 > t1 > t2 > t3 > t4. Since DBP is designed
for single-core platforms, the execution trace assumes rate-monotonic, preemptive schedul-
ing [LL73] on a single core. At 0 ms, after all tasks have been activated, the readers will
read from buffer element e1, even though its value is currently undefined. By the time the
readers are scheduled for execution, t0 has written the value 1 into buffer element e1. We
see that buffer element e1 could not be reused during t4’s entire period. At 2ms, the buffer
is fully utilised because element e0 holds the previous value, element e1 is being read by
task t4, and element e2 is needed for the writer’s next value that task t3 reads. Even after t2
is preempted at 4.8 ms, it continues to correctly read value 5, instead of the next value 6

computed by t0.
DBP can be configured to store up to k previous values of a signal, which is useful when

tasks need a sliding window of values for signal processing [BDM02], or need to access pre-

13 of 76

Technical Report 3 Related Work on Semantics Preserving Buffering

0
p
?
n
?

1
?
n

p

2

n
3

p

p

?
n
4

?
n

p

5

?
n

p

6

t0

t0
1

0 1 2 3

2 3

t1
1

0 1.2 2.4 3.6 4.8 6

2 3 4 5

t2
1

0 1.5 3 4.5 6

2 4 5

t3
1

0 2 4 6

3 5

t4
1

0 6

Time
(ms)

4 5

1

4 5 6

54 6

3

0 ? ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

Buffer’s state at 0 ms
after all tasks have
been activated

0 1 ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t3,t4

Buffer’s state at
0.8 ms during t3

2 1 ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s state at 2 ms
after t0 and t3 have
been activated t3

t2t1 t2 t3

t0

t3 t4

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

Figure 5: Example execution of the tasks in Table 3 using DBP for signal s0 from Figure 1b.
For the first 6 ms, the contents of signal s0’s buffer are displayed below the writer t0. Each
buffer element is shown as a row, containing its value (“?” if the value is being computed)
and whether it is being referenced by the writer’s next (n) or prev (p) pointer. Changes
to a buffer element’s value or to the writer’s pointer references are demarcated by solid
vertical lines. Writes and reads are drawn as dotted arrows going into and out of the buffer,
respectively. The values written and read by the tasks are shown inside their respective
LETs. Task preemptions are indicated by dotted vertical lines.

14 of 76

Technical Report 3 Related Work on Semantics Preserving Buffering

vious values to correctly implement software pipelining [MRR12]. Moreover, DBP supports
the over- and under-sampling of signals when tasks of different periods communicate. Un-
der dynamic task scheduling, a lower bound for a signal’s buffer size is calculated [STC06]
as Rlp + k + 1, where Rlp is the number of lower priority readers, and k is the number of
previous values to retain. For Figure 5, a buffer size of 4 would be calculated, although only
a size of 3 is actually needed.

3.4 Temporal Concurrency Control Protocol (TCCP)
Wang et al. [WNSV10, WNSV07] provide several OSEK-compliant implementations for
DBP and analyse their costs in terms of required memory and execution time, given in
Table 4. The main decider for the required memory and execution time is the algorithm
for finding a free buffer element. For the constant-time implementation, an auxiliary linked
list is used to track the free buffer elements, leading to a higher memory requirement than
the linear-time implementation, which simply iterates through the entire buffer until a free
element is found. Wang et al. [WNSV10, WNSV07] also describe a temporal concurrency
control protocol (TCCP) that uses a circular buffer [KR93] to store a signal’s values in
consecutive (chronological) order. Thus, finding a free buffer element only involves incre-
menting next to point to the next buffer element. For TCCP, the buffer size is bounded by
the number of writes that could occur during the longest task period among the readers. If
TCCP had been used for Figure 5, then a buffer size of 7 would be calculated.

3.5 Timed Implicit Communication Protocol (TICP)
The timed implicit communication protocol (TICP) [KQBS15] extends AUTOSAR implicit
communication by tagging each written value with a monotonically increasing timestamp.
To preserve the communication semantics, each reader is responsible for finding the value
with the correct timestamp. In any real implementation, the memory for storing each
timestamp is bounded, posing a limit on the system’s run-time before a timestamp overflow
occurs [ST00]. No algorithms are suggested to find a free buffer element for the writer,
to find the correct timestamped values for the readers, or to handle bounded timestamps.
TICP appears to be similar to DBP, except that DBP implicitly maintains the necessary
timestamp information with the prev and next pointers.

3.6 Related Buffering Protocols
Other buffering protocols have been proposed, but are not directly applicable to LET com-
munication. First in, first out (FIFO) buffering [Hab72] is used in point-to-point signal
communication, where a reader needs to receive all values computed by a writer. The
reader consumes (reads and then clears) the oldest value in the buffer. However, FIFO
buffering is unsuitable when tasks have different periods, because it can lead to buffer over-
or under-flow. Similar to FIFO buffering is lossless [YKRB14] and synchronous data flow
(SDF) buffering [LM87]. In lossless buffering, the reader consumes all values in the buffer
each time it is activated. In SDF buffering, each time a task is activated, it consumes or
writes a fixed number of values into the buffer. We do not consider SDF or lossless buffer-
ing in this work because current automotive systems do not require such communication
behaviour.

15 of 76

Technical Report 3 Related Work on Semantics Preserving Buffering

Table 4: Memory and execution time costs for DBP, TCCP, and PTP, where B is the
number of buffer elements, R is the number of readers, Rlp is the number of lower priority
readers, k is the number of previous values to retain, pmax

R is the maximum task period
among the readers, and pmin

W is the minimum task period of the writer

Memory Time to find buffer element
Buffering protocol Buffer Auxiliary for writing for reading
Linear-time DBP [WNSV07]

B = Rlp + k + 1
3R+B + 2 O(B)

O(1)
Constant-time DBP [WNSV07] 3R+B + 3

O(1)
Constant-time TCCP [WNSV07]

⇠
p
max
R + p

min
W

pmin
W

⇡
+ k 2R+ 2

Constant-time PTP [RNH+15] R+ 1 0

3.7 Discussion
The memory and time trade-off highlighted by Table 4 is that a faster buffering protocol
needs to store more information about the tasks at run-time, while a slower protocol needs
time to reconstruct the information every time it is invoked. The semantics preserving
DBP, TCCP, and TICP protocols have been designed with priority-based, preemptive task
scheduling in mind, and make no assumptions about task activation and completion times.
Moreover, they assume that a signal has only one writer, whereas real automotive software
can have signals with multiple writers. Only task periods are required, which are used to
derive task priorities. Therefore, buffer management algorithms need to be executed at
run-time, e.g., to find a free buffer element for the writer, and to find the correct signal
snapshot to read. These buffering protocols assume a more general task model than LET,
and can be adapted to preserve LET semantics. However, by design, DBP and TCCP
are limited to single-core platforms, because tasks are assumed to execute sequentially and
never in parallel. By observing that LET tasks have precisely defined input reading and
output writing times, their computation and buffer accesses can be statically scheduled so
as to avoid the need to manage the buffers at run-time. Moreover, exact buffer sizes can be
computed for each signal by inspecting the static schedule (see Section 7.1).

It should be noted that the actual buffer size needed by DBP is never greater than that of
TCCP [STC06]. However, depending on the task periods, the calculation of a lower bound
on the buffer size needed by DBP can sometimes be worse than that of TCCP, leading to
the over-provisioning of buffer memory. Natale et al. [NWV08] reduce the calculated lower
bounds for DBP by observing that readers, with slightly longer periods than the writer’s
period, access the same subset of buffer elements. Thus, the reading tasks are partitioned
into faster tasks and slower tasks, and a lower bound is calculated for each set. The lower
bounds are summed together to obtain a final lower bound. For Figure 5, an improved
buffer size of 3 would be calculated, equal to what is actually needed.

16 of 76

Technical Report 4 Related Work on Optimising AUTOSAR Designs

4 Related Work on Optimising AUTOSAR Designs

This section reviews the approaches that have been developed to optimise the end-to-end
response times, memory consumption, and processor utilisation of AUTOSAR designs. We
begin by reviewing the approaches developed for single-core AUTOSAR designs [FNG+09,
ZN12, ZNZ14] that are based on traditional operating system tasks. When moving to multi-
core designs [FLSN14, WMM+13, SCCM15, HZN+14], the approaches need to consider the
resource contentions that arise from parallel execution, e.g., on the system bus, shared
memories, and peripherals. We end by reviewing the optimisation approaches for LET-
based AUTOSAR designs [RNH+15, HvHM+16, FFPT05, BKU16, RNL17, BPBN17], which
is a relatively new research area. The approaches developed for multi-core AUTOSAR
designs cannot be applied directly because greater care is needed to preserve the LET
semantics. Moreover, LET tasks are typically compiled [HK07] for execution on a virtual
embedded machine, which hinders the application of performance-related optimisations on a
real platform. Nevertheless, several implementation strategies for real platforms have been
proposed [RNH+15, HvHM+16, KSU16, RNL17].

4.1 Optimising Traditional AUTOSAR Designs
The optimisations developed for single-core designs [FNG+09, ZN12, ZNZ14] typically as-
sume the fixed-priority scheduling of periodic operating system tasks. Each periodic task
contains one or more runnables, whose WCETs are known at design time. Tasks commu-
nicate via signals, and each signal is assumed to have a dedicated writing task. Under
these assumptions, Zeng and Natale [ZN12] minimise the total memory needed to main-
tain context-switches on the stack and to manage signal communication. Heuristics and
mixed-integer linear programming (MILP) [BGG+71] are used to optimise, for each signal,
the use of locks or wait-free protocols (DBP or TCCP) as a means of trading off memory
consumption with execution time [FNG+09]. If a lock is used, then the signal’s access time
is modelled as a critical section to account for the potential blocking time. If a wait-free
protocol is used instead, then the signal’s access time is modelled as additional instructions
in the runnables to reflect the protocol’s overhead. Stack usage is minimised through the
concept of preemption thresholds [WS99], where a task is scheduled based on its normal
priority, but is executed at a higher priority that is equal to that of its executing runnable.
This elevation in task priority helps one to minimise the occurrence of task preemptions.
An optimal assignment of runnable priorities and execution orders are found for each task,
such that tasks with shorter deadlines can still preempt tasks with longer deadlines, thereby
ensuring task schedulability. In a later work [ZNZ14], the merging of tasks is considered to
improve the assignment of runnable priorities and execution orders.

The optimisations developed for multi-core or multi-processor designs make the same
assumptions as those for single-core designs. Additionally, the use of partitioned scheduling
is assumed, where tasks are statically assigned to a core and cannot migrate to another
core at run-time. Several resources (e.g., the system bus, memory modules, or peripherals)
may also be shared among the cores. Faragardi et al. [FLSN14] propose a heuristic that
uses simulated annealing [KSU83] to find good task-to-core allocations such that the overall
runnable communication time is minimised. Runnables involved in the same event-chain
are assigned to the same task, and their ordering in the event-chain becomes their execution
order. A runnable is duplicated if it is involved in multiple event-chains. Different commu-
nication delays are modelled for runnables that belong to the same task (shortest delay),
to the same core, or to different cores (longest delay). Tasks are merged if their runnables
communicate with each other, because this further reduces the communication delays. The

17 of 76

Technical Report 4 Related Work on Optimising AUTOSAR Designs

proposed heuristic ensures that feasible solutions satisfy the end-to-end response times of
the design’s event-chains. However, no attempt is made to minimise memory consumption
and data protection is not considered.

Wozniak et al. [WMM+13] consider a multi-processor architecture where each processor
can only access local memory, and must communicate with others over a shared bus. The
optimisation goal is to minimise end-to-end response times and memory consumption. For
tasks that reside on the same processor, time-consuming (locks) and memory-consuming
(wait-free) data protection mechanisms are selected for each signal. When locks are used,
the potential blocking time across the tasks is considered. Bus throughput, where only a
limited amount of data can be transferred on the bus at any given time, is maximised by
allocating runnables to the same task (core) if they communicate together. The end-to-end
response times are calculated by summing the worst-case response times of the runnables
and the worst-case access times of the signals. Unlike Faragardi et al. [FLSN14], runnables
involved in multiple event-chains do not need to be duplicated, and runnables in the same
event-chain can be allocated to different tasks and cores. Thus, changing the runnable exe-
cution orders can have a significant impact on the end-to-end response times. To support the
modelling of heterogeneous architectures, each runnable has a vector of WCETs, where each
WCET corresponds to a specific processor. In addition, each signal has a vector of worst-
case access times, where each access time is for a specific combination of buses. Although
the modelling of heterogeneous architectures increases the applicability of the proposed op-
timisation approach to realistic systems, it also causes the design space to explode. Thus, in
addition to solving the optimisation problem exactly with MILP, Wozniak et al. [WMM+13]
provide a heuristic based on a genetic algorithm [Gol89] that gives approximate solutions,
i.e., possibly suboptimal, in less time.

Saidi et al. [SCCM15] investigate the problem of minimising task communication times
while statically load balancing a homogeneous multi-core processor. Integer linear pro-
gramming (ILP) [PS82] is employed to find optimal runnable-to-core allocations such that
runnables that communicate frequently are on the same core, and that the absolute load
difference between the cores is minimal. Han et al. [HZN+14] study the implementation of
lock-based and wait-free protocols and present detailed measurements of their memory and
time overheads. Based on their experimental data, they propose a greedy heuristic that
selects a data protection mechanism for each signal in a system with the aim of reducing
memory consumption. The heuristic begins by assuming that all signals use a wait-free
protocol (DBP or TCCP). The signals are then ordered based on how much memory would
be saved if a lock is used instead. The signal with the largest memory saving is picked,
and its protection mechanism is switched to a lock if the tasks remain schedulable. The
remaining signals are analysed in the same manner, in decreasing order of memory saved.
This heuristic has linear-time complexity, but a locally optimal selection for a signal could
force suboptimal mechanisms to be selected for subsequent signals.

4.2 Optimising LET Designs
There is a strong desire by the automotive industry to reuse existing legacy AUTOSAR
software alongside new software on multi-core platforms. The timing behaviour of the
legacy software must be preserved when modernised for multi-core platforms. Resmerita et
al. [RNH+15] showed that legacy software components can be wrapped inside LET tasks and
be parameterised according to the observed timing behaviour of the original components.
The timing of the modernised software behaved nearly identically to that of the original
software. A main concern with this approach is the need to introduce PTP buffers and

18 of 76

Technical Report 4 Related Work on Optimising AUTOSAR Designs

t0
0 1 2 3 4 5 6 7 8

t1
0 1.2 2.4 3.6 4.8 6 7.2

t2
0 1.5 3 4.5 6 7.5

t3
0 2 4 6 8

t4
0 6

t0
1

0 1 2 3 4 5 6

2 3 4 5 6

t1
0

0 1.2 2.4 3.6 4.8 6

1 2 4 5

t2
0

0 1.5 3 4.5 6

2 3 5

t3
0

0 2 4 6

2 4

t4
0

0 6

0 ? ? ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

0 1 ? ?

ne
xt

,
pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

0 1 2 ?Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s initial
state (0 ms)

Buffer’s state at
2 ms

ne
xt

pr
ev

t1 t2,t3

Buffer’s state at
0.5 ms

Time (ms)

Time
(ms)

C
or

e
0

C
or

e
1

t0
1

0 1 2 3 4 5

2 3 4 5 Time
(ms)t0

t1

s0

t1
1 2 4

0 31.5 4.5

t0
1

0 1 2 3 4 5

2 3 4 5 Time
(ms)

t1
1 2 4

tw
1

0 2 4

2 Time
(ms)

tr
0 1

Reader and
Writer needs
input and output
buffering

tw

0

0 2 4

1

Time
(ms)

tr

1 2
Writer needs
output buffering

0 31.5 4.5

0 31.5 4.5

0 31.5 4.5

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

e 3 ?

0
p
?
n

1
p

?
?

n
2
p

n
3
p

?
n

4
p

?
n

5
p

?
n

6
p

(a) Both tw and tr need their own buffer.

t0
0 1 2 3 4 5 6 7 8

t1
0 1.2 2.4 3.6 4.8 6 7.2

t2
0 1.5 3 4.5 6 7.5

t3
0 2 4 6 8

t4
0 6

t0
1

0 1 2 3 4 5 6

2 3 4 5 6

t1
0

0 1.2 2.4 3.6 4.8 6

1 2 4 5

t2
0

0 1.5 3 4.5 6

2 3 5

t3
0

0 2 4 6

2 4

t4
0

0 6

0 ? ? ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

0 1 ? ?

ne
xt

,
pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

0 1 2 ?Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s initial
state (0 ms)

Buffer’s state at
2 ms

ne
xt

pr
ev

t1 t2,t3

Buffer’s state at
0.5 ms

Time (ms)

Time
(ms)

C
or

e
0

C
or

e
1

t0
1

0 1 2 3 4 5

2 3 4 5 Time
(ms)t0

t1

s0

t1
1 2 4

0 31.5 4.5

t0
1

0 1 2 3 4 5

2 3 4 5 Time
(ms)

t1
1 2 4

tw
1

0 2 4

2 Time
(ms)

tr
0 1

Reader and
Writer needs
input and output
buffering

tw

0

0 2 4

1

Time
(ms)

tr

1 2
Writer needs
output buffering

0 31.5 4.5

0 31.5 4.5

0 31.5 4.5

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

e 3 ?

0
p
?
n

1
p

?
?

n
2
p

n
3
p

?
n

4
p

?
n

5
p

?
n

6
p

(b) Only tw needs a buffer.

Figure 6: Pruning of PTP buffers for a signal between writer tw and reader tr . The values
written and read by the tasks are shown inside their respective LETs.

so-called drivers that perform the buffered reads and writes needed to respect the LET
semantics. To keep memory requirements to a minimum, buffer analysis is performed to
prune away buffers that are not actually needed to preserve the LET semantics. Consider
the scenario in Figure 6a, where writer tw and reader tr communicate via a signal. Assume
that the inputs and outputs of the tasks are not buffered. If tw can complete its execution
and write the signal’s next value before tr has begun to execute, then tr will read the wrong
value. Hence, tw ’s output needs to be buffered. Since tw ’s LET ends during tr ’s LET, the
signal’s value could become unstable during tr ’s execution. Thus, tr ’s input also needs to
be buffered. Figure 6b shows another scenario where tr ’s LET is ahead of tw ’s. In this case,
only tw ’s output needs to be buffered to prevent tr from reading the signal’s next value.

Resmerita et al. [RNL17] extend their buffer analysis to multicore platforms, where task-
to-core allocations are assumed to be given. Their original buffer analysis is performed in
the design phase, and additional analysis is performed in the deployment phase where ad-
ditional information, such as task-to-core allocations and task priorities, are known. In the
deployment phase, buffers can be removed for tasks that are scheduled to execute sequen-
tially on the same core. For example, if tw and tr in Figure 6b are allocated to the same core
and tr has a higher priority than tw , then tr always finishes executing before tw is scheduled
to execute. Hence, communication from tw to tr is purely sequential and no buffers are
needed. Signal buffers on the same core can be reused if their lifetimes do not overlap.
However, buffer analysis is not applied across the cores because a total order cannot be
derived among all tasks.

Farcas et al. [FFPT05] focus on scheduling the transfer of signal values between multi-
processors. The main observation is that a task’s output can be suppressed if it will be
overwritten by a fresher output before any reading task can start its LET. Moreover, a
signal’s value does not need to be transferred instantaneously, so long as it is available
by the time a reading task starts its LET. This enables bursts of bus activity, due to the
alignment of multiple LET boundaries, to be smoothed out over time.

Biondi et al. [BPBN17] analyse a realistic AUTOSAR design from the Formal Methods
for Timing Verification (FMTV) challenge [HDK+17], and proposed an MILP formulation
and corresponding genetic algorithm that minimises the response times of runnables through
the allocation of signals to local and global memory modules. When LET semantics is as-
sumed for task communication, the end-to-end response times of the event-chains in the
design are invariant to the signal-to-memory allocations. Nevertheless, processor utilisa-
tion would be reduced as a side-effect of minimising the runnable response times. Under
AUTOSAR explicit communication, where runnables directly access the signals without
buffering, the end-to-end response times are shorter with the optimised signal-to-memory
allocations than with the original allocations provided by FMTV challenge.

19 of 76

Technical Report 4 Related Work on Optimising AUTOSAR Designs

A LET task’s response time can be improved by shortening its LET duration, such that
outputs become available earlier. However, this decreases the task’s schedulability because
its computations must be scheduled within a shorter LET duration. Using this observation,
Bradatsch et al. [BKU16] perform response time analysis to determine tasks that can have
shorter LET durations, while ensuring that the system remains schedulable. Although this
can reduce the end-to-end response times of some event-chain instances, the worst-case
remains unchanged and the data-flow is not preserved.

4.3 Discussion
The optimisations developed for traditional AUTOSAR designs (based on operating system
tasks) are not concerned with preserving the data-flow or timing determinism; the design
itself never had such properties. Consequently, more design parameters can be altered when
compared to LET-based optimisations, e.g., runnable execution order, runnable grouping,
and using non-semantics preserving buffering mechanisms. Correctly optimised LET imple-
mentations must preserve the data-flow and timing of their designs. An important aspect
not addressed by the related work is that automotive systems are memory constrained.
Thus, a feasible solution must also guarantee that signals (and their buffers) can fit within
their allocated memory module. Only Wozniak et al. [WMM+13] consider the related issue
of maximising bus throughput.

In this work, we are not concerned with finding alternative LET designs, but with
finding better implementations of the same design. Thus far, LET implementations have
only employed PTP buffering (see Section 3.2) and fixed-priority task scheduling. There
does not appear to be any optimisation approaches that cater to statically scheduled LET
tasks, e.g., base-period or hyper-period scheduling (see Section 2.5), or to the selection of
several buffering mechanisms for each signal. We offer more extensive optimisations for
LET-based AUTOSAR software: apart from pruning unnecessary buffers at the design and
deployment phases, suppressing unnecessary signal writes, and merging buffers, we can also
(1) select for each signal the use of PTP or a static version of DBP, (2) cater to signals
with multiple writers, (3) leverage data-age constraints to suppress unnecessary writes, (4)
allocate LET tasks to heterogeneous cores, (5) allocate signal buffers to memory modules
with limited capacities, and (6) suggest scheduling hints to a hyper-period task scheduler.
Our approach is supported by a set of heuristics, algorithms, and an MILP formulation for
which we provide a genetic algorithm when faster solving times and approximate solutions
are preferred.

Resource allocation and scheduling problems are known to be NP-hard, so heuristics,
such as genetic algorithms or simulated annealing, are needed to find (sub)optimal solutions
for large systems within a reasonable amount of time. Such heuristics attempt to explore the
design space in an intelligent manner by repeatedly creating new candidate solutions from
initial or prior solutions, and ranking the candidates based on an objective function (called
fitness in genetic algorithms and cost in simulated annealing). During the exploration, some
candidate solutions may be unable to satisfy all constraints (e.g., memory and processor
utilisations), but may be close with only some design variables needing minor adjustments.
Thus, it is important to incorporate a notion of penalty into the objective function to penalise
infeasible solutions by how badly they have exceeded the constraints.

20 of 76

Technical Report 5 System Model

5 System Model

This section describes our hardware and software model of AUTOSAR systems to place
our proposed LET buffering optimisations into perspective. It includes our assumptions
on LET task executions, task communications, task scheduling, signal buffers, processor
cores, memories, and buses. We assume that all memory sizes and timing information are
expressed in consistent units, e.g., as bits and in milliseconds, respectively.

5.1 Software Model
The software model is concerned with LET tasks and the hyper-period scheduling approach,
and the signals and their usages by tasks, and the signal buffers.

Tasks. An AUTOSAR design consists of runnables and we assume that their alloca-
tion to LET tasks is given. If a runnable is shared among multiple software compo-
nents, then it is duplicated and given a unique name. Instances of the LET tasks are
statically scheduled under the hyper-period approach, and we optimise AUTOSAR de-
signs at level of task instances. Thus, an AUTOSAR design contains a set of LET tasks,
ta = hperiod , letStart , letEnd , acci 2 T , where each task has a unique name “a”, a period,
LET start and end times that are relative to the start of the task’s period, and the signals
the task accesses. An instance of task ta, i.e., tia = hperiodStart , letStart , letEndi, has an
instance number i 2 N0 that starts from 0, an absolute start time for its period, and absolute
LET start and end times:

tia.periodStart = i⇥ ta.period (1)
tia.letStart = tia.periodStart + ta.letStart (2)
tia.letEnd = tia.periodStart + ta.letEnd (3)

Only LET tasks with non-overlapping instances, i.e., LET start and end times that are
within their period, are considered. Overlapping instances could be modelled by separate
LET tasks. If multiple task instances start or end their LET at the same time, then the end
of all LETs always complete before the start of any LET can proceed. This ensures that
tasks always read the freshest value of signals. For each signal accessed by a task, an upper
bound n can determined by examining the runnable’s code, i.e., acc = {hs, ni}.

Task schedules. Without loss of generality, we assume that all tasks have zero initial
offsets, i.e., all tasks start their initial period together, in order to simplify the construction
of hyper-period schedules. The duration of a hyper-period schedule is the least common
multiple (LCM) of all task periods, i.e., hp = LCM({ta.period | ta 2 T}). We call the hyper-
period schedule shown in Figure 4 a physical task schedule, because it contains deployment
information such as task-to-core allocation and execution times. Preemptions are allowed
in the schedule, but task migrations are disallowed. A logical task schedule is one that only
contains information about the logical timing of the tasks, i.e., only their LET start and
end times.

Signals. Tasks communicate via signals, s = hsize, n, stylei 2 S, where each signal has
a data size, an SBP buffer size of n elements determined during buffer analysis (see Sec-
tion 7.3), and is associated with a local or global programming style. A local programming
style, see, e.g., Figure 7a, means that the signal’s intermediate value is stored in a writer’s
local variable before its final value is written to the signal. With a global programming

21 of 76

Technical Report 5 System Model

void task(int input) {

int nextOutput = 0;

if (input == 0)

nextOutput = comp ();

output = nextOutput ;

}

(a) Local programming style.

void task(int input) {

output = 0;

if (input == 0)

output = comp ();

}

(b) Global programming style.

Figure 7: Programming styles of signals.

style, e.g., Figure 7b, the intermediate values are stored in the signal itself. Hence, writes
to a signal with the global programming style cannot and must not be suppressed. The
functions W(s) and R(s) return the set of tasks that write to and read from signal s, respec-
tively. Signal dependencies between the tasks and data age constraints are assumed to be
given as input by the designer. A data age constraint, ta

s, ���! tb 2 DataAges , specifies that
the value of signal s read by tb must not have been written by ta more than � time units ago.
The default behaviour of reading the freshest possible value is modelled by � = ta.period .

Multiple signal writers. In automotive software, it is possible for a signal to have multiple
writers. This could arise when a task is split across several cores for better load balancing.
It can also occur in legacy software, where tasks communicate over shared memory by
explicitly writing to the same signal. Thus, unlike related work, we consider signals that
have multiple writers. If the writers have LETs that end at different times, then the signal
always has a unique value. However, if two writers have LETs that end at the same time,
then the signal’s value is indeterminate. To ensure determinism, the designer specifies which
writer instances will define the signal’s value at any given time. Let allWI a 2 AllWI where
allWI a = {tia | 0 i < hp

ta.period
, i 2 N, ta 2W(s)} be the set of all possible writer instances

of signal s during one hyper-period. The designer selects a subset of writer instances,
selectedWI a 2 SelectedWI where selectedWI a ✓ allWI a, such that all instances have unique
LET end times, i.e., 8tia, t

j
b 2 selectedWI a : tia 6|= tjb implies tia.letEnd 6= tjb.letEnd .

Signal usage. To facilitate buffer analysis, we record the time intervals that each signal
is used by the tasks. We say that a task begins to use a signal when the task starts its
LET, and finishes using the signal when the task ends its LET. The start and end of each
usage is labelled Rstart and Rend when the task is a reader, and Wstart and Wend when the
task is a writer. The uses of signal s, usess, is a set of tuples htia, �,�i, each defining a task
instance’s usage � 2 {Rstart,Rend,Wstart,Wend} at an absolute timestamp � in the hyper-
period. Section 7.2 defines how usess is actually built. The function GetUses(usess, �0, �1,�)
returns from usess the usages with label � and timestamp � such that �0 < � < �1. The
function GetEarliestUses(usess) returns from usess the usage(s) with the earliest timestamp.

Buffers. We consider two buffering protocols: PTP (see Section 3.2) and SBP (see Sec-
tion 7.1). Each signal is associated with a buffer, bu↵s = {e} 2 Bu↵s , which itself is
a set of abstract memory elements e. For buffer analysis, each buffer element e = {tia}
records the set of task instances that can be using it. A signal’s buffers are managed at
run-time by a statically computed buffering schedule, bu↵Schs 2 Bu↵Schs , that allocates
a task instance to a buffer element, i.e., bu↵Schs = {htia, ei}. There may be intervals

22 of 76

Technical Report 5 System Model

in the hyper-period when a signal’s buffer content is being used by tasks. These inter-
vals have absolute start and end times, i.e., interval = hstart , endi, within the hyper-
period, and together they define the buffer’s lifetime, i.e., lifetimes = {interval}, and
lifetimes 2 Lifetimes . Pairs of signals, e.g., s0 and s1, with non-overlapping buffer life-
times are stored in disjBu↵s = hs0, s1i 2 DisjBu↵s as candidates for buffer merging.

5.2 Hardware Model
The hardware model is concerned with the organisation of the processor and its cores, the
memory modules and the communication buses, and details relating to task execution times
and memory access times.

Cores and memory modules. Our model of a heterogeneous multi-core processor with
non-uniform memory accesses (NUMA) is based on the AURIX TC27xC series of multi-core
processors from Infineon Technologies AG [Inf14], depicted abstractly in Figure 1d. Each
core c 2 C has a pathway to one or more memory modules m = hsizei 2M of fixed capacity
(size). We use pathways to abstract from the traversal of one or more communication
buses. All memory modules are assumed to have the same data width. Each pathway,
path = hc,m, li 2 Paths , between core c and memory module m has a fixed latency l. If
multiple pathways exist between c and m, then only the one with the shortest latency is
relevant. Such non-uniform access times allow the buffers to be placed closer to the writers
or to the readers.

WCETs. To focus on the buffer optimisation of AUTOSAR designs, we assume that the
instructions executed by a core are fetched entirely from its program memory cache [Inf14].
Thus, buffer access times are isolated from interferences due to instruction fetching. Because
worst-case execution timing (WCET) analysis [WEE+08] is not the focus of this work, we
assume that the implementor provides the following timing information as input:

• WCET wcet sbp .c to manage an SBP buffer element on core c.

• WCET wcetptp .c to prepare to copy a signal’s value on core c.

• WCET wcetcs .c to perform a context-switch on core c.

• WCET of task ta on core c, excluding buffering overheads. All instances of a task are
assumed to have the same WCET.

• Maximum latency l of each pathway.

• Number w of transfers over a pathway to write or read a signal’s value between core c
and memory m. This is calculated by dividing the signal’s data size by the data width
of the memory modules.

We update our definition of tasks and signals to include the additional timing information:
ta = hperiod , letStart , letEnd , acc, instri, where instr = {hc,wcet i} defines the task’s WCET
on core c; and s = hsize, n, w, stylei, where w is the number of pathway transfers needed.

23 of 76

Technical Report 6 Overview of Proposed Buffering Optimisations

6 Overview of Proposed Buffering Optimisations

The overall optimisation approach is to minimise the required buffer sizes, the frequency of
buffer writes, and the time that has to be allocated for task execution. For each signal, the
point-to-point (PTP) buffering protocol (see Section 3.2) or the static buffering protocol
(SBP, see Section 7.1) can be selected. The optimisation approach is constrained by the
need to allocate tasks and buffers without over-utilising the cores and memory modules,
respectively, and to preserve the data-flow and timing of the LET design. A safe but
pessimistic approach is taken, where all signal writes and reads are assumed to require
buffering, and buffer analysis is performed to safely eliminate unnecessary buffering.

Similar to Resmerita et al.’s approach [RNL17], we apply separate optimisations at the
design and deployment phases. The design optimisations are platform independent because
they ignore resource allocations and only consider the LET start and end times, i.e., the
optimisations work on the logical task schedule. The optimisation results at design phase
remain valid in the deployment phase, where a specific hardware platform is chosen and the
resource constraints become known. Optimisations are applied to decide on the resource
allocations, e.g., for task-to-core, buffer-to-memory, and execution time allocations, i.e., the
optimisations work on the physical task schedules. The information that has to be provided
as input by the designer and implementor are:

• The software model:

– logical task schedule, constructed from the timing parameters of the LET tasks,
– maximum number of context-switches that each task could experience,
– selected writer instances for resolving race conditions,
– maximum number of signal accesses by each task,
– signal dependences between the tasks,
– data age constraints, and
– worst-case execution times for each processor core.

• The hardware model:

– processor cores,
– memory modules and their capacities, and
– pathways and their latencies.

Our proposed buffer optimisations can be broken into six major steps, depicted in Fig-
ure 8. Design phase optimisations are applied in the first step, and deployment optimisations
in the remaining five steps.

Step 1 (see Section 7): The SBP buffering protocol is applied over the logical task sched-
ule to determine the actual buffer sizes and to construct a buffering schedule for each
signal. The timing of the LET tasks and their data age constraints are used to iden-
tify unnecessary signal writes. The buffering schedules are constructed such that the
required buffer memory and buffer management (e.g., the updating of buffer indexes
at run-time) are kept to a minimum.

Step 2 (see Sections 8.3 and 8.4): The selection of a buffering protocol for each signal,
task-to-core allocations, and buffer-to-memory allocations are decided by an MILP

24 of 76

Technical Report 6 Overview of Proposed Buffering Optimisations

1.
 A

pp
ly

 S
B

P
to

 d
et

er
m

in
e

bu
ffe

r s
iz

es
 a

nd
 b

uf
fe

ri
ng

ac

tio
ns

.

Lo

gi
ca

l t
as

k
sc

he
du

le

Si
gn

al
de

pe
nd

en
cie

s

D
ata

 a
ge

 co
ns

tra
in

ts

Se
lec

te
d

w
rit

er
 in

sta
nc

es

SB

P
bu

ffe
rin

g
sc

he
du

le
pe

r
si

gn
al

2.
 M

in
im

ise
 ta

sk
 W

CE
T

s
w

ith
 M

IL
P

or
 a

 g
en

et
ic

al

go
ri

th
m

. S
ug

ge
st

sc

he
du

lin
g

hi
nt

s

H

ar
dw

ar
e

m
od

el
(b

us
es

,
m

em
or

y,
 a

nd
 c

or
es

)

So
ftw

ar
e m

od
el

 (S
ig

na
l

ac
ce

ss
es

, W
CE

Ts
, a

nd

co
nt

ex
t-s

w
itc

he
s)

Lo

gi
ca

l t
as

k
sc

he
du

le

O
pt

im
ise

d
se

le
cti

on
 o

f
SB

P
or

 P
TP

 p
er

 si
gn

al

O
pt

im
ise

d
sig

na
l b

uf
fe

r-t
o-

m
em

or
y

al
lo

ca
tio

ns

O

pt
im

ise
d

ta
sk

-to
-c

or
e

al
lo

ca
tio

ns

St
at

ic
sc

he
du

lin
g

hi
nt

s

3.
 G

en
er

at
e

ph
ys

ic
al

 ta
sk

sc

he
du

le

Ph
ys

ica
l t

as
k

sc
he

du
le

s
4.

 R
e-

ru
n

SB
P

on
 se

le
ct

ed

sig
na

ls
w

ith
 k

no
wl

ed
ge

 o
f

ta
sk

 W
C

ET
s a

nd
 ta

sk

sc
he

du
le

s

O

pt
im

ise
d

SB
P

bu
ff

er
in

g
sc

he
du

les

Pa
irs

 o
f S

B
P

bu
ffe

rs
w

ith

di
sjo

in
t l

ife
tim

es

So

ftw
ar

e m
od

el
 (S

ig
na

l
ac

ce
ss

es
, W

CE
Ts

, a
nd

co

nt
ex

t-s
w

itc
he

s)

Lo
gi

ca
l t

as
k

sc
he

du
le

Si

gn
al

de
pe

nd
en

cie
s

5.
 M

er
ge

 S
BP

 b
uf

fe
rs

 o
n

ea
ch

 m
em

or
y

m
od

ul
e

Re

du
ce

d
SB

P
bu

ffe
r s

ize
s

6.
 G

en
er

at
e

de
pl

oy
m

en
t

Ph

ys
ica

l t
as

k s
ch

ed
ul

es

SB

P
an

d
PT

P
bu

ff
er

m

an
ag

em
en

t c
od

e

Ph
ys

ica
l b

uf
fe

r m
em

or
y

al
lo

ca
tio

ns

O

pt
im

ise
d

se
le

ct
io

n
of

 S
BP

or

 P
TP

 p
er

 si
gn

al

O

pt
im

ise
d

sig
na

l b
uf

fe
r-

to
-

m
em

or
y a

llo
ca

tio
ns

O

pt
im

ise
d

SB
P

bu
ffe

rin
g

sc
he

du
les

O

pt
im

ise
d

sig
na

l b
uf

fe
r-

to
-

m
em

or
y a

llo
ca

tio
ns

Si

gn
al

de
pe

nd
en

cie
s

D

ata
 a

ge
 co

ns
tra

in
ts

Se

lec
te

d
w

rit
er

 in
sta

nc
es

Ex

te
rn

al
 in

pu
t

G

en
er

at
ed

 o
ut

pu
t

Pr

ev
io

us
ly

ge

ne
ra

ted
 o

ut
pu

t
A

lg
or

ith
m

 o
r

he
ur

ist
ic

s

K
ey

:

Fi
gu

re
8:

O
ve

rv
ie

w
of

ou
r

ap
pr

oa
ch

to
op

tim
isi

ng
LE

T
bu

ffe
rin

g.

25 of 76

Technical Report 6 Overview of Proposed Buffering Optimisations

formulation, with the optimisation goal of minimising task execution times. A feasible
solution ensures that all tasks are schedulable, and that all memory modules have suf-
ficient space for their allocated signals and buffers. A corresponding genetic algorithm
is provided in the case that faster solving times are preferred at the cost of possibly
suboptimal solutions. Scheduling hints, e.g., schedule writer ta as late as possible, are
generated for the task scheduler, such that buffer memories can be optimised further
in Step 4.

Step 3 (see Section 8.5): The optimised task-to-core allocations and scheduling hints are
used to (statically) generate a physical task schedule for each processor core. These
physical task schedules are used in the next step to further optimise the SBP buffering
schedules. End-to-end response times can be improved by scaling down the entire task
schedule until a task has zero slack.

Step 4 (see Section 8.6): The physical task schedules provide concrete timing informa-
tion on when a task starts executing and the latest time that it finishes executing.
Because these start and end times are likely to be shorter than the tasks’ LETs, better
buffering schedules could be constructed. Hence, Step 1 is repeated with the phys-
ical task schedules and new buffering schedules are synthesised for the signals that
have been selected to use SBP. In addition, the SBP buffers with disjoint lifetimes are
identified.

Step 5 (see Section 8.7): To further reduce the memory needed for the SBP buffers,
those with disjoint lifetimes are merged together if they have been allocated to the
same memory module.

Step 6 (see Section 8.8): Together with the generated physical task schedules, and the
buffer-to-memory allocations, the deployment of the AUTOSAR software is finalised
by generating the PTP and SBP buffer management code of each task.

26 of 76

Technical Report 7 Design Phase Optimisations

t0
0 1 2 3 4 5 6 7 8

t1
0 1.2 2.4 3.6 4.8 6 7.2

t2
0 1.5 3 4.5 6 7.5

t3
0 2 4 6 8

t4
0 6

t0
1

0 1 2 3 4 5 6

2 3 4 5 6

t1
0

0 1.2 2.4 3.6 4.8 6

1 2 4 5

t2
0

0 1.5 3 4.5 6

2 3 5

t3
0

0 2 4 6

2 4

t4
0

0 6

0 ? ? ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

0 1 ? ?

ne
xt

,
pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

0 1 2 ?Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s initial
state (0 ms)

Buffer’s state at
2 ms

ne
xt

pr
ev

t1 t2,t3

Buffer’s state at
0.5 ms

Time (ms)

Time
(ms)

C
or

e
0

C
or

e
1

t0
1

0 1 2 3 4 5

2 3 4 5 Time
(ms)t0

t1

s0

t1
1 2 4

0 31.5 4.5

t0
1

0 1 2 3 4 5

2 3 4 5 Time
(ms)

t1
1 2 4

tw
1

0 2 4

2 Time
(ms)

tr
0 1

Reader and
Writer needs
input and output
buffering

tw

0

0 2 4

1

Time
(ms)

tr

1 2
Writer needs
output buffering

0 31.5 4.5

0 31.5 4.5

0 31.5 4.5

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

e 3 ?

0
p
?
n

1
p

?
?

n
2
p

n
3
p

?
n

4
p

?
n

5
p

?
n

6
p

Figure 9: Applying SBP on the logical task schedule of Table 1 for signal s0 from Figure 1b.

7 Design Phase Optimisations

The design phase optimisations are platform independent and are applied to the logical
task schedule. As mentioned in Section 3.7, the DBP [STC06], TCCP [WNSV07], and
TICP [KQBS15] buffering protocols can be adapted to preserve the LET semantics. Al-
though DBP and TCCP are limited to single-core platforms under dynamic scheduling,
they can be applied to multi-core platforms when static scheduling is used. In this work, we
only consider DBP because its buffering capabilities subsumes those of TCCP and TICP.

This section describes the workings of the SBP buffering protocol (see Section 7.1),
the identification of buffer writes that can be suppressed without compromising the LET
semantics (see Section 7.2), and how the SBP buffering protocol is used to construct a
buffering schedule (see Section 7.3).

7.1 LET Static Buffering Protocol (SBP)
The DBP buffering protocol is designed for synchronous-reactive tasks, which read their
inputs when they start executing, and write their outputs as soon as they are computed.
This is not the case for LET tasks, because signal reading and writing only occurs at LET
boundaries. Hence, for LET, a writing task must find a free buffer element when it starts
its LET, and only update its prev pointer when it ends its LET. Figure 9 illustrates the
adapted DBP buffering protocol for signal s0 from Figure 1b. The use of task priorities in
DBP for correct buffering is irrelevant for LET tasks because, in LET, it is only important
that all signal writes complete before any reads. Hence, DBP is simplified by assuming that
a writing task has higher priority than any reading task.

By scheduling LET tasks with the hyper-period approach, the allocation of and accesses
to buffer elements can be statically analysed and scheduled. This is achieved by running

27 of 76

Technical Report 7 Design Phase Optimisations

the adapted DBP over the logical task schedule and recording the buffer elements that are
allocated to each task instance as a schedule. For example, the trace of the buffer elements
in Figure 9 is in essence a buffering schedule. Note that the last value written into a buffer
becomes the signal’s initial value for the next hyper-period. In Figure 9, we see that the
last value is written into element e3, rather than the initial element e0. Thus, at the end of
each hyper-period, a short routine is needed to copy the last written value into the initial
element.

We call the adapted DBP the static buffering protocol (SBP), and it is presented as
pseudocode in Algorithms 1 and 2. The algorithm initialises the buffer of signal s with one
buffer element (line 1), initialises the buffering schedule and lifetime to be empty (lines 2
and 3), initialises the prev pointers of the writers to reference the initial buffer element
(line 4), and initialises the next pointers of the writers to be unknown (line 5). Line 6
initialises current , which tracks the buffer element that the readers access (prev) and the
writer instance that wrote the element’s value (tiw), to reference the initial buffer element
and to a currently unknown writer instance.

Algorithm 1 processes the uses of signal s in chronological order (lines 7–9) by making
buffering decisions whenever a task ends or starts its LET (beginning at lines 10, 12, 15,
and 26). When a reader ends its LET (line 10), it no longer needs to access its allocated
buffer element. Thus, the reader’s instance is removed from its allocated buffer element
(line 11). When a writer ends its LET (line 12), its next pointer is assigned to its prev
pointer, and its next pointer is reset to unknown (line 13). If the signal’s value is defined
by the writer’s instance (line 14), then current is updated with the writer’s buffer element
and task instance.

When a reader starts its LET (line 15), it reads from the current buffer element, i.e.,
current .prev . This is recorded in the buffering schedule (line 16). Additionally, the reader’s
instance occupies the current buffer element, eprev , referenced by current .prev (line 17).
Because the current buffer element now has a writer and a corresponding reader, the time
between the writer’s LET start and the reader’s LET end contributes towards the buffer’s
lifetime. Line 19 calculates the latest LET end times among the readers (maxLetEnd). If
no writer instance has replaced the buffer’s initial value (line 20), then the initial buffer
element is used and the interval h0,maxLetEndi is added to the lifetime. For example,
at time 0 ms in Figure 9, the interval h0 ms, 4 msi is added. Otherwise, the interval
hcurrent .tia.letStart ,maxLetEndi is added (line 23). For example, at time 1.2ms in Figure 9,
task t1 is the only reader to start and its LET ends at 2.2 ms, so the interval h0 ms, 2.2 msi
is added. A more compact representation of intervals can be used [GKKL16] to simplify
subsequent interval calculations.

The remainder of the SBP pseudocode is presented in Algorithm 2. When a writer
starts its LET (line 26), an available buffer element needs to be found. Line 27 finds all
occupied buffer elements, which are those being used by the writers (Next), those being
used by the readers, and the buffer element current .prev that will be used by future readers
that start during the LET of the writers in writersStart . For example, when t0’s second
instance starts at 1 ms in Figure 9, current .prev will be used at 1.2 ms by t1’s second
instance. For each writer instance (line 28), its previous buffer element is reused if available
(line 30), otherwise an available buffer element is used (line 33). If all elements in the
buffer are occupied (line 31), then the buffer is extended with a new element (line 35)
that is allocated to the writer instance (line 36). This is recorded in the buffering schedule
(line 38). Afterwards, the set of occupied buffer elements is updated (line 40) and the writer
instance contributes towards the buffer’s lifetime (line 41).

After all uses of signal s have been processed, the buffer’s lifetime is updated to include

28 of 76

Technical Report 7 Design Phase Optimisations

Algorithm 1 Part I of Sbp. Returns the buffering schedule and lifetime for signal s.
Input: usess (write and read uses of signal s), selectedWI s (selected writer instances for

signal s), and hp (hyper-period duration)
Output: bu↵Schs (buffering schedule of signal s), and lifetimes (buffer’s lifetime)

1: bu↵s {e0 ;} � Buffer has one available element.
2: bu↵Schs ; � Empty buffering schedule for signal s.
3: lifetimes ; � Empty set of intervals for the buffer’s lifetime.
4: Prev {prev tw e0 | tw 2W(s)} � prev of all writers is element e0.
5: Next {next tw null | tw 2W(s)} � next of all writers is unknown.
6: current hprev e0, tiw nulli � Tracks the current prev pointer.

7: while usess 6= ; do

� Get all signal usages with the earliest timestamp.
8: earliestUses GetEarliestUses(usess)
9: usess usess \ earliestUses

� Reader ends its LET: no longer needs its buffer element.
10: readersEnd {use.tir | use.� = Rend, use 2 earliestUses}
11: bu↵s {ei \ readersEnd | ei 2 bu↵s}

� Writer ends its LET: its value can now be read.
12: writersEnd {use.tiw | use.� = Wend, use 2 earliestUses}
13: 8tiw 2 writersEnd : prev tw next tw and next tw null
14: if 9tiw 2 writersEnd \ selectedWI s then current hprev tw , t

i
wi end if

� Reader starts its LET: occupies the writer’s prev element.
15: readersStart {use.tir | use.� = Rstart, use 2 earliestUses}
16: bu↵Schs bu↵Schs [{htir , current .prev i | tir 2 readersStart} � Record allocation.
17: current .prev as eprev : eprev eprev [readersStart

� Update the buffer’s lifetime whenever it is used by a reader.
18: if readersStart 6= ; then

19: maxLetEnd max
�
{tir .letEnd | tir 2 readersStart}

�

20: if current .tia = null then � First writer instance has not finished.
21: lifetimes lifetimes [{h0,maxLetEndi} � Initial value is needed.
22: else

23: lifetimes lifetimes [{hcurrent .tia.letStart ,maxLetEndi}
24: end if

25: end if

� Continued...

29 of 76

Technical Report 7 Design Phase Optimisations

Algorithm 2 Part II of Sbp.

� Writer starts its LET: find an available buffer element to occupy.
26: writersStart {use.tiw | use.� = Wstart, use 2 earliestUses}
27: occupiedBu↵ Next [{e 2 bu↵s | e 6= ;}

[{current .prev | GetUses(usess, tiw .letStart , t
i
w .letEnd ,Rstart

) 6= ;,
tiw 2 writersStart}

28: for tiw 2 writersStart do

29: if prev tw /2 occupiedBu↵ , where prev tw 2 Prev and next tw 2 Next then

30: next tw prev tw � Keep using its allocated buffer element.
31: else

32: if 9e 2 bu↵s \ occupiedBu↵ then

33: next tw e � Allocate an available buffer element.
34: else

35: bu↵s bu↵s [{e ;} � Create and allocate to a new buffer element.
36: next tw e
37: end if

38: bu↵Schs bu↵Schs [{htiw , next tw i} � Record change in allocation.
39: end if

40: occupiedBu↵ occupiedBu↵ [{next tw}
� Writer instance contributes to the buffer’s lifetime.

41: lifetimes lifetimes [{htiw .letStart , tiw .letEndi}
42: end for

43: end while

� The last writer instance writes the next hyper-period’s initial value.
44: lifetimes lifetimes [{hcurrent .tiw .letStart , hpi}

45: if current .prev 6= e0 then

46: Remember to copy the value in current .prev to e0 when the hyper-period ends
47: end if

� Reduce the buffering schedule: when the same buffer element is allocated to
� consecutive instances of a reader task, only the first allocation is necessary.

48: for htir , exi, htkr , exi 2 bu↵Schs where tr 2 R(s), such that @htjr , eyi where i < j < k
do

49: bu↵Schs bu↵Schs \ {htkr , exi}
50: end for

30 of 76

Technical Report 7 Design Phase Optimisations

0
p
?
n
?

1
?
n

p

2

n
3

p

p

?
n
4

?
n

p

5

?
n

p

6

t0

t0
1

0 1 2 3

2 3

t1
1

0 1.2 2.4 3.6 4.8 6

2 3 4 5

t2
1

0 1.5 3 4.5 6

2 4 5

t3
1

0 2 4 6

3 5

t4
1

0 6

Time
(ms)

4 5

1

4 5 6

54 6

3

0 ? ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

Buffer’s state at 0 ms
after all tasks have
been activated

0 1 ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t3,t4

Buffer’s state at
0.8 ms during t3

2 1 ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s state at 2 ms
after t0 and t3 have
been activated t3

t2t1 t2 t3

t0

t3 t4

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0 2 4 6

tc
0 2 5 63

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

2 4

tc
0

0 2 5 6

3

3

0
p
?
n
?

1
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

0

0 1 2 3 4 5 6

2 4 5 7 9 Time
(ms)

1 3 6 8

?
n

2
p

?
n

3
p

?
n

4
p

5
pn

?
n

6
p

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

0 3

tc
0

0 2 5 6

3

3

0
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1 ?

0

n
3
p

?
n

6
p

ta

tb

tc

(a) Logical task schedule for writer ta and readers tb and tc.
The values read by tb and tc are omitted.

ta
s, 3ms����! tb

ta
s, 3ms����! tc

(b) Data age constraints.

Figure 10: Small example to illustrate the suppression of unnecessary writes.

the use of the buffer to hold the signal’s last value until the next hyper-period (line 44). As a
side note (lines 45–47), if the signal’s last value is not written into the buffer’s initial element,
then it must be copied into the initial element when the hyper-period ends. Finally, the
buffering schedule can be reduced by discarding allocations where the same buffer element
is allocated to consecutive instances of a reader (lines 48–50).

The buffer memory complexity of SBP is never worse than that of DBP, because further
optimisations are possible (see Sections 7.2 and 7.3). Buffer bounds can be computed
exactly for SBP by inspecting the number of buffer elements in each buffering schedule.
The auxiliary memory for storing the buffer indexes needed by a task, e.g., in a lookup
table, is linear to the length of the hyper-period. The time complexity of SBP at design
time is linear to the length of the hyper-period when a constant-time algorithm is used to
find free buffer elements. However, the time complexity increases when additional buffer
optimisations are employed. At run-time, the time complexity of SBP is constant.

7.2 Suppression of Unnecessary Writes
A buffering schedule can be improved by analysing whether the output of a writer’s in-
stance is actually needed by a reader. Our analysis considers two possibilities: an output
is unnecessary if (1) it is always overwritten before it is read by any task, e.g., when a
signal is being under-sampled, or (2) a signal’s data age constraint permits tasks to read
an older value instead of a fresher one. The second possibility affects the design’s data-flow
and the designer must decide whether this is acceptable. Note that none of the writes to
signals with the global programming style can be suppressed; it is only possible for the local
programming style.

Figure 10a is a small logical task schedule for a writer ta and some readers tb and tb,
communicating over signal s. Notice that the output from the first and fifth instances of ta,
i.e., t0a and t4a, can be suppressed because they are overwritten by t1a and t5a before they
can even be read. The data age constraints specified in Figure 10b allow tb and tc to read
values of s that are up to 3 ms old. For example, the second instance of tb could read
the signal’s initial value, or the output from ta’s first or second instances. Thus, the latest
instance that tb can read from ta is t1a. Table 5 gives the writer instances that each reader
instance could potentially read from. The reading of the signal’s initial value is represented
as instance �1 of the writer.

The goal now is to find a subset of writer instances that satisfies all reader instances,
with preference for the latest possible writers. This is a variation of the NP-hard set cover

31 of 76

Technical Report 7 Design Phase Optimisations

Algorithm 3 GetWriterUses returns the necessary writer instances of a signal.
Input: s (signal of interest), selectedWI s (selected writer instances for s), allRI s (reader

instances of s), and DataAges (data age constraints)
Output: usess (uses of signal s)

1: potentialTables ; � Empty table of potential reads.
2: latestTables ; � Empty table of latest writer instances to read.
3: usess ; � Empty set of write usages.
4: satRI s ; � Empty set of satisfied reader instances.

� Make a table of potential reads for each writer instance (including the initial value).
5: for tir 2 allRI s do

6: for tjw 2 selectedWI s [{t�1
w = h0, 0, 0i} do

7: if 0 (tir .letStart � tjw .letEnd) � where tw
s, ���! tr 2 DataAges then

8: potentialTables(t
j
w) potentialTables(t

j
w) [{tir}

9: end if

10: end for

11: end for

12: Sort potentialTables such that tjw .letEnd of row n is earlier than tj
0

w0 .letEnd of row n+1

� Find the latest possible writer instance that each reader instance can read from.
13: for consecutive rows tjw , t

k
w in potentialTables in sorted order do

14: latestTables(tjw) potentialTables(t
j
w) \ potentialTables(tkw)

15: l k � Record the last row of the potential table.
16: end for

17: latestTables(tlw) potentialTables(t
l
w)

18: Sort latestTables such that tjw .letEnd of row n is earlier than tj
0

w0 .letEnd of row n+ 1

� Record the writer instances that are necessary for the reader instances.
19: for each row tjw in latestTables in sorted order do

20: if latestTables(tjw) 6✓ satRI s then

21: if j 6= �1 then � Initial value is always available.
22: usess usess [{htjw , tjw .letStart ,Wstarti, htjw , tjw .letEnd ,Wendi}
23: end if

24: satRI s satRI s [potentialTables(t
j
w)

25: end if

26: end for

� Last writer instance may be needed to initialise the signal’s value
� in the next hyper-period.

27: usess usess [{htlw , tlw .letStart ,Wstarti, htlw , tlw .letEnd ,Wendi}

32 of 76

Technical Report 7 Design Phase Optimisations

Table 5: The writer instances that satisfy each reader instance from Figure 10 (a signal’s
initial value is represented as instance �1 of the writer)

Reader Writer ta’s instance number

instance -1 0 1 2 3 4 5

t
0
b X
t
1
b X X X
t
2
b X X X
t
0
c X
t
1
c X X X

Table 6: Potential table
for Figure 10

Writer Reader

instance instances

t
�1
a {t0b , t1b , t0c}
t
0
a {t1b , t1c}
t
1
a {t1b , t2b , t1c}
t
2
a {t2b , t1c}
t
3
a {t2b}
t
4
a { }
t
5
a { }

Table 7: Latest table for
Figure 10

Writer Reader

instance instances

t
�1
a {t0b , t0c}
t
0
a { }
t
1
a {t1b}
t
2
a {t1c}
t
3
a {t2b}
t
4
a { }
t
5
a { }

Table 8: Necessary writer instances for
Figure 10

Selected writer Satisfied reader

instances instances

{t�1
a } {t0b , t1b , t0c}

{t�1
a } {t0b , t1b , t0c}

{t�1
a } {t0b , t1b , t0c}

{t�1
a , t

2
a} {t0b , t1b , t2b , t0c , t1c}

0
p
?
n
?

1
?
n

p

2

n
3

p

p

?
n
4

?
n

p

5

?
n

p

6

t0

t0
1

0 1 2 3

2 3

t1
1

0 1.2 2.4 3.6 4.8 6

2 3 4 5

t2
1

0 1.5 3 4.5 6

2 4 5

t3
1

0 2 4 6

3 5

t4
1

0 6

Time
(ms)

4 5

1

4 5 6

54 6

3

0 ? ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

Buffer’s state at 0 ms
after all tasks have
been activated

0 1 ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t3,t4

Buffer’s state at
0.8 ms during t3

2 1 ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s state at 2 ms
after t0 and t3 have
been activated t3

t2t1 t2 t3

t0

t3 t4

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0 2 4 6

tc
0 2 5 63

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

2 4

tc
0

0 2 5 6

3

3

0
p
?
n
?

1
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

0

0 1 2 3 4 5 6

2 4 5 7 9 Time
(ms)

1 3 6 8

?
n

2
p

?
n

3
p

?
n

4
p

5
pn

?
n

6
p

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

0 3

tc
0

0 2 5 6

3

3

0
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1 ?

0

n
3
p

?
n

6
p

ta

tb

tc

(a) No writes suppressed.

0
p
?
n
?

1
?
n

p

2

n
3

p

p

?
n
4

?
n

p

5

?
n

p

6

t0

t0
1

0 1 2 3

2 3

t1
1

0 1.2 2.4 3.6 4.8 6

2 3 4 5

t2
1

0 1.5 3 4.5 6

2 4 5

t3
1

0 2 4 6

3 5

t4
1

0 6

Time
(ms)

4 5

1

4 5 6

54 6

3

0 ? ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

Buffer’s state at 0 ms
after all tasks have
been activated

0 1 ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t3,t4

Buffer’s state at
0.8 ms during t3

2 1 ?

ne
xt

pr
ev

Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s state at 2 ms
after t0 and t3 have
been activated t3

t2t1 t2 t3

t0

t3 t4

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0 2 4 6

tc
0 2 5 63

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

2 4

tc
0

0 2 5 6

3

3

0
p
?
n
?

1
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

0

0 1 2 3 4 5 6

2 4 5 7 9 Time
(ms)

1 3 6 8

?
n

2
p

?
n

3
p

?
n

4
p

5
pn

?
n

6
p

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

0 3

tc
0

0 2 5 6

3

3

0
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1 ?

0

n
3
p

?
n

6
p

ta

tb

tc

(b) Unnecessary writes suppressed. One less buffer
element is needed.

Figure 11: Applying SBP on the logical task schedule of Figure 10a.

33 of 76

Technical Report 7 Design Phase Optimisations

problem [Kar72]. Algorithm 3 defines our heuristic for solving this problem. Starting from
lines 5–12, a compact version of Table 5 is constructed, called a potential table, shown
in Table 6. Each row of the potential table is index by the writer’s instance tjw , and
potentialTables(tjw) returns tjw ’s set of reader instances. From this, lines 13–18 finds the
latest (freshest) possible writer instance that each reader instance can use, producing a
latest table shown in Table 7. The writer instances in this table with a non-empty set of
readers are sufficient to satisfy all reader instances, e.g., {t�1

a , t1a, t
2
a, t

3
a}. To refine these

writer instances to the necessary ones, lines 19–26 iterate through the latest table to select
the earliest writer instance with a non-empty set of reader instances, e.g., t�1

a . The selection
is saved by storing the writer’s use of the the signal into usess (line 22). The selected writer
instance is likely to satisfy additional reader instances, i.e., those in the potential table. For
example, t�1

a also satisfies t1b and t0c . Thus, a set of satisfied reader instances, satRI s, is
maintained. Continuing through the latest table, we select the next writer instance, e.g.,
t2a, that has a reader instance that is not already satisfied, and update usess and satRI s
accordingly. This continues until all reader instances are satisfied. The set of necessary
writer instances for our example is {t�1

a , t2a}, and the iterative selection of necessary writer
instances is shown in Table 8. If the output of the last writer instance is needed to initialise
the signal’s value in next hyper-period, then that writer instance has to be included, e.g.,
{t�1

a , t2a, t
5
a}.

Figure 11a illustrates the buffering schedule that is constructed when Sbp (Algorithms 1
and 2) is applied without the suppression of unnecessary writes. Contrast this to Figure 11b,
where unnecessary writes are suppressed by taking into account the data age constraints of
Figure 10b. Because only two writer instances need to write to the buffer, one less buffer
element is needed to preserve the LET semantics.

7.3 Constructing the SBP Buffering Schedules
The construction of a buffering schedule for a signal is detailed in Algorithm 4. For each
signal, it identifies all time intervals that the signal could be used by its readers (lines 2–3)
and writers (lines 4–9). At the design phase, these intervals are equal to the task instances’
LETs. The LET start and end times of all reader instances are recorded as Rstart and Rend,
respectively. When a signal has the global programming style (line 5), where intermediate
signal values are written directly to the buffer, the LET start and end times of all writer
instances are recorded as Wstart and Wend, respectively. For the local programming style
(lines 7–8), where only final signal values are written to the buffer, only the Wstart and Wend

of the necessary writer instances identified by GetWriterUses (Algorithm 3) are recorded.
Based on the chronological order of the recorded time points, the static buffering protocol
Sbp (Algorithms 1 and 2) decides which buffer element each task accesses, and the total
number of buffer elements needed to properly preserve the LET semantics (lines 10–12).
The decisions are recorded as a buffering schedule (bu↵Schs 2 Bu↵Schs), and the lifetime
(lifetimes 2 Lifetimes) of the buffer is computed. Two signal buffers have disjoint lifetimes
if none of their intervals overlap. Thus, once all signals have a buffering schedule, pairs of
buffers with disjoint lifetimes are found (lines 14–19), and this information is used during
deployment to selectively merging buffers and save memory (Figure 8, Step 5). More efficient
interval calculations can be found in literature; see, e.g., Gavryushkin et al. [GKKL16].

34 of 76

Technical Report 7 Design Phase Optimisations

Algorithm 4 SbpBu↵eringSchedules returns the buffering schedules of all signals, and pairs
of signal buffers with disjoint lifetimes.
Input: S (all signals), hp (hyper-period duration), DataAges (data age constraints of all

signals), AllWI (all writer instances of all signals), and SelectedWI (writer instances se-
lected from AllWI)

Output: Bu↵Schs (buffering schedules of all signals), and DisjBu↵s (pairs of signals with
disjoint buffer lifetimes)

1: for s 2 S do

� All reader instances will use signal s.
2: allRI s {tir | 0 i < hp

tr .period
, i 2 N, tr 2 R(s)}

3: usess {htir , tir .letStart ,Rstarti, htir , tir .letEnd ,Rendi | tir 2 allRI s}

4: if s.style = global then � All writer instances use signal s.
5: usess usess [{htiw , tiw .letStart ,Wstarti, htiw , tiw .letEnd ,Wendi | tiw 2 allWI s}
6: else � Not all writer instances may need to use signal s.
7: usess usess [GetWriterUses(s, selectedWI s, allRI s,DataAges)
8: selectedWI s {tiw | htiw , �,�i 2 usess}
9: end if

10: hbu↵Schs, lifetimesi Sbp(usess, selectedWI s, hp)
11: Bu↵Schs Bu↵Schs [{bu↵Schs}
12: Lifetimes Lifetimes [{lifetimes}
13: end for

� Identify pairs of signal buffers with disjoint lifetimes.
14: DisjBu↵s ;
15: for lifetimes0 , lifetimes1 2 Lifetimes where lifetimes0 6= lifetimes1 do

16: if @interval s0 2 lifetimes0 and @interval s1 2 lifetimes1 ,
where interval s0 .start interval s1 .start interval s0 .end
or interval s1 .start interval s0 .start interval s1 .end

then

17: DisjBu↵s DisjBu↵s [{hs0, s1i} � No intervals of s0 and s1 overlap.
18: end if

19: end for

35 of 76

Technical Report 7 Design Phase Optimisations

7.4 Discussion
By virtue of static scheduling over a hyper-period, more opportunities are available for
reducing SBP’s buffer memory requirement as compared to DBP. Unlike DBP, SBP uses
data age constraints to suppress unnecessary writes to the signal buffers, thereby reducing
bus traffic to global memory. Although the worst-case run-time cost of DBP is already
constant, the elimination of redundant allocations from the buffering schedule means that
only some task instances incur the overhead of updating their buffer index. However, this
requires the variables storing the current buffer indexes to be on the heap in order to persist
across task instances. Note that redundant allocations for the writers are eliminated when
they reuse their previously allocated buffer element. Exact memory sizes are computed from
the static buffering schedules, which helps one to mitigate the over-provisioning of memory
resources. During the deployment phase, the buffering schedule of each signal can be used to
find and merge buffers that have disjoint lifetimes. The design phase optimisations presented
in this section apply also to LET tasks with irregular periods. This is because only the LET
start and end times of each task instance are necessary.

36 of 76

Technical Report 8 Deployment Phase Optimisations

8 Deployment Phase Optimisations

The deployment phase optimisations are platform dependent, and decide on the task-to-
core allocations, the selection of buffering protocol for each signal, and the signal buffer-
to-memory module allocations. The optimisation goal is to minimise task execution times,
subject to constraints on SBP and PTP buffering selection, task and signal allocations, task
schedulability, memory module capacities.

To properly model the overheads of PTP and SBP buffering, Section 8.1 briefly describes
how LET tasks can be implemented and scheduled under AUTOSAR OS in a semantics
preserving manner. The system model (see Section 5) is then extended with additional
task scheduling parameters (see Section 8.2), necessary for formulating the proposed MILP
optimisation problem (see Section 8.3). A corresponding genetic algorithm is presented,
which provides possibly suboptimal results but at faster solving times (see Section 8.4).
Physical task schedules are then constructed for each core from the optimisation solution,
as well as reducing system response times by scaling down the task timing parameters (see
Section 8.5). Because more information is known about task execution times and buffer
allocations, the SBP buffering schedules can be refined further and signal buffers can be
merged together (see Sections 8.6–8.7).

8.1 Realisation of LET Tasks under AUTOSAR
Section 2.5 has already discussed the use of so-called schedule tables to implement task
schedules over one hyper-period. To understand the deployment optimisations, it is neces-
sary to discuss how the PTP and SBP buffering protocols can be implemented in a semantics
preserving manner using schedule tables. For PTP, the LET tasks must read signals into
their local buffers when they start their LETs, and must write out their local buffers when
they end their LETs. This is achieved by generating a pair of LET start and LET end rou-
tines for each LET task, which contain the necessary code to perform the required buffering
actions. Figure 12a is a simple example of a LET task, and its implementation with PTP is
illustrated in Figure 12b. The LET task now has LET start and end routines for managing
the PTP buffers, and has a computation task that is the original LET task with buffered
signal accesses. The LET start and end routines are scheduling as tasks that execute at the
defined LET start and end times. The computation task is scheduled to execute between
the start and end routines. If multiple LET tasks start or end their LETs at the same
time, then the LET end routines must be scheduled to execute before any of the LET start
routines. It is also important to align the LET start and end routines across the cores to
ensure that the LET semantics are preserved. However, it is beyond the scope of this report
to discuss the technical details of the scheduling algorithm.

For SBP, there is no need to create LET start and end routines, because the required
buffer element that each task instance needs to access for semantics preserving communi-
cation is statically known. The signal is converted into an array in memory, with each
buffer element mapped to an array (buffer) index. Thus, a LET task only needs to update
its required buffer indexes before executing its computations. Signal accesses in the task’s
computation are replaced by accesses to the buffer array. The modified task can be sched-
uled for execution at any time within its LET. For the original LET task in Figure 12a, its
implementation with SBP is illustrated in Figure 12c.

8.2 System Model Extensions
We extend the system model described in Section 5 with additional task scheduling informa-
tion. Each core’s task schedule is divided into an identical sequence of uniquely identifiable

37 of 76

Technical Report 8 Deployment Phase Optimisations

0
p
?
n
?

1
?
n

p

2

n
3

p

p

?
n
4

?
n

p

5

?
n

p

6

t0

t0
1

0 1 2 3

2 3

t1
1

0 1.2 2.4 3.6 4.8 6

2 3 4 5

t2
1

0 1.5 3 4.5 6

2 4 5

t3
1

0 2 4 6

3 5

t4
1

0 6

Time
(ms)

4 5

1

4 5 6

54 6

3

0 ? ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

Buffer’s state at 0 ms
after all tasks have
been activated

0 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t3,t4

Buffer’s state at
0.8 ms during t3

2 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s state at 2 ms
after t0 and t3 have
been activated t3

t2t1 t2 t3

t0

t3 t4

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0 2 4 6

tc
0 2 5 63

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

2 4

tc
0

0 2 5 6

3

3

0
p
?
n
?

1
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

0

0 1 2 3 4 5 6

2 4 5 7 9 Time
(ms)

1 3 6 8

?
n

2
p

?
n

3
p

?
n

4
p

5
pn

?
n

6
p

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

0 3

tc
0

0 2 5 6

3

3

0
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1 ?

0

n
3
p

?
n

6
p

ta

tb

tc

task
0 1 65

// Signals in global memory.
int input;
int output;

task
0 1 65

void task(int input) {
 output = 0;
 if (input == 0)
 output = comp();
}

// Signals in global memory.
int input;
int output;

// PTP buffers in heap
// memory.
int ptp_taskInput;
int ptp_taskOutput;

void task_computation(void) {
 ptp_taskOutput = 0;
 if (ptp_taskInput == 0)
 ptp_taskOutput = comp();
}

void task_letStart(void) {
 ptp_taskInput == input;
}

void task_letEnd(void) {
 output = ptp_taskOutput;
}

task
0 1 65

void task_computation(void) {
 // Update the task’s instance counter.
 sbp_taskInstance = sbp_taskInstance++ % 3;

 // Update SBP buffer index for “input”.
 int sbp_inputIndex = 0;
 switch (sbp_taskInstance) {
 case 1: sbp_inputIndex = 2; break;
 case 2: sbp_inputIndex = 1; break;
 default: break;
 }

// SBP buffered signals in
// global memory.
int input[3];
int output[3];

// Task instance counter in
// heap memory.
int sbp_taskInstance = -1;

 // Update SBP buffer index for “output”.
 int sbp_outputIndex = 1;
 switch (sbp_taskInstance) {
 case 1:
 case 2: sbp_outputIndex = 0; break;
 default: break;
 }

 // Buffered computation.
 output[sbp_outputIndex] = 0;
 if (input[sbp_inputIndex] == 0)
 output[sbp_outputIndex] = comp();
}

(a) Original LET task. Global programming style used for the input and output signals.

0
p
?
n
?

1
?
n

p

2

n
3

p

p

?
n
4

?
n

p

5

?
n

p

6

t0

t0
1

0 1 2 3

2 3

t1
1

0 1.2 2.4 3.6 4.8 6

2 3 4 5

t2
1

0 1.5 3 4.5 6

2 4 5

t3
1

0 2 4 6

3 5

t4
1

0 6

Time
(ms)

4 5

1

4 5 6

54 6

3

0 ? ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

Buffer’s state at 0 ms
after all tasks have
been activated

0 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t3,t4

Buffer’s state at
0.8 ms during t3

2 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s state at 2 ms
after t0 and t3 have
been activated t3

t2t1 t2 t3

t0

t3 t4

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0 2 4 6

tc
0 2 5 63

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

2 4

tc
0

0 2 5 6

3

3

0
p
?
n
?

1
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

0

0 1 2 3 4 5 6

2 4 5 7 9 Time
(ms)

1 3 6 8

?
n

2
p

?
n

3
p

?
n

4
p

5
pn

?
n

6
p

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

0 3

tc
0

0 2 5 6

3

3

0
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1 ?

0

n
3
p

?
n

6
p

ta

tb

tc

task
0 1 65

// Signals in global memory.
int input;
int output;

task
0 1 65

void task(int input) {
 output = 0;
 if (input == 0)
 output = comp();
}

// Signals in global memory.
int input;
int output;

// PTP buffers in heap
// memory.
int ptp_taskInput;
int ptp_taskOutput;

void task_computation(void) {
 ptp_taskOutput = 0;
 if (ptp_taskInput == 0)
 ptp_taskOutput = comp();
}

void task_letStart(void) {
 ptp_taskInput = input;
}

void task_letEnd(void) {
 output = ptp_taskOutput;
}

task
0 1 65

void task_computation(void) {
 // Update the task’s instance counter.
 sbp_taskInstance = sbp_taskInstance++ % 3;

 // Update SBP buffer index for “input”.
 int sbp_inputIndex = 0;
 switch (sbp_taskInstance) {
 case 1: sbp_inputIndex = 2; break;
 case 2: sbp_inputIndex = 1; break;
 default: break;
 }

// SBP buffered signals in
// global memory.
int input[3];
int output[3];

// Task instance counter in
// heap memory.
int sbp_taskInstance = -1;

 // Update SBP buffer index for “output”.
 int sbp_outputIndex = 1;
 switch (sbp_taskInstance) {
 case 1: sbp_outputIndex = 0; break;
 case 2: sbp_outputIndex = 0; break;
 default: break;
 }

 // Buffered computation.
 output[sbp_outputIndex] = 0;
 if (input[sbp_inputIndex] == 0)
 output[sbp_outputIndex] = comp();
}

t0

t1
0 3 7

10

Time
(ms)

1 3 5 7 840 2 6

t0

t1
0 1.5 3.5 5

Time
(ms)

0.5 2 3 4.5 52.50 1.5 3.5

9

1 4

4 6

(b) Implementation with PTP. The buffers are allocated on the heap so that their values persist across
the LET start/end routines and the task’s computations.

0
p
?
n
?

1
?
n

p

2

n
3

p

p

?
n
4

?
n

p

5

?
n

p

6

t0

t0
1

0 1 2 3

2 3

t1
1

0 1.2 2.4 3.6 4.8 6

2 3 4 5

t2
1

0 1.5 3 4.5 6

2 4 5

t3
1

0 2 4 6

3 5

t4
1

0 6

Time
(ms)

4 5

1

4 5 6

54 6

3

0 ? ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

Buffer’s state at 0 ms
after all tasks have
been activated

0 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t3,t4

Buffer’s state at
0.8 ms during t3

2 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s state at 2 ms
after t0 and t3 have
been activated t3

t2t1 t2 t3

t0

t3 t4

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0 2 4 6

tc
0 2 5 63

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

2 4

tc
0

0 2 5 6

3

3

0
p
?
n
?

1
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

0

0 1 2 3 4 5 6

2 4 5 7 9 Time
(ms)

1 3 6 8

?
n

2
p

?
n

3
p

?
n

4
p

5
pn

?
n

6
p

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

0 3

tc
0

0 2 5 6

3

3

0
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1 ?

0

n
3
p

?
n

6
p

ta

tb

tc

task
0 1 65

// Signals in global memory.
int input;
int output;

task
0 1 65

void task(int input) {
 output = 0;
 if (input == 0)
 output = comp();
}

// Signals in global memory.
int input;
int output;

// PTP buffers in heap
// memory.
int ptp_taskInput;
int ptp_taskOutput;

void task_computation(void) {
 ptp_taskOutput = 0;
 if (ptp_taskInput == 0)
 ptp_taskOutput = comp();
}

void task_letStart(void) {
 ptp_taskInput == input;
}

void task_letEnd(void) {
 output = ptp_taskOutput;
}

task
0 1 65

void task_computation(void) {
 // Update the task’s instance counter.
 sbp_taskInstance = sbp_taskInstance++ % 3;

 // Update SBP buffer index for “input”.
 int sbp_inputIndex = 0;
 switch (sbp_taskInstance) {
 case 1: sbp_inputIndex = 2; break;
 case 2: sbp_inputIndex = 1; break;
 default: break;
 }

// SBP buffered signals in
// global memory.
int input[3];
int output[3];

// Task instance counter in
// heap memory.
int sbp_taskInstance = -1;

 // Update SBP buffer index for “output”.
 int sbp_outputIndex = 1;
 switch (sbp_taskInstance) {
 case 1: sbp_outputIndex = 0; break;
 case 2: sbp_outputIndex = 0; break;
 default: break;
 }

 // Buffered computation.
 output[sbp_outputIndex] = 0;
 if (input[sbp_inputIndex] == 0)
 output[sbp_outputIndex] = comp();
}

t0

t1
0 3 7

10

Time
(ms)

1 3 5 7 840 2 6

t0

t1
0 1.5 3.5 5

Time
(ms)

0.5 2 3 4.5 52.50 1.5 3.5

9

1 4

4 6

(c) Implementation with SBP. The signals are transformed into arrays, and a counter is used to track
the task’s instance. Assume that the task executes three instances over one hyper-period, and that the
input and output signals each need three buffer elements. For the input signal, assume that indexes 0,
2, and 1 are accessed in the task’s first, second, and third instances, respectively. For the output signal,
assume that index 1 is accessed in the task’s first instance, and that index 0 is accessed in the second
and third instances. If signal indexes are also allocated to the heap, then only the assignment of new
index values is needed.

Figure 12: Realising a LET task with PTP or SBP buffering in AUTOSAR.

38 of 76

Technical Report 8 Deployment Phase Optimisations

0
p
?
n
?

1
?
n

p

2

n
3

p

p

?
n
4

?
n

p

5

?
n

p

6

t0

t0
1

0 1 2 3

2 3

t1
1

0 1.2 2.4 3.6 4.8 6

2 3 4 5

t2
1

0 1.5 3 4.5 6

2 4 5

t3
1

0 2 4 6

3 5

t4
1

0 6

Time
(ms)

4 5

1

4 5 6

54 6

3

0 ? ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

Buffer’s state at 0 ms
after all tasks have
been activated

0 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t3,t4

Buffer’s state at
0.8 ms during t3

2 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s state at 2 ms
after t0 and t3 have
been activated t3

t2t1 t2 t3

t0

t3 t4

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0 2 4 6

tc
0 2 5 63

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

2 4

tc
0

0 2 5 6

3

3

0
p
?
n
?

1
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

0

0 1 2 3 4 5 6

2 4 5 7 9 Time
(ms)

1 3 6 8

?
n

2
p

?
n

3
p

?
n

4
p

5
pn

?
n

6
p

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

0 3

tc
0

0 2 5 6

3

3

0
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1 ?

0

n
3
p

?
n

6
p

ta

tb

tc

task
0 1 65

// Signals in global memory.
int input;
int output;

task
0 1 65

void task(int input) {
 output = 0;
 if (input == 0)
 output = comp();
}

// Signals in global memory.
int input;
int output;

// PTP buffers in heap
// memory.
int ptp_taskInput;
int ptp_taskOutput;

void task_computation(void) {
 ptp_taskOutput = 0;
 if (ptp_taskInput == 0)
 ptp_taskOutput = comp();
}

void task_letStart(void) {
 ptp_taskInput == input;
}

void task_letEnd(void) {
 output = ptp_taskOutput;
}

task
0 1 65

void task_computation(void) {
 // Update the task’s instance counter.
 sbp_taskInstance = sbp_taskInstance++ % 3;

 // Update SBP buffer index for “input”.
 int sbp_inputIndex = 0;
 switch (sbp_taskInstance) {
 case 1: sbp_inputIndex = 2; break;
 case 2: sbp_inputIndex = 1; break;
 default: break;
 }

// SBP buffered signals in
// global memory.
int input[3];
int output[3];

// Task instance counter in
// heap memory.
int sbp_taskInstance = -1;

 // Update SBP buffer index for “output”.
 int sbp_outputIndex = 1;
 switch (sbp_taskInstance) {
 case 1: sbp_outputIndex = 0; break;
 case 2: sbp_outputIndex = 0; break;
 default: break;
 }

 // Buffered computation.
 output[sbp_outputIndex] = 0;
 if (input[sbp_inputIndex] == 0)
 output[sbp_outputIndex] = comp();
}

t0

t1
0 3 7

10

Time
(ms)

1 3 5 7 840 2 6

t0

t1
0 1.5 3.5 5

Time
(ms)

0.5 2 3 4.5 52.50 1.5 3.5

9

1 4

4 6

Figure 13: Scheduling slots for the logical task schedule in Figure 10a. Only the slots that
coincide with the LET tasks are of interest and are labelled from 0 to 9.

slots over the hyper-period with duration d, i.e., slot = hdi 2 Slots . This is achieved by pro-
jecting the logical task schedule onto a single timeline and dividing the LETs at every LET
boundary, as depicted in Figure 13. In each slot, execution time can be allocated to several
tasks. The LET of a task instance can also be represented as a set of scheduling slots, i.e.,
slots = {slot 2 Slots}. The first instance of tc in Figure 13 would have slots = {0, 1, 2, 3}.
Because tasks can be scheduled preemptively, the task schedules must accommodate the
context-switching overhead. The maximum number of possible context-switches, cs 2 N,
during a task’s computation may be estimated from the number of scheduling slots needed
to represent its instances, e.g., cs = max

⇣n
|tia.slots| where 0 i < hp

ta.period

o⌘
. The defini-

tions for a task instance and task are updated to tia = hperiodStart , letStart , letEnd , slotsi
and ta = hperiod , letStart , letEnd , acc, instr , csi, respectively.

8.3 Mixed-Integer Linear Programming (MILP) Formulation
We use MILP [BGG+71] to find task-to-core and buffer-to-memory module allocations, and
to select a buffering protocol for each signal for a LET-based AUTOSAR design. The
objective is to minimise the total task execution time that needs to be allocated in the
physical task schedules:

Minimise :

X

ta2T

X

slot2tia.slots

slot .tia.alloc (4)

where slot .tia.alloc is a real variable for the execution time that is allocated to task instance tia
in the scheduling slot . This objective is subject to constraints on SBP and PTP buffering
selection, memory module capacities, task and signal allocations, and task schedulability,
which are detailed below. Table 9 summarises the variables and constants used in the MILP
formulation. We assume that all memory sizes and timing information are expressed in
consistent units, e.g., as bits and in milliseconds, respectively.

SBP and PTP buffering. The Boolean variables sbps and ptps select whether SBP or
PTP is used, respectively, for signal s:

8s 2 S : sbps + ptps = 1 (5)

When SBP is used, the Boolean variable sbps.m is 1 iff the SBP buffer of signal s is
allocated to memory module m. The buffer can only be allocated to one memory module:

8s 2 S : sbps =

X

m2M

sbps.m (6)

39 of 76

Technical Report 8 Deployment Phase Optimisations

Table 9: Summary of the variables and constants used in the MILP formulation

Type Variable Description

Boolean sbps, ptps Selection of buffering protocol for signal s.
sbps.m, ptps.m Allocation of signal s to memory module m.
ptps.ta.m Allocation of task ta’s local PTP buffer for signal s to memory

module m.
ta.c Allocation of task ta to core c.
ta.c.sbps,
ta.c.sbps.m,
ta.c.ptps.m,
ta.c.ptps.ta.m

Variables needed to linearise the relationships between task, core,
buffer, and memory allocations.

Integer m.sbp ,
m.ptp

Total SBP and PTP memory requirement for memory module m.

Real ta.wcetb ,
ta.wcetc

Worst-case execution time for task ta’s buffer management and
computations (instructions and signal accesses).

slot .tia.alloc,
t
i
a.c.slot .alloc

Execution time allocated to task instance t
i
a in the scheduling

slot , and its linearised form with the task’s core allocation.

Type Constant Description

Integer s.size, s.n,
s.w

Signal information on data size, number of SBP buffer elements,
number of pathway transfers needed per access.

m.size Capacity of memory module m.
ta.acc, ta.cs Number of signal accesses by task ta, and number of context-

switches during task ta’s execution.
Real ta.letStart ,

ta.letEnd ,
ta.instr .c.wcet

Task ta’s LET start and end times, and linearisation of its in-
struction’s worst-case execution time on core c.

wcetcs .c,
wcetsbp .c,
wcetptp .c

Core specific overheads for a task to context-switch and to manage
one SBP or PTP buffer element.

path.c.m Latency of the pathway between core c and memory module m.
slot .d Duration of scheduling slot .

40 of 76

Technical Report 8 Deployment Phase Optimisations

For each memory module m, the (positive) integer variable m.sbp tracks the total mem-
ory needed for its allocated SBP buffers. The total size of each SBP buffer is s.size ⇥ s.n:

8m 2M : m.sbp =

X

s2S

sbps.m⇥ s.size ⇥ s.n (7)

When PTP is used, the Boolean variable ptps.ta.m is 1 iff task ta’s PTP buffer for
signal s is allocated to memory module m. The Boolean variable ptps.m is 1 if signal s itself
is allocated to memory module m. Each PTP buffer and corresponding signal can only be
allocated to one memory module:

8ta 2 T 8hs, ni 2 ta.acc : ptps =

X

m2M

ptps.ta.m (8)

8s 2 S : ptps =

X

m2M

ptps.m (9)

For each memory module m, the (positive) integer variable m.ptp tracks the total memory
needed for its allocated PTP buffers and corresponding signals. The size of each PTP buffer
and signal is s.size:

8m 2M : m.ptp =

X

ta2T

X

hs,ni2ta.acc

ptps.ta.m⇥ s.size +
X

s2S

ptps.m⇥ s.size (10)

Finally, for each memory module m, the total memory available for its allocated SBP
and PTP buffers is limited by its capacity:

8m 2M : m.sbp +m.ptp m.size (11)

LET tasks. The Boolean variable ta.c is 1 iff task ta is allocated to core c. A task can
only be allocated to one core:

8ta 2 T :

X

c2C

ta.c = 1 (12)

The following Boolean variables are used to linearise the relationships between task, core,
buffer, and memory allocations:

• ta.c.sbps is 1 iff task ta is on core c and signal s uses SBP (linearisation of ta.c⇥ sbps).

• ta.c.sbps.m is 1 iff task ta is on core c and the SBP buffer of signal s is on memory
module m (linearisation of ta.c⇥ sbps.m).

• ta.c.ptps.ta.m is 1 iff task ta is on core c and its PTP buffer of signal s is on memory
module m (linearisation of ta.c⇥ ptps.ta.m).

• ta.c.ptps.m is 1 iff task ta is on core c and signal s itself is on memory module m
(linearisation of ta.c⇥ ptps.m).

The linearised Boolean relationships are:

0 ta.c+ sbps � 2⇥ ta.c.sbps 1 (13)
0 ta.c+ sbps.m� 2⇥ ta.c.sbps.m 1 (14)

0 ta.c+ ptps.ta.m� 2⇥ ta.c.ptps.ta.m 1 (15)
0 ta.c+ ptps.m� 2⇥ ta.c.ptps.m 1 (16)

41 of 76

Technical Report 8 Deployment Phase Optimisations

The worst-case time for task ta to manage its buffers is tracked by the (positive) real
variable ta.wcetb . With respect to ta’s allocated core c, the variable captures the total time
for ta to set its SBP buffer indexes (wcet sbp .c), to context-switch to ta’s LET start and end
routines for PTP buffering (wcetcs .c), and to copy signals to and from ta’s PTP buffers:

8ta 2 T : ta.wcetb =
X

c2C

X

hs,ni2ta.acc

�
ta.c.sbps ⇥ wcet sbp .c

�
+ 2⇥

X

c2C

ta.c⇥ wcetcs .c

+

X

c2C

X

m2M

X

hs,ni2ta.acc

ta.c.ptps.ta.m⇥
�
wcetptp .c+ path.c.m⇥ s.w

�

+

X

c2C

X

m2M

X

hs,ni2ta.acc

ta.c.ptps.m⇥ path.c.m⇥ s.w

(17)

The worst-case time for task ta to execute its computations is tracked by the (positive)
real variable ta.wcetc. With respect to ta’s allocated core c, the variable captures the total
time ta needs to execute its instructions (ta.instr .c.wcet), to context-switch to and from ta
during preemptive scheduling (wcetcs .c), and for ta to access its buffered signals. Note that
n, from hs, ni 2 ta.acc, is the number of times that ta accesses signal s during its execution:

8ta 2 T : ta.wcetc =
X

c2C

ta.c⇥ ta.instr .c.wcet +
X

c2C

ta.c⇥ wcetcs .c⇥ ta.cs

+

X

c2C

X

m2M

X

hs,ni2ta.acc

ta.c.sbps.m⇥ path.c.m⇥ s.w ⇥ n

+

X

c2C

X

m2M

X

hs,ni2ta.acc

ta.c.ptps.ta.m⇥ path.c.m⇥ s.w ⇥ n

(18)

Finally, a task’s WCET is the maximum time that needed to manage its buffers (ta.wcetb)
and to execute its computations (ta.wcetc), which must not exceed its LET duration:

8ta 2 T : ta.wcetb + ta.wcetc ta.letEnd � ta.letStart (19)

Task schedulability. The execution time allocated to task instance tia in a scheduling slot
is tracked by the (positive) real variable slot .tia.alloc. Enough time must be allocated for
the task’s WCET:

8ta 2 T 8tia : ta.wcetb + ta.wcetc
X

slot2tia.slots

slot .tia.alloc (20)

For each core, the total execution time allocated to a scheduling slot (slot .tia.alloc) must not
exceed its duration (slot .d):

8c 2 C 8slot 2 Slots :

X

tia,ta2T

X

slot2tia.slots

ta.c⇥ slot .tia.alloc slot .d (21)

The product ta.c⇥slot .tia.alloc in Equation 21 is replaced by its linearised form tia.c.slot .alloc:

tia.c.slot .alloc ta.c⇥ slot .d (22)
tia.c.slot .alloc slot .tia.alloc (23)
tia.c.slot .alloc � slot .tia.alloc � (1� ta.c)⇥ slot .d (24)
tia.c.slot .alloc � 0 (25)

42 of 76

Technical Report 8 Deployment Phase Optimisations

8.4 Genetic Algorithm
A genetic algorithm [Gol89] is a search heuristic inspired by biology to evolve a set of
potential solutions toward better ones. A potential solution is called an individual, and a
set of potential solutions is called a population. Each individual is comprised of at least one
chromosome consisting of at least one gene. A gene encodes a system parameter, e.g., the
buffering protocol selected for a signal, or a task-to-core allocation. A genetic algorithm
begins by creating an initial population and then repeating the following steps:

1. Pairs of individuals are selected to have their chromosomes copied and interleaved
together (crossed over) to produce new individuals, called offsprings.

2. The offsprings are mutated to increase the variability of the population. This is useful
for exploring different regions of the solution space and to escape from locally optimal
solutions.

3. Individuals are evaluated based on a user-defined fitness function and the worst in-
dividuals are removed from the population. This helps one to drive the population
towards optimal solutions.

Each time these steps are repeated, a new generation of solutions is created. Generations are
created until a user-defined stopping criteria is satisfied, e.g., if the improvement in solutions
is insignificant, if the generation number has reached a maximum, or if the elapsed time of
the genetic algorithm has reached a limit. The genes, fitness function, genetic operators, and
initialisation of the population for optimising LET AUTOSAR designs are defined below.

Genes. Each chromosome has four genes, each encoded as an array, for the following
system parameters:

• Selection of a signal’s buffering protocol: an array of binary values, where each signal
is mapped to an array element. A value of 0 means that PTP is selected, and 1 means
that SBP is selected. The array for signal s0 to use PTP, and for s1 and s2 to use
SBP is thus:

0

s0

1

s1

1

s2

• PTP buffer-to-memory allocation: an array of integer values from 0 to |M | � 1 to
indicate the memory module to which a signal and a task’s PTP buffer are allocated.
Each signal and the tasks that use PTP are mapped to a segment of the array. The
array for allocating signals s0 and s1 and the PTP buffers of tasks t0 and t1 is thus:

2

s0

0

t0

1

t1

2

s1

0

t2

For
signal s0

For
signal s1

43 of 76

Technical Report 8 Deployment Phase Optimisations

• SBP buffer-to-memory allocation: an array of integer values from 0 to |M | � 1 to
indicate the memory module to which a signal’s SBP buffer is allocated. Each signal
is mapped to an array element. The array for allocating signal s0’s buffer to module 2,
s1’s buffer to module 0, and s2’s buffer to module 1 is thus:

2

s0

0

s1

1

s2

• Task-to-core allocation: an array of integer values from 0 to |C| � 1 to indicate the
core to which a task is allocated. Each task is mapped to an array element. The array
for allocating task t0 to core 0, t1 to core 1, and t2 to core 2 is thus:

0

t0

1

t1

2

t2

Fitness function. A fitness function returns a numerical value that evaluates how close
an individual is to an optimal solution, i.e., how well Equation 4 is achieved. For an
individual , the fitness function f () is the product of its schedulability, Sched(), and
the amount of slack in the system, Slack(). A higher fitness value is better:

f () = Sched()⇥ Slack() (26)

Sched() returns a value that reflects the degree of task schedulability for , i.e., the propor-
tion of task WCETs that can be scheduled. A higher value is better. Sched() calculates
the total task execution time that cannot be allocated to a scheduling slot as a deficit .
We find the minimum possible deficit with an MILP formulation, reusing the notation and
definitions of Section 8.3. As in Equation 20, task WCETs are allocated to scheduling slots:

8ta 2 T 8tia : ta.wcetb + ta.wcetc
X

slot2tia.slots

slot .tia.alloc (27)

The deficit of a scheduling slot on core c is tracked by the (positive) real variable deficit .c.slot :

8c 2 C 8slot 2 Slots 8ta 2 T 8tia : deficit .c.slot + slot .d� ta.c⇥ slot .tia.alloc � 0 (28)
deficit .c.slot � 0 (29)

The MILP objective is to minimise the total deficit:

Minimise : deficit .total =
X

c2C

X

slot2Slots

deficit .c.slot (30)

and deficit .total is used to define Sched():

Sched() = 1� .deficit .totalP
ta2 .T

(ta.wcet b + ta.wcet c)
(31)

Thus, we have the bound 0 Sched() 1, where 0 means that no tasks in can be
scheduled (e.g., when all LET durations are 0), and 1 means that all tasks can be scheduled.
A value in between expresses the degree to which tasks can be scheduled.

44 of 76

Technical Report 8 Deployment Phase Optimisations

Slack() sums the amount of slack in each task’s instance over one hyper-period. A
positive amount is rewarded by the fitness function, while a negative amount penalises the
individuals’s schedulability:

Slack() =
X

t2T

0

@(t.letEnd � t.letStart)⇥ hp

t.period
�

X

slot2tia.slots

slot .tia.alloc

1

A (32)

Selection operator. When creating offsprings, two stochastic sampling methods can be
used to select pairs of individuals (parents). Tournament selection randomly selects k
individuals, and selects the fittest individual. Increasing number k increases the selection
pressure. Roulette or fitness proportionate selection weighs the probability of selecting an
individual on its fitness relative to others.

Crossover operator. When creating an offspring, its genes are created from the inter-
leaving (crossover) of its parents’ genes. A point is selected within the gene and all array
elements from that point on are swapped between two parents. Thus, two new genes are
created; one for each new offspring. For the buffering protocol and task-to-core allocation
genes, the crossover point can be anywhere in the gene. For the genes encoding the PTP
and SBP buffer-to-memory module allocations, the crossover point must be the one used
for the buffering protocol gene. A crossover probability can be defined to control how often
a crossover occurs.

Mutation operator. After an offspring has been created, its genes can be mutated by
assigning random values to randomly selected array elements. For the task-to-core allocation
gene, an element can be randomly assigned a value from 0 to |C| � 1. For the buffering
protocol gene, an element can be randomly negated to switch a signal’s buffering between
PTP and SBP. However, the genes encoding the PTP and SBP buffer-to-memory module
allocations need to be repaired. When switching a signal’s buffering from SBP to PTP, the
memory module of its SBP buffer is assigned to its PTP buffers. When switching from PTP
to SBP, the memory module of the signal in the PTP gene is assigned to signal’s SBP buffer.
For the gene encoding PTP buffer-to-memory module allocations, only the array segments
of the signals selected to use PTP can be mutated. For these segments, an element can be
randomly assigned a value from 0 to |M |� 1. For the gene encoding SBP buffer-to-memory
module allocations, an element can be randomly assigned a value from 0 to |M | � 1. A
mutation probability can be defined to control how often a mutation occurs.

Initial population. A greatly simplified version of the MILP formulation, using constraint
programming (CP) [FM06], is used to create an initial population of individuals. Each indi-
vidual is a feasible CP solution. The simplification assumes that all cores are homogeneous,
with an execution speed equal to the average of the original cores. Thus, there are only aver-
age WCET values for task execution (ta.wcet instr), buffer management (wcet sbp and wcetptp),
and context-switching (wcetcs). All pathways between the cores and memory modules are
assumed to be constant (path). Task utilisation is calculated as ta.wcetb+ta.wcetc

ta.period
, which is

optimistic when ta.period > ta.letEnd � ta.letStart . Lastly, the overhead for managing PTP
or SBP buffers for a signal is assumed to be a constant.

The CP formulation uses the same MILP constraints to model SBP and PTP buffering
(Equations 5–11), task-to-core allocations (Equation 12), and to check that a task’s WCET
does not exceed its LET duration (Equation 19). The worst-case time for task ta to manage

45 of 76

Technical Report 8 Deployment Phase Optimisations

its buffers is stored in the (positive) real constant ta.wcet b. It is the sum of the maximum
buffer management overheads due to SBP or PTP:

8ta 2 T : ta.wcet b = 2⇥ wcetcs +
X

hs,ni2ta.acc

max
�
wcet sbp ,wcetptp + 2⇥ path ⇥ s.w

�
(33)

The worst-case time for task ta to execute its computations is stored in the (positive) real
constant ta.wcet c, which is the sum of the average worst-case time to execute ta’s instructions
(ta.wcet instr), to context-switch to and from ta (wcetcs), and for ta to access its buffered
signals.

8ta 2 T : ta.wcet c = ta.wcet instr + wcetcs ⇥ ta.cs +
X

hs,ni2ta.acc

path ⇥ s.w ⇥ n (34)

A core is completely utilised (value equal to 1) if it needs to spend all its time executing
tasks. The utilisation of a core must not exceed 1:

8c 2 C : 1 �
X

t2T

t.c⇥ t.wcet b + t.wcet c
t.period

(35)

8.5 Scheduling Hints and Reducing End-to-End Response Times
After MILP or the genetic algorithm has found a solution, a physical task schedule can be
constructed for each core based on the task-to-core allocations. The LET start and end
routines needed for PTP (see Section 8.1) must be included in the task schedule. Although
the technical details for constructing physical task schedules are beyond the scope of this
report, we suggest some scheduling hints that facilitate further memory optimisations for
SBP. We observe that additional buffer elements are required when writers and readers
are overlapped with each other and need different snapshots of a signal (see Algorithm 2,
line 35). If the writers and readers can be scheduled without overlapping, then less buffer
elements may be needed for SBP. For example, if a writer instance tiw is overlapped with a
reader instance tjr , we know that tjr must use the output from a prior instance of tiw , e.g.,
ti�1
w . Thus, if tjr can be scheduled to execute completely before tiw , then tjr ’s buffer element

could be reused by tiw . Of course, tjr should not be scheduled too early such that it overlaps
with ti�1

w . Overall, the strategy is to schedule readers as early as possible, and writers as
late as possible. Unfortunately, tasks that write and read to signals can only be optimised
for writing or reading, and not both.

Algorithm 5 presents a heuristic that decides whether it is better to schedule a task
for writing or for reading. Let ta.writes ✓ S and ta.reads ✓ S contain the set of signals
that task ta writes and reads, respectively. The heuristic, called SchedulingHints, begins
by recording the tasks that do not read any signals as being better scheduled for writing
(line 3). The tasks that do not write to any signals, or tasks that write to and read from
the same signal, are better scheduled for reading (line 4). Moreover, tasks that read signals
written by tasks already in SchedAsWriters can only be scheduled for reading (line 5). For
the remaining tasks (line 6), which read and write to different signals, we are only interested
in those with the least number of signal writes (lines 7), and that do not have successors
already in SchedAsWriters (lines 8). This is because we choose to schedule these tasks for
writing (lines 9) and their successors for reading (lines 10). Note that the algorithm could
terminate without recording a scheduling preference for some tasks. In such cases, these
tasks can be scheduled for writing or for reading.

As mentioned at the end of Section 2.5, the system’s overall end-to-end response times
can be shortened by scaling down the timing parameters of all tasks until a task no longer

46 of 76

Technical Report 8 Deployment Phase Optimisations

Algorithm 5 SchedulingHints returns the tasks that are better scheduled for writing and
the tasks that are better scheduled for reading.
Input: T (all tasks)
Output: SchedAsWriters (tasks better scheduled for writing), and SchedAsReaders (tasks

better scheduled for reading)

� Initially, there are no scheduling hints.
1: SchedAsWriters ;
2: SchedAsReaders ;

� Tasks that do not read any signals are better scheduled for writing.
3: SchedAsWriters {ta 2 T | ta.reads = ;}

� Tasks that do not write to any signals, or tasks that write to and read from the same
� signal, are better optimised for reading.
� The successors of the tasks in SchedAsWriters are also better scheduled for reading.

4: SchedAsReaders {ta 2 T | ta.writes = ;orta.writes \ ta.reads 6= ;}
5: [{tc 2 R(s) | s 2 tb.writes, tb 2 SchedAsWriters}

� Decide which of the remaining tasks are better scheduled for writing or for reading.
� Only consider the tasks with successors that are not scheduled for writing.

6: while 9ta 2 T \ (SchedAsWriters [SchedAsReaders)
7: where |ta.writes| is minimal
8: and {tb 2 R(s) | s 2 ta.writes} \ SchedAsWriters = ;

do

9: SchedAsWriters SchedAsWriters [{ta}
10: SchedAsReaders SchedAsReaders [{tb 2 R(s) | s 2 ta.writes}
11: end while

0
p
?
n
?

1
?
n

p

2

n
3

p

p

?
n
4

?
n

p

5

?
n

p

6

t0

t0
1

0 1 2 3

2 3

t1
1

0 1.2 2.4 3.6 4.8 6

2 3 4 5

t2
1

0 1.5 3 4.5 6

2 4 5

t3
1

0 2 4 6

3 5

t4
1

0 6

Time
(ms)

4 5

1

4 5 6

54 6

3

0 ? ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

Buffer’s state at 0 ms
after all tasks have
been activated

0 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t3,t4

Buffer’s state at
0.8 ms during t3

2 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s state at 2 ms
after t0 and t3 have
been activated t3

t2t1 t2 t3

t0

t3 t4

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0 2 4 6

tc
0 2 5 63

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

2 4

tc
0

0 2 5 6

3

3

0
p
?
n
?

1
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

0

0 1 2 3 4 5 6

2 4 5 7 9 Time
(ms)

1 3 6 8

?
n

2
p

?
n

3
p

?
n

4
p

5
pn

?
n

6
p

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

0 3

tc
0

0 2 5 6

3

3

0
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1 ?

0

n
3
p

?
n

6
p

ta

tb

tc

task
0 1 65

// Signals in global memory.
int input;
int output;

task
0 1 65

void task(int input) {
 output = 0;
 if (input == 0)
 output = comp();
}

// Signals in global memory.
int input;
int output;

// PTP buffers in heap
// memory.
int ptp_taskInput;
int ptp_taskOutput;

void task_computation(void) {
 ptp_taskOutput = 0;
 if (ptp_taskInput == 0)
 ptp_taskOutput = comp();
}

void task_letStart(void) {
 ptp_taskInput == input;
}

void task_letEnd(void) {
 output = ptp_taskOutput;
}

task
0 1 65

void task_computation(void) {
 // Update the task’s instance counter.
 sbp_taskInstance = sbp_taskInstance++ % 3;

 // Update SBP buffer index for “input”.
 int sbp_inputIndex = 0;
 switch (sbp_taskInstance) {
 case 1: sbp_inputIndex = 2; break;
 case 2: sbp_inputIndex = 1; break;
 default: break;
 }

// SBP buffered signals in
// global memory.
int input[3];
int output[3];

// Task instance counter in
// heap memory.
int sbp_taskInstance = -1;

 // Update SBP buffer index for “output”.
 int sbp_outputIndex = 1;
 switch (sbp_taskInstance) {
 case 1: sbp_outputIndex = 0; break;
 case 2: sbp_outputIndex = 0; break;
 default: break;
 }

 // Buffered computation.
 output[sbp_outputIndex] = 0;
 if (input[sbp_inputIndex] == 0)
 output[sbp_outputIndex] = comp();
}

t0

t1
0 3 7

10

Time
(ms)

1 3 5 7 840 2 6

t0

t1
0 1.5 3.5 5

Time
(ms)

0.5 2 3 4.5 52.50 1.5 3.5

9

1 4

4 6

(a) Unscaled physical task schedule. All task instances have 2 ms

of slack.

0
p
?
n
?

1
?
n

p

2

n
3

p

p

?
n
4

?
n

p

5

?
n

p

6

t0

t0
1

0 1 2 3

2 3

t1
1

0 1.2 2.4 3.6 4.8 6

2 3 4 5

t2
1

0 1.5 3 4.5 6

2 4 5

t3
1

0 2 4 6

3 5

t4
1

0 6

Time
(ms)

4 5

1

4 5 6

54 6

3

0 ? ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t1,t2,
t3,t4

Buffer’s state at 0 ms
after all tasks have
been activated

0 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t3,t4

Buffer’s state at
0.8 ms during t3

2 1 ?

n
e
x
t

p
r
e
v

Buffer’s contents:
Writer’s pointers:

Readers: t4

Buffer’s state at 2 ms
after t0 and t3 have
been activated t3

t2t1 t2 t3

t0

t3 t4

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0 2 4 6

tc
0 2 5 63

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

2 4

tc
0

0 2 5 6

3

3

0
p
?
n
?

1
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1

e 2

?
?

0

0

0 1 2 3 4 5 6

2 4 5 7 9 Time
(ms)

1 3 6 8

?
n

2
p

?
n

3
p

?
n

4
p

5
pn

?
n

6
p

ta
1

0 1 2 3 4 5 6

2 3 4 5 6 Time
(ms)

tb
0

0 2 4 6

0 3

tc
0

0 2 5 6

3

3

0
p

B
uf

fe
r e

le
m

en
ts

e 0
e 1 ?

0

n
3
p

?
n

6
p

ta

tb

tc

task
0 1 65

// Signals in global memory.
int input;
int output;

task
0 1 65

void task(int input) {
 output = 0;
 if (input == 0)
 output = comp();
}

// Signals in global memory.
int input;
int output;

// PTP buffers in heap
// memory.
int ptp_taskInput;
int ptp_taskOutput;

void task_computation(void) {
 ptp_taskOutput = 0;
 if (ptp_taskInput == 0)
 ptp_taskOutput = comp();
}

void task_letStart(void) {
 ptp_taskInput == input;
}

void task_letEnd(void) {
 output = ptp_taskOutput;
}

task
0 1 65

void task_computation(void) {
 // Update the task’s instance counter.
 sbp_taskInstance = sbp_taskInstance++ % 3;

 // Update SBP buffer index for “input”.
 int sbp_inputIndex = 0;
 switch (sbp_taskInstance) {
 case 1: sbp_inputIndex = 2; break;
 case 2: sbp_inputIndex = 1; break;
 default: break;
 }

// SBP buffered signals in
// global memory.
int input[3];
int output[3];

// Task instance counter in
// heap memory.
int sbp_taskInstance = -1;

 // Update SBP buffer index for “output”.
 int sbp_outputIndex = 1;
 switch (sbp_taskInstance) {
 case 1:
 case 2: sbp_outputIndex = 0; break;
 default: break;
 }

 // Buffered computation.
 output[sbp_outputIndex] = 0;
 if (input[sbp_inputIndex] == 0)
 output[sbp_outputIndex] = comp();
}

t0

t1
0 3 7

10

Time
(ms)

1 3 5 7 840 2 6

t0

t1
0 1.5 3.5 5

Time
(ms)

0.5 2 3 4.5 52.50 1.5 3.5

9

1 4

(b) Scaled down physical task schedule.
Task instance t01 no longer has any slack.

Figure 14: Example of scaling down a physical task schedule to shorten a system’s overall
end-to-end response times. The tasks are allocated to the same core, and two instances of t0
and one instance of t1 execute during the 10 ms hyper-period.

Table 10: Timing parameters (in ms) of two LET tasks allocated to the same core.

Task Period LET Start LET End WCET

t0 5 1 4 1

t1 10 3 7 2

47 of 76

Technical Report 8 Deployment Phase Optimisations

has any slack. Figure 14a presents a small physical task schedule for tasks t0 and t1 on the
same core. Both tasks use SBP and their original and scaled task timing parameters are
given in Table 10. In the physical task schedule, each task instance has a slack of 2 ms.
The maximum scaling of the timing parameters is determined by the task instance with the
least amount of slack, relative to its LET duration:

MaxScaling = min

✓⇢
ti’s slack

t.letEnd � t.letStart

���� 8t
i, t 2 T

�◆
(36)

For Figure 14a, MaxScaling = min
�
{2
3 ,

2
3 ,

2
4}
�
= 0.5. Thus, the physical task schedule

can be scaled down by 50% as shown in Figure 14b. This approach to improving end-to-
end response times is applicable to LET tasks that use PTP by only scaling the timing
parameters of the computation task.

8.6 Refining the SBP Buffering Schedules
Once the physical task schedule has been constructed, better estimates of SBP buffer life-
times can be made. This is because the start and end times of a task’s execution are likely
shorter than its LET. Less buffer elements may be needed if the execution of the writers
and readers do not overlap and if they execute sequentially with respect to the data-flow.
Thus, SbpBu↵eringSchedules of Algorithm 4 is modified to consider the allocated execu-
tion time of the task instances. Let ta.execStart and ta.execEnd denote the start and end
of ta’s allocated execution time, respectively. On line 3, tir .letEnd is replaced by tir .execEnd
because readers no longer need their buffer elements after they have completed their com-
putations. On line 5, tiw .letStart is replaced by tiw .execStart because writers only need their
buffer elements when they start their computations. Line 22 in Algorithm 3 is updated
identically. For the signals that use SBP, SbpBu↵eringSchedules is then run once more to
generate possibly more memory efficient buffering schedules, and more pairs of signals with
disjoint buffer lifetimes.

8.7 Merging the SBP Buffer Memories
The amount of memory needed for SBP can be reduced further by allowing signals with
buffers that have disjoint lifetimes (over the hyper-period) to share the same memory, i.e., to
merge their buffers. For each memory module, a graph of its allocated signals with disjoint
buffer lifetimes is created and analysed. Let G = hS,E i be such a graph, where s 2 S is a
signal, and hs0, s1i 2 E is an undirected edge that connects two signals that have disjoint
buffer lifetimes. A clique, K ✓ G , which is a fully connected subgraph, represents signal
buffers that can be merged together. Multiple cliques may be found and some may overlap
with others. When a clique is merged, it will prevent all partially overlapping cliques from
merging. Thus, the selection and the order in which cliques are merged has a significant
impact on the possible amount of memory reduction.

Algorithm 6 describes the selection of signal buffers for merging. For each memory
module (line 1), its allocated signals are retrieved from the MILP or genetic algorithm
solution (line 2), and a graph of disjoint buffer lifetimes is created (line 3). While the graph
still contains cliques (line 6), a clique is selected and its signals are recorded for merging
(line 7), and the clique is removed from the graph (line 8).

When finding a clique of signal buffers to merge, we wish to weigh them by their po-
tential memory reduction. When buffers are merged, the resulting buffer size is equal to
the maximum of the individual buffers. Thus, the memory reduction for a clique K can be

48 of 76

Technical Report 8 Deployment Phase Optimisations

calculated in relative (savRK) or absolute (savAK) terms:

savRK = 1� max ({s.size ⇥ s.n | s 2 K})P
s2K

(s.size ⇥ s.n)
(37)

savAK =

X

s2K

(s.size ⇥ s.n)�max ({s.size ⇥ s.n | s 2 K}) (38)

When choosing buffers to merge, a balance between high relative savings and high absolute
savings is preferred. For example, a 75% saving of 32 bytes is not necessarily better than a
50% saving of 128 bytes. Hence, the relative and absolute savings can be weighed together,
e.g., savW K = savRK ⇥ savAK , where a greater savW K indicates better potential for
memory reduction. Algorithm 7 presents a heuristic, called GetClique, for finding the
greatest weighted clique in a graph. Line 3 relies on existing algorithms [BK73] to find all
cliques in a graph, which is known to be NP-hard [Kar72]. Lines 4–12 searches for the clique
with the greatest weight.

Algorithm 6 MergeSbp returns groups of signal buffers that can be merged.
Input: AllDisjBu↵s (pairs of signals with disjoint buffer lifetimes), S (all signals), and

Solution (optimisation solution from MILP or genetic algorithm)
Output: AllMergedBu↵s (groups of signals that can merge their buffers)

1: for m 2 Solution.M do

� Construct graph of disjoint buffer lifetimes for memory module m.
2: Ssbp {s 2 S | Solution.sbps = 1 ^ Solution.sbps.m = 1}
3: G hSsbp , {disjBu↵s 2 AllDisjBu↵s | disjBu↵s ✓ Ssbp}i

4: MergedBu↵sm ;
5: K GetClique(G)

6: while K 6= ; do

� Merge all signal buffers in K .
7: MergedBu↵sm MergedBu↵sm [{K}

� Remove clique K from the graph.
8: G hG .S \K , {disjBu↵s 2 G .E | disjBu↵s \K = ;}i
9: K GetClique(G)

10: end while

11: AllMergedBu↵s AllMergedBu↵s [{MergedBu↵sm}
12: end for

8.8 Discussion
After all design and deployment phase optimisations have been applied to a LET-based
AUTOSAR design (see Section 6 for the overview), we have the physical task schedule
of each core and the SBP buffering schedules of the relevant signals. From these, the
final implementation can be generated: (1) the PTP buffers are created, (2) the signals
chosen to use SBP are converted into SBP buffers, (3) the LET routines and variables
needed for PTP and SBP buffer management are created, (4) the tasks are modified to

49 of 76

Technical Report 8 Deployment Phase Optimisations

Algorithm 7 GetClique returns a clique of signals with the greatest weighted memory
reduction.
Input: G (graph of signals with disjoint SBP buffer lifetimes)
Output: K found (clique with the greatest weight)

1: savW found 0

2: K found ;
3: KAll GetAllCliques(G)

4: for K 2 KAll do

5: savRK 1� max ({s.size ⇥ s.n | s 2 K})P
s2K

s.size ⇥ s.n

6: savAK
P
s2K

(s.size ⇥ s.n)�max ({s.size ⇥ s.n | s 2 K})

7: savW K = savRK ⇥ savAK

8: if savW found < savW K then � Clique with greater weight found.
9: savW found savW K

10: K found K
11: end if

12: end for

access the buffered signals, and (5) the physical task schedule of each core is transformed
into an AUTOSAR schedule table. Any reduction of a system’s end-to-end response times
necessarily involves modifying the timing behaviour of the original AUTOSAR design. Thus,
complete preservation of LET communication semantics is not possible, but the advantage
of our scaling approach is that data-flow is preserved.

The deployment optimisations can be refined further by analysing AUTOSAR designs
at a finer level of detail. For example, disjoint buffer lifetime analysis is performed over
the entire hyper-period, but it could be improved by identifying intervals within the hyper-
period where buffer lifetimes are disjoint and can therefore be merged. Task allocation
could also be extended to task instances, allowing communicating task instances to execute
closer together. However, by analysing at a finer granularity, the search space is increased
considerably.

To reduce the exploration space of the deployment optimisations, the merging of SBP
buffers is performed after MILP or the genetic algorithm has selected the buffering proto-
col of each signal and the signal buffer-to-memory module allocations. If the merging of
SBP buffers is also considered by MILP or the genetic algorithm, then more solutions may
be found for memory-constrained AUTOSAR designs. The heuristics for suggesting the
scheduling of tasks as writers or readers, and for the merging SBP buffer memories can be
refined based on experimental data.

50 of 76

Technical Report 9 Tooling

9 Tooling

The prototyping and evaluation of a selection of the proposed algorithms and heuristics (see
Sections 7 and 8) is carried out using the TA Tool Suite [Vec18] (version 17.4). The TA
Tool Suite uses a simulation-based approach to assist AUTOSAR designers in modelling,
designing, and analysing the timing behaviour of event-triggered or time-triggered multi-
core automotive software. The execution of an AUTOSAR design can be simulated for a
user-specified duration, and the resulting event trace can be viewed as an interactive Gantt
chart. The event trace can be processed to return a variety of execution metrics, e.g., core
execution times, memory access times, task execution times, and deadline violations. The
TA Tool Suite has been extended to support the PTP and SBP buffering protocols, the
modification of LET tasks to access buffered signals, the inclusion of LET start and end
routines in the schedule tables, the simulation of PTP or SBP buffering, and the evaluation
of buffering metrics from the simulation traces.

This section describes the abstract software and hardware model that the TA Tool Suite
supports, the algorithms and heuristics from Sections 7 and 8 that are prototyped, and
the buffering-specific evaluation metrics that are used for the synthetic benchmarking (see
Section 10) and the FMTV case study (see Section 11).

9.1 Software and Hardware Model
The TA Tool Suite’s system model allows the specification of runnables and tasks, task
schedulers, and operating systems. A runnable is defined as a sequence of abstract instruc-
tion blocks, interleaved with signal accesses. The execution time of an instruction block or
signal access is resolved at simulation time, because it depends on the speed of the processor
cores, memory modules, and latency of the interconnects (pathways). Moreover, the number
of instructions to execute can be defined as a probability distribution, e.g., the Gauss or
Weibull distributions, and be based on observed execution times from real software. Each
signal has a data type and size, and is allocated to a memory module. A data age constraint
can be defined for any combination of signals and runnables. Runnables are allocated to
tasks and a runnable execution order can be defined for each task. Event-chains can be
specified to investigate end-to-end response times.

An operating system can be selected to manage one or more cores, and overheads can be
set for various types of context-switches or interrupt service routines. An operating system
can have one or more task schedulers, each with its allocation of tasks. Each scheduler is
allocated to a core. Scheduling algorithms, e.g., fixed-priority or rate-monotonic, can be
selected for each task scheduler, but we are only interested in the hyper-period scheduling
algorithm. The system model supports many other software aspects that are not necessary
for this work, e.g., (1) the use of mutexes, semaphores, or spin-locks as data protection
mechanisms, (2) the runnable execution call tree that allows runnables to be conditionally
executed for a more precise modelling of execution behaviour, or (3) the periodic or sporadic
triggering of tasks with stimuli or operating system events.

Processors, memory modules, and their pathways are specified in the system model. A
processor has one or more cores, each with its own execution speed. A memory module
has a fixed capacity, data-width, write and read latencies, and an operating frequency.
The memory modules are connected to the cores through interconnects and their latencies
depend on the selected arbitration policy, e.g., fixed-priority or round-robin. For our work,
we assume a multi-core hardware architecture like the one depicted in Figure 1d, and that
signal accesses are not cached.

The system model has been extended with the ability to define LET tasks, and a physical

51 of 76

Technical Report 9 Tooling

task schedule for each scheduler. For LET tasks, the initial offset, activation offset, LET
duration, and period can be specified (see Figure 3). A plug-in has been implemented
to automatically modify LET tasks into ordinary tasks by replacing all signal accesses
with buffered equivalents, by inserting special runnables to model the overhead of updating
SBP buffer indexes, by creating special tasks to model the LET start and end routines
for PTP buffering, and by creating the signal buffers. Another plug-in was implemented to
automatically calculate the hyper-period, to generate physical task schedules from a software
model, and to insert the schedules into the software model. Each task schedule is stored as
a list of timestamps with a scheduling action, e.g., at 0 ms release task t0. At the end of
each hyper-period, a fixed preparation time is specified for the reinitialisation of SBP buffers
so that their initial buffer element holds the correct value. Thus, the periodicity of a task
schedule is slightly longer than its hyper-period.

9.2 Prototyped Optimisations
From the overview of the proposed buffering optimisations described in Section 6, Steps 1
and 6, and partially Steps 3 and 5 have been prototyped. Step 1 relates to the design
phase optimisations described in Section 7, where SbpBufferingSchedules (see Section 7.3)
constructs an SBP buffering schedule for each signal and finds buffers with disjoint lifetimes.
GetWriterUses (see Section 7.2) has been implemented to suppress unnecessary signal writes.
For Step 3, only the construction of unoptimised physical task schedules is supported by the
TA Tool Suite. Step 5 relates to the merging of SBP buffers with MergeSbp (see Section 8.7).
However, a simplified version has been implemented, where pairs of SBP signal buffers are
merged if they have disjoint lifetimes and the same buffer sizes. This has been translated
into a graph colouring problem and a greedy algorithm was implemented. For Step 6, a
plug-in has been implemented to insert the necessary buffering-related code, signal buffers,
and physical task schedules into the system model.

Because only some of the proposed algorithms and heuristics have been implemented,
further assumptions on the system model are needed:

• A model uses either PTP or SBP for all its signals. It is not possible to use a mix of
PTP or SBP in the same model.

• Each SBP buffer is allocated to the same memory module as its original signal.

• A task’s PTP buffer is allocated to the local memory of the task’s allocated core.

• A task’s SBP buffer indexes are allocated to its stack, and the indexes are updated in
each task instance.

• Because signal buffer-to-memory module allocations are fixed, the TA Tool Suite only
warns the user when a memory module’s capacity is exceeded by its allocated buffers.

9.3 Evaluation Metrics
The following metrics are used to evaluate the impact that the PTP and SBP buffering
protocols and the implemented SBP buffering optimisations have on LET-based multi-core
AUTOSAR designs.

Total signal and buffer element count: The total number of signals and buffer ele-
ments in the system. This metric indicates the amount of complexity that the chosen
buffering protocol has added to the system. The added complexity could increase

52 of 76

Technical Report 9 Tooling

the implementation effort needed to generate a deployment. This metric is calculated
after the final system model has been generated.

Total signal and buffer memory: The total amount of memory needed for all signals
and buffers. This metric indicates the amount of memory that is needed to preserve
the LET communication semantics, and is calculated after the final system model has
been generated.

Total buffer management time: The sum of the time needed to manage all buffers dur-
ing a simulation run. For PTP buffer management, it is the execution time of the
LET start and end routines. For SBP buffer management, it is the time to update
the buffer indexes and to reinitialise the buffers after each hyper-period, and when the
local programming style is used, the time to read a signal into a task’s local variable.
Arbitration delays are considered in every memory access. This metric is calculated
after simulation.

Total signal access time: The sum of the times needed during a simulation run to access
the buffered signals in the task computations, to access signals and buffers in the LET
start and end routines for PTP buffering, and to access variables when updating buffer
indexes for SBP buffering. Arbitration delays are considered in every memory access.
This metric is calculated after simulation.

Processor utilisation: The utilisation of a core is the percentage of time that it spends
executing tasks, scheduler, accessing signals, and accessing buffers. The processor
utilisation is the average utilisation of all its cores. This metric is calculated after
simulation.

53 of 76

Technical Report 10 Synthetic Benchmarking

Table 11: Task periods for the airbag, chassis, and engine management systems, with hyper-
periods of 1, 000 ms, 10 ms, and 1, 000 ms, respectively

Occurrence (%)

Period (ms) Airbag Chassis Engine

0.5 5 · ·
1 33 18 10
2 · 3 16

2.5 · 3 ·
5 10 41 40
10 21 35 10
20 5 · 3
40 3 · ·
50 · · 4
100 10 · ·
200 · · 10
400 3 · ·

1,000 10 · 7

10 Synthetic Benchmarking

The capabilities of the implemented buffering optimisations (see Section 9.2) are explored
with synthetic benchmarks that are representative of AUTOSAR designs from the automo-
tive industry. The evaluation metrics of unbuffered, PTP buffered, and SBP buffered AU-
TOSAR systems are compared. Eight different AUTOSAR designs for managing an airbag,
chassis, and engine have been collected and analysed. Based on industrial experiences with
working on similar designs, software parameters characterising the three categories of AU-
TOSAR designs have been derived and are listed in Tables 11 and 12. Table 11 defines
the task periods observed in each category and their occurrence as a percentage of the to-
tal number of tasks. Sporadic tasks, e.g., interrupt service routines, or tasks triggered by
aperiodic events, are ignored. Table 12 defines the range of signals, runnables, and tasks ob-
served in the AUTOSAR designs. The processor utilisations (which includes the execution
of sporadic tasks) have been derived by simulating each design in the TA Tool Suite.

10.1 Benchmarking Workflow
An existing model generator tool for the AMALTHEA tool platform [Inf17] has been ex-
tended to generate LET-based AUTOSAR designs for the TA Tool Suite. Figure 15 shows
a portion of the configuration interface, where the randomness of each parameter is defined
by a probability distribution. Twenty random models of each system category have been
generated from the parameters in Tables 11 and 12. Every task has a random LET duration
equal to 50��100% of their period, and an activation offset and initial offset equal to zero.
All signals are accessed directly by the runnables without any data protection mechanisms.
For each model, data age constraints are randomly added to twenty percent of the signals.
The data age duration has a uniform value between 3–7 times the period of the writer task.

All the generated models use an identical hardware platform, similar to Figure 1d. It
has a single processor with three homogeneous cores at a fixed execution speed of 300 MHz.

54 of 76

Technical Report 10 Synthetic Benchmarking

Table 12: Characteristic software parameters

Parameter Airbag Chassis EMS

Signal data size 6–32 bits 6–32 bits 6–32 bits
Number of signals 2,000–4,500 1,000–2,000 2,000–5,000
Number of signal accesses 2,373–9,853 11,346–23,215 1,615–11,868
Number of runnables 491–1,858 2,124–4,278 342–2,219
Instructions per runnable 1,000–100,000 100–1,000 1,000–50,000
Number of tasks 20–40 25–30 25–40
Processor utilisation 40–80% 40–85% 40–65%

Figure 15: Screenshot of the model generator configuration interface.

55 of 76

Technical Report 10 Synthetic Benchmarking

Each core has access to its own local memory module via a fast local bus (5 ns access
time), and access to a shared global memory module via a slower bus (10 ns access time).
First-come, first-serve arbitration is used for the bus requests. All memory modules have a
data width of 64 bits.

After the unbuffered models have been synthesised, PTP and SBP versions are generated
with the assumptions listed in Section 9.2. The PTP buffering protocol, without any PTP-
specific optimisations, is applied to the unbuffered models to create PTP buffered models.
The SBP buffering protocol and the implemented buffering optimisations are applied to the
unbuffered models to create SBP buffered models. Because the suppression of unnecessary
writes only apply to signals with the local programming style, but the unbuffered models
use the global programming style, we add local variables (allocated to task stacks) to model
the cost of using the local programming style. More precisely, for each signal to which a
task writes, a local variable is added. Thus, two versions of the SBP buffered models are
generated: SBP global where all signals use the global programming style, and SBP local
where all signals use the local programming style. We do not create models where a mix of
PTP and SBP buffering protocols are applied.

10.2 Preliminary Results
This section uses the evaluation metrics from Section 9.3 to compare the unbuffered and
buffered synthetic models. The simulated run-time for each model is three times its hyper-
period, i.e., 3⇥ hp.

Total signal and buffer element count. Figures 16–18 show that the SBP buffered
models require less signal and buffer elements than the PTP buffered models. The SBP
buffered models benefit from the proposed buffer memory optimisations (static buffering
protocol and buffer merging), resulting in less buffer elements needed when compared with
PTP buffering. However, SBP buffering can require a significant number of buffer indexes,
which are drawn on top of the SBP buffering results in Figures 16–18. The number of buffer
indexes varies with each model, because it depends on the number of tasks and the variety
of signals that each task accesses. Compared to the SBP global buffered models, the SBP
local buffered models require additional local variables. Overall, the SBP buffered models
are more complex to implement than the PTP buffered models.

Total signal and buffer memory. Taking signal data sizes into account, Figures 19–21
show the total memory that is needed for the signals and buffers. Significantly more memory
is needed for the PTP buffered models when compared to the SBP global buffered models.
This is again due to the SBP buffering optimisations and that PTP buffering always requires
a buffer for each writer and reader of a signal. A greater difference is observed when larger
signal data sizes are used. Even when buffer indexes of 8 bits in size are taken into account,
SBP buffering usually needs less memory than PTP buffering. The actual memory needed
at run-time is less because buffer indexes are allocated to the task stacks, so their memory
is freed when tasks terminate. The same reasoning applies to the local variables in the SBP
local buffering models.

Processor utilisation. Figure 22 shows that the average processor utilisation between the
PTP and SBP buffered models of the airbag and engine management systems are nearly the
same. Thus, there is no performance advantage between using PTP or SBP buffering for
these systems. A noticeable difference between PTP and SBP buffering can be seen for the

56 of 76

Technical Report 10 Synthetic Benchmarking

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Number of Signals and Buffer Elements

M
od

el
In

st
an

ce

PTP
SBP Global
SBP Local
SBP Indexes

Figure 16: Total signal and buffer element counts for the airbag models.

57 of 76

Technical Report 10 Synthetic Benchmarking

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

·104

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Number of Signals and Buffer Elements

M
od

el
In

st
an

ce

PTP
SBP Global
SBP Local
SBP Indexes

Figure 17: Total signal and buffer element counts for the chassis models.

58 of 76

Technical Report 10 Synthetic Benchmarking

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Number of Signals and Buffer Elements

M
od

el
In

st
an

ce

PTP
SBP Global
SBP Local
SBP Indexes

Figure 18: Total signal and buffer element counts for the engine models.

59 of 76

Technical Report 10 Synthetic Benchmarking

0 50 100 150 200 250 300 350 400 450 500

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Memory (Bytes)

M
od

el
In

st
an

ce

PTP
SBP Global
SBP Local

SBP Indexes

Figure 19: Total memory needed for the signals and buffers in the airbag models.

60 of 76

Technical Report 10 Synthetic Benchmarking

0 50 100 150 200 250 300 350 400 450 500

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Memory (Bytes)

M
od

el
In

st
an

ce

PTP
SBP Global
SBP Local
SBP Indexes

Figure 20: Total memory needed for the signals and buffers in the chassis models.

61 of 76

Technical Report 10 Synthetic Benchmarking

0 50 100 150 200 250 300 350 400 450 500

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Memory (Bytes)

M
od

el
In

st
an

ce

PTP
SBP Global
SBP Local
SBP Indexes

Figure 21: Total memory needed for the signals and buffers in the engine models.

62 of 76

Technical Report 10 Synthetic Benchmarking

chassis system. The higher processor load of the PTP buffered models suggests that PTP
buffering incurs a higher overhead than SBP buffering.

Total signal access time. Figure 23 shows that more time is needed to complete all
signal accesses with PTP buffering than with SBP buffering, although the time difference
is relatively small. This appears to be counter-intuitive because accessing a local memory
module is normally faster than accessing a global memory module. However, the reported
total signal access time includes the time to access the signals and buffers in the LET start
and end routines for PTP buffering, and the time to access variables when updating buffer
indexes for SBP.

Total buffer management time. Figure 24 shows that PTP buffering requires at least
twice the time of SBP global buffering to complete all their signal accesses. The overhead
for SBP local buffering, however, is slightly better than that of PTP buffering. First, the
alignment of multiple LET start and end routines across the cores could cause high bus
contention, resulting in higher arbitration delays for the PTP buffering model. Second, the
SBP local buffering models have to perform additional writes from the local outputs to the
signals.

10.3 Discussion
The preliminary evaluation presented in this section demonstrates that the design phase
optimisations alone make SBP buffering a competitive alternative to PTP buffering, which
is typically used for LET-based AUTOSAR systems. The results showed that SBP buffering
uses less memory and has shorter signal access times than PTP buffering. Greater differences
in the evaluation metrics between the PTP and SBP buffered models could have been elicited
by increasing the number of signal accesses within each runnable (and task). SBP global
buffering is better than SBP local buffering in all evaluation metrics when the suppression
of unnecessary writers and the merging of signal buffers yields insignificant savings.

SBP buffering relies on the use of buffer indexes to ensure that task instances access
the correct buffer elements, which increases the stack space needed for each task. This is
mitigated by the fact that only stack space is needed for the indexes during task execution,
which is released on task termination. The total memory needed for SBP buffer indexes can
be reduced by using indexes that are smaller than 8 bits. Devising a physical task scheduler
with a shorter hyper-period will help to reduce the number of task instances that have to
be counted.

From an implementation point of view, SBP buffering requires buffering schedules to
be regenerated whenever a task is added or removed from the design. In addition, the
reinitialisation of SBP buffers at the end of each hyper-period need to be updated. PTP
buffering only requires the LET start and end routines of the affected task to be updated,
leading to better maintainability and perhaps less implementation effort in the long term.

63 of 76

Technical Report 10 Synthetic Benchmarking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
30
35
40
45
50
55
60
65
70
75
80
85
90

Model Instance

U
ti

lis
at

io
n(

%
)

Airbag System Management

PTP SBP Global SBP Local

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
30
35
40
45
50
55
60
65
70
75
80
85
90

Model Instance

U
ti

lis
at

io
n(

%
)

Chassis Management System

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
30
35
40
45
50
55
60
65
70
75
80
85
90

Model Instance

U
ti

lis
at

io
n(

%
)

Engine Management System

Figure 22: Average processor utilisation for 3 second runs of the synthetic models.

64 of 76

Technical Report 10 Synthetic Benchmarking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24
0.26
0.28
0.3

Model Instance

T
im

e
(m

s
)

Airbag Management System

PTP SBP Global SBP Local

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7

Model Instance

T
im

e
(m

s
)

Chassis Management System

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24
0.26
0.28
0.3

Model Instance

T
im

e
(m

s
)

Engine Management System

Figure 23: Total signal access times for the synthetic models.

65 of 76

Technical Report 10 Synthetic Benchmarking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24
0.26
0.28
0.3

Model Instance

T
im

e
(m

s
)

Airbag Management System

PTP SBP Global SBP Local

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7

Model Instance

T
im

e
(m

s
)

Chassis Management System

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24
0.26
0.28
0.3

Model Instance

T
im

e
(m

s
)

Engine Management System

Figure 24: Total buffer management times for the synthetic models.

66 of 76

Technical Report 11 FMTV Case Study

Table 13: FMTV task parameters (modified for LET). Hyper-period of 1, 000 ms

Task Period (ms) LET (ms) Observed Utilisation (%) Core

task1ms 1 1 30.68 0
task2ms 2 2 15.26 1
task5ms 5 5 12.92 0
task10ms 10 10 53.67 2
task20ms 20 20 31.21 1
task50ms 50 50 4.10 1
task100ms 100 100 6.68 1
task200ms 200 200 0.06 1
task1000ms 1,000 1,000 0.13 1

11 FMTV Case Study

The relevance of the implemented buffering optimisations (see Section 9.2) for an industrial
AUTOSAR design is investigated in this section. We use the engine management system
from the FMTV challenge [HDK+17], provided by Robert Bosch GmbH as an industrial case
study to the research community. However, two main problems arose during benchmarking.
First, one of the tasks has a WCET of 11.7 ms, which is longer than its 10 ms period.
Second, the worst-case utilisation of three of the four cores exceeds 100%. Interestingly,
no tasks executed beyond its period when 10 seconds of run-time is simulated because the
worst-case is not reached. These two problems have also been reported by other FMTV
challenge contestants [BPBN17]. We make the FMTV model schedulable by randomly
reducing the instructions from the tasks with the highest load. Because we are interested in
converting the periodic tasks to LET tasks, we assume that the interrupt service routines
and sporadic tasks can be scheduled separately on their own core. The modified FMTV
model has 9 LET tasks, 1, 057 runnables, and 8, 824 signals of which 1, 248 signals have no
readers, 326 signals have no writers, and 3, 364 signals have constant values. The runnables
access the signals directly, without any data protection mechanisms. The LET tasks are
allocated over three cores and their parameters are provided in Table 13. The observed task
utilisation is based on a simulation run of the model and does not represent the worst-case
utilisation. The initial and activation offsets of the LET tasks are equal to zero.

Using the workflow of the synthetic benchmarks (see Section 10.1), three additional
models are generated: a PTP buffered model, an SBP global buffered model, and an SBP
local buffered model. The hardware platform used in the FMTV model is a single processor
with four homogeneous cores at a fixed execution speed of 200 MHz, similar to Figure 1d.
Each core has access to its own local memory module via a fast local bus, and access to a
shared global memory module via a slower bus. All memory modules have a data width
of 32 bits. The signal-to-memory module allocations are identical to those in the original
FMTV model.

67 of 76

Technical Report 11 FMTV Case Study

11.1 Preliminary Results
This section uses the evaluation metrics from Section 9.3 to compare the unbuffered and
buffered FMTV models.

Total signal and buffer element count. Figure 25 shows the number of signals and
buffer elements in the unbuffered and buffered FMTV models. The unbuffered model has
8, 824 signals, and the PTP buffered model has nearly the same number for its buffers.
However, SBP buffering requires a significant number of buffer indexes, drawn on top of the
SBP buffering results in Figure 25. Thus, the SBP buffered models are more complex to
implement than the PTP buffered model.

Total signal and buffer memory. Taking signal data sizes into account, Figure 26 shows
the total memory that is needed for the signals and buffers in the unbuffered and buffered
FMTV models. It is clear that the unbuffered model needs the least amount of memory
for its signals, while the PTP buffered model needs nearly the same amount for its buffers.
Ignoring the local variables and buffer indexes, less memory is needed for the SBP buffered
models because of the applied buffering optimisations and that PTP buffering creates a
buffer for each signal that a task accesses. The total memory needed for buffer indexes,
each being 8 bits in size, are drawn on top of the SBP buffering results in Figure 26. The
actual memory needed at run-time is less because the buffer indexes are allocated to the
task stacks, so their occupied memory is freed when tasks terminate. The same reasoning
applies to the local variables in the SBP local buffering model.

Processor utilisation. Figure 27 shows the average processor utilisation for 3 seconds of
simulated run-time for the unbuffered and buffered FMTV models. With the unbuffered
model as the baseline, the SBP global buffered model has a slight increase in processor util-
isation. The SBP local buffered model has a slightly higher increase in processor utilisation
because tasks have to write their local outputs to the signals. The PTP buffered model has
the highest increase in processor utilisation, of 2%, because of signal reads and writes in the
LET start and end routines.

Total signal access time. Figure 28 shows that more time is needed to complete all
signal accesses with PTP buffering than with SBP buffering. As observed in the synthetic
benchmarking, the sum of the signal access times in the LET start and end routines for
PTP buffering contribute greatly towards the total signal access time.

Total buffer management time. Figure 29 shows that PTP buffering incurs the highest
buffer management overhead, followed by SBP local buffering. The two observations identi-
fied in the synthetic benchmarking also apply here: (1) the alignment of multiple LET start
and end routines could cause high bus contention for the PTP buffering model, and (2) the
SBP local buffering model has to perform additional signal writes.

68 of 76

Technical Report 11 FMTV Case Study

Unbuffered PTP SBP Global SBP Local
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

·104
N

um
be

r
of

Si
gn

al
s

an
d

B
uff

er
E

le
m

en
ts Signals Indexes

Figure 25: Total number of signals, buffer elements, and buffer indexes in the FMTV models.

Unbuffered PTP SBP Global SBP Local
0

100

200

300

400

500

600

M
em

or
y

(B
yt

es
)

Signals Indexes

Figure 26: Total memory needed for the signals and buffers in the FMTV models.

69 of 76

Technical Report 11 FMTV Case Study

Unbuffered PTP SBP Global SBP Local
30

32

34

36

38

40

42

U
til

isa
tio

n
(%

)

Figure 27: Average processor utilisation for 3 s of simulated run-time for the FMTV models.

Unbuffered PTP SBP Global SBP Local
0

0.5

1

1.5

2

2.5

T
im

e
(m

s)

Figure 28: Total signal access time for the FMTV models.

Unbuffered PTP SBP Global SBP Local
0

0.5

1

1.5

T
im

e
(m

s)

Figure 29: Total buffer management time for the FMTV models.

70 of 76

Technical Report 12 Conclusions

12 Conclusions

The logical execution time (LET) task model [KS12] presents an interesting solution to the
mutli-core challenges that the automotive industry is facing. The need to precisely define
the timing of task communications enables time-predictable and deterministic execution
behaviours that are platform agnostic. However, the LET communication model must be
implemented in a semantics preserving manner, otherwise its benefits are lost. Central to
this is the need to buffer communication signals when tasks are unable to synchronise at
the same time.

We have adapted and improved on the dynamic buffering protocol [STC06] for statically
scheduled LET-based tasks. A range of algorithms and heuristics were developed by us to
reduce the buffer memory, processor utilisation, and end-to-end response times of LET-based
multi-core AUTOSAR designs [HvHM+16, RNH+15]: (1) Memory-efficient SBP buffering
schedules are generated from logical task schedules. (2) The allocation of tasks-to-cores and
signal buffers-to-memory modules and the selection of PTP or SBP buffering for each signal
are decided by an MILP formulation or genetic algorithm. (3) A physical task schedule is
generated from task-to-core allocations and scheduling hints. The task schedule could be
scaled down to improve the system’s overall end-to-end response times. (4) The original
SBP buffering schedules are refined with the task execution times from a physical task
schedule. (5) SBP buffers are merged and the final deployment is generated. Offline, rather
than online, optimisations were preferred because they introduce the least amount of run-
time uncertainty, which is desirable when designing hard real-time automotive systems with
strict timing constraints.

The design phase optimisations and a simplified SBP buffer merging heuristic were proto-
typed into the TA Tool Suite [Vec18] and evaluated. Synthetic benchmarks with parameters
based on actual airbag, chassis, and engine management systems were used, along with one
industrial example from the FMTV challenge. Preliminary results suggest that a LET-
based system with SBP buffering uses less memory and processor utilisation than with PTP
buffering. For future work, the prototyping of the remaining algorithms and heuristics is
required, along with further benchmarking and evaluations. We hope to improve the output
of the proposed algorithms and heuristics as more is learnt about system characteristics in
the evaluations.

71 of 76

Technical Report References

References

[AUT17a] AUTOSAR. Release 4.3.1. Available at http://www.autosar.org, December
2017. Last accessed August 2018.

[AUT17b] AUTOSAR. Specification of RTE, December 2017. Release 4.3.1. Available at
http://www.autosar.org. Last accessed August 2018.

[AUT17c] AUTOSAR. Specification of Timing Extensions, December 2017. Release 4.3.1.
Available at http://www.autosar.org. Last accessed August 2018.

[BCB+08] Björn B. Brandenburg, John M. Calandrino, Aaron Block, Hennadiy Leontyev,
and James H. Anderson. Real-Time Synchronization on Multiprocessors: To
Block or Not to Block, to Suspend or Spin? In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 342–353, April 2008.

[BCE+03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. The Synchronous Languages 12 Years Later.
IEEE, 91(1):64 – 83, January 2003.

[BDM02] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a Moving
Window over Streaming Data. In Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 633–634. Society for Industrial and Applied Mathe-
matics, January 2002.

[BGG+71] M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent.
Experiments in Mixed-Integer Linear Programming. Mathematical Programming,
1(1):76–94, December 1971.

[BK73] Coen Bron and Joep Kerbosch. Algorithm 457: Finding All Cliques of an Undi-
rected Graph. Communications of the ACM, 16(9):575–577, September 1973.

[BKU16] Christian Bradatsch, Florian Kluge, and Theo Ungerer. Data Age Diminution
in the Logical Execution Time Model. In Architecture of Computing Systems
(ARCS), volume 9637 of Lecture Notes in Computer Science, pages 173–184.
Springer, March 2016.

[BPBN17] Alessandro Biondi, Paolo Pazzaglia, Alessio Balsini, and Marco Di Natale.
Logical Execution Time Implementation and Memory Optimization Issues in
AUTOSAR Applications for Multicores. In Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS). Inria, June 2017. Available
at https://www.ecrts.org/forum/viewtopic.php?f=32&t=87. Last accessed
August 2018.

[CM05] Paul Caspi and Oded Maler. From Control Loops to Real-Time Programs.
In Handbook of Networked and Embedded Control Systems, pages 395–418.
Birkhäuser Boston, 2005.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal Methods: State of the Art
and Future Directions. ACM Computing Surveys, 28(4):626–643, December 1996.

[EKQS18] Rolf Ernst, Stefan Kuntz, Sophie Quinton, and Martin Simons. The Logical
Execution Time Paradigm: New Perspectives for Multicore Systems (Dagstuhl
Seminar 18092). Dagstuhl Reports, 8(2):122–149, August 2018.

72 of 76

http://www.autosar.org
http://www.autosar.org
http://www.autosar.org
https://www.ecrts.org/forum/viewtopic.php?f=32&t=87

Technical Report References

[FFPT05] Emilia Farcas, Claudiu Farcas, Wolfgang Pree, and Josef Templ. Transparent
Distribution of Real-time Components Based on Logical Execution Time. In
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 31–39. ACM, July 2005.

[FLSN14] Hamid Reza Faragardi, Björn Lisper, Kristian Sandström, and Thomas Nolte.
An Efficient Scheduling of AUTOSAR Runnables to Minimize Communication
Cost in Multi-Core Systems. In Telecommunications (IST), pages 41–48. IEEE,
September 2014.

[FM06] Eugene C. Freuder and Alan K. Mackworth. Chapter 2 - Constraint Satisfaction:
An Emerging Paradigm. In Handbook of Constraint Programming, volume 2 of
Foundations of Artificial Intelligence, pages 13–27. Elsevier, March 2006.

[FNG+09] Alberto Ferrari, Marco Di Natale, Giacomo Gentile, Giovanni Reggiani, and
Paolo Gai. Time and Memory Tradeoffs in the Implementation of AUTOSAR
Components. In Design, Automation Test in Europe Conference Exhibition,
pages 864–869. European Design and Automation Association, April 2009.

[GGL14] Andreas Gustavsson, Jan Gustafsson, and Björn Lisper. Timing Analysis of
Parallel Software Using Abstract Execution. In Verification, Model Checking,
and Abstract Interpretation (VMCAI), volume 8318 of Lecture Notes in Computer
Science, pages 59–77. Springer, January 2014.

[GKKL16] Alex Gavryushkin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu.
Dynamic Algorithms for Multimachine Interval Scheduling Through Analysis of
Idle Intervals. Algorithmica, 76(4):1160–1180, December 2016.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[Hab72] Arie Nico Habermann. Synchronization of Communicating Processes. Commu-
nications of the ACM, 15(3):171–176, March 1972.

[HDK+17] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, Falk Wurst,
and Dirk Ziegenbein. WATERS Industrial Challenge 2017. In Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS). Inria, June
2017. Available at https://waters2017.inria.fr/challenge. Last accessed
August 2018.

[Her90] Maurice Herlihy. A Methodology for Implementing Highly Concurrent Data
Structures. In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP), pages 197–206. ACM, November 1990.

[HHK01] Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Giotto: A
Time-Triggered Language for Embedded Programming. In Embedded Software,
volume 2211 of Lecture Notes in Computer Science, pages 166–184. Springer,
October 2001.

[HK07] Thomas A. Henzinger and Christoph M. Kirsch. The Embedded Machine: Pre-
dictable, Portable Real-time Code. ACM Transactions on Programming Lan-
guages and Systems, 29(6):33:1–33:29, October 2007.

73 of 76

https://waters2017.inria.fr/challenge

Technical Report References

[HvHM+16] Julien Hennig, Hermann von Hasseln, Hassan Mohammad, Stefan Resmerita,
Stefan Lukesch, and Andreas Naderlinger. Towards Parallelizing Legacy Embed-
ded Control Software Using the LET Programming Paradigm. In IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS). IEEE,
April 2016.

[HZN+14] Gang Han, Haibo Zeng, Marco Di Natale, Xue Liu, and Wenhua Dou. Ex-
perimental Evaluation and Selection of Data Consistency Mechanisms for Hard
Real-Time Applications on Multicore Platforms. IEEE Transactions on Indus-
trial Informatics, 10(2):903–918, May 2014.

[Inf14] Infineon. AURIXTM TC27x C-Step 32-bit Single-Chip Microcontroller: User’s
Manual. Infineon Technologies AG, Munich, Germany, 2.2 edition, December
2014.

[Inf17] Information Technology for European Advancement (ITEA2). AMALTHEA.
http://www.amalthea-project.org, August 2017. Last accessed September
2018.

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Springer, March 1972.

[KKTM10] Kay Klobedanz, Christoph Kuznik, Andreas Thuy, and Wolfgang Müller. Tim-
ing Modeling and Analysis for AUTOSAR-based Software Development–A Case
Study. In Design, Automation Test in Europe Conference Exhibition (DATE),
pages 642–645. IEEE, March 2010.

[Kop91] Hermann Kopetz. Event-Triggered Versus Time-Triggered Real-Time Systems.
In Operating Systems of the 90s and Beyond, volume 563 of Lecture Notes in
Computer Science, pages 87–101. Springer, July 1991.

[KQBS15] Sebastian Kehr, Eduardo Quiñones, Bert Böddeker, and Günter Schäfer. Parallel
Execution of AUTOSAR Legacy Applications on Multicore ECUs with Timed
Implicit Communication. In ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, June 2015.

[KR93] Hermann Kopetz and Johannes Reisinger. The Non-Blocking Write Protocol
NBW: A solution to a Real-Time Synchronization Problem. In Real-Time Sys-
tems Symposium (RTSS), pages 131–137. IEEE, December 1993.

[KS12] Christoph M. Kirsch and Ana Sokolova. The Logical Execution Time Paradigm.
In Advances in Real-Time Systems (ARTS), chapter 5, pages 103–120. Springer,
2012.

[KSU83] Florian Kluge, Martin Schoeberl, and Theo Ungerer. Optimization by Simulated
Annealing. Science, 220(4598):671–680, May 1983.

[KSU16] Florian Kluge, Martin Schoeberl, and Theo Ungerer. Support for the Logical
Execution Time Model on a Time-predictable Multicore Processor. SIGBED
Review–Special Issue on International Workshop on RealTime Networks (RTN),
13(4):61–66, November 2016.

74 of 76

http://www.amalthea-project.org

Technical Report References

[LL73] Chung Laung Liu and James W. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61,
January 1973.

[LM87] Edward A. Lee and David G. Messerschmitt. Synchronous Data Flow. Proceed-
ings of the IEEE, 75(9):1235–1245, September 1987.

[MRR12] Michael McCool, James Reinders, and Arch Robison. Structured Parallel Pro-
gramming: Patterns for Efficient Computation. Morgan Kaufmann Publishers
Inc., 1st edition, June 2012.

[NWV08] Marco Di Natale, Guoqiang Wang, and Alberto Sangiovanni Vincentelli. Op-
timizing the Implementation of Communication in Synchronous Reactive Mod-
els. In IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 169–179. IEEE, April 2008.

[OSE05] OSEK/VDX. Operating Sytem, February 2005. Specification 2.3.3. Available at
http://www.osek-vdx.org. Last accessed November 2017.

[OSHK09] Roman Obermaisser, Christian El Salloum, Bernhard Huber, and Hermann
Kopetz. From a Federated to an Integrated Automotive Architecture. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
28(7):956–965, July 2009.

[PS82] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Inc., 1982.

[Ray13] Michel Raynal. Solving Mutual Exclusion. In Concurrent Programming: Algo-
rithms, Principles, and Foundations, chapter 2, pages 15–60. Springer, 2013.

[RNH+15] Stefan Resmerita, Andreas Naderlinger, Manuel Huber, Kenneth Butts, and
Wolfgang Pree. Applying Real-Time Programming to Legacy Embedded Control
Software. In Real-Time Distributed Computing (ISORC), pages 1–8. IEEE, April
2015.

[RNL17] Stefan Resmerita, Andreas Naderlinger, and Stefan Lukesch. Efficient Realization
of Logical Execution Times in Legacy Embedded Software. In Formal Methods
and Models for System Design (MEMOCODE), pages 36–45. ACM, September
2017.

[SCCM15] Salah Eddine Saidi, Sylvain Cotard, Khaled Chaaban, and Kevin Marteil.
An ILP Approach for Mapping AUTOSAR Runnables on Multi-core Architec-
tures. In Rapid Simulation and Performance Evaluation: Methods and Tools
(RAPIDO), pages 6:1–6:8. ACM, January 2015.

[ST00] H. Sundell and P. Tsigas. Space Efficient Wait-Free Buffer Sharing in Multipro-
cessor Real-Time Systems Based on Timing Information. In Real-Time Comput-
ing Systems and Applications (RTCSA), pages 433–440. IEEE, December 2000.

[STC06] Christos Sofronis, Stavros Tripakis, and Paul Caspi. A Memory-Optimal Buffer-
ing Protocol for Preservation of Synchronous Semantics Under Preemptive
Scheduling. In Embedded Software (EMSOFT), pages 21–33. ACM, October
2006.

75 of 76

http://www.osek-vdx.org

Technical Report References

[Vec18] Vector Informatik GmbH. Vector Academic and Research License Pro-
gram. https://vector.com/vi_embedded_timing-architecture_de.html,
April 2018. Last accessed September 2018.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschu-
lat, and Per Stenström. The Worst-Case Execution-time Problem–Overview of
Methods and Survey of Tools. ACM Transactions on Embedded Computing Sys-
tems, 7(3):36:1–36:53, May 2008.

[WMM+13] Ernest Wozniak, Asma Mehiaoui, Chokri Mraidha, Sara Tucci-Piergiovanni,
and Sébastien Gerard. An Optimization Approach for the Synthesis of AU-
TOSAR Architectures. In Conference on Emerging Technologies Factory Au-
tomation (ETFA), pages 1–10. IEEE, September 2013.

[WNSV07] Guoqiang Wang, Marco Di Natale, and Alberto Sangiovanni-Vincentelli. An OS-
EK/VDX Implementation of Synchronous Reactive Semantics Preserving Com-
munication Protocols. Technical Report UCB/EECS-2007-81, EECS Depart-
ment, University of California, Berkeley, June 2007.

[WNSV10] Guoqiang Wang, Marco Di Natale, and Alberto Sangiovanni-Vincentelli. Opti-
mal Synthesis of Communication Procedures in Real-Time Synchronous Reactive
Models. IEEE Transactions on Industrial Informatics, 6(4):729–743, November
2010.

[WS99] Yun Wang and Manas Saksena. Scheduling Fixed-Priority Tasks with Preemption
Threshold. In Real-Time Computing Systems and Applications (RTCSA), pages
328–335. IEEE, December 1999.

[YKRB14] Eugene Yip, Matthew M. Y. Kuo, Partha S. Roop, and David Broman. Relaxing
the Synchronous Approach for Mixed-Criticality Systems. In IEEE Real-Time
and Embedded Technology and Application Symposium (RTAS), pages 89–100.
IEEE, April 2014.

[ZN12] Haibo Zeng and Marco Di Natale. Efficient Implementation of AUTOSAR Com-
ponents with Minimal Memory Usage. In Industrial Embedded Systems (SIES),
pages 130–137. IEEE, June 2012.

[ZNZ14] Haibo Zeng, Marco Di Natale, and Qi Zhu. Minimizing Stack and Communica-
tion Memory Usage in Real-Time Embedded Applications. ACM Transactions
on Embedded Computing Systems, 13(5s):149:1–149:25, July 2014.

76 of 76

https://vector.com/vi_embedded_timing-architecture_de.html

Bamberger Beiträge zur Wirtschaftsinformatik

Nr. 1 (1989) Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universität Bamberg (Nachdruck Dez. 1990)

Nr. 2 (1990) Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle für PROLOG

Nr. 3 (1990) Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen

Nr. 4 (1990) Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990)

Nr. 5 (1990) Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM)

Nr. 6 (1991) Augsburger W., Rieder H., Schwab J.: Systemtheoretische Repräsentation von
Strukturen und Bewertungsfunktionen über zeitabhängigen betrieblichen numeri-
schen Daten

Nr. 7 (1991) Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrieval
statistischer Daten mit EISREVU / Ein Verarbeitungsmodell für eine modulare
Bewertung von Kennzahlenwerten für den Endanwender

Nr. 8 (1991) Schwab J.: Ein computergestütztes Modellierungssystem zur Kennzahlenbewertung

Nr. 9 (1992) Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell in
das Strukturierte Entity-Relationship-Modell

Nr. 10 (1992) Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell (SERM)

Nr. 11 (1992) Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmodells

Nr. 12 (1992) Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas
aus dem Modell der betrieblichen Diskurswelt

Nr. 13 (1992) Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell

Nr. 14 (1992) Esswein W.: Das Rollenmodell der Organsiation: Die Berücksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen

Nr. 15 (1992) Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch

Nr. 16 (1992) Schwab K.: Die Implementierung eines relationalen DBMS nach dem Client/Server-
Prinzip

Nr. 17 (1993) Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stützten Bürovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Überwachung von Vorgängen. Dissertation

Nr. 18 (1993) Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells

Nr. 19 (1994) Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based
Business Process Modeling Using the SOM Approach

Nr. 20 (1994) Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of
Distributed Business Application Systems - An Object-Oriented Approach -. 1st
edition, June 1994

 Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models and
Distributed Business Application Systems - An Object-Oriented Approach -. 2nd
edition, November 1994

Nr. 21 (1994) Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschäftsprozessen

Nr. 22 (1994) Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for
Modeling Information Systems

Nr. 23 (1994) Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle

Nr. 24 (1994) Sinz E.J.: Das Informationssystem der Universität als Instrument zur zielgerichteten
Lenkung von Universitätsprozessen

Nr. 25 (1994) Wittke M., Mekinic, G.: Kooperierende Informationsräume. Ein Ansatz für verteilte
Führungsinformationssysteme

Nr. 26 (1995) Ferstl O.K., Sinz E.J.: Re-Engineering von Geschäftsprozessen auf der Grundlage
des SOM-Ansatzes

Nr. 27 (1995) Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995

Nr. 28 (1995) Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach

Nr. 30 (1995) Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge
bei der computergestützten kooperativen Arbeit

Nr. 31 (1995) Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschäftsprozesse

Nr. 32 (1995) Gunzenhäuser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H., Schwab
H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von Walter
Augsburger

Nr. 33 (1995) Sinz, E.J.: Kann das Geschäftsprozeßmodell der Unternehmung das unterneh-
mensweite Datenschema ablösen?

Nr. 34 (1995) Sinz E.J.: Ansätze zur fachlichen Modellierung betrieblicher Informationssysteme -
Entwicklung, aktueller Stand und Trends -

Nr. 35 (1995) Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstützung
durch workflow-orientierte Anwendungssysteme

Nr. 36 (1996) Ferstl O.K., Sinz, E.J., Amberg M.: Stichwörter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Düsseldorf 1996

Nr. 37 (1996) Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996

Nr. 38 (1996) Ferstl O.K., Schäfer R.: Eine Lernumgebung für die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996

Nr. 39 (1996) Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Management
dargestellt an Fuzzy-System-Konzepten für Portfolio-Ansätze

Nr. 40 (1997) Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, München 1997

Nr. 41 (1997) Sinz E.J.: Analyse und Gestaltung universitärer Geschäftsprozesse und Anwen-
dungssysteme. Angenommen für: Informatik ’97. Informatik als Innovationsmotor.
27. Jahrestagung der Gesellschaft für Informatik, Aachen 24.-26.9.1997

Nr. 42 (1997) Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects –
fachliche Bausteine für die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen für: HMD – Theorie und Praxis der Wirtschaftsinformatik.
Schwerpunkheft ComponentWare, 1997

Nr. 43 (1997): Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object
Model (SOM) – A Methodological Framework - . Accepted for: P. Bernus, K.
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems.
International Handbook on Information Systems, edited by Bernus P., Blazewicz J.,
Schmidt G., and Shaw M., Volume I, Springer 1997

 Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using (SOM), 2nd Edition.
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectures
of Information Systems. International Handbook on Information Systems, edited by
Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume I, Springer 1998

Nr. 44 (1997) Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebungen.
In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin – Methoden,
Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. – 7. Juni
1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung

Nr. 45 (1998) Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik,
Oldenbourg-Verlag, München 1998

Nr. 46 (1998) Sinz E.J.: Prozeßgestaltung und Prozeßunterstützung im Prüfungswesen. Erschienen
in: Proceedings Workshop „Informationssysteme für das Hochschulmanagement“.
Aachen, September 1997

Nr. 47 (1998) Sinz, E.J.:, Wismans B.: Das „Elektronische Prüfungsamt“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998

Nr. 48 (1998) Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Knowledge
and Data Engineering

Nr. 49 (1998) Henrich, A.: Applying Document Retrieval Techniques in Software Engineering
Environments. In: Proc. International Conference on Database and Expert Systems
Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lecture
Notes in Computer Sciences, No. 1460

Nr. 50 (1999) Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Generation
Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel, July,
1999 (Springer, Lecture Notes)

Nr. 51 (1999) Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European
Conference on Advances in Databases and Information Systems – ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science)

Nr. 52 (1999) Sinz E.J., Böhnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems für Hochschulen. Angenommen für: Workshop „Unternehmen Hoch-
schule“ im Rahmen der 29. Jahrestagung der Gesellschaft für Informatik, Paderborn,
6. Oktober 1999

Nr. 53 (1999) Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfügig
modifizierter Fassung angenommen für: Rechenberg P., Pomberger G. (Hrsg.):
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, München
1999

Nr. 54 (1999) Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation.

Nr. 55 (2000) Böhnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing.
Modellierung und Architektur

Nr. 56 (2000) Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der
Virtuellen Hochschule Bayern (vhb). Angenommen für Workshop "Unternehmen
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik,
Berlin 19. - 22. September 2000

Nr. 57 (2000) Böhnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from
Business Process Models.

Nr. 58 (2000) Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten.

Nr. 59 (2001) Sinz E.J., Böhnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines
verteilten Data-Warehouse-Systems für das Hochschulwesen. Angenommen für:
WI-IF 2001, Augsburg, 19.-21. September 2001

Nr. 60 (2001) Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen.
Angenommen für: Workshop „Unternehmen Hochschule 2001“ im Rahmen der
Jahrestagung der Gesellschaft für Informatik, Wien 25. – 28. September 2001

Änderung des Titels der Schriftenreihe Bamberger Beiträge zur Wirtschaftsinformatik in Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61

Note: The title of our technical report series has been changed from Bamberger Beiträge zur
Wirtschaftsinformatik to Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik
starting with TR No. 61

Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik

Nr. 61 (2002) Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002),
Copenhagen, July 2002.

Nr. 62 (2002) Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in
einem landesweiten Data-Warehouse-System für das Hochschulwesen. Erscheint in:
Beiträge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut für
Hochschulforschung und Hochschulplanung, München 2002

Nr. 63 (2005) Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions

Nr. 64 (2005) Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und
Strukturwandel, S. 247 – 263; Reihe education quality forum, herausgegeben durch
das Centrum für eCompetence in Hochschulen NRW, Band 2, Münster/New
York/München/Berlin: Waxmann 2005

Nr. 65 (2006) Schönberger, Andreas: Modelling and Validating Business Collaborations: A Case
Study on RosettaNet

Nr. 66 (2006) Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian Röglinger, Matthias
Sehr, Christian Wilms, Karsten Loesing, and Guido Wirtz: Concealing Presence
Information in Instant Messaging Systems, April 2006

Nr. 67 (2006) Marco Fischer, Andreas Grünert, Sebastian Hudert, Stefan König, Kira Lenskaya,
Gregor Scheithauer, Sven Kaffille, and Guido Wirtz: Decentralized Reputation
Management for Cooperating Software Agents in Open Multi-Agent Systems, April
2006

Nr. 68 (2006) Michael Mendler, Thomas R. Shiple, Gérard Berry: Constructive Circuits and the
Exactness of Ternary Simulation

Nr. 69 (2007) Sebastian Hudert: A Proposal for a Web Services Agreement Negotiation Protocol
Framework . February 2007

Nr. 70 (2007) Thomas Meins: Integration eines allgemeinen Service-Centers für PC-und
Medientechnik an der Universität Bamberg – Analyse und Realisierungs-Szenarien.
February 2007 (out of print)

Nr. 71 (2007) Andreas Grünert: Life-cycle assistance capabilities of cooperating Software Agents
for Virtual Enterprises. März 2007

Nr. 72 (2007) Michael Mendler, Gerald Lüttgen: Is Observational Congruence on µ-Expressions
Axiomatisable in Equational Horn Logic?

Nr. 73 (2007) Martin Schissler: out of print

Nr. 74 (2007) Sven Kaffille, Karsten Loesing: Open chord version 1.0.4 User’s Manual. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 74, Bamberg
University, October 2007. ISSN 0937-3349.

Nr. 75 (2008) Karsten Loesing (Hrsg.): Extended Abstracts of the Second Privacy Enhancing
Technologies Convention (PET-CON 2008.1). Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 75, Bamberg University,
April 2008. ISSN 0937-3349.

Nr. 76 (2008) Gregor Scheithauer, Guido Wirtz: Applying Business Process Management Systems
– A Case Study. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 76, Bamberg University, May 2008. ISSN 0937-3349.

Nr. 77 (2008) Michael Mendler, Stephan Scheele: Towards Constructive Description Logics for
Abstraction and Refinement. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 77, Bamberg University, September 2008. ISSN 0937-
3349.

Nr. 78 (2008) Gregor Scheithauer, Matthias Winkler: A Service Description Framework for
Service Ecosystems. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 78, Bamberg University, October 2008. ISSN 0937-
3349.

Nr. 79 (2008) Christian Wilms: Improving the Tor Hidden Service Protocol Aiming at Better
Performances. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 79, Bamberg University, November 2008. ISSN 0937-3349.

Nr. 80 (2009) Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schönberger, Guido Wirtz: QoS Enabled B2B
Integration. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 80, Bamberg University, May 2009. ISSN 0937-3349.

Nr. 81 (2009) Ute Schmid, Emanuel Kitzelmann, Rinus Plasmeijer (Eds.): Proceedings of the ACM
SIGPLAN Workshop on Approaches and Applications of Inductive Programming
(AAIP'09), affiliated with ICFP 2009, Edinburgh, Scotland, September 2009.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 81,
Bamberg University, September 2009. ISSN 0937-3349.

Nr. 82 (2009) Ute Schmid, Marco Ragni, Markus Knauff (Eds.): Proceedings of the KI 2009
Workshop Complex Cognition, Paderborn, Germany, September 15, 2009.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 82,
Bamberg University, October 2009. ISSN 0937-3349.

Nr. 83 (2009) Andreas Schönberger, Christian Wilms and Guido Wirtz: A Requirements Analysis
of Business-to-Business Integration. Bamberger Beiträge zur Wirtschaftsinformatik
und Angewandten Informatik Nr. 83, Bamberg University, December 2009. ISSN
0937-3349.

Nr. 84 (2010) Werner Zirkel, Guido Wirtz: A Process for Identifying Predictive Correlation
Patterns in Service Management Systems. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 84, Bamberg University,
February 2010. ISSN 0937-3349.

Nr. 85 (2010) Jan Tobias Mühlberg und Gerald Lüttgen: Symbolic Object Code Analysis.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 85,
Bamberg University, February 2010. ISSN 0937-3349.

Nr. 86 (2010) Werner Zirkel, Guido Wirtz: Proaktives Problem Management durch
Eventkorrelation – ein Best Practice Ansatz. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 86, Bamberg University,
August 2010. ISSN 0937-3349.

Nr. 87 (2010) Johannes Schwalb, Andreas Schönberger: Analyzing the Interoperability of WS-
Security and WS-ReliableMessaging Implementations. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 87, Bamberg University,
September 2010. ISSN 0937-3349.

Nr. 88 (2011) Jörg Lenhard: A Pattern-based Analysis of WS-BPEL and Windows Workflow.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 88,
Bamberg University, March 2011. ISSN 0937-3349.

Nr. 89 (2011) Andreas Henrich, Christoph Schlieder, Ute Schmid [eds.]: Visibility in Information
Spaces and in Geographic Environments – Post-Proceedings of the KI’11 Workshop.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 89,
Bamberg University, December 2011. ISSN 0937-3349.

Nr. 90 (2012) Simon Harrer, Jörg Lenhard: Betsy - A BPEL Engine Test System. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 90, Bamberg
University, July 2012. ISSN 0937-3349.

Nr. 91 (2013) Michael Mendler, Stephan Scheele: On the Computational Interpretation of CKn for
Contextual Information Processing - Ancillary Material. Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 91, Bamberg University,
May 2013. ISSN 0937-3349.

Nr. 92 (2013) Matthias Geiger: BPMN 2.0 Process Model Serialization Constraints. Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 92, Bamberg
University, May 2013. ISSN 0937-3349.

Nr. 93 (2014) Cedric Röck, Simon Harrer: Literature Survey of Performance Benchmarking
Approaches of BPEL Engines. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 93, Bamberg University, May 2014. ISSN 0937-3349.

Nr. 94 (2014) Joaquin Aguado, Michael Mendler, Reinhard von Hanxleden, Insa Fuhrmann:
Grounding Synchronous Deterministic Concurrency in Sequential Programming.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 94,
Bamberg University, August 2014. ISSN 0937-3349.

Nr. 95 (2014) Michael Mendler, Bruno Bodin, Partha S Roop, Jia Jie Wang: WCRT for
Synchronous Programs: Studying the Tick Alignment Problem. Bamberger Beiträge
zur Wirtschaftsinformatik und Angewandten Informatik Nr. 95, Bamberg
University, August 2014. ISSN 0937-3349.

Nr. 96 (2015) Joaquin Aguado, Michael Mendler, Reinhard von Hanxleden, Insa Fuhrmann:
Denotational Fixed-Point Semantics for Constructive Scheduling of Synchronous
Concurrency. Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 96, Bamberg University, April 2015. ISSN 0937-3349.

Nr. 97 (2015) Thomas Benker: Konzeption einer Komponentenarchitektur für prozessorientierte
OLTP- & OLAP-Anwendungssysteme. Bamberger Beiträge zur Wirtschafts-
informatik und Angewandten Informatik Nr. 97, Bamberg University, Oktober 2015.
ISSN 0937-3349.

Nr. 98 (2016) Sascha Fendrich, Gerald Lüttgen: A Generalised Theory of Interface Automata,
Component Compatibility and Error. Bamberger Beiträge zur Wirtschaftsinformatik
und Angewandten Informatik Nr. 98, Bamberg University, March 2016. ISSN 0937-
3349.

Nr. 99 (2014) Christian Preißinger, Simon Harrer: Static Analysis Rules of the BPEL Specification:
Tagging, Formalization and Tests. Bamberger Beiträge zur Wirtschaftsinformatik
und Angewandten Informatik Nr. 99, Bamberg University, August 2014. ISSN
0937-3349.

Nr. 100 (2016) Cedrik Röck, Stefan Kolb: Nucleus - Unified Deployment and Management for
Platform as a Service. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 100, Bamberg University, March 2016. ISSN 0937-
3349.

Nr. 101 (2016) Michael Mendler, Partha S. Roop, Bruno Bodin: A Novel WCET Semantics of
Synchronous Programs. Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 101, Bamberg University, June 2016. ISSN 0937-
3349.

Nr. 102 (2017) Joaquín Aguado, Michael Mendler, Marc Pouzet, Partha Roop, Reinhard von
Hanxleden: Clock-Synchronised Shared Objects for Deterministic Concurrency.
Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
102, Bamberg University, July 2017. ISSN 0937-3349.

Nr. 103 (2018) Eugene Yip, Erjola Lalo, Gerald Lüttgen, Michael Deubzer, Andreas Sailer:
Optimized Buffering of Time-Triggered Automotive Software. Bamberger Beiträge
zur Wirtschaftsinformatik und Angewandten Informatik Nr. 103, Bamberg
University, September 2018. ISSN 0937-3349.

	Introduction
	Contributions
	Report structure and Content

	Background
	AUTOSAR Methodology
	Preemptive Task Scheduling and Data Consistency
	Data Protection Mechanisms
	Logical Execution Time (LET) Task Model
	Static Scheduling of LET Tasks
	Preservation of LET Communication Semantics
	Use of LET as a Design Contract

	Related Work on Semantics Preserving Buffering
	AUTOSAR Implicit Communication
	LET Point-to-Point (PTP) Buffering
	Dynamic Buffering Protocol (DBP)
	Temporal Concurrency Control Protocol (TCCP)
	Timed Implicit Communication Protocol (TICP)
	Related Buffering Protocols
	Discussion

	Related Work on Optimising AUTOSAR Designs
	Optimising Traditional AUTOSAR Designs
	Optimising LET Designs
	Discussion

	System Model
	Software Model
	Hardware Model

	Overview of Proposed Buffering Optimisations
	Design Phase Optimisations
	LET Static Buffering Protocol (SBP)
	Suppression of Unnecessary Writes
	Constructing the SBP Buffering Schedules
	Discussion

	Deployment Phase Optimisations
	Realisation of LET Tasks under AUTOSAR
	System Model Extensions
	Mixed-Integer Linear Programming (MILP) Formulation
	Genetic Algorithm
	Scheduling Hints and Reducing End-to-End Response Times
	Refining the SBP Buffering Schedules
	Merging the SBP Buffer Memories
	Discussion

	Tooling
	Software and Hardware Model
	Prototyped Optimisations
	Evaluation Metrics

	Synthetic Benchmarking
	Benchmarking Workflow
	Preliminary Results
	Discussion

	FMTV Case Study
	Preliminary Results

	Conclusions

