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Preliminary remark 
 
This thesis is a documentation of the result of the author’s research activities at the chair of Information 
Systems and Energy Efficient Systems of the University of Bamberg and the Bits to Energy Lab. In this 
context, the broader field of data-based electric mobility scenario assessment is addressed. The ground-
work for this thesis has been laid in (Wenig, 2014a) and elaborated in (Wenig, 2014b) and in (Wenig, 
Sodenkamp, and Staake, 2015). 
 
Subsequently, major parts of this thesis have been developed within a research group, which led to the 
coauthored documents (Sodenkamp, Wenig, Thiesse, et al., 2019) and (Wenig, Sodenkamp, and 
Staake, 2019). They form crucial parts of the author’s doctoral project and have thus been used and 
adapted within this thesis. 
 
In consultation with my thesis advisor, for text from the manuscripts and (working) papers, direct quotes 
are not put in quotation marks. Instead these fragments (which include figures and tables) are refer-
enced by endnotes. 
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Summary 
 
The automotive sector, while being an example of a highly innovative industry driven by strong compet-
itive pressure and constant technological progress, has never had to deal with truly disruptive changes 
regarding its products, processes, or value network structure. In this regard, the rise of electric mobility 
constitutes an unprecedented market change as it implies an extensive redefinition of the product archi-
tecture of cars, not only involving new technologies but also new market entrants from highly innovative 
industries, the anticipation of new business models, and a dependency on the electrical grid as an ad-
ditional, essential infrastructure component.  
 
In this context, decisions regarding both the capacity of batteries and the charging network play a major 
role as they determine the electric range of the vehicles as well as overall system costs. At the same 
time, the transition from combustion-based transportation to electric transportation has a considerable 
impact on the power grid that also depends on the trade-off between battery capacities and the density 
and power ratings of chargers. 
 
In order to assess such important aspects as electric reachability, grid impact, and battery versus infra-
structure trade-offs, the mobility behavior of individuals plays an essential role. Literature suggests that 
GPS driving data analysis constitutes a means of choice to assess the impact of battery capacities and 
charging opportunities on electric range and on power grid demand. Still, a great share of publications 
does either use synthetic mobility profiles (“driving cycles”) or self-reported data and thus does not utilize 
the wealth of information that is available in actual movement data. Moreover, literature research indi-
cates that prior work that considers the entirety of car drivers as a coherent whole without describing 
different types of drivers in greater detail, rarely takes high electric range and variations in the availability 
of both private and public charging infrastructure facilities into account. Thus, such studies focus on 
average effects, which reduces the precision and utility of their assessments. 
 
In this work, the high granularity of real-world GPS time series from 1,000 conventional vehicles is uti-
lized to reflect the natural mobility behavior of drivers and to compare meaningful driver segments. Po-
tential charging locations are automatically identified, and the electric energy consumption and charging 
behavior of plug-in hybrid electric vehicles is closely approximated. This enables the identification of 
appropriate vehicle and infrastructure parameters for electric mobility target groups and the assessment 
of their impact in terms of the electrification of mileage and energy demand. The consideration of house-
hold level solar systems and of a load shifting method as parts of a possible future charging infrastruc-
ture complements the work. 
 
Results suggest that large but realistic battery capacities have the potential to dissipate concerns about 
the need for an all-encompassing charging infrastructure. Dense charge points are only needed for 
vehicles with short electric range or for small groups of fast long-range drivers. Both solar charging and 
load shifting considerably help alleviate stress on the power grid. 
 
Decision makers may use the results and the methodology underlying this work to identify vehicle and 
infrastructure requirements of distinct segments and to estimate the grid impact of vehicle charging. 
Consequently, insights about benefits and obstacles of electric mobility adoption may facilitate better 
decisions in both vehicle development and infrastructure planning.  
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Zusammenfassung 
 
Die Automobilindustrie ist traditionell durch starken Wettbewerb, technologischen Fortschritt und Inno-
vationen geprägt. Jedoch waren ihre Produkte, Prozesse und Wertschöpfungsnetzwerke nie zuvor von 
einem disruptiven Wandel betroffen. In dieser Hinsicht stellt die zunehmende Verbreitung von Elektro-
fahrzeugen eine beispiellose Marktveränderung dar. Durch die Elektromobilität wird die Produktarchi-
tektur von Fahrzeugen neugestaltet. Dieser Wandel geht über technische Fahrzeugeigenschaften hin-
aus, lässt neue Marktakteuren auftreten und neue Geschäftsmodelle entstehen. Die elektrische Reich-
weite solcher Fahrzeuge wird durch die eingesetzten Batteriekapazitäten und durch die Gestaltung der 
Ladeinfrastruktur bestimmt. Zugleich führt die Umstellung von Verbrennungsmotoren zu Elektroantrie-
ben zu einem erheblichen zusätzlichen Strombedarf. 
 
Um jedoch zuverlässig beantworten zu können, welche Streckenanteile elektrisch fahrbar sind, welche 
zusätzliche Netzbelastung durch das Laden von Elektrofahrzeugen erwartet werden muss und inwiefern 
Batteriekapazitäten und Ladeinfrastrukturanforderungen voneinander abhängen, muss insbesondere 
auch das individuelle Mobilitätsverhalten berücksichtigt werden. Die Sichtung der Forschungsliteratur 
zeigt, dass insbesondere GPS-basierte Fahrdaten gut dazu geeignet sind, den Einfluss von Batterieka-
pazitäten und Lademöglichkeiten auf die elektrische Reichweite und auf den Strombedarf zu bewerten. 
Dennoch verwenden zahlreiche Studien entweder synthetische Geschwindigkeitsprofile („Fahrzyklen“) 
oder Umfragedaten und verzichten somit auf den Informationsreichtum detaillierter und realitätsnaher 
Bewegungsdaten. Ebenfalls lässt die Literaturrecherche erkennen, dass vorhergehende Forschungsar-
beiten, die das Fahrverhalten der untersuchten Gesamtfahrzeugflotte beschreiben, ohne dabei jedoch 
auf die Verschiedenartigkeit einzelner Fahrergruppen detailliert einzugehen, nur selten die wechselsei-
tige Abhängigkeit zwischen elektrischer Reichweite und unterschiedlich ausgebauten privaten und öf-
fentlichen Ladeinfrastrukturen untersuchen. Bisherige Studien vermitteln also insbesondere zusammen-
fassenden Informationen mit in der Folge begrenzter Genauigkeit und Aussagekraft. 
 
In der vorliegenden Arbeit werden hochgranulare GPS Zeitreihendaten von 1,000 konventionellen Autos 
verwendet, um deren wirklichkeitsnahes Bewegungsverhalten zu untersuchen und um verschiedenar-
tige Fahrersegmente vergleichen zu können. Mögliche private und öffentliche Ladestandorte werden 
identifiziert und sowohl das Ladeverhalten als auch der Energieverbrauch von Plug-in-Hybridfahrzeugen 
werden geschätzt. Die Miteinbeziehung von Photovoltaikanlagen und einer Lastverschiebungsstrategie 
als Bestandteile einer Heimladeeinrichtung rundet die Arbeit ab. 
 
Die Ergebnisse zeigen, dass mit großen – aber dennoch realistischen – Batteriekapazitäten die Not-
wendigkeit einer flächendeckenden Ladeinfrastruktur deutlich verringert wird. Umfassende Ladeinfra-
strukturmaßnahmen sind lediglich bei Fahrzeugen mit geringer elektrischer Reichweite oder bei einzel-
nen Fahrergruppen mit häufigen Langstreckenfahrten bei hoher Geschwindigkeit erforderlich. Sowohl 
Solarlademöglichkeiten als auch eine Lastverschiebestrategie können dabei helfen, die zusätzliche 
Netzbelastung durch Elektromobilität besser zu beherrschen. Die Ergebnisse und die der Arbeit zugrun-
deliegende Methodik ermöglichen es, gruppenspezifische Fahrzeug- und Infrastrukturanforderungen zu 
ermitteln und den zusätzliche Strombedarf durch Elektromobilität abzuschätzen. Dies erlaubt ein bes-
seres Verständnis für die Vor- und Nachteile von Elektroautos und somit eine Entscheidungshilfe bei 
der Fahrzeugentwicklung und bei der Infrastrukturplanung. 
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1 Introduction 
 

1.1 Background 
 
A considerable share of energy demand can be attributed to the transportation sector. 
In the European Union, transport accounted for about one third of final energy consump-
tion in 2015 (Eurostat, 2018). Similarly, in the United States of America, about 29% of 
energy was used for transportation in 2017 (U.S. Energy Information Administration, 
2018). At the same time, mobility heavily depends on limited and non-renewable fossil 
energy sources (Eurostat, 2018; U.S. Energy Information Administration, 2018). 
 
From a public health perspective, concerns are raised in relation to the local pollution 
caused by car exhaust emission (Zhang and Batterman, 2013) and also the global en-
vironmental consequences of vehicle exhaust are widely discussed (International 
Energy Agency, 2018; Schwanen, Banister, and Anable, 2011). Together with the 
growth of renewable energy generation, electric mobility could help mitigating these 
negative side effects of transportation (International Energy Agency, 2018). 
 
Policy ambitions such as the “EV30@30” campaign, which was launched in 2017 at the 
Clean Energy Ministerial, indicate the intention of industrial nations to deal with electric 
mobility (International Energy Agency, 2018). In this campaign, member countries of the 
Electric Vehicles Initiative (including major economies from Europe, America, Asia, and 
New Zealand) collectively aim at an electric vehicle market share of 30% (including bat-
tery electric and plug-in hybrid electric passenger cars, buses, and trucks, but excluding 
two- and three-wheeled vehicles) by the year 2030 (International Energy Agency, 2018). 
 
Table 1: Electric vehicle market share (here: percentage of new light-duty pas-
senger car registrations), including both plug-in hybrid and battery electric vehi-
cles from 2011 to 2017 for selected countries (International Energy Agency, 

2018) 

Year Norway Germany China 
United 
States 

Japan 

2011 1.3% 0.1% 0.0% 0.2% 0.3% 
2012 3.3% 0.1% 0.1% 0.4% 0.5% 
2013 6.0% 0.2% 0.1% 0.7% 0.6% 
2014 13.7% 0.4% 0.4% 0.8% 0.7% 
2015 22.4% 0.7% 1.0% 0.7% 0.6% 
2016 29.0% 0.7% 1.4% 1.0% 0.5% 
2017 39.2% 1.6% 2.2% 1.2% 1.0% 

 
Currently, the electric vehicle market share varies greatly between different countries. 
In Table 1 the market trend over the course of time is summarized for selected countries. 
Respective figures for Norway are particularly prominent. Here, in 2017 the market 
share was about 39.2%, surpassing all other countries (International Energy Agency, 
2018). 
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However, the overall examination of major economies also shows that – except for Nor-
way – the electric vehicle market share was far below the aspired goal of 30% which 
indicates great potential for growth (International Energy Agency, 2018). For example 
the market share figure for Germany was only about 1.6% in 2017 (International Energy 
Agency, 2018). 
 
Still, in absolute terms, 1.1 million electric vehicles were sold globally in 2017, including 
both PHEVs and battery electric vehicles (International Energy Agency, 2018). In the 
same year, the global electric car stock exceeded 3.1 million vehicles after having ex-
ceeded the one million mark in 2015 and having reached about two million in 2016 
(International Energy Agency, 2018). 
 
The growing interest in electric driving leads to the expectation of intensified competition 
in the automotive industry sector (Diehlmann and Häcker, 2013). In consequence, both 
Plug-in Hybrid Electric Vehicles (PHEVs) that can serve as a transition technology and 
battery electric vehicles have become essential parts of major automobile manufactur-
ers’ portfolios (Accenture, 2014; International Energy Agency, 2018). 
 
Thus, the high overall energy demand of the transport sector (Eurostat, 2018; U.S. 
Energy Information Administration, 2018), transport-related environmental and health 
concerns (Schwanen, Banister, and Anable, 2011; Zhang and Batterman, 2013), ambi-
tious goals aiming at a large-scale electrification of vehicles (International Energy 
Agency, 2018), rising electric vehicle sales figures (International Energy Agency, 2018), 
and the changes in the manufacturers’ portfolios (Accenture, 2014; Diehlmann and 
Häcker, 2013; International Energy Agency, 2018) indicate an increasing interest in 
electric driving. Apart from this, currently still low global electric vehicle market share 
figures suggest that a notable future potential for growth exists (International Energy 
Agency, 2018). 
 
Policy measures that aim at promoting the advancement in fleet electrification include, 
for example, tax and purchase incentives, but also bans for combustion-based cars 
have been announced (Carvalho, 2016; International Energy Agency, 2018). Moreover, 
infrastructure support is considered a suitable measure for electric mobility incentiviza-
tion (International Energy Agency, 2018). 
 
To further increase the electric car stock, also large investments in battery research 
seem to be crucial (National Academy of Sciences, 2015). After all, decreasing battery 
costs, increasing battery capacities, and infrastructure development measures support 
an increasing share of electric mobility in road traffic (International Economic 
Development Council, 2013; International Energy Agency, 2018). 
 
A large-scale electrification of mileage also leads to the expectation of a major future 
electricity demand increase. This can be aptly illustrated by stating that the energy con-
tent of a 60-liter gasoline tank of a passenger car is roughly the same as the electric 
energy demand of a typical household over a period of two months. The comparison 
assumes that the energy content of gasoline is about 8.9 kWh per liter (Natural 
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Resources Canada, 2018) and that the annual electricity consumption of a world aver-
age household in the year 2014 is about 3,200 kWh – which is deemed realistic (World 
Energy Council, 2016). 
 
However, the energy efficiency of a typical internal combustion engine can be assumed 
to be about 30% (Diehlmann and Häcker, 2013) such that only a small share of the 
energy that is stored in a fuel tank is actually used for propulsion of the vehicle. In com-
parison, the efficiency of an electric vehicle, depending on the efficiency of its compo-
nents (particularly the electric engine, power electronics, and battery), is assumed to be 
about 90% (Diehlmann and Häcker, 2013; Karlsson and Kushnir, 2013; Mi, Masrur, and 
Gao, 2011). 
 
Thus, the replacement of combustion-based vehicles by electric cars could significantly 
increase the energy efficiency of transportation (Diehlmann and Häcker, 2013). It must 
however be pointed out that in an assessment of the overall energy saving potential and 
environmental benefits of electric mobility, the broader context of well-to-wheels analy-
sis, including, for example, the share of non-fossil sources in electricity generation, the 
efficiency of electricity generation, and the energy demand for fuel production would 
have to be taken into account (Ke, Zhang, He, et al., 2017). 
 
Nevertheless, a greater number of electric vehicles on the streets could substantially 
decrease fossil fuel demand (i.e., gasoline and diesel consumption). At the same time, 
potentially cheaper electric energy could be used for transportation (Ipakchi and 
Albuyeh, 2009). This allows for a greater independence from crude oil (International 
Energy Agency, 2017). 
 
To foster the use of renewable energy sources such as solar energy (Lund, 2007), ve-
hicle charging stations could be placed at numerous locations with an electricity con-
nection, both at home and at other private or public places (San Román, Momber, 
Abbad, et al., 2011). This facilitates the use of energy generated from photovoltaic sys-
tems available at frequently visited parking locations, such as the driver’s residence for 
charging (Wenig, Sodenkamp, and Staake, 2015). 
 
With respect to an intended electrification of transport, the electric range of vehicles – 
and in this context also the availability of charging opportunities – represent major chal-
lenges and should thus be particularly considered. While many short everyday trips only 
require a similarly short range to be driven electrically (Pasaoglu, Fiorello, Martino, et 
al., 2014), for longer trips the still limited electric range of PHEVs, together with expen-
sive batteries, long charging times, and the limited availability of a public charging infra-
structure are serious drawbacks of electric mobility (International Energy Agency, 2018; 
National Academy of Sciences, 2015). 
 
As a consequence, the key elements of electric driving, namely electric range and 
charging infrastructure, have to be assessed together while taking into consideration 
the actual mobility requirements of individual drivers. From this, a reliable basis for 
effective decision making and realistic conclusions about the expected mileage 



Jürgen Wenig  - 4- 

electrification potential and resulting power grid impact of electric mobility can be 
provided. 
 
However, even with the impressive growth of global PHEV and battery electric vehicle 
sales figures in recent years, the overall share of electric cars on the roads remains low 
(International Energy Agency, 2018). This results in limited practical experience with 
electric driving. 
 
The creation of practical conditions for electric mobility assessments is limited by high 
costs of long-range electric cars (International Economic Development Council, 2013) 
and charging infrastructure measures (National Academy of Sciences, 2015). However, 
important insights can be derived from computer simulations that are based on real-
world data before making cost-intense and possibly fault-prone decisions and invest-
ments in both charging infrastructure development and automotive manufacturing 
(Maia, Silva, Araújo, et al., 2011). 
 

1.2 Electric mobility assessment based on behavioral data 
 
Energy informatics plays an increasingly important role in the field of information 
systems and suggests the use of behavioral data of individuals (here: GPS based 
mobility data) to better understand energy consumption patterns (Goebel, Jacobsen, 
Del Razo, et al., 2014a, 2014b). The integrative approach aims at promoting an 
increasingly efficient use of energy, the utilization of renewable energy sources, and a 
future-proof energy supply (Goebel, Jacobsen, Del Razo, et al., 2014a, 2014b). 
 
Consequently, this thesis utilizes mobility data that is based on GPS recordings to as-
sess electric mobility scenarios. Here, particularly the prediction of the potential for mile-
age electrification (Pearre, Kempton, Guensler, et al., 2011; Wenig, Sodenkamp, and 
Staake, 2015), but also the quantification of the resulting additional stress to the power 
grid as a consequence of charging the vehicle’s battery (Dong, Lin, Liu, et al., 2014; 
Wenig, Sodenkamp, and Staake, 2015) have a high relevance. 
 
Driving cycles and survey studies can be considered as possible alternative foundations 
to analyze mobility patterns of drivers. However, driving cycles – i.e., specified driving 
speed profiles – provide a data basis that is often considered to be unrealistic and that 
assumes averages over a multitude of individual drivers and trips without taking into 
account variations in mobility needs (Smith, Shahidinejad, Blair, et al., 2011). Moreover, 
the lack of information on parking events limits their utility for electric mobility 
assessment, because longer lasting charging events coincide with the parking times of 
vehicles (Smith, Shahidinejad, Blair, et al., 2011). Survey studies (based, for example, 
on drivers’ logbooks) typically provide short-term and often incomplete or inaccurate 
mobility data (De Gennaro, Paffumi, Martini, et al., 2014; Gonder, Markel, Simpson, et 
al., 2007; Wu, Aviquzzaman, and Lin, 2015). 
 
Thus, GPS-based driving data is considered to be a more appropriate basis for the 
assessment of electric mobility scenarios than both driving cycles and survey studies 
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(De Gennaro, Paffumi, Martini, et al., 2014; Gonder, Markel, Simpson, et al., 2007; 
Smith, Shahidinejad, Blair, et al., 2011; Wu, Aviquzzaman, and Lin, 2015). Furthermore, 
in this thesis, GPS driving data from conventional combustion-based cars is preferred 
over already existing mobility data from electric vehicles. The latter might be highly 
biased by limitations of electric cars (Rezvani, Jansson, and Bodin, 2015) or 
unrepresentative mobility needs of early adopters (Anable, Skippon, Schuitema, et al., 
2011; Plötz, Schneider, Globisch, et al., 2014), such that there exists a reasonable doubt 
that such data represents the objective mobility preferences of typical motorists. 
 
The advantages of GPS driving data are further discussed in (Wenig, Sodenkamp, and 
Staake, 2019) and in chapter 3, respectively. Against this backdrop, in chapters 2, 3, 
and 4, respectively in (Sodenkamp, Wenig, Thiesse, et al., 2019; Wenig, Sodenkamp, 
and Staake, 2019), the state of the art of GPS driving data based electric mobility as-
sessment is reviewed and four research questions arise. In the following, these ques-
tions are introduced, and their motivation and implications are described in a condensed 
way. 
 

1.3 Research task 
 

1.3.1 Driver segmentation 
 
Literature suggests that a segmentation of drivers enables a more varied view on the 
automotive market by including the mobility behavior and preferences of vehicle users 
(Anable, 2005). Particularly with regard to electric mobility, the segmentation of auto-
motive customers appears to be essential to appropriately consider distinct driver char-
acteristics and thus facilitate the vehicle’s market success (Hodson and Newman, 
2009). 
 
The related work on GPS driving data assessment provides results for different types 
of drivers by analyzing datasets from respective driver groups such as commuters 
(Björnsson and Karlsson, 2015) or primarily urban drivers (De Gennaro, Paffumi, 
Martini, et al., 2014; He, Wu, Zhang, et al., 2016). However, a data-driven distinction of 
driver groups according to their mobility behavior and based on extensive driving data 
allows for more comprehensive insights on the mobility needs of individual drivers and 
enables a direct comparison of groups. 
 
Chapter 2 and (Sodenkamp, Wenig, Thiesse, et al., 2019), respectively, thus focus on 
the subject of driver segmentation for electric mobility scenario assessment. Here, the 
research question is: How can cluster analysis be used to identify typical vehicle usage 
patterns? 
 
To address this question on how typical vehicle usage patterns can be identified, drivers 
are suggested to be segmented according to their mobility behavior. To do so, variations 
in the mobility behavior of individual drivers are analyzed. The segmentation approach 
reveals characteristic mobility patterns from GPS time series and discovers similar 
groups of drivers. 
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The resulting utility of the approach lies in the identification of driver groups that could 
more readily switch from a combustion-based vehicle to an electric car and that are thus 
highly relevant for electric mobility planning. Possibly false or vague assumptions that 
are based on the assessment of an average driver profile can be avoided and more 
reliable predictions on the usability and local grid impact of an individual driver become 
feasible. 
 
Consequently, electric mobility requirements that influence the mileage electrification 
potential and the related electricity demand can be assessed separately for each group 
and for a variety of vehicle battery capacity and charging facility parameters. Resulting 
group-specific forecasts can make a more accurate forecast of the adoption potential 
and grid impact of PHEVs possible. 
 
Note that in this thesis, the terms driver and vehicle are used interchangeably, although 
strictly speaking, the mobility behavior of a vehicle and not of a driver was measured. 
Thus, the behavior of an assumed driver is derived from the mobility patterns of an 
individual car. In the context of driver segmentation, also the terms segment, cluster, 
and group are used synonymously. 
 

1.3.2 Battery versus infrastructure assessment 
 
Both the mileage electrification potential and the resulting power grid impact due to 
charging depend on the electric range of the vehicle, but they are also affected by the 
availability of charging opportunities (Paffumi, De Gennaro, Martini, et al., 2015). Such 
charging facilities for PHEVs could be placed at both privately owned parking locations 
or at public spaces (San Román, Momber, Abbad, et al., 2011). Their utility for mileage 
electrification depends both on the charging power that is available at the facility 
(Paffumi, De Gennaro, Martini, et al., 2015) and the infrastructure development (Dong 
and Lin, 2012). 
 
High expenses come along both with the production or acquisition of long electric range 
vehicles and with the development of the charging infrastructure (International 
Economic Development Council, 2013). However, in the course of technological ad-
vances, future costs for batteries are expected to decline (International Economic 
Development Council, 2013; Slowik, Pavlenko, and Lutsey, 2016), while costs for labor-
intense infrastructure measures can be expected to remain high (National Academy of 
Sciences, 2015). 
 
Thus, knowing the mutual relation between vehicle battery and charging infrastructure 
characteristics from such a simulation-based assessment helps making well-funded de-
cisions both for the individual driver and on a larger scale. This work suggests a com-
parison and assessment of vehicle battery capacities and charging infrastructure char-
acteristics. 
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The subject is addressed in chapter 3 and in (Wenig, Sodenkamp, and Staake, 2019), 
respectively and leads to the formulation of the following research question: To what 
extent do larger batteries relax the requirements regarding charging infrastructure and 
vice versa? 
 
A light is shed on the substitutability of electric range – resulting from a car’s battery 
capacity – and charging infrastructure characteristics. The work systematically analyses 
to what extent variations in electric vehicle characteristics (i.e., the vehicle’s battery ca-
pacity) and both the private and public charging infrastructure coverage and available 
charging power affect results. Furthermore, results are compared for distinct driver seg-
ments. The objective is to provide a profound assessment of the effect that electric 
range and charging opportunity variations have on the mileage electrification potential 
and to estimate and describe the resulting power grid impact that comes from the addi-
tional electric charging of cars. 
 

1.3.3 Integration of vehicle charging into residential households 
 
Charging electric cars at their assumed primary parking location (such as the home 
base) enables great shares of mileage to be driven electrically. As a consequence, the 
local power demand increases with peaks typically occurring in the evening, but also at 
noon. This observation is discussed in greater depth in (Sodenkamp, Wenig, Thiesse, 
et al., 2019; Wenig, Sodenkamp, and Staake, 2019, 2015), and in chapters 2 and 3, 
respectively. 
 
Particularly for presumably private driver segments, the value of home charging for (pri-
vate) electric driving is noticeable (c.f. (Sodenkamp, Wenig, Thiesse, et al., 2019; 
Wenig, Sodenkamp, and Staake, 2019) and chapters 2 and 3, respectively).  Hence, an 
in-depth look at the grid impact of electric mobility at home locations is motivated. 
 
The emphasis of the assessment is put on the integration of electric vehicle charging 
into residential households by comparing the typical load profile of a private household 
with the charging demand of a PHEV. In this integrated view of vehicle charging at res-
idential locations, the overall energy demand is increased and particularly during peak 
times (most prominently in the evening, but also at noon), the additional stress to the 
grid can be illustrated. 
 
In order to manage such an increased local energy demand, first, residential photovol-
taic systems could be used for electric car charging to increase the self-consumption 
and thus reduce the grid demand, as was discussed in (Wenig, Sodenkamp, and 
Staake, 2015). It has to be analyzed how energy from distributed renewable energy 
sources (i.e., residential photovoltaic systems) can be utilized to change the electricity 
grid demand when PHEVs charge and to reduce stress on the grid. To do so, solar 
irradiation data is used to simulate the energy generation capability of residential pho-
tovoltaic systems. Consequently, the following question is addressed: How does the 
electricity grid demand change when PHEVs charge from distributed renewable (i.e., 
solar) energy sources? 
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Second, load shifting approaches for vehicle charging could help mitigating electricity 
demand during peak hours (Prüggler, 2013). Thus, the utility of managed charging (i.e., 
load shifting) for peak grid demand reduction has to be assessed. Here, a load shifting 
strategy is applied to evaluate the potential for shifting peak electricity demand to hours 
of less energy demand and to answer the question: How could managed charging (i.e., 
load shifting) reduce peak grid demand? 
 
The suggested comparison of the electricity demand at private households with the 
home charging demand of PHEVs and both the assessment of residential photovoltaics 
and of a load shifting strategy for vehicle charging are addressed in the fourth chapter. 
 

1.4 Outline of the methodology 
 
To comprehensibly answer these raised questions, a data-based methodology has 
been developed and applied. An overview of this methodology is provided in Figure 1. 
The electric car simulation procedure from (Wenig, 2014a, 2014b; Wenig, Sodenkamp, 
and Staake, 2015) has been used as a groundwork. 
 

Input    Methodology    Output 

         

GPS driving 
data 

 

Private and 
public 
charging 

infrastructure 
derived from 
parking 
locations 

 

Vehicle 
simulation 

 

Vehicle 
integration at 
household level 
(e.g., load 
shifting, 

photovoltaic 
charging) 

 

Results 
(e.g., share of 
electrified 
mileage, grid 
impact) 

 

Household 
load profile 

  

Solar 
irradiation 

Driver 
segmentation 

 

Scenario 
parameters 

Figure 1: Overview of the data-based methodology 

 
The approach uses GPS driving data, simulation techniques (i.e., a physical model of 
the electric vehicle energy consumption and charging behavior), and machine learning 
techniques (i.e., clustering approaches) to predict to what extent driver groups could 
drive electrically and to what extent such an additional electricity demand strains the 
power grid. From this, appropriate electric mobility parameters (i.e., electric vehicle and 
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charging infrastructure characteristics) that foster the electrification of transport can be 
identified. 
 

1.4.1 Data input 
 
First, a closer look at the input data is given. In this thesis, GPS time series data that 
represents the real-world mobility behavior of distinct drivers is processed using data 
analysis techniques. The GPS driving data set was provided by the chair of Information 
Systems and Energy Efficient Systems at the University of Bamberg, Germany and 
stems from a major European telematics service for pay-as-you-drive insurances 
(Ippisch, 2010; Octo Telematics Ltd., 2017). The data set contains driving data from 
1,000 conventional vehicles over a period of two years. During trips, measurements 
have been recorded about every 2 km. The large majority of trips takes place in Northern 
Italy. 
 
Moreover, standard household load profiles are utilized (Schellong, 2016) and are 
merged with the simulated home charging demand data of PHEVs and with time and 
place dependent solar irradiation data (MINES ParisTech and Transvalor S.A., 2017). 
Scenario parameters allow for the assessment of different electric mobility charging 
scenarios. 
 

1.4.2 Charging infrastructure scenarios derived from parking locations 
 
Potential private charging locations can be derived from GPS-based time series data. 
To do so, a procedure from (Wenig, Sodenkamp, and Staake, 2015) is applied. It par-
ticularly contains a method for the detection of potential primary (e.g., home) and sec-
ondary parking locations that is based on a density-based clustering algorithm (Ester, 
Kriegel, Sander, et al., 1996). 
 
Frequent parking locations with the longest overall parking duration in a considered time 
period are assumed to be primary (e.g., home) parking locations (Krumm, 2007; Wenig, 
Sodenkamp, and Staake, 2015). Consequently, locations with the second longest park-
ing duration are considered to be secondary parking locations (Wenig, Sodenkamp, and 
Staake, 2015). 
 
A random assignment of charging opportunities at parking locations according to a 
specified public infrastructure coverage takes place to derive possible public charging 
opportunity locations. This is again addressed in (Wenig, Sodenkamp, and Staake, 
2019) and in chapter 3, where different private and public charging infrastructure con-
figurations are compared. 
 

1.4.3 Vehicle simulation 
 
The vehicle simulation model suggested in (Wenig, Sodenkamp, and Staake, 2015) is 
applied and contains both a vehicle energy consumption model and a charging model. 
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The electric vehicle energy consumption model uses GPS driving data (particularly the 
driven distance and speed at each measurement point) and estimates the energy con-
sumption based on rolling resistance, aerodynamic drag, and acceleration. The charg-
ing model assumes a lithium-ion battery and considers both the charging duration and 
the available charging power. The usage of charging opportunities depends on the con-
sidered charging infrastructure (home, secondary, public) and on the respective parking 
times. From this, the state of charge of the battery at each location and timestamp can 
be derived. 
 
In this work, PHEVs are assumed to be vehicles that allow plug-in charging and have a 
hybrid configuration of both an electric engine and an internal combustion engine 
(Amsterdam Roundtables Foundation and McKinsey & Company, 2014; National 
Academy of Sciences, 2015) More specifically, in the context of this thesis, a PHEV is 
considered to be a passenger vehicle that can be driven fully electrically, but that is 
potentially range extended by an internal combustion engine, if the battery runs out of 
charge (National Academy of Sciences, 2015). 
 
Figure 2 shows the simplified layout of such a PHEV with an additional range extender. 
This range extender is a gasoline-based internal combustion engine that can recharge 
the lithium-ion battery if it is depleted. Due to this assumption, statements on the share 
of mileage that could be covered electrically – depending on the driving behavior and 
on the electric mobility scenario parameters – can be interpreted in a realistic and justi-
fiable manner. 
 

  Electric drive 

    

Range 
extender 

 Lithium-ion 
battery  

    

  
Plug-in 
charger 

Figure 2: Simplified layout of a PHEV with range extender; inspired by 
(Amsterdam Roundtables Foundation and McKinsey & Company, 2014; National 

Academy of Sciences, 2015) 

 

1.4.4 Driver segmentation 
 
A partitioning based clustering algorithm (Han, Kamber, and Pei, 2012; Hartigan and 
Wong, 1979) is applied to find distinct groups of drivers based on the individuals’ mobil-
ity behavior. In the segmentation approach, clustering variables that describe the driving 



Jürgen Wenig  - 11- 

patterns and influence the energy consumption and charging behavior of a simulated 
PHEV are derived from the driving data. 
 
These variables include information on the driven distance, duration, and speed and on 
parking durations – particularly at potential private charging facilities – such that drivers 
can be distinguished in terms of characteristics that are highly relevant for electric driv-
ing. Subsequently, discovered driver groups can be aptly described with regard to the 
vehicles’ presumed main e.g., private or business purposes. 
 
Moreover, the distinct mobility demand patterns of individual drivers and of derived 
driver groups are analyzed and compared for variations of electric mobility scenarios. 
Thereby, statements on the mileage electrification potential and grid impact for each 
group can be given for different vehicle characteristics (i.e., the battery capacity) and 
charging infrastructure parameters (i.e., the charging power and availability of charging 
facilities). 
 
The segmentation procedure is described in (Sodenkamp, Wenig, Thiesse, et al., 2019) 
and in chapter 2, respectively and is further applied in subsequent chapters. 
 

1.4.5 Vehicle integration at household level 
 
The work also includes the assessment of residential photovoltaic charging and of the 
utility of a load shifting strategy for grid impact alleviation. This is discussed in detail in 
chapter 4. 
 
The energy output of a residential photovoltaic system is simulated by using location- 
and time-specific solar irradiation data (MINES ParisTech and Transvalor S.A., 2017). 
The resulting power generation time series data is merged both with a typical standard 
household load profile that has been adapted to regional conditions (Schellong, 2016) 
and with the expected charging demand of presumably privately held electric cars at 
the primary (or home) parking location. The electricity demand of such a private house-
hold with an electric vehicle can be assessed and from this the potential for overall 
electricity demand reduction by utilizing locally generated solar energy can be esti-
mated. 
 
Peak charging demand at home locations typically occurs in the evening hours, while 
in the following nighttime hours and in the morning the average charging demand is 
much lower, as described both in (Wenig, Sodenkamp, and Staake, 2015) and in the 
course of the present work. Consequently, peak power demand could be reduced by 
means of a load shifting procedure (Palensky and Dietrich, 2011; Prüggler, 2013; 
Shimizu, Ono, Hirohashi, et al., 2016). 
 
The load shifting approach takes advantage of the entire home parking duration which 
is often considerably longer than the related time window that is required for unmanaged 
charging. During the parking period, the charging power can be reduced because of the 
extended charging duration (Shimizu, Ono, Hirohashi, et al., 2016). Thus, also the peak 
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power demand can be reduced without changing the state of charge of the battery at 
the end of the parking event. 
 

1.4.6 Implementation 
 
A GPS data-based simulation procedure (Wenig, 2014a, 2014b; Wenig, Sodenkamp, 
and Staake, 2015) constitutes the basis for this thesis and was further enhanced. The 
software was developed using the R software environment (R Core Team, 2018). The 
documented source code for the software from which the results of this thesis are de-
rived is provided to the chair of Information Systems and Energy Efficient Systems of 
the University of Bamberg. 
 

1.5 Structure of the thesis 
 

Underlying PHEV simulation 

Primary and secondary parking location detection 
Vehicle energy consumption and charging model 

(c.f. (Wenig, 2014a, 2014b; Wenig, Sodenkamp, and Staake, 2015)) 

 

Driver segmentation (chapter 2) 

Comparison of driver groups with distinct mobility patterns 
(c.f. (Sodenkamp, Wenig, Thiesse, et al., 2019)) 

 

Battery versus infrastructure assessment (chapter 3) 

Comparison of distinct electric mobility scenarios 
(battery capacity, private and public charging infrastructure, charging power) 

(c.f. (Wenig, Sodenkamp, and Staake, 2019)) 

 

Charging at residential households (chapter 4) 

Comparison of household load and charging profiles 
Photovoltaic energy utilization 

Load shifting 

Figure 3: Content structure of the thesis 

 
From the perspective of energy informatics, a contribution is made by generating in-
sights based on the description and analysis of energy related behavioral data and the 
consequent prediction of the implications of the individual’s driving behavior for electric 
mobility (Watson, Boudreau, and Chen, 2010). To do so, this thesis suggests the inno-
vative utilization of GPS-based mobility behavior data in an approach that applies a 
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vehicle simulation model and data analytics techniques – including unsupervised ma-
chine learning. 
 
In summary, the focus lies on the quantification and comparison of the mileage electri-
fication potential and the resulting local grid impact of individual drivers for different 
electric vehicle configurations, charging infrastructure configurations, and different 
types of drivers (i.e., segments) while avoiding strong assumptions and mobility behav-
ior adaptions. 
 
In Figure 3, the content structure of this thesis is given. Preliminary work concerning the 
detection of private parking locations and the simulation of the energy consumption and 
charging behavior of an electric vehicle was documented in (Wenig, 2014a, 2014b; 
Wenig, Sodenkamp, and Staake, 2015). 
 
The comparison of distinct driver segments according to their mobility patterns is ad-
dressed in (Sodenkamp, Wenig, Thiesse, et al., 2019) and in chapter 2, respectively. 
The key findings of this chapter are briefly summarized as follows: 
 
Differences between groups of drivers are highly relevant for the assessment of electric 
mobility. Results thus suggest that different mobility patterns of driver groups should be 
included into the analysis of electric mobility scenarios to avoid an overly one-sided 
emphasis on the driving demand of an assumed average driver. The provided method-
ology allows for the identification of typical driver groups based on their driving behavior 
and for the comparison of these groups in terms of their readiness for electric mobility 
adoption and for the subsequent assessment of their expected impact to the power grid. 
 
The subsequent comparison of electric mobility scenarios, particularly aiming at the as-
sessment of battery capacity and charging infrastructure characteristics, is presented in 
(Wenig, Sodenkamp, and Staake, 2019) and in chapter 3, respectively. Again, key find-
ings of this chapter can be summarized: 
 
Even with limited electric range PHEVs and by home charging alone, a notable share 
of mileage could be electrified. This might be explained by the observation that many 
trips of conventional drivers are short and could thus be electrified in large parts with 
comparably modest equipment. However, even with small batteries equipped and with 
the availability of a single private charging facility, the impact to the power grid is con-
siderable. 
 
At the same time, for a large-scale electrification of mileage of a typical driver, large 
batteries appear to be indispensable. Extensive infrastructure measures alone hardly 
compensate for limited electric range. Naturally, with increasing shares of electrified 
mileage, large amounts of electricity are required. Here, particularly the consideration 
of demand peaks is essential. 
 
With regard to the value and significance of home charging for PHEVs, in chapter 4, the 
energy demand profile of an average private household is compared with the energy 
demand of vehicle charging. A focus is set on the effect of vehicle charging at residential 
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households and further, residential photovoltaic charging and load shifting are ad-
dressed. The following main observations and conclusions can be drawn from the fourth 
chapter: 
 
Both household electricity demand and charging demand peak in the evening, such that 
during these time windows most stress is put on the electric grid. However, when parked 
at their private home base, cars typically stand idle for an extended period of time (e.g., 
at night), such that a similarly extended time period could be used for load shifting. As 
a result, energy demand for charging can be distributed over a longer timeframe and 
peak power demand can be reduced. 
 
The second largest power demand peak occurs around noon. With solar irradiation be-
ing highest at noon, an assessment of the potential for charging with energy generated 
from a residential photovoltaic system appears to be reasonable. In (Wenig, 
Sodenkamp, and Staake, 2015) it was discussed that home parking times during sun-
light hours are limited and that cars are mostly parked during hours without sunlight (i.e., 
at night).  
 
Consequently, only a smaller portion of energy generated by the photovoltaic system 
could be used for electric vehicle charging. Nevertheless, results show that the usage 
of locally generated photovoltaic energy for vehicle charging does reduce the demand 
peak at noon. 
 
Finally, in chapter 5 a discussion of overall results takes place. Consequences derived 
from the findings, their practical implications, limitations, and possible future applica-
tions based on this work are addressed. 
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2 Driver segmentation for electric mobility 
assessmenti 

 

2.1 Introductionii 
 
The automotive sector is an excellent example of a highly innovative industry driven by 
strong competitive pressure and constant technological progress (Holweg, 2008). How-
ever, the automotive industry also poses an example of an economic sector that has 
never had to deal with truly disruptive changes regarding its products, processes, or 
value network structure (Wollschlaeger, Foden, Cave, et al., 2015). 
 
It was only recently that this situation has started to change with the rise of novel tech-
nologies beyond traditional core competencies (e.g., artificial intelligence for autono-
mous driving), major architectural innovations (e.g., fully electric drivetrains), new busi-
ness models (e.g., internet-based ride sharing platforms), and dissolving industry 
boundaries (e.g., between automotive and information technology) (McKinsey & 
Company, 2016; Wollschlaeger, Foden, Cave, et al., 2015). As a consequence, auto-
motive managers and policy makers are now confronted with a broader variety of fun-
damental strategic decisions than generations of decision makers in their domain before 
(McKinsey & Company, 2016; Wollschlaeger, Foden, Cave, et al., 2015). 
 
In this context, the present study sets the focus on the replacement of conventional 
vehicles by cars equipped with electric engines and batteries. The electrification implies 
not only a redefinition of the product architecture of cars, but also comes along with 
questions surrounding the identification of key market segments for PHEVs and battery 
electric vehicles as well as issues regarding interdependent design choices of battery 
configurations and charging infrastructures. The primary lever – and major challenge – 
to achieve market success in fact lies in meeting the requirements of individual customer 
segments (Hodson and Newman, 2009) also with respect to factors that have previously 
been taken for granted, such as reachability of destination, or factors that are new, such 
as electric range under real-world conditions, and in foreseeing the resulting implica-
tions on technology choice and infrastructure design. 
 
The transformation has implications beyond the automotive industry as it also concerns 
the utility sector. Many countries promote the electrification of individual mobility and at 
the same time support the use of renewable energy sources and the establishment of 
smart grids (Clastres, 2011). The grid impact of electric cars, however, depends not 
only on the technology but also on the drivers’ profile (e.g., on distances traveled, place 
and time for re-charging, etc.). It is hence evident that car manufacturers as well as 
utility companies and public authorities require detailed analyses of car utilization be-
havior in order to make decisions in both vehicle development and infrastructure plan-
ning. Similarly, customers benefit from reports on the suitability of different electric ve-
hicles with regard to their specific needs as support in their individual purchasing deci-
sions. 
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Table 2. Prior studies using GPS data 

Articles Research 
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GPS analysis 
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(Khan and Kockelman, 
2012; Wu, 
Aviquzzaman, and Lin, 
2015) 

x  x  x    x 
urban / 
metro-
politan 

(Pearre, Kempton, 
Guensler, et al., 2011) 

x x x  x    x 
metro-
politan 

(Björnsson and 
Karlsson, 2015; 
Jakobsson, Gnann, 
Plötz, et al., 2016) 

x  x   x   x 
urban 
and rural 

(De Gennaro, Paffumi, 
Martini, et al., 2014) 

x x x   x   x urban 

(He, Wu, Zhang, et al., 
2016) 

x  x    x  x 
metro-
politan 

(Gonder, Markel, 
Simpson, et al., 2007) 

x   x x   x  
metro-
politan 

(Needell, McNerney, 
Chang, et al., 2016) 

x   x x   x  
hetero-
geneous 

(Greaves, Backman, 
and Ellison, 2014) 

x   x   x  x suburban 

(Stark, Link, Simic, et 
al., 2015) 

x   x  x   x 
urban 
and rural 

(Ashtari, Bibeau, 
Shahidinejad, et al., 
2012; Dong, Lin, Liu, 
et al., 2014) 

 x x  x    x 
urban / 
metro-
politan 

(Shahidinejad, Bibeau, 
and Filizadeh, 2010) 

 x  x x    x urban 

(De Gennaro, Paffumi, 
and Martini, 2015) 

 x x   x   x urban 

(Wenig, Sodenkamp, 
and Staake, 2015) 

x x  x  x   x 
hetero-
geneous 

 
The datasets required to generate profile-related information have become available in 
recent years through the proliferation of real-time global positioning systems (GPS) 
used in cars and mobile devices, which automatically collect large amounts of location 
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data. Prior studies use such data for the estimation of key performance indicators (KPIs) 
of electric cars, including electric reachability, load to the electric grid, and the share of 
distances that can be driven electrically (see Table 2 for an overview). 
 
Related empirical investigations and simulations have improved over time in terms of 
data quality and the level of detail in their model assumptions. Early research, for ex-
ample, made strong assumptions regarding charging procedures, such as postulating 
that batteries are always fully charged once a day (Khan and Kockelman, 2012). Later 
studies included more comprehensive scenarios such as home and work charging (Wu, 
Aviquzzaman, and Lin, 2015) or differentiated between distinct usage scenarios such 
as first versus second car (Jakobsson, Gnann, Plötz, et al., 2016) and between vehicle 
sizes (Stark, Link, Simic, et al., 2015). The findings assert that a large share of the 
mileage can be electrified even with relatively small batteries of PHEVs and battery 
electric vehicles and at the same time reveal considerable differences regarding elec-
trified mileage and reachability among different use cases. The findings nicely replicate 
in studies that focus on specific mobility needs of urban drivers (De Gennaro, Paffumi, 
Martini, et al., 2014; He, Wu, Zhang, et al., 2016) and commuters (Björnsson and 
Karlsson, 2015). 
 
Alongside the focus on electric range and usability, a growing number of studies also 
pays attention to charging locations and electricity consumption (Ashtari, Bibeau, 
Shahidinejad, et al., 2012; Dong, Lin, Liu, et al., 2014; Gonder, Markel, Simpson, et al., 
2007; Khan and Kockelman, 2012; Pearre, Kempton, Guensler, et al., 2011; 
Shahidinejad, Bibeau, and Filizadeh, 2010). The authors unanimously predict consider-
able demand peaks if return times are synchronized in neighborhoods and point out the 
necessity of charging control systems. 
 
However, a GPS-based investigation of the usability and electricity consumption also 
allows for a comparison of individual driver segments against each other within one 
coherent model. The underlying conjecture is that the identification of driver segments 
can provide a more differentiated picture of electric vehicle usability and network load 
in comparison to prior research considering driver populations as a homogenous whole. 
Grouping of drivers according to their mobility behavior is already a widely discussed 
topic among mobility researchers (Anable, 2005). It was only recently that the issue of 
driver segmentation has gained a foothold in the electric vehicle usability community 
(Anable, Skippon, Schuitema, et al., 2011). However, investigated studies on reacha-
bility and electricity consumption do not capture the potential of driver segmentation 
based on real-world GPS travel data. 
 
Against this backdrop, this research work extends the literature by proposing and ap-
plying a procedure for profiling the key segments of car drivers using GPS-based mo-
bility data. Pattern recognition techniques help to identify distinct driver segments from 
GPS data sets and an exemplary analysis regarding usability and electricity consump-
tion for 982 drivers over a two-year period reveals large differences regarding reacha-
bility and charging requirements between segments. Cluster analysis can be employed 
to identify typical vehicle usage patterns (e.g., by driving distance and duration, fre-
quency and length of parking, etc.) from driving data. The results allow for segment-
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specific vehicle requirements analyses regarding electric reachability, energy consump-
tion, and recharging power over time and by location. 
 

2.2 Data description and detection of parking locationsii 
 
Starting point of the analysis is a dataset gathered from 1,000 cars that were equipped 
with on-board GPS sensors and GSM modules for data transfer (Ippisch, 2010). The 
primary location of the cars was Northern Italy and surroundings, including trips to Aus-
tria, Switzerland, France and across Italy. Information has been collected over the 
course of 24 months, originally to offer a usage-based insurance tariff (Ippisch, 2010). 
The cars’ position was updated every few seconds and recorded in aggregated form 
with 2 km granularity; it contains additional information (e.g., state of ignition) as shown 
in Table 3. The collected data is of high quality. Still, for this chapter, 18 vehicles were 
excluded due to technical problems of the data recorders. A noteworthy property is that 
the data stems from regular drivers of conventional cars and is not, like in many previous 
studies, a convenience sample restricted to a smaller geographic area or a sample con-
taining primarily early adopters of electric cars. Though a bias from insurance customers 
of a usage-based tariff cannot be ruled out, similar problems are also inherent to previ-
ous work, were self-selection biases of study participants and unclear characteristics of 
early electric car adopters cannot be precluded either. 
 

Table 3. Data set and attributes (Ippisch, 2010) 

Attribute  Description 
Car number Car/device number 
Timestamp Date and time on which the dataset was recorded 
Latitude, Longitude Vehicle position in decimal notation 
Speed Vehicle speed at recording time in km/h 
Distance to previous point Distance traveled since last recording point 
Time since previous point Time traveled since last recording point 
Panel session Data on 

- ignition turn-on 
- vehicle operation 
- ignition turn-off 

Road type Road type at recorded location 
- Urban 
- Highway 
- Extra urban 

 
For the data set, each driver's primary and secondary parking location has been identi-
fied using location information (longitude and latitude) and panel session data (Wenig, 
Sodenkamp, and Staake, 2015). Following Krumm (2007), the place where most time 
is spent is henceforth referred to as the home location. The location where second-most 
time is spent can be considered a typical working place, even though some drivers may 
not have a workplace but may park, for example, at the grandchildren’s house with the 
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second most pronounced frequency and duration (however, the notations home and 
work location are used to ease readability). 
 
Based on similar arguments, numerous earlier methods of geospatial location clustering 
have been developed; (Gambs, Killijian, and del Prado Cortez, 2010) compare different 
segmentation algorithms and heuristics for the inference of points of interests from an 
individual’s movement data. (Han, Lee, and Kamber, 2009) exemplify geographic loca-
tion clustering using different algorithms of unsupervised machine learning. In the con-
text of privacy preservation, (Krumm, 2007) review studies that deal with the extraction 
of individuals’ home and identity form pseudonymous GPS traces. Information about 
the density of vehicle parking locations was utilized also by (Smith, Shahidinejad, Blair, 
et al., 2011) in order to categorize possible locations for charging infrastructure plan-
ning. 
 
Leaning on previous work (Wenig, Sodenkamp, and Staake, 2015), a density-based 
clustering algorithm DBSCAN is used to identify the parking positions (Ester, Kriegel, 
Sander, et al., 1996)1; DBSCAN is the algorithm of choice due to its ability to deal with 
arbitrary shaped clusters (Han, Lee, and Kamber, 2009) and thus allows slight deviation 
of parking positions around a base (as required for curbside parking). As two input pa-
rameters, the minimum number of points in a cluster is defined as three. The neighbor-
hood radius of points is incrementally approximated, so that the parking area (i.e., its 
convex hull) is restricted to an area of about 316 x 316 m2; the relatively large area was 
necessary to capture the varying positions of cars parking on public streets in proximity 
to the point of interest (such as the home charging location). Analogously, the cluster 
with the second longest overall parking duration was selected as the secondary parking 
location. 
 
Since primary and secondary parking locations may change over time (e.g., due to job 
changes, relocation, holiday times), such that the trips were grouped by calendar month 
and each group was considered separately. Table 4 shows the distribution of months 
with and without changes of the main and secondary parking locations. The results in-
dicate that in 86.7% of all cases, the primary parking location remains stable over time 
whereas the same holds for 50.0% of the secondary parking locations. The numbers 
deem plausible and sufficiently stable given that cars are often used by more than one 
person and that the real-world data set might also include, for example, holiday and 
business trips. 
 

Table 4. Stability of identified parking locations over time (n = 982) 

Difference between months Primary Secondary 
Location stays the same 86.7% 50.0% 
Swaps between primary and secondary location 6.3% 5.5% 
Location changes (excluding swaps) 3.9% 37.3% 
No location detected 2.7% 6.7% 
Insufficient data 0.6% 0.6% 

 
1 The R package “fpc” provides a density-based DBSCAN algorithm (Hennig, 2018). 
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Given that the data stems from conventional cars, the travel patterns include a number 
of trips that are too long to be driven non-stop by solely battery-powered vehicles. In a 
strict sense, the analysis is therefore highly accurate only for PHEVs with range ex-
tender (as it is the case in the later examples) and constitutes an approximation for 
solely battery-operated cars. 
 

2.3 Driver segmentation 
 

2.3.1 Methodologyii 
 
In most markets, it is neither optimal to treat all customers alike nor to treat each indi-
vidual uniquely (Dillon and Mukherjee, 2006). As a compromise between these two ex-
tremes, a variety of segmentation methods were developed with the aim of providing 
decision makers with information on who their customers are and what products or ser-
vices these customers want and need (Dillon and Mukherjee, 2006). In the case of elec-
tric mobility, segmentations on the foundation of real-world behavioral data serve to 
better understand the actual suitability of PHEVs to the driving habits of individual driv-
ers. For this purpose, segmentation methods can group driving data entries into coher-
ent classes of vehicle usage patterns, which allows automotive manufacturers to better 
tailor their offerings to the actual needs of the respective customers. 
 
In the context of the study, driver segments were identified on the foundation of the 
corresponding trip data. To this end, a backward segmentation approach (van Raaij and 
Verhallen, 1994) was chosen that assigns cars to groups by their similarity in one or 
more trip characteristics (i.e., segmentation variables), for example, the median dis-
tance of a roundtrip or the variance of speed. Consequently, the differences between 
the groups are related to behavioral differences of drivers. The segmentation variables 
were empirically defined and selected using correlation analysis. 
 
Altogether, 12 segmentation variables were formulated: six of them describe trip and 
roundtrip drives (median distances, median driving durations, and speed variances), 
four variables reflect parking routines (median parking duration during a roundtrip, me-
dian parking durations at primary and non-primary locations, number of stops during a 
roundtrip), and two variables describing drive-to-park-time ratio during a roundtrip and 
number of roundtrips per month. Using Pearson’s correlation coefficients, three varia-
bles could be excluded: roundtrip median parking duration (correlated with roundtrip 
median driving duration, coefficient 0.95), trip median drive duration (correlated with trip 
median distance, coefficient 0.92), and trip speed variance (correlated with roundtrip 
speed variance, coefficient 0.90). Data transformation (here: logarithmic transformation 
and min-max normalization) is applied, as suggested by literature, to improve the com-
prehensibility and usefulness of resulting segments (Han, Kamber, and Pei, 2012; 
McCune, Grace, and Urban, 2002). 
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Subsequently, given its robustness compared to hierarchical approaches, the k-means 
algorithm (Hartigan and Wong, 1979; Punj and Stewart, 1983) was employed2 to assign 
cars to clusters. The plausibility of results for different numbers of clusters was checked 
by comparing them based on the Euclidean distances between cluster centers. As a 
final number of clusters (henceforth segments), seven allowed for a natural interpreta-
tion of the solution. 
 

2.3.2 Resulting driver segmentsii 
 
The outcome of the analysis procedure suggests three large segments, labelled (1) 
“frequent local driver” (FLD, n=246), (2) “commuter (short)” (CS, n=246), and (3) “com-
muter (long)” (CL, n=238) on the basis of the mean variable values depicted in Table 5. 
In total, almost 75% of cars in the data set belong to one of these clusters. The remain-
ing drivers are associated with one of four smaller segments: (4) “delivery (short)” (DS, 
n=47), (5) “service provider” (SP, n=52), (6) “delivery (long)” (DL, n=54), and (7) “com-
pany representative” (CR, n=99). Additional data on the segments beyond the segmen-
tation variables is given in Table 6. 
 

Table 5. Profiles of the seven driver segments (segmentation variables) 

Segment 1 2 3 4 5 6 7 All 
Segment name FLD CS CL DS SP DL CR ALL 
Segment size 246 246 238 47 52 54 99 982 
% of fleet 25.1% 25.1% 24.2% 4.8% 5.3% 5.5% 10.1% 100.0% 
Segmentation variables 
Median distance of a round-
trip [km] 

11.43 24.50 41.47 0.73 90.95 94.14 225.06 51.77 

Median duration of a round-
trip [h] 

2.52 5.45 6.70 0.29 5.02 7.26 11.42 5.45 

Ratio of driving to parking 
during a roundtrip 

0.21 0.13 0.12 0.53 1.88 0.43 0.94 0.36 

Variance of speed during a 
roundtrip 

403.83 222.52 711.87 257.03 312.69 130.44 330.27 398.77 

Average number of round-
trips per month 

48.69 35.02 20.97 60.84 49.51 31.30 23.80 35.70 

Average number of stops per 
roundtrip 

3.84 3.93 5.19 7.98 6.58 15.62 8.87 5.69 

Median distance of a trip 
[km] 

3.03 6.24 7.28 1.71 11.16 2.28 14.84 6.38 

Median parking duration at a 
primary parking location [h] 

6.78 10.86 12.82 1.59 1.25 14.06 11.62 9.61 

Median parking duration at a 
non-primary parking location 
[h] 

0.38 0.90 0.86 0.18 0.23 0.16 0.27 0.59 

 
 
 

 
2 The R package “stats” provides a k-means algorithm (R Core Team, 2018). 
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Table 6. Profiles of the seven driver segments (non-segmentation variables) 

Segment 1 2 3 4 5 6 7 All 
Segment name FLD CS CL DS SP DL CR ALL 
Segment size 246 246 238 47 52 54 99 982 
% of fleet 25.1% 25.1% 24.2% 4.8% 5.3% 5.5% 10.1% 100.0% 
Non-segmentation variables 
Mean distance of a roundtrip 
[km] 

33.64 39.43 100.98 47.80 153.24 93.07 279.16 86.44 

Mean duration of a roundtrip 
[h] 

6.78 9.79 30.29 4.21 9.78 11.06 33.38 16.19 

Mean distance of a trip [km] 8.72 10.18 19.36 8.58 26.53 6.17 33.07 14.92 
Median duration of a trip [h] 0.13 0.20 0.25 0.10 0.34 0.10 0.46 0.22 
Mean duration of a trip [h] 0.25 0.26 0.40 0.21 0.74 0.18 0.78 0.36 
Average daily travels in km 
Monday 49 42 58 117 268 98 239 86 
Tuesday 49 42 61 116 269 99 242 87 
Wednesday 51 43 62 108 260 98 244 87 
Thursday 52 44 66 121 272 97 253 91 
Friday 53 48 70 115 278 96 241 92 
Saturday 53 48 57 73 165 72 97 65 
Sunday 48 41 51 7 15 5 24 38 
Mon-Fri 51 44 63 115 269 98 244 89 
Sat-Sun 51 44 54 40 90 39 60 52 
Median parking duration at a 
secondary parking location 
[h] 

2.93 4.84 4.71 0.98 1.42 0.87 1.87 3.45 

Median daily parking dura-
tion at a primary parking lo-
cation [h] 

16.90 15.15 15.66 16.42 13.31 16.25 14.24 15.64 

Median daily parking dura-
tion at a secondary parking 
location [h] 

5.11 6.92 7.29 1.75 2.07 1.83 2.68 5.35 

Portion of monthly mileage 
on urban roads 

0.33 0.35 0.22 0.18 0.15 0.35 0.14 0.23 

Portion of monthly mileage 
on extra-urban roads 

0.38 0.44 0.29 0.39 0.35 0.45 0.28 0.35 

Portion of monthly mileage 
on highways 

0.30 0.21 0.49 0.43 0.51 0.21 0.58 0.42 

Mean speed [km/h] 70.00 66.04 85.20 57.53 65.67 57.50 70.24 71.20 
Monthly mileage [km] 1,539 1,331 1,830 2,822 6,527 2,451 5,763 2,359 
Stability of locations on a monthly basis 
Primary locations 0.89 0.91 0.75 0.95 0.93 0.91 0.87 0.87 
Secondary locations 0.48 0.67 0.41 0.50 0.42 0.48 0.39 0.50 
 
Euclidian distances between cluster centers are given in Table 7. Additionally, to visu-
alize differences between the seven segments, a hierarchical clustering algorithm with 
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Ward’s method as a distance metric (c.f. Murtagh and Legendre, 2014) was employed3. 
The resulting dendrogram in Figure 4 indicates that the three segments “frequent local 
driver”, “short-distance commuter”, and “long-distance commuter” resemble each other. 
The next three segments “long-distance delivery vehicle”, “service provider”, and “com-
pany representative” share similarities as well and are assumed to include cars used 
for business purposes. The last segment “short-distance delivery vehicle” has little in 
common with any other segment. In the following subsections, a detailed discussion of 
the average driver’s profile and each of the seven driver segments takes place. 
 

Table 7. Euclidean distances between cluster centers 

Cluster 1 2 3 4 5 6 7 
1 0.00       
2 0.28 0.00      
3 0.38 0.26 0,00     
4 0.63 0.85 0.94 0.00    
5 0.54 0.61 0.66 0.76 0.00   
6 0.65 0.62 0.63 0.92 0.71 0.00  
7 0.61 0.49 0.44 1.04 0.56 0.45 0.00 

 

 
Figure 4. Dendrogram providing an overview of the cluster distances 

 

2.3.2.1 Describing the average driver 

 
The average driver (982 data sets, 100% of the sample) that represents all seven de-
tected driver segments can be described as follows. In 50% of cases, the roundtrip 
distance is greater than 51.8 km and the roundtrip duration is greater than 5.5 hours 
(including stops). With a mean distance of 86.4 km and a mean duration of 16.2 hours 

 
3 The R package “stats” provides a hierarchical clustering algorithm (R Core Team, 

2018). 
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(including stops), the distribution is skewed. There are about 35.7 roundtrips per months 
– in other words: somewhat more than one roundtrip per day – with 5.7 stops per round-
trip. 
 
The distance of individual trips is less than 6.4 km in 50% of cases and their median 
duration is 0.2 hours (or about 13 minutes). Again, the distribution is skewed with a 
mean trip distance of 14.9 km and a mean trip duration of 0.4 hours (or about 22 
minutes). 
 
Overall, drivers cover 2,359 km per month and the average speed in 71.2 km/h. The 
greatest share of mileage is covered on highways (42%) or on extra-urban roads (35%). 
A smaller share of mileage is covered on urban roads (23%). 
 
Typically, most mileage is covered from Monday to Friday (89 km per weekday), while 
on weekends with 52 km the average daily mileage is lower. During weekdays, daily 
covered mileage is rather uniform.  With about 92 km most mileage is covered on Fri-
days, while the shortest distance is covered on Mondays (86 km). During weekends, on 
Saturdays 65 km and on Sundays 38 km are covered. 
 
The median parking duration at a primary location is 9.6 hours or 15.6 hours per day. 
At the secondary parking location, the median parking duration is 3.4 hours or 5.3 hours 
per day. In 87% of cases primary parking locations remain stable from month to month. 
Secondary locations remain stable in about 50% of cases. 
 

2.3.2.2 Segment #1: Frequent local driverii 

 
About 25.1% of the fleet belong to the segment of “frequent local drivers” (FLD). It is 
characterized by rather short roundtrips. 50% of their trips are shorter than 11.4 km and 
last less than 2.5 hours (30 min. driving time + stops). The distribution is skewed so that 
the mean roundtrip is 33.6 km with a mean duration of 6.8 hours (including stops). The 
segment shows many roundtrips per month (~48.7 on average) with about 3.8 stops per 
roundtrip. Individual trips have a median distance of 3.0 km and a median duration of 
0.1 hours (or 8 minutes). The mean distance is 8.7 km and takes about 0.25 hours (or 
15 minutes), which again indicates a skewed distribution. Overall, 1,539 km are covered 
each month. 
 
Daily mileage is moderate (51 km on workdays, 51 km on weekends). During workdays, 
the shortest daily distance is covered on Mondays (49 km), while on Fridays the longest 
distance (53 km) is covered. On weekends, 53 km are covered on Saturdays and 48 
km on Sundays. 
 
Total daily parking duration at primary location is quite long (median: 16.9 hours), which 
may be interpreted such that the primary location poses a driver's home while the sec-
ondary location (median daily parking duration: 5.1 hours) is a frequent point of interest 
(e.g., half-day working place for some drivers). A typical parking event at the primary 
location takes about 6.8 hours (median), while at the secondary location the median 
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parking duration is 2.9 hours. The stability of primary/secondary locations over time is 
high: primary remains the same from month to month for 89% of cases. Secondary 
locations remain stable in 48% of all cases. 
 
Road types and speeds include many urban drives (33%) and extra-urban drives (38%). 
Highway mileage is moderate (30%), which results in an equally moderate average 
speed (70.0 km/h). It can be assumed that these vehicles are most likely used by private 
car users, such as local workers (possibly part-time employed), parents that stay at 
home, or retirees who frequently make shorter trips. The figures indicate that members 
of this segment could live in the suburbs, live or work in a town/city, and actively drive 
from area to area via highways. 
 

2.3.2.3 Segment #2: Commuter (short)ii 

 
The second segment contains 25.1% of the fleet and shows medium-length roundtrips 
with 50% being shorter than 24.5 km and lasting less than 5.5 hours (including stops). 
The distribution is highly skewed so that the mean roundtrip is 39.4 km and 9.8 hours, 
respectively. The typical car drives 35.0 roundtrips per month and during each roundtrip 
there are about 3.9 stops. During an average trip, there are about 6.2 km covered (me-
dian; respectively 10.2 km mean distance) and each trip takes about 0.2 hours (median; 
respectively 0.3 hours mean duration) or 12 minutes (median; respectively 16 minutes 
mean duration). The monthly driven mileage is 1,331 km and the average speed is 
66.0 km/h. Daily mileage is almost equal on workdays (44 km during the week; smallest 
value of 42 km on Mondays and largest value of 48 km on Fridays) and weekends (44 
km during the weekend, 48 km on Saturday and 41 km on Sunday). Most mileage is 
covered on extra-urban (44%) or on urban (35%) roads. A smaller portion of mileage is 
covered on highways (21%). 
 
Daily parking duration at the primary location is moderate (median: 15.2 hours). The car 
parks 6.9 hours per day (median) at a secondary location. The median duration of an 
individual parking event is 10.9 hours at the primary and 4.8 hours at the secondary 
location. 
 
These vehicles might belong to employed persons who travel about once a day from 
their home to their workplace and back. Primary and secondary parking locations are 
very stable over time (91% vs. 67%). 
 

2.3.2.4 Segment #3: Commuter (long)ii 

 
Drivers from segment 3 (24.2%) drive more than 41.5 km in 50% of cases and half of 
the roundtrips last more than 6.7 hours. With a mean distance of 100.1 km and a mean 
duration of 30.3 hours (including stops), results are highly skewed. Roundtrips do not 
occur every day (21 roundtrips per month) and there are about 5.2 stops per roundtrip.  
With a median distance of 7.3 km and a median duration of 0.25 hours (15 minutes), 
respectively with a mean distance of 19.4 km and a mean duration of 0.4 hours (24 
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minutes), results for trip distance and duration are highly skewed as well. Each month, 
1,830 km are driven, and the mean speed is 85.2 km/h. 
 
Average daily mileage on weekdays (63 km) and on weekends (54 km; 57 km on Sat-
urday and 51 km on Sunday) is rather similar. Again, during weekdays on Mondays, 
shortest distances are covered (58 km) while on Fridays daily mileage is higher (70 km). 
 
Daily parking duration at the primary location is moderate (median: 15.7 hours) and a 
typical parking event at the primary location takes 12.8 hours. The car is parked for 7.3 
hours per day (median) at a secondary location, or for 4.7 hours per parking event at 
the secondary location. The primary location is relatively unstable (75%) with many 
switches with the secondary location (9%), which may indicate longer business trips or 
the existence of a second household near the working location. The secondary location 
is stable in only 41% of cases. 
 
These data may be associated to employed people, who travel larger distances, and 
either are not at home every day or do not travel every day. Their trips take place mostly 
on highways (49%), followed by urban (22%) and extra-urban (29%) roads. Average 
speed (85.2 km/h) is significantly higher than for segments 1 and 2. 
 

2.3.2.5 Segment #4: Delivery (short)ii 

 
With only 4.8%, the fourth segment poses the smallest group of drivers. 50% of round-
trips in this segment are very short (i.e., smaller than 0.7 km) and last about 0.3 hours 
or 17 minutes. The distribution is highly right skewed with a mean roundtrip length of 
47.8 km and a duration of 4.2 hours (including stops). There are about 61 roundtrips per 
month and during each roundtrip there are roughly 8 stops. Individual trips cover about 
1.7 km (median) and take about 0.1 hours (median; or 6 minutes). The comparison with 
mean figures (8.6 km distance, 0.2 hours or 13 minutes duration) again reveals a highly 
skewed distribution. Overall, 2,822 km are covered, and the average speed is 
57.5 km/h. Daily mileage on workdays is high (115 km; longest on Thursdays with 121 
km and shortest on Wednesday with 108 km) and drops substantially on weekends (40 
km with 73 km on Saturday and 7 km on Sunday). 
 
Median parking time between trips is short, both at the primary and the secondary loca-
tion (median: 1.6 vs. 1 hours), which indicates that cars return to these locations several 
times a day. During the entire day, the parking duration at the primary location is about 
16.4 hours and at the secondary location it is about 1.8 hours. The stability of the two 
types of locations is high (95% vs. 50%) with almost no switches. 
 
Mileage is typically covered on highways (43%) and on extra-urban roads (39%). A 
smaller portion (18%) is covered on urban roads. This pattern might be typical for com-
mercial service or delivery vehicles.  
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2.3.2.6 Segment #5: Service providerii 

 
This small segment (5.3%) includes drivers that are assumed to be, for instance, field 
service employees or express parcel carriers. The corresponding roundtrips are rather 
long (median values: 91 km and 5.0 hours). The mean roundtrip is 153.2 km with a 
mean duration of 9.8 hours (including stops). The number of roundtrips per month is 
49.5 on average (i.e., 1-2 per day) with 6.6 stops per roundtrip. Individual trips cover 
about 11.2 km (median) and take 0.3 hours (median; or 21 minutes). Related mean 
values are 26.5 km and 0.74 hours (or 45 minutes).  Each month, 6,527 km are covered, 
and the mean speed is 65.7 km/h. The majority of mileage is driven on highways (51%), 
followed by extra-urban roads (35%) and urban roads (15%). 
 
Daily mileage is very high and differs between weekdays (269 km) and weekends (90 
km or 165 km on Saturday and 15 km on Sunday). Longest distances are covered on 
Fridays (278 km) and on Mondays daily driven distances are typically shorter (268 km). 
More than 50% of parking periods at a primary location are extremely short (1.3 hours). 
This segment is hence the only group of cars that spends more time driving than park-
ing. The median daily parking duration at the primary location is 13.3 hours; cars park 
2.1 hours per day (median) at a secondary location and each parking event at the sec-
ondary location takes about 1.4 hours. While the primary location is very stable (93%), 
the secondary is not (42%). 
 

2.3.2.7 Segment #6: Delivery (long)ii 

 
In contrast to the fourth segment, the vehicles referred to as “delivery (long)” (DL) (5.5%) 
are used for long trips. Roundtrips cover about 94.1 km (median) and take 7.3 hours 
(median). Mean values (93.1 km and 11.1 hours) are relatively comparable. The mean 
number of roundtrips per month is 31.3, which equals about one per day and there are 
about 15.6 stops per roundtrip. The median distance of individual trips is 2.3 km (mean: 
6.2 km) and their median duration is 0.1 hours or 6 minutes (mean: 0.2 hours or 11 
minutes). The average monthly driven mileage is 2,451 km with an average speed of 
57.5 km/h. The longest distances are covered on workdays (98 km with a maximum of 
99 km on Tuesdays and a minimum of 96 km on Fridays) while shorter distances are 
covered during the weekend (39 km or 72 km on Saturday and 5 km on Sunday). 
 
The median duration of the parking periods at the primary parking location is rather long 
(14.1 hours per parking event or 16.3 hours per day), whereas parking at the secondary 
location (median: 0.9 hours per parking event or 1.8 hours per day) as well as all other 
stops are very short. In sum, the profile of this driver group is characterized by frequent 
regional roundtrips with many intermediate stops. The primary parking location is stable 
on a monthly basis (91%), the secondary location is stable in 48% of cases. 45% of all 
trips are made in extra-urban areas, followed by urban areas (35% of mileage) and 
highways (21%). 
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2.3.2.8 Segment #7: Company representativeii 

 
The last segment accounts for 10.1% of the fleet; it differs from the others with regard 
to the length of the roundtrips: 50% of them are longer than 225.1 km and last more 
than 11.4 hours. The mean length of roundtrips is 279.2 km and they take about 
33.4 hours (mean). On average, there are about 8.9 stops per roundtrip. Drivers make 
these roundtrips about 23.8 times per month and mostly on weekdays (244 km vs. 60 
km on weekends or 97 km on Saturday and 24 km on Sunday). During the work week, 
a minimum of 239 km is covered on Mondays and a maximum of 253 km is covered on 
Thursdays. Individual trips cover 14.8 km (median; mean: 33.1 km) and take 0.46 hours 
or 28 minutes (median; mean: 0.78 hours or 47 minutes). 
 
The median parking time at a primary location is rather long (11.6 hours per parking 
event or 14.2 hours per day), but the median at the secondary location is 1.9 hours per 
parking event (or 2.7 hours per day). The primary location is stable (87%), whereas the 
secondary location is stable in only 39% of cases, which may be due to the extensive 
number of meetings with customers. These characteristics are in line with the high frac-
tion of highway mileage (58%) compared to extra-urban (28%) and urban (14%) areas. 
The average speed is high with 70.2 km/h and each month 5,763 km are driven. This 
driving profile may be considered typical for company representatives who visit far dis-
tant customers. 
 
The usability of electric vehicles for each segment and the implications to the grid are 
presented hereafter.  
 

2.4 Usability analysis 
 

2.4.1 Simulation modelii 
 
Based on segment-specific driving patterns of the vehicle fleet, the resulting electric 
energy consumption and charging processes are derived by utilizing the simulation pro-
cedure from (Wenig, Sodenkamp, and Staake, 2015)4. Energy consumption 𝐸 during a 
trip 𝑘 is the sum of energy consumptions 𝑒@,B within the pairs of consecutive measure-
ment points 𝑗: 𝐸B = ∑𝑒@,B. The car energy consumption model by Larminie and Lowry 
(2003) was adopted, which implies that 𝑒@,B depends on the tractive effort 𝐹 needed to 

move the vehicle, energy efficiency 𝛿#$% of the car, and the trip length 𝑙@,B: 𝑒@,B =
E∙0G,H
IJKL

. 

The tractive effort 𝐹 is the sum of three forces: aerodynamic drag 𝐹$*, rolling resistance 
force 𝐹%%, and linear acceleration force 𝐹0$. Aerodynamic drag 𝐹$* largely depends on 

the frontal area and the shape of the vehicle, and is defined by: 𝐹$* =
M
N
∙ 𝜌 ∙ 𝐴#$% ∙ 𝐶* ∙

𝑣N, where 𝜌 is the air density, 𝐴#$% is the car’s frontal area, 𝐶* is the air drag coefficient, 
and 𝑣 is the vehicle speed. Rolling resistance 𝐹%% is caused by friction of the wheel on 
the road and primarily depends on the mass of the vehicle: 𝐹%% = 𝜇%% ∙ 𝑚 ∙ 𝑔, where 𝜇%% 

 
4 In (Wenig, 2014a) an earlier version of this model is described. 
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is the rolling resistance coefficient, 𝑚 is the vehicle’s mass, and 𝑔 is the gravitational 
acceleration. Finally, acceleration force 𝐹0$ is defined by: 𝐹0$ = 𝑚 ∙ 𝑎, where 𝑚 is the 
mass of the vehicle, and 𝑎 is its acceleration. Due to the low granularity of the data, the 
acceleration 𝑎 was not calculated. Instead, standard values from ECE-15, EUDC, and 
EMPA T130 driving cycles (Barlow, Latham, McCrae, et al., 2009), as provided in 
(André and INRETS, 2009), were used. Furthermore, Larminie and Lowry ( 2003) sug-
gest that 𝑚 can be increased by 5% in the calculation of 𝐹0$ to include the wheel force 
needed to provide the angular acceleration, and assume that with a negative total trac-
tive effort caused by deceleration, 50% of energy is recuperated when braking. 
 
The energy fed at a charging location 𝑋 depends on the parking time 𝑑 and charging 
power 𝑃: 𝑜@,O = 𝑃O ∙ 𝑑@,O. Losses of the energy transfer from and to the battery are in-
cluded in the energy efficiency 𝛿#$% of the car. Thus, the state of battery charge 𝑠𝑜𝑐@,B 
between two consecutive measurements is: 𝑠𝑜𝑐@,B = 𝑠𝑜𝑐@PM,B + 𝑜@,B − 𝑒@,B, 0 ≤ 𝑠𝑜𝑐 ≤ 𝐵, 
where 𝐵 is the battery capacity. The non-linear nature of battery charging time is con-
sidered as follows: the first 80% of the total required charge is made linearly while the 
remaining 20% of the charge require triple time (Hsieh, Chen, and Huang, 2001). In this 
study, it is assumed that the PHEV is driven electrically if the battery is not empty. If the 
battery is empty, the car is powered by an internal combustion engine, such as is the 
case with the BMW i3 range extender (BMW AG, 2013), until the next charging facility 
is reached. 
 
Driving patterns might be different between a conventional car and an electric car, yet 
it is assumed that mobility habits of individuals are rather stable. Furthermore, the be-
havior of a large number of conventional car drivers might be better suited to predict 
general electric mobility patterns than the behavior of today’s early electric vehicle 
adopters. 
 
The trip data and the simulation model described above are used to compare 18 differ-
ent electric mobility scenarios, based on different assumptions for charging power, 
charging locations, and vehicle type. Regarding charging power, the following three lev-
els were considered: (i) 3.7 kW (maximum load of the typical European wall outlet), (ii) 
7.4 kW (typical configuration for faster chargers at home), and (iii) 50 kW (typical fast 
charger in public infrastructures) (Wenig, Sodenkamp, and Staake, 2015). Charging lo-
cations may (i) either be limited to primary locations (ii) or include primary and second-
ary locations (e.g., at work). 
 
Moreover, three different types of electric vehicles were simulated. Following the cate-
gorization of vehicles by curb weight according to the National Highway Traffic Safety 
Administration (NHTSA, 2017), a “passenger car compact”, inspired by a BMW i3 (a 
PHEV with range extender) was considered. The vehicle is also simulated with battery 
capacity variations of 6.3 kWh, being one third of the capacity of the regular model, and 
56.4 kWh, which poses three times the capacity. The car weight is kept constant re-
gardless of the battery size; this is done to ease comparability and can be justified by 
expected battery improvements over time. Table 8 summarizes the corresponding ve-
hicle characteristics. 
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Table 8: Simulated car profiles (BMW AG, 2013; De Haan and Zah, 2013) 

Vehicle parameters Compact car 
Weight [kg] 1,270 
Frontal area [m2] 2.8 
Rolling resistance coefficient 0.011  
Air resistance coefficient 0.31 
Battery capacity [kWh] 6.3 / 18.8 / 56.4 

 
2.4.2 Results and discussion 
 

2.4.2.1 Electric reachabilityii 

Using the simulation model and the empirical data, two indicators of electric reachability 
for each of the seven driver segments were computed: the portion of trips that can be 
driven in a fully electric fashion and the share of the overall distance that can be com-
pleted electrically. The corresponding results are depicted in Figure 5 and Figure 6, 
respectively. 
 

 

 
Figure 5. Trips that can be completed electrically (share of electrically reachable 

destinations) 
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Figure 6. Distances that can be completed electrically (share of electrically 

driven mileage) 

 
The results reveal that all performance indicators vary drastically between different 
driver segments and deviate considerably from the overall average values; the findings 
thus highlight the necessity to conduct segment-specific assessments. The differences 
are large for all car configurations but are especially pronounced for cars with small 
battery capacities. 
 
Taking a segment-specific perspective, segments 1 and 2 (FLD and CS) are especially 
well suited for an electrification: even with the smallest battery size (6.3 kWh) and 3.7 
kW home charging only, they can complete above 80% of the trips electrically and drive 
more than 60% of the mileage electrically. Segments 1 and 2 together account for about 
half of the fleet. On the other side of the spectrum, segments 5 and 7 (SP and CR) can 
complete only 30% and 21% of the trips without the help of a range extender and travel 
only about 20% of the mileage electrically. 
 
Furthermore, advances in the charging infrastructure regarding the maximum power 
output show only a marginal impact in segments 1 to 4 (FLD, CS, CL, DS), which to-
gether include almost 80% of the fleet. Fast charging makes some difference to “service 
providers” (SP) and “company representatives” (CR) with together about 15% of the 
fleet and to a limited extent also to the special case of long-distance delivery vehicles 
with small batteries. Regarding the three largest segments, segment 3 (CL) benefits the 
most from additional charging opportunities at the work place, whereas for segments 1 
and 2 (FLD and CS), the advances from the extended charger density are rather limited 
both regarding the electric reachability and the electrified mileage. 
 
Third, for all segments, larger batteries outperform more sophisticated charging infra-
structures: even for the case of low power home charging only, the next-larger battery 
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yields better KPIs for electric reachability and electrified mileage. The effect is especially 
pronounced for “company representatives” (CR) with their long trips at high average 
speed. Fast charging has the smallest effect on driving performance indicators. On av-
erage, the impact is marginal (~2%), being most relevant for 15% of the fleet in case of 
medium- and large-battery vehicles in segments 5 and 7 (SP and CR). For almost 75% 
of the fleet (i.e., FLD, CS, CL) fast charging does not show significant improvements. 
 
Fourth, the two segments 5 and 7 (SP and CR) represent use cases that are especially 
challenging with respect to an electrification. This phenomenon can be attributed to the 
fact that roundtrip distances in these two segments are by far the longest among the 
whole driver population. They show the lowest electric reachability and the lowest share 
of electrified mileage. Moreover, charging power and charging location play a more im-
portant role in segment 5 (SP) than in any other segment owing to short parking times 
at the primary location. 
 
Finally, segments 4 and 6 (DS and DL; representing a small part of the fleet of 10.3%) 
appear to have a distinct battery capacity threshold after which an electrification leads 
to very good performance indicators: reachability and share of electrified mileage in-
crease dramatically when a battery with a capacity of 18.8 kWh is used. 
 
From a policy maker’s perspective, the amount of overall electrified distance is of high 
relevance as well. Drivers that could cover the greatest share of mileage electrically do 
not necessarily electrify the greatest overall distance in absolute terms. Table 9 and 
Table 10 contrast the relative share and the absolute mileage that can be electrified in 
different segments and for different charging parameters. The figures reveal a contra-
dicting nature of the relative share and the absolute electrified mileage. 
 
Table 9. Proportional and absolute electrified mileage: average over all vehicle 

types; 7.4 kW charging power 

Segment 1 2 3 4 5 6 7 All 
Segment name FLD CS CL DS SP DL CR ALL 
Segment size 246 246 238 47 52 54 99 982 
% of fleet 

25.1% 25.1% 24.2% 4.8% 5.3% 5.5% 10.1% 
100.0
% 

Primary charging 
Mileage electrified 74% 80% 53% 81% 52% 80% 46% 67% 
Mileage electrified [km] 1,133 1,059 972 2,286 3,404 1,957 2,650 1,578 
Primary & secondary charging 
Mileage electrified 77% 83% 59% 85% 58% 86% 51% 72% 
Mileage electrified [km] 1,188 1,105 1,081 2,400 3,785 2,114 2,964 1,687 
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Table 10: Proportional and absolute electrified mileage: primary location charg-
ing only; 7.4 kW charging power 

Segment 1 2 3 4 5 6 7 All 
Segment name FLD CS CL DS SP DL CR ALL 
Segment size 246 246 238 47 52 54 99 982 
% of fleet 25.1% 25.1% 24.2% 4.8% 5.3% 5.5% 10.1% 100% 
6.3 kWh compact size passenger car 
Mileage electrified 59% 66% 32% 64% 26% 55% 17% 48% 
Mileage electrified [km] 913 879 591 1,797 1,727 1,342 1,008 1,143 
18.8 kWh compact size passenger car 
Mileage electrified 74% 82% 53% 86% 49% 88% 43% 68% 
Mileage electrified [km] 1,146 1,087 963 2,417 3,225 2,154 2,472 1,598 
56.4 kWh compact size passenger car 
Mileage electrified 87% 91% 74% 94% 81% 97% 78% 85% 
Mileage electrified [km] 1,339 1,211 1,362 2,645 5,260 2,375 4,469 1,994 
 

2.4.2.2 Impact of vehicle charging on the electric power networkii 

 
An analysis of the network load for different electric mobility scenarios follows. First, 
overall daily energy demand is considered. Figure 7 a) illustrates the average daily elec-
tricity demand for the whole sample as well as for individual segments. Detailed results 
for weekdays and weekends are given in Figure 7 b) and c). 
 
When looking at the fleet as a whole, the expected interrelations become evident: first, 
electricity demand increases considerably with larger batteries and a more potent charg-
ing infrastructure.  Compared to the case of a vehicle with a small batter (6.3 kWh) and 
3.7 kW charging power at a primary parking location only, energy demand increases by 
a factor of 2.9 on average if a large battery (56.4 kWh), a secondary charging location, 
and fast charging (50 kW) become available. In this case, the network load at the pri-
mary location increases from on average 0.3 kW to 0.5 kW during the late morning and 
from 0.3 kW to 0.7 kW in the late afternoon peak times. 
 
As is the case for electric reachability and share of electrified mileage, the grid impact 
varies considerably between segments. First, over all battery and infrastructure config-
urations, segments 1 to 3 (FLD, CS and CL; together about 75% of the fleet) show an 
electric energy demand that is lower than average, whereas segments 4 to 7 (DS, SP, 
DL, CR; which can most likely be subsumed as commercial vehicles that in the sample 
account for about 25%) consume above average. 
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(a) Average daily energy demand from PHEV charging 

 
(b) Energy demand from PHEV charging on weekdays (Monday-Friday) 
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(c) Energy demand from PHEV charging on weekends (Saturday-Sunday) 

Figure 7. Daily energy demand at the charging locations under different PHEV 
scenarios 
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(CL) have a limited effect on fossil fuel use with increasing battery capacities. 
 
The data also indicate that, if charging is possible at primary and secondary locations, 
the energy demand at the primary location is by far the dominant one. Demand at the 
secondary location is relatively stable, independent from the segment and, to a lesser 
extent, even from battery capacities. 
 
Among the individual segments, “commuters (short)“ (CS) show the lowest demand vol-
atility under scenario changes. Here, maximum parameter improvements lead to a net-
work load increase of approximately 60%. For segments 1, 4, and 6 (FLD, DS, and DL), 
the same improvements more than double the load, mainly at the primary location. For 
segment 3 (CL), energy demand is increased approximately by a factor of three, while 
segments 5 and 7 (SP and CR) are most sensitive to the parameter changes with an 
increase by factors of about five and six between the minimum and the maximum val-

0

5

10

15

20

25

30

35

Segments

D
ai

ly
 e

ne
rg

y 
de

m
an

d 
in

 k
W

h

ALL FLD CS CL DS SP DL CR

V1 V1 V1 V1 V1 V1 V1 V1V2 V2 V2 V2 V2 V2 V2 V2V3 V3 V3 V3 V3 V3 V3 V3

● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ●

●
● ●● ● ● ●

●

●

● ●● ● ● ● ●

●

● ●

● ● ● ● ● ● ● ●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

● ● ● ● ● ● ● ●



Jürgen Wenig  - 36- 

ues. In contrast, on average the network load drops considerably on weekends, partic-
ularly for the smaller segments 4-7 (DS, SP, DL, CR). At the secondary location, energy 
demand on weekends is about 1 kWh per day for all segments. 
 
The grid load over time in fact varies considerably between the different segments. Fig-
ure 8 a) illustrates the case “small 6.3 kWh battery vehicle with home charging only”; 
Figure 8 b) and c) present detailed 24-hour load profiles for cases with 18.8 kWh and 
56.4 kWh battery vehicles. Figure 9 a) to c) present detailed 24-hour load profiles of the 
other charging infrastructure cases. A closer look at these plots reveals that for the three 
large segments (FLD, CS, CL), the peak charging times are in the late afternoon. A 
second smaller demand peak occurs in the late morning. In contrast, segments 4 to 6 
(DS, SP, DL) exhibit single prolonged peaks, typically at noon. Segment 7 (CR), again, 
peaks in the late afternoon. A comparison among all segments suggests that cars in 
segments 1 to 3 and 7 (FLD, CS, CL, CR) tend to be charged in the evening or at night, 
while cars in segments 4 to 6 (DS, SP, DL) tend to be charged during the day. This 
finding is consistent with the interpretation of the segments: cars in segments 1 to 3 and 
7 (FLD, CS, CL, CR) leave their primary location in the morning and return in the even-
ing, whereas cars in segments 4 to 6 (DS, SP, DL) could be company-held vehicles, 
which return to the primary location several times a day. 
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Figure 8. Impact of PHEV charging on the electric power network under primary 
location charging 
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Figure 9. Impact of PHEV charging on the electric power network under primary 
and secondary location charging 
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2.5 Conclusionii 
 
The main objectives of this chapter were to develop a procedure for the identification of 
car driver segments on the foundation of their real-world driving behavior and to show 
the segment-specific usability and impact to the grid regarding PHEV and battery elec-
tric vehicles. For this purpose, the use of a cluster analysis approach to detect vehicle 
usage patterns in a geographic area from fine-grained time series of GPS location 
measurements was proposed. 
 
The specific profile of each segment regarding trip length, parking times, etc. allows for 
evaluating the practical utility of different electric vehicles to the respective driver seg-
ments measured by the percentage of roundtrips and total mileage that can be com-
pleted electrically. To this end, a simulation model, which takes several car character-
istics into account and allows for comparing the impact of different car configurations 
regarding, for example, battery size and charging power, was utilized. Seven driver seg-
ments were identified and compared and subsequently evaluated in terms of their com-
patibility to electric mobility adoption. Furthermore, the model allows for estimating the 
segment-specific impact of vehicle charging and individuals’ driving behavior on elec-
tricity distribution networks (i.e., electricity load at common parking locations such as 
homes and workplaces). 
 
This chapter (together with (Sodenkamp, Wenig, Thiesse, et al., 2019)) contributes to 
the literature in three ways. First, instead of restricting estimates to a pre-defined group 
of drivers, the segmentation approach considers the entirety of heterogeneous car us-
age habits and automatically divides these into meaningful and easy-to-interpret simi-
larity groups. 
 
A second contribution refers to the automatic and periodic identification of major vehicle 
parking locations (e.g., at home or at work), which allows for processing even large 
datasets with distinct driver segments. Knowledge about major vehicle parking locations 
is key to accurate forecasts of charging times and the corresponding network load as 
well as to effective planning of charging facilities. 
 
Third, the utilized model accurately simulates energy consumption of individual cars 
during the trips as well as the process of unmanaged battery charging (i.e., charging 
begins when the vehicle is plugged in). With the help of this simulation model, different 
configurations of electric vehicle parameters along with information on different types of 
charging facilities allow for investigating vehicle usability for different groups of drivers. 
Values for three electric mobility scenario characteristics were varied, namely the avail-
ability of private charging facilities (primary or primary & secondary); the charging power 
(slow 3.7 kW, medium 7.4 kW, or fast 50 kW); and the vehicle type (compact size pas-
senger car: 6.3 kWh, 18.8 kWh, and 56.4 kWh). 
 
The proposed procedure and its implications were demonstrated by the example of a 
large heterogeneous dataset collected over 24 months from real-world drivers in Italy. 
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In sum, the resulting performance estimates draw a much more detailed picture of elec-
tric vehicle usability and network load (especially on a per-transformer station level) than 
prior aggregated studies considering driver populations as a coherent whole. 
 
This study and the proposed procedure could be used by car manufacturers in the iden-
tification of segment-specific vehicle requirements and targeted marketing strategies to 
increase the vehicles’ attractiveness for customers (Hodson and Newman, 2009). More-
over, the segment specific insights about benefits and obstacles of PHEV or battery 
electric vehicle adoption may help end customers take more informed purchasing deci-
sions. 
 
In this section, a discussion regarding the results’ implications for the design of charging 
facilities and for battery choices is provided and the key findings for policy makers are 
summarized. 
 

2.5.1 Implications with respect to charging powerii 
 
For the discussion of the impact of charging power on the electrification of mileage, 
charging is assumed to be possible at the primary location only, and charging power 
values of 3.7 kW, 7.4 kW, and 50 kW are compared. The numbers represent an average 
over all vehicle types, if not otherwise stated. 
 
If only slow 3.7 kW charging was possible, 66% of mileage could be electrified.  With 
7.4 kW, 67% of mileage could be electrified. With fast 50 kW charging, this value would 
increase to 68%. Thus, on average, the impact of charging power is limited. Thus, even 
conventional wall outlets are sufficient to electrify a considerable share of the mileage 
in a scenario with PHEVs with range extender. 
 
Taking a segment specific perspective, an increase in charging power hardly improves 
the electrified mileage for drivers in most groups (for 3.7 kW / 7.4 kW / 50 kW of seg-
ments 1 (FLD): 73% / 74% / 74%, segment 2 (CS): 79% / 80% / 80%, segment 3 (CL): 
52% / 53% / 54%, segment 4 (DS): 80% / 81% / 81%, and segment 6 (DL): 79% / 80% 
/ 81%). Still, if relative changes are considered, drivers with the greatest average mile-
age profit most from higher charging power, potentially due to limited parking times at 
charging facilities (segments 5 (SP): 48% / 52% / 59%, segment 7 (CR): 44% / 46% / 
48%). 
 
If instead all vehicles were compact size cars with large 56.4 kWh batteries, the share 
of electrified mileage would increase from 83% (3.7 kW) to 86% (50 kW) for the average 
driver, such that in both scenarios, figures would increase by about 3-4% on average. 
In particular, with such vehicles, improvements due to charging power would be slightly 
lower for “service providers” (SP) (74% / 81% / 88%), compared to the average over all 
vehicle types. At the same time, for “company representatives” (CR), improvements 
would be slightly higher (73% / 78% / 80%), compared to the average over all vehicle 
types. 
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The findings show that charging power is of limited importance in the considered cases 
in terms of electrified mileage and electric reachability. Consequently, the extension of 
individual wall outlets should not be a key priority.  
 

2.5.2 Implications of charging facilities at the secondary parking 
locationii 

 
In order to discuss the impact of the availability of charging facilities on the electrification 
of mileage, the charging power is assumed to be 7.4 kW. The availability of charging 
opportunities at the primary location is compared to a scenario with charging opportuni-
ties at the primary as well as the secondary location. Again, the numbers represent an 
average over all vehicle types. 
 
Considering the driver population as a whole, the results show that if charging was pos-
sible at the primary location only (e.g., at home), 67% of mileage could be electrified 
and 1,578 km from a total of 2,359 km per month could be driven electrically. If an 
additional secondary charging facility became available, this value would increase to 
72%; in this case, 1,687 km (+7%) could be driven electrically per month. Thus, the 
availability of a secondary charging facility leads to moderate average improvements. 
 
Taking a segment specific perspective, the impact of secondary charging facilities be-
comes clearer. For drivers in segments with limited roundtrip distances, the implications 
are rather small (primary / primary & secondary for segment 1 (FLD): 74% / 77%, for 
segment 2 (CS): 80% / 83%, and for segment 4 (DS): 81% / 85%). Long roundtrip dis-
tance drivers, however, yield a larger benefit from the additional charging opportunity 
(segment 3 (CL): 53% / 59%, segment 5 (SP): 52% / 58%, segment 6 (DL): 80% / 86%, 
and segment 7 (CR): 46% / 51%). 
 
Despite of their relatively small share of electrified mileage, drivers in segments with the 
highest total mileage per month can electrify the highest number of kilometers in a home 
charging scenario (segments 5 (SP): 3,404 km of 6,527 km, 7 (CR): 2,650 km of 5,763 
km). With an additional secondary charging facility, the number of electrified kilometers 
is further increased by 381 km to 3,785 km (SP) and by 314 km to 2,964 km (CR). 
Overall, charging opportunities at the secondary charging location increase the electric 
mileage considerably for the important segment of long-range drivers. Thus, charging 
facilities at the work place are helpful for the respective segments and at the same time, 
due to moderate loads to the grid, can be expected to induce limited stress to the net-
work. 
 

2.5.3 Battery capacityii 
 
Finally, the impact of the battery capacity on the electrification of mileage is outlined by 
comparing a compact size passenger car with an 18.8 kWh battery and a compact size 
passenger car with a 56.4 kWh battery. It is assumed that a 7.4 kW charging opportunity 
is available at the primary location. 
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Considering the non-segmented view on the fleet, an increase in battery capacity from 
18.8 kWh to 56.4 kWh greatly increases the percentage of mileage that could be elec-
trified from 68% to 85%. If a PHEV with an 18.8 kWh battery was available, 1,598 km 
of 2,359 km could be electrified. For a PHEV with a 56.4 kWh battery, this value in-
creases by about 25% to 1,994 km. This underlines that, on a macro perspective, bat-
tery size is more important than the availability of a secondary charging facility. 
 
A segment-specific assessment reveals who benefits most from larger batteries: con-
sidering a PHEV with 18.8 kWh, most drivers (segments 1, 2, 3, 4, 6) can electrify more 
than half of their mileage. With a larger battery, the results improve at different magni-
tudes for different segments; high improvements can be shown for segment 1 (FLD) 
(74% / 87% for 18.8 kWh / 56.4 kWh), segment 2 (CS) (82% / 91%), segment 3 (CL) 
(53% / 74%), segment 4 (DS) (86% / 94%) and for segment 6 (DL) (88% / 97%). Drivers 
with long roundtrip distance (SP and CR) profit most considerably from the increased 
battery capacity (SP: 49% / 81%, CR: 43% / 78%). 
 
Drivers in the segment with the highest total mileage per month can electrify the highest 
number of kilometers (SP: 3,225 km of 6,527 km for an 18.8 kWh battery). If a PHEV 
with a 56.4 kWh is available, drivers in long-distance segments 5 and 7 (SP and CR) 
could again electrify the greatest number of kilometers. The number of electrified kilo-
meters rises by 2,035 km from 3,225 km to 5,260 km for “service providers” (SP) and 
by 1,997 km from 2,472 km to 4,469 km for “company representatives” (CR). 
 
Overall, it can be stated that battery capacity plays the greatest role in terms of vehicle 
mileage electrification. Both the availability of a secondary charging facility and charging 
power are considerably less important. On average, the availability of a secondary 
charging facility is slightly more important than charging power. The most difficult seg-
ments to electrify are at the same time the groups where the gains per kWh of battery 
capacity are most pronounced. 
 

2.5.4 Policy implicationsii 
 
From the perspective of policy makers, the chapter allows for drawing a number of con-
clusions on future strategies for managing the transition from combustion engines to 
electromobility. So far, governmental incentives that promote an adoption of electric 
drivetrains for example via tax reductions, purchase incentives, financial support for the 
deployment of charging stations, and priority lanes – are still indispensable for market 
growth (International Energy Agency, 2018). However, policy makers must also con-
sider the future phase-out of incentives while avoiding subsequent drawbacks such as 
lower electric vehicle adoption figures (Slowik, Pavlenko, and Lutsey, 2016). Against 
this backdrop, the segmentation approach allows for identifying those driver segments 
whose requirements are met best by electric cars, defining more targeted incentives, 
reconsidering the efficiency of incentives for each group, and optimizing the respective 
phase-out steps. 
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In addition, the same approach helps delineating those driver segments that pose the 
largest challenge for the electric grid and, in turn, lead to substantial decreases in total 
fuel consumption. More accurate estimates on the spatiotemporal distribution of net-
work load (for example at domestic or commercial regions) also allow policy makers to 
make more accurate plans for grid enhancements. 
 
Not least, knowledge about electric mobility requirements of distinct groups could be 
used to give a more realistic outlook on the expected adoption and grid impact of electric 
vehicles. On this foundation, policy makers may derive more realistic goals for electric 
mobility adoption, allocate resources more efficiently (e.g., for charging infrastructure 
implementation), and focus their incentive measures on driver segments with less chal-
lenging electric range and charging requirements. Among others, analyses like the one 
presented herein that are based on empirical data and differentiate between relevant 
driver groups may lead to a better understanding of the benefits of home charging, fast 
charging infrastructures, and the importance of greater battery capacities. 
 

i Major parts of this chapter (also including figures and tables) have been taken from an earlier version of the coauthored 

work (Sodenkamp, Wenig, Thiesse, et al., 2019) and were adapted where applicable. 

ii Major parts of this subchapter (also including figures and tables) have been taken from an earlier version of the coauthored 

work (Sodenkamp, Wenig, Thiesse, et al., 2019) and were adapted where applicable. 
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3 Battery versus infrastructure assessmentiii 
 

3.1 Introductioniv 
 
Although the development of the market for PHEVs and battery electric vehicles failed 
to meet expectations, sales figures have significantly risen in recent years (Grünig, 
Witte, Dominic, et al., 2011; International Energy Agency, 2018). Notably, policy efforts 
to incentivize electric mobility (Bjerkan, Nørbech, and Nordtømme, 2016; Lévay, 
Drossinos, and Thiel, 2017), bans on vehicles with particularly high pollution levels 
(Carvalho, 2016), and announcements to restrict combustion-based vehicle sales 
(International Energy Agency, 2018) foster the adoption of PHEVs and battery electric 
vehicles. 
 
Market research indicates that in the coming years world leading car manufacturers will 
market high range electric vehicles at prices that are competitive with conventional cars 
(Slowik, Pavlenko, and Lutsey, 2016). However, the existing public charging infrastruc-
ture coverage is considered to be one of the main obstacles to an electro mobile future 
(Eurelectric, 2016). Moreover, with respect to customer requirements, charging time has 
to be taken into account as an additional barrier to electric mobility (National Academy 
of Sciences, 2015). 
 
This shows that both battery capacity and charging infrastructure characteristics must 
be regarded in an integrated perspective to evaluate their impact on the viability of elec-
tric driving. Despite of the importance of available charging facilities, expenses for large-
scale infrastructure deployment - including equipment and skilled workforce - remain 
high (National Academy of Sciences, 2015). Nevertheless, cost-intensive charging in-
frastructure investments have been announced (International Energy Agency, 2018). At 
the same time, high battery costs cause high prices of PHEVs and battery electric vehi-
cles (International Economic Development Council, 2013; Lévay, Drossinos, and Thiel, 
2017). However, economies of scale and the general technical progress are expected 
to lead to decreasing future costs for batteries (International Economic Development 
Council, 2013; Slowik, Pavlenko, and Lutsey, 2016). 
 
Thus, the question arises: To what extent do larger batteries relax the requirements 
regarding charging infrastructure and vice versa? Consequently, a better understanding 
of the effect of variations in vehicle characteristics (battery capacity) and infrastructure 
characteristics (infrastructure coverage and charging power) on electric mobility key fig-
ures (particularly, the share of electrically driven mileage and the location and time spe-
cific grid impact of vehicle charging) is essential. 
 
For this purpose, data from conventional combustion-based vehicles can be used to 
replicate both the energy consumption and the charging behavior of – potentially range 
extended – PHEVs. Such data represents the current mobility need of drivers and is not 
highly biased by restrictions of limited range electric vehicles (Franke, Neumann, 
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Bühler, et al., 2012; Rolim, Gonçalves, Farias, et al., 2012) or specific characteristics of 
early adopters of electric cars (Saarenpää, Kolehmainen, and Niska, 2013). 
 
Standard driving cycles do not provide a realistic data foundation that is necessary for 
a comprehensive electric mobility assessment (Adornato, Patil, Filipi, et al., 2009). Nei-
ther information on parking events nor variations in driving events are included in such 
data (Smith, Shahidinejad, Blair, et al., 2011). Also, travel survey data fails at providing 
the level of detail required for electric vehicle simulations (Gonder, Markel, Simpson, et 
al., 2007). Particularly, short term travel surveys within a period of one day do not con-
sider the daily variation in realistic mobility behavior of a driver (Wu, Aviquzzaman, and 
Lin, 2015). In addition, the overall quality of travel survey data can be affected by mis-
interpretation and error on the part of the respondents (De Gennaro, Paffumi, Martini, 
et al., 2014). 
 
To mitigate these problems, researchers have recently started to employ GPS driving 
data (Adornato, Patil, Filipi, et al., 2009; De Gennaro, Paffumi, Martini, et al., 2014; 
Gonder, Markel, Simpson, et al., 2007; Smith, Shahidinejad, Blair, et al., 2011; Wu, 
Aviquzzaman, and Lin, 2015). Still, a sufficiently large data basis is desirable to repre-
sent differences in driver profiles (Adornato, Patil, Filipi, et al., 2009). 
 
Recent studies analyze real-world GPS driving data to discuss different aspects of elec-
tric mobility scenarios and suggest that both the available charging infrastructure and 
the electric range of the vehicle are essential for practical use, as shown in Table 11. In 
the following, these references are described in context: 
 

Table 11: Research literature on battery versus infrastructure assessment 

Vehicles Charging scenarios Studies 
One  
vehicle type 

Private and public 
charging facilities 

(Asamer, Reinthaler, Ruthmair, et al., 2016; 
Cai, Jia, Chiu, et al., 2014; Dong, Liu, and Lin, 
2014; Paffumi, De Gennaro, and Martini, 
2016; Wenig, Sodenkamp, and Staake, 2015; 
Wood, Neubauer, and Burton, 2015; Yang, 
Dong, and Hu, 2017; Yang, Dong, Lin, et al., 
2016) 

Multiple  
vehicle types 

Home charging or 
simple time-based 
charging rules 

(De Gennaro, Paffumi, Martini, et al., 2014; 
Gonder, Markel, Simpson, et al., 2007; 
Greaves, Backman, and Ellison, 2014; 
Jakobsson, Gnann, Plötz, et al., 2016; Khan 
and Kockelman, 2012; Pearre, Kempton, 
Guensler, et al., 2011; Wang, Zhang, and 
Ouyang, 2015) 

Multiple  
vehicle types 

Home and secondary 
or workplace location 
charging 

(Shahidinejad, Filizadeh, and Bibeau, 2012; 
Smith, Shahidinejad, Blair, et al., 2011; 
Sodenkamp, Wenig, Thiesse, et al., 2019; 
Wu, 2018; Wu, Aviquzzaman, and Lin, 2015)  
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Multiple  
vehicle types 

Private or public 
charging at prede-
fined locations 

(Ashtari, Bibeau, Shahidinejad, et al., 2012; 
Betz, Walther, and Lienkamp, 2017) 

Multiple  
vehicle types 

Charging strategies 
based on parking time 

(Björnsson and Karlsson, 2015; Bryden, 
Hilton, Cruden, et al., 2018; De Gennaro, 
Paffumi, and Martini, 2016, 2015; De 
Gennaro, Paffumi, Scholz, et al., 2014; 
Denholm, Kuss, and Margolis, 2013; Fraile-
Ardanuy, Castano-Solis, Álvaro-Hermana, et 
al., 2018; He, Wu, Zhang, et al., 2016; 
Paffumi, De Gennaro, Martini, et al., 2015; 
Smith, Morison, Capelle, et al., 2011) 

Multiple  
vehicle types 

Public charging infra-
structure derived from 
parking locations 

(Andrenacci, Ragona, and Valenti, 2016; Hu, 
Dong, Lin, et al., 2018) 

Multiple  
vehicle types 

Public charging infra-
structure variations 

(Dong and Lin, 2012; Ko, Kim, Nam, et al., 
2017; Li, Jia, Shen, et al., 2017; Shahraki, 
Cai, Turkay, et al., 2015; Shen, Li, He, et al., 
2016; Yang, Dong, and Hu, 2018) 

 
(Asamer, Reinthaler, Ruthmair, et al., 2016; Cai, Jia, Chiu, et al., 2014; Dong, Liu, and 
Lin, 2014; Paffumi, De Gennaro, and Martini, 2016; Wood, Neubauer, and Burton, 2015; 
Yang, Dong, and Hu, 2017; Yang, Dong, Lin, et al., 2016) assess private and public 
charging infrastructure configurations, given a constant electric range of the vehicle. 
(Wenig, Sodenkamp, and Staake, 2015) apply a vehicle simulation model to consider 
the impact of driving behavior on range for one vehicle and quantify the benefits of ad-
ditional secondary charging facilities that complement home charging. 
 
Compared to this, below-mentioned studies vary electric range figures of vehicles. (De 
Gennaro, Paffumi, Martini, et al., 2014; Gonder, Markel, Simpson, et al., 2007; Greaves, 
Backman, and Ellison, 2014; Jakobsson, Gnann, Plötz, et al., 2016; Khan and 
Kockelman, 2012; Pearre, Kempton, Guensler, et al., 2011; Wang, Zhang, and Ouyang, 
2015) estimate the benefit of increased range to electric mobility and expect that the 
battery can be charged at home (Greaves, Backman, and Ellison, 2014) or make strong 
assumptions, such as that it is fully charged once a day (Gonder, Markel, Simpson, et 
al., 2007; Jakobsson, Gnann, Plötz, et al., 2016; Khan and Kockelman, 2012; Pearre, 
Kempton, Guensler, et al., 2011; Wang, Zhang, and Ouyang, 2015), or that a charging 
opportunity exists during a specific overnight time window once per day (De Gennaro, 
Paffumi, Martini, et al., 2014). 
 
(Smith, Shahidinejad, Blair, et al., 2011) show that an additional charging opportunity at 
work that complements home charging allows battery size to be reduced for urban com-
muters. (Wu, Aviquzzaman, and Lin, 2015) extend the assumption that vehicles are fully 
charged at night by providing a study that considers individual home to home roundtrips 
and workplace charging. They vary vehicle range and find that workplace charging is 
particularly beneficial to the share of electrically driven mileage, if the electric range is 
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limited. Similarly, (Sodenkamp, Wenig, Thiesse, et al., 2019) (and chapter 2, respec-
tively) consider charging opportunities at primary and secondary parking locations for 
each driver and demonstrate that results and therefore the utility of range and charging 
infrastructure parameters greatly vary for different groups of drivers. Also (Wu, 2018) 
addresses the impact of additional charging opportunities at work places and discusses 
potential benefits, such as reduced range anxiety and failure rate during electrically 
driven trips. (Shahidinejad, Filizadeh, and Bibeau, 2012) emulate a driver’s charging 
decision behavior at home and at work, using a fuzzy-logic inference system and find 
that larger batteries lead to less urgent charging requirements and therefore relax the 
grid impact. 
 
Still, these studies limit charging opportunities to private locations without considering 
public charging facilities. (Ashtari, Bibeau, Shahidinejad, et al., 2012) extend such basic 
charging scenarios by adding charging opportunities at work or at shopping places, stat-
ing that an increased battery capacity limits the effect of charging scenarios on electric 
reachability. However, due to its exemplary nature, such a restriction of public charging 
opportunities to shopping places constitutes an inadequate basis for comparing possi-
ble public charging infrastructure expansion measures. (Betz, Walther, and Lienkamp, 
2017) evaluate the potential of the existing charging infrastructure – including public, 
employee, customer, and company charging – for a small sample of commercial vehi-
cles and they discuss a future charging infrastructure expansion. 
 
A noteworthy alternative approach derives charging scenarios from time-based charg-
ing strategies. In (Björnsson and Karlsson, 2015; Denholm, Kuss, and Margolis, 2013; 
He, Wu, Zhang, et al., 2016; Smith, Morison, Capelle, et al., 2011), charging time win-
dows during the day extend overnight charging. For example, (Björnsson and Karlsson, 
2015) assume that charging is possible if parking time exceeds a certain threshold and 
state that more charging opportunities significantly reduce the recommended battery 
size. They reason that time windows that allow charging not only over night at home, 
but also at the workplace can significantly reduce suggested battery costs for commut-
ers. 
 
Also (Fraile-Ardanuy, Castano-Solis, Álvaro-Hermana, et al., 2018) assume that public 
charging is possible if parking time exceeds a certain threshold and they discuss the 
mileage electrification improvement of taxis enabled by a larger battery. (Bryden, Hilton, 
Cruden, et al., 2018) suggest that charging is possible both at home and at work or if 
parking time exceeds a certain threshold and they derive the drivers’ public fast charging 
demand depending on battery size. (De Gennaro, Paffumi, and Martini, 2016, 2015; De 
Gennaro, Paffumi, Scholz, et al., 2014; Paffumi, De Gennaro, Martini, et al., 2015) put 
the comparison of different time-based charging strategies into focus and discuss both 
vehicle characteristics and charging infrastructure development. 
 
(Andrenacci, Ragona, and Valenti, 2016) derive the public charging infrastructure from 
trip destinations and utilize driving behavior data to quantify the energy demand at each 
charging station. (Hu, Dong, Lin, et al., 2018) discuss the feasibility of electric taxis with 
different electric range parameters while considering both the current public charging 
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infrastructure and a possibly expanded charging infrastructure at frequent dwell loca-
tions of taxis. 
 
(Dong and Lin, 2012) compare variations in both electric range and public charging in-
frastructure coverage to assess electric driving share and energy demand for one day 
and to demonstrate the fuel saving and energy cost reduction benefits of public charg-
ing. Also (Ko, Kim, Nam, et al., 2017; Li, Jia, Shen, et al., 2017; Shahraki, Cai, Turkay, 
et al., 2015; Shen, Li, He, et al., 2016; Yang, Dong, and Hu, 2018) gradually increase 
the charging infrastructure coverage and electric range of the vehicle to estimate the 
potential and requirements for the electrification of a large taxi fleet. In (Dong and Lin, 
2012; Li, Jia, Shen, et al., 2017; Shen, Li, He, et al., 2016; Yang, Dong, and Hu, 2018) 
parking locations form the basis for public charging infrastructure siting, while (Ko, Kim, 
Nam, et al., 2017) relocate charging demand locations to nearby road network nodes 
and (Shahraki, Cai, Turkay, et al., 2015) assume that existing gas stations present an 
adequate foundation. 
 
This work employs long-term GPS driving data (2 years) from conventional vehicles and 
aims at systematically assessing both vehicle and charging infrastructure parameters 
and drawing a realistic picture of the potential of electric mobility. Only a limited number 
of discussed papers (Betz, Walther, and Lienkamp, 2017; Bryden, Hilton, Cruden, et al., 
2018; De Gennaro, Paffumi, and Martini, 2016; De Gennaro, Paffumi, Martini, et al., 
2014; Hu, Dong, Lin, et al., 2018; Jakobsson, Gnann, Plötz, et al., 2016; Paffumi, De 
Gennaro, Martini, et al., 2015) takes high electric range vehicles into account. Thus, in 
this electric mobility study, battery capacity parameters from 9.4 kWh to 112.8 kWh are 
compared. 
 
Furthermore, the majority of studies apply predefined range values or derive range from 
the battery capacity and predetermined vehicle efficiency values. However, the high 
resolution of GPS data allows to take driving characteristics (e.g., speed and accelera-
tion) at each measurement point into account in order to estimate energy consumption 
(Andrenacci, Ragona, and Valenti, 2016; Betz, Walther, and Lienkamp, 2017; Fraile-
Ardanuy, Castano-Solis, Álvaro-Hermana, et al., 2018; Greaves, Backman, and Ellison, 
2014; Shahidinejad, Filizadeh, and Bibeau, 2012; Smith, Shahidinejad, Blair, et al., 
2011; Sodenkamp, Wenig, Thiesse, et al., 2019; Wenig, Sodenkamp, and Staake, 
2015) (and chapter 2, respectively). Therefore, a physical energy consumption and 
charging model (Wenig, Sodenkamp, and Staake, 2015) is applied again to provide 
results, including the grid impact and the share of electrically reachable destinations of 
the average driver. 
 
The heterogeneity of mobility behavior is exploited to segment drivers into distinct 
groups, as demonstrated in (Sodenkamp, Wenig, Thiesse, et al., 2019) and in chapter 
2, such that the evaluation of simulation results takes into consideration individual dif-
ferences in electric mobility requirements. Finally, private and public charging facilities 
are distinguished (San Román, Momber, Abbad, et al., 2011). The private charging in-
frastructure consists of one or two most frequently visited parking locations that can only 
be accessed by their respective vehicle, while the public charging infrastructure can be 
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accessed by every vehicle and supplements private charging. Charging scenarios 
range from home charging to a 100% public charging infrastructure coverage. 
 

3.2 Methodiv 
 

 
Figure 10: Methodology to systematically create, analyze, and compare realistic 

electric mobility scenarios 

 
The underlying methodology from (Sodenkamp, Wenig, Thiesse, et al., 2019; Wenig, 
Sodenkamp, and Staake, 2015) and the previous chapter was applied and extended in 
this chapter. First, the range of potential battery capacity parameters was increased to 
compare the impact of electric range for one otherwise unchanged vehicle type. Sec-
ond, public charging opportunities cover 0 to 100% of parking locations as an addition 
to private charging facilities at home and potentially at secondary locations. Third, viable 
charging power parameters, ranging from slow to fast charging, are compared for pri-
vate and public facilities. Finally, realistic electric mobility scenarios, considering varia-
tions in battery capacity, charging infrastructure coverage, and charging power, were 
systematically created, analyzed, and compared to assess the impact of PHEVs on the 
electric grid and to assess their utility in terms of the portion of mileage that is electrically 
drivable and the portion of destinations that are electrically reachable. The methodology 
is summarized in Figure 10 and explained in detail in the following subchapters. 
 

3.2.1 GPS driving dataiv 

 
GPS time series data from 1,000 conventional vehicles provided by Octo Telematics 
(Octo Telematics Ltd., 2017) is used. A larger area of both urban and extra-urban envi-
ronment on the European continent with a focus on Northern Italy is covered within a 
timeframe of two years from summer 2007 to summer 2009. Measurements at engine 
ignition, engine stop, and roughly every 2 km while driving are considered.  
 
Data includes location, date, time, heading, speed, engine state and road type (urban, 
extra-urban, and highway) at each measurement point and both distance and duration 
related to the previous measurement data entry. Data from 91 vehicles has noticeable 
deficiencies – presumably caused by measurement inaccuracy (i.e., considerable gaps 
in data, implausible GPS location or vehicle status updates) – and is removed. 909 
vehicles pass the data quality control and therefore provide the data basis underlying 
this study. 
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Literature suggests that the sample size should be large when partitioning based clus-
tering is applied (Dolnicar, 2003). This particularly holds true for clustering applications 
with many segmentation variables (Dolnicar, 2003). Therefore, in the previous chapter 
(and in (Sodenkamp, Wenig, Thiesse, et al., 2019)) one objective of data cleansing was 
to preserve a large sample size and thus to keep the number of vehicles represented 
by the data set high when introducing the segmentation method. 
 
Overall, in the previous chapter, 18 data sets were excluded from the overall sample, 
leading to a dataset that represents a fleet of 982 vehicles. In this chapter, the focus lies 
on a comparison of vehicle and charging infrastructure parameters, such that a stricter 
data cleansing approach appears to be reasonable. 
 

3.2.2 Charging infrastructure scenarios derived from parking locationsiv 

 
The charging infrastructure is characterized by the availability of charging facilities and 
by charging power. Charging facilities are geographically associated with parking loca-
tions that are in close proximity to each other. 
 
A density based clustering (Ester, Kriegel, Sander, et al., 1996) approach from 
(Sodenkamp, Wenig, Thiesse, et al., 2019; Wenig, Sodenkamp, and Staake, 2015) and 
chapter 2 is applied to compare scenarios where charging is possible at a primary park-
ing location (frequent and most long-time parking cluster, probably the home location, 
parking for at least 15 minutes and less than 5 days) or both at a primary and at a 
secondary parking location (frequent and second most long-time parking cluster, park-
ing for at least 15 minutes and less than 5 days). Charging powers of 3.7 kW (e.g., 
domestic socket, 230 V * 16 A), 7.4 kW (e.g., domestic socket, 230 V * 32 A), 11.0 kW 
(e.g., three-phase current, 3.7 kW * 3), and 22.1 kW (e.g., three-phase current, 7.4 kW 
* 3) are compared at private locations (Legrand S.A, 2010). 
 
Public charging facilities complement private charging opportunities and were randomly 
distributed among non-primary parking locations in close proximity. Charging at sec-
ondary facilities is preferred over public charging facilities. The public charging power is 
50 kW (e.g., Combined Charging System) or 120 kW (e.g., Tesla Super Charger) (Jar, 
Watson, and Miller, 2016). A realistic public charging infrastructure coverage of 10% is 
compared with extreme 40% and 70% coverages by randomly assigning charging facil-
ities to parking locations. The public charging infrastructure distribution approach with 
its random component has been carried out several times and overall results appeared 
to be appropriately comparable. 
 
To complement the study, a ubiquitous charging scenario is considered as well. Here, 
at every parking location a 3.7 kW charging facility is available. Recent developments 
like charging at street lights with charging sockets (Fraunhofer IWM, 2016) make such 
a scenario thinkable. This study assumes that each parking spot at a charging facility is 
potentially equipped with a charger. Queuing, respectively the occupation of one 
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charger by multiple cars, is not possible, because charging events are derived from 
actual and therefore separate parking events. 
 

3.2.3 Data based vehicle simulationiv 

 
An energy consumption and charging model from (Larminie and Lowry, 2003; 
Sodenkamp, Wenig, Thiesse, et al., 2019; Wenig, Sodenkamp, and Staake, 2015), and 
chapter 2 is applied to estimate the state of charge of the battery of a (range extended) 
electric vehicle. It takes the rolling resistance, aerodynamic drag, acceleration, and re-
generative braking of the car into account. The amount of energy required to overcome 
the rolling resistance and aerodynamic drag is derived from the GPS time series’ dis-
tance and speed values between two measurement points. High-resolution speed pro-
files from urban (ECE-15), extra-urban (EUDC), and highway (EMPA T130) driving cy-
cles (André and INRETS, 2009; Barlow, Latham, McCrae, et al., 2009) substitute low-
resolution speed measurements from the GPS data set and are used to provide dis-
tance-dependent values for acceleration and regenerative braking. 
 
The charging model simulates the charging behavior of a lithium-ion battery. It is a func-
tion of charging power at a charging location and respective parking time and assumes 
that charging power drops to 1/3 as soon as the state of charge of the battery exceeds 
80% (Hsieh, Chen, and Huang, 2001). Energy demand and charged energy are contin-
ually offset against each other to derive the state of charge of the battery at each meas-
urement point under the restriction that it can never be negative and never exceed 
100%. 
 
The PHEV considered in this study represents a compact size car (NHTSA, 2017), in-
spired by a BMW i3, weighting 1,270 kg (BMW AG, 2013; De Haan and Zah, 2013). A 
battery capacity of 18.8 kWh (BMW AG, 2013) is assumed and multiplied by factors of 
0.5 (9.4 kWh), 2 (37.6 kWh), 3 (56.4 kWh), and 6 (112.8 kWh) to also capture different 
car configurations and show the sensitivity of the results. Furthermore, it is assumed 
that a gasoline-based range extender is installed and enables a continuation of the trip 
without adaptions of driving behavior if the battery runs out of energy (BMW AG, 2013; 
Hidrue and Parsons, 2015). 
 

3.2.4 Data based driver segmentationiv 

 
Compared to the previous chapter and (Sodenkamp, Wenig, Thiesse, et al., 2019), the 
adapted data basis leads to slightly different, yet comparable segmentation results. A 
number of eight clusters was chosen for the present chapter as it allows for a meaningful 
interpretation of results. 
 
On the basis of the more strictly cleansed data, one additional presumably private driver 
segment (i.e., four instead of three private groups) comes into view, when assuming 
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seven clusters for the k-means segmentation approach. Thus, a number of eight clus-
ters was chosen to also preserve all four presumably business-related driver groups, 
identified in the previous chapter (i.e., keep the “technical service vehicle” (TSV) group). 
 
To take variations in driving behavior of individuals into consideration, drivers are seg-
mented into different groups by using a procedure based on a k-means clustering algo-
rithm (Hartigan and Wong, 1979), as suggested in (Sodenkamp, Wenig, Thiesse, et al., 
2019) and in chapter 2. It is assumed that each vehicle represents one driver, even 
though the use of one car by multiple persons is possible. The reason is that allowing 
the utilization of a car by several secondary drivers lies within the sphere of influence of 
the car holder and therefore directly influences mobility requirements. 
 
Segmentation variables that represent each driver’s mobility behavior (i.e., driving and 
parking) were derived from the GPS time series data and Pearson’s correlation coeffi-
cients were compared to exclude highly correlated variables, such that the final cluster-
ing approach includes nine segmentation variables, as depicted in Table 12. In an iter-
ative process, eight clusters lead to stable and meaningfully interpretable results and is 
therefore accepted. 
 
Table 12: Characteristics of eight driver groups and the average driver (segmen-

tation variables) 

Segment 1 2 3 4 5 6 7 8 ALL 
Segment name FLD LDOD SC UC SDDV LDDV TSV CR ALL 
Segment size 149 103 172 276 40 49 36 84 909 
% of fleet 16.4% 11.3% 18.9% 30.4% 4.4% 5.4% 4.0% 9.2% 100% 
Segmentation variables 
Median roundtrip distance 
[km] 

10.18 57.22 29.03 21.10 0.65 98.88 66.71 207.55 47.23 

Median roundtrip duration [h] 2.15 9.92 6.29 4.36 0.29 7.34 4.33 9.28 5.43 
Ratio of driving to parking 
during a roundtrip 

0.22 0.07 0.13 0.15 0.49 0.46 1.22 0.85 0.29 

Variance of speed during a 
roundtrip 

347.89 754.81 242.86 495.68 207.33 122.83 367.06 357.53 402.33 

Average number of round-
trips per month 

56.31 11.91 34.74 32.40 60.37 32.21 50.06 24.22 35.61 

Average number of stops per 
roundtrip 

3.58 5.84 3.67 4.60 8.41 16.10 6.70 8.70 5.65 

Median trip distance [km] 3.01 9.51 7.73 3.87 1.59 2.33 9.58 12.85 5.97 
Median parking duration 
(home) [h] 

4.77 14.90 10.49 11.24 1.56 14.06 1.51 11.80 9.84 

Median parking duration (not 
home) [h] 

0.36 1.18 1.16 0.48 0.18 0.15 0.23 0.28 0.61 

 
For a better illustration of segmentation results, the segments are given adequate de-
scriptions, based on their characteristics. It is suggested that these segments can best 
be understood by assuming that they represent typical private or business purposes. 
Thus, in four groups, vehicles are assumed to be privately held. These groups are called 
'frequent local driver' (FLD, n=149), 'long-distance occasional driver' (LDOD, n=103), 
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'steady commuter' (SC, n=172), and 'unsteady commuter' (UC, n=276). The other four 
groups are assumed to be business related and are called 'short-distance delivery ve-
hicle' (SDDV, n=40), 'long-distance delivery vehicle' (LDDV, n=49), 'technical service 
vehicle' (TSV, n=36), and 'company representative' (CR, n=84). Segment names were 
inspired by (Sodenkamp, Wenig, Thiesse, et al., 2019) and by respective names given 
in chapter 2. The characteristics of all eight driver segments are depicted in Table 12 
(segmentation variables) and in Table 13 (non-segmentation variables). 
 
Table 13: Characteristics of eight driver groups and the average driver (non-seg-

mentation variables) 

Segment 1 2 3 4 5 6 7 8 ALL 
Segment name FLD LDOD SC UC SDDV LDDV TSV CR ALL 
Segment size 149 103 172 276 40 49 36 84 909 
% of fleet 16.4% 11.3% 18.9% 30.4% 4.4% 5.4% 4.0% 9.2% 100% 
Non-segmentation variables 
Mean roundtrip distance [km] 29.14 144.98 43.97 51.04 43.40 97.27 116.84 254.77 80.34 
Mean roundtrip duration [h] 5.45 65.44 10.43 11.02 4.12 10.04 8.35 17.76 16.32 
Mean trip distance [km] 8.15 24.01 11.94 11.15 7.20 6.31 22.96 30.53 14.09 
Median trip duration [h] 0.13 0.30 0.23 0.16 0.09 0.10 0.29 0.41 0.20 
Mean trip duration [h] 0.21 0.47 0.29 0.28 0.18 0.18 0.61 0.74 0.34 
Average daily travel in km 
Mon-Fri 51.97 48.89 47.50 52.42 100.08 103.23 224.10 227.79 78.86 
Sat-Sun 50.19 45.86 46.26 51.80 38.88 39.59 71.67 52.58 49.45 
Median parking duration 
(secondary) [h] 

2.74 5.30 5.49 3.78 1.00 0.87 1.76 1.76 3.56 

Median daily parking duration 
(home) [h] 

16.93 16.47 14.58 16.17 16.66 16.16 13.93 14.46 15.80 

Median daily parking duration 
(secondary) [h] 

4.76 7.85 7.45 6.25 1.56 1.83 2.42 2.74 5.49 

Portion of mileage on urban 
roads 

0.34 0.19 0.33 0.30 0.19 0.34 0.15 0.15 0.25 

Portion of mileage on extra-
urban roads 

0.41 0.29 0.44 0.33 0.42 0.45 0.35 0.27 0.35 

Portion of mileage on high-
ways 

0.25 0.52 0.24 0.38 0.39 0.21 0.50 0.58 0.40 

Mean speed [km/h] 67.81 86.48 67.98 75.93 55.95 57.98 64.07 69.35 71.37 
Monthly mileage [km] 1,563 1,453 1,434 1,587 2,514 2,583 5,491 5,402 2,140 
 
In the following, all eight identified segments are described in detail and differences to 
the seven segments from the previous chapter are briefly discussed. Energy demand 
figures and the share of electrifiable mileage greatly differ for different driver segments, 
which can be shown in the following subchapters. 
 

3.2.4.1 Describing the average driver 

 
There are 909 vehicles in the observed fleet and the average driver can be described 
as follows. The average driven roundtrip covers less than 47.2 km and takes less than 
5.4 hours in about 50% of cases. The mean roundtrip distance is 80.3 km and it has a 
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mean duration of 16.3 hours, which indicates a skewed distribution. There are typically 
35.6 roundtrips per month with 5.6 stops per roundtrip. Individual trips have a median 
distance of 6.0 km (mean: 14.1 km) and a median duration of 0.2 hours (or 12 minutes; 
mean: 0.3 hours or 20 minutes). 
 
Each month, roughly 2,140 km are covered at an average speed of 71.4 km/h. Most 
mileage is driven from Monday to Friday (78.9 km per day). On weekends, daily mileage 
is lower (49.4 km). The greatest share of mileage is covered on highways (40%) and 
extra-urban roads (35%). The remaining 25% of mileage are driven on urban roads. 
Vehicles are parked for about 9.8 hours (15.8 hours per day) at primary – or home – 
locations and for about 3.6 hours (5.5 hours per day) at secondary locations. At non-
primary locations, parking events take about 0.6 hours (or 36 minutes). 
 

3.2.4.2 Segment #1: Frequent local driver 

 
16.4% of the fleet belong to the first segment (FLD). Here, about 50% of the roundtrips 
cover less than 10.2 km and take less than 2.2 hours. The distribution is skewed with a 
mean roundtrip distance of 29.1 km and a duration of 5.4 hours. Each month, about 
56.3 roundtrips can be observed, which is rather frequent and there are about 3.6 stops 
per roundtrip. The distribution of trips is skewed as well. Here the median distance is 
3.0 km and the median duration is 0.1 hours (or 8 minutes). The mean distance of a trip 
is 8.1 km with a mean duration of 0.2 hours (or 13 minutes). 
 
Mileage covered during weekdays and weekend days is rather similar with about 
52.0 km per day covered during the week and 50.2 km per day covered during the 
weekend. Each month about 1,563 km are driven and the average speed is 67.8 km. 
Most mileage is covered on extra-urban roads (41%), followed by urban roads (34%) 
and highways (25%). Each day, the vehicle is parked at the primary location for 16.9 
hours and each parking event takes 4.8 hours. At the secondary location the daily park-
ing time amounts to 4.8 hours with about 2.7 hours per parking event. A typical non-
primary parking event takes about 0.4 hours or 21 minutes. This group shows many 
similarities with the "frequent local driver” (FLD) segment from the previous chapter and 
they share most vehicles, such that reusing this name is reasonable. 
 

3.2.4.3 Segment #2: Long-distance occasional driver 

 
This second segment (LDOD) consists of 11.3% of the fleet. The median distance and 
duration are 57.2 km and 9.9 hours. Corresponding mean values are 145.0 km and 65.4 
hours, which indicates skewed distributions. With an average number of 11.9 roundtrips 
per month, apparently the vehicle is used infrequently for longer journeys. There are 
about 5.8 stops per roundtrip. A trip has a median distance of 9.5 km (mean: 24.0 km) 
and a median duration of 0.3 hours (or 18 minutes; mean: 0.5 hours or 28 minutes). 
 
The mean speed is relatively high (86.5 km/h) and 1,453 km are covered each month, 
mostly on highways (52%), followed by extra-urban (29%) and urban (19%) roads. Daily 
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driven distances are rather similar on weekdays (48.9 km) and weekends (45.9 km). At 
the home location the vehicles parks for 14.9 hours on average (16.5 hours per day). At 
the secondary location, parking times are 5.3 hours per parking event and 7.9 hours per 
day. At non-primary locations parking time is about 1.2 hours. 
 
Many drivers in this segment also exist in the long-distance commuter group from the 
previous chapter and many similarities can be seen. However, particularly their notice-
ably less frequent long-distance roundtrips inspire the name "long-distance occasional 
drivers" (LDOD). 
 

3.2.4.4 Segment #3: Steady commuter 

 
Segment 3 (SC) consists of 18.9% of the fleet and 50% of roundtrips cover less than 
29 km or take less than 6.3 hours. With 44.0 km and 10.4 hours, mean values are some-
what higher. Each month there are 34.7 roundtrips with an average of 3.7 stops per 
roundtrip. About 50% of individual trips cover less than 7.7 km and take less than 0.2 
hours (or 14 minutes). Again, with 11.9 km and 0.3 hours (or 17 minutes), mean values 
are higher. Vehicles cover about 1,434 km per months. The average speed is 68.0 km/h. 
 
During typical weekdays 47.5 km are covered. On the weekend the traveled distance is 
46.3 km per day. The greatest portion of mileage is covered on extra-urban (44%) and 
urban (33%) roads. Less mileage is covered on highways (24%). The vehicle is parked 
at the home location for 14.6 hours per day (10.5 hours per parking event). The corre-
sponding value for the secondary location is 7.5 hours per day (or 5.5 hours per parking 
event). Parking at non-primary locations takes about 1.2 hours. 
 
This segment roughly resembles the short distance commuter group from the previous 
chapter both in terms of mean figures and similar vehicles. However, in the following it 
is called "steady commuter" (SC) to highlight differences to the subsequent segment 4. 
 

3.2.4.5 Segment #4: Unsteady commuter 

 
With 30.4% the largest portion of the fleet belongs to the fourth segment (UC). Here the 
median distance per roundtrip is 21.1 km (mean: 51 km) and the median duration is 
4.4 hours (mean: 11.0 hours). There are 32.4 roundtrips each month with about 4.6 
stops each. The median distance for individual trips is 3.9 km (mean: 11.1 km) and their 
median duration is 0.2 hours (or 9 minutes; mean: 0.3 hours or 17 minutes). The monthly 
mileage is 1,587 km with a mean speed of 75.9 km/h. 
 
Daily mileage is rather similar on weekdays and weekends (52.4 km versus 51.8 km) 
and most mileage is covered on highways (38%), followed by extra-urban (33%) and 
urban (30%) roads. In this group, vehicles are parked for 16.2 hours each day at the 
home location (11.2 hours per parking event) and for 3.8 hours each day at the second-
ary location (6.3 hours per parking event). At non-primary locations, parking takes about 
0.5 hours (or 29 minutes). 
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This segment almost exclusively consists of drivers from the short and long-distance 
commuter group and the frequent local driver group from the previous chapter. In com-
parison to the previously identified “steady commuter” (SC) segment, larger trip speed 
and roundtrip distance variations indicate a less uniform driving behavior, such that the 
term "unsteady commuter" (UC) appears to be a descriptive name for this group of driv-
ers. 
 

3.2.4.6 Segment #5: Short-distance delivery vehicle 

 
4.4% of the fleet belong to segment 5 (SDDV). With 0.7 km the median roundtrip dis-
tance is very short and with a mean distance of 43.4 km the distribution is highly skewed. 
The median and mean duration of roundtrips are 0.3 hours (or 18 minutes) and 4.1 
hours. There are about 60.4 roundtrips per month and during each roundtrip the vehicle 
stops 8.4 times. 50% of individual trips cover less than 1.6 km (mean: 7.2 km) and take 
less than 0.1 hours (or 6 minutes; mean: 0.2 hours or 11 minutes). 
 
With 56.0 km/h the mean speed is relatively low, compared to the other segments and 
each month about 2,514 km are covered. Vehicles are usually driven from Monday to 
Friday (100.1 km per day) and less mileage is covered during the weekend (38.9 km 
per day). Usually, vehicles drive on extra-urban roads (42% of mileage) and on high-
ways (39% of mileage). About 19% of mileage are driven on urban roads. 
 
Vehicles are parked at the primary location for 16.7 hours per day, however the parking 
duration of individual parking events at such locations is only 1.6 hours. At secondary 
locations, the daily parking duration is 1.6 hours (1 hour per parking event). At non-
primary locations, vehicles park for 0.2 hours (or 11 minutes) on average. 
 
This group exclusively consists of drivers from the short-distance delivery vehicle seg-
ment from the previous chapter and thus shares many similarities with them, such that 
the name “short-distance delivery vehicle” (SDDV) is adopted. 
 

3.2.4.7 Segment #6: Long-distance delivery vehicle 

 
The sixth segment (LDDV) consists of 5.4% of the fleet. 50% of roundtrips cover more 
than 98.9 km (mean: 97.3 km) and last more than 7.3 hours (mean: 10.0 hours). Round-
trips take place about 32.2 times per month and have many stops (16.1). Individual trips 
have a median distance of 2.3 km (mean: 6.3 km) and a median duration of 0.1 hours 
(or 6 minutes; mean: 0.2 hours or 11 minutes). 
 
2,583 km are covered each month at an average speed of 58.0 km/h. This distance is 
driven mostly from Monday to Friday (103.2 km per day versus 39.6 km on days of the 
weekend) on extra-urban (45%) and urban (34%) roads, while only 21% of mileage is 
covered on highways. Vehicles park for 16.2 hours per day (14.1 hours per parking 
event) at the primary location and for 1.8 hours per day (0.9 hours or 52 minutes per 
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parking event) at the secondary location. At non-primary locations, a parking event 
takes about 0.2 hours (or 9 minutes). 
 
This group is roughly comparable with the long-distance delivery vehicle segment from 
the previous chapter and results from both segmentation approaches share the same 
vehicles. Thus, the name “long-distance delivery vehicle” (LDDV) is reused. 
 

3.2.4.8 Segment #7: Technical service vehicle 

 
With 4.0%, segment 7 (TSV) is the smallest. The median roundtrip distance is 66.7 km 
(mean: 116.8 km) and the median roundtrip duration is 4.3 hours (mean: 8.3 hours). 
There are about 50.1 roundtrips per month with 6.7 stops each. Individual trips cover 
9.6 km (median; mean: 23.0 km) and take 0.3 hours or 18 minutes (median; mean: 0.6 
hours or 37 minutes). 
 
Each month, 5,491 km are covered, and the average speed is 64.1 km/h.  About 50% 
of the mileage is covered on highways, followed by extra-urban (35%) and urban (15%) 
roads. Longest distances are covered from Monday to Friday (224.1 per day versus 
71.7 km per day at the weekend). The vehicle is parked for 13.9 hours per day 
(1.5 hours per parking event) at the home location and for 2.4 hours per day (1.8 hours 
per parking event) at the secondary parking event. At non-primary locations, the vehicle 
is parked for about 0.2 hours or 14 minutes. 
 
There are some dissimilarities between this group and the service provider segment, 
described in the previous chapter – particularly the average roundtrip distance and 
monthly mileage. Yet, the overall picture is comparable, and most vehicles belong to 
the same segment, such that using the cluster name “technical service vehicle” (TSV) 
is considered appropriate. 
 

3.2.4.9 Segment #8: Company representative 

 
Finally, 9.2% of the fleet belong to segment 8 (CR). Here, roundtrips are particularly 
long (median: 207.6 km, mean: 254.8 km) and they take about 9.3 hours (median; 
mean: 17.8 hours). Roundtrips take place 24.2 times per month and during each round-
trip there are about 8.7 stops. Individual trips cover a median distance of 12.8 km (mean: 
30.5 km) and have a median duration of 0.4 hours or 24 minutes (mean: 0.7 hours or 
44 minutes). 
 
5,402 km are covered each month. The longest daily distances are driven during work-
days (227.8 km per day versus 52.6 km per day at the weekend). The majority of mile-
age is covered on highways (58%), followed by extra-urban (27%) and urban (15%) 
roads. The mean speed is 69.4 km/h. Median parking times at the primary location are 
14.5 hours per day (11.8 hours per parking event). At secondary locations the median 
parking duration per day is 2.7 hours (1.8 hours per parking event). At non-primary lo-
cations vehicles remain parked for about 0.3 hours or 17 minutes. 
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The general impression from these figures and many similarities with the "company 
representative" (CR) segment from the previous chapter, including a majority of similar 
drivers suggest keeping this name. A considerably shorter mean roundtrip duration is 
noteworthy but does not complicate the interpretation of the segment. 
 

3.3 Results 
 

3.3.1 Share of electric mileage and reachability of destinationsiv 

 
The following section presents electric mobility key figures – share of electric mileage 
and reachability of destinations – as average values for all driver. In the considered 
scenarios, we compare battery capacities from small 9.4 kWh to large 112.8 kWh and 
a range of both private and public charging infrastructure configurations with different 
charging power values. Table 14 and Table 15 show the portion of destinations that are 
electrically reachable (Table 14), respectively the portion of mileage that is electrically 
drivable (Table 15). 
 
Results indicate that even if batteries are limited to 9.4 kWh and charging is only possi-
ble at home with 3.7 kW, about 73% of destinations can be reached electrically, respec-
tively 57% of mileage can be covered electrically. Table 14 and Table 15 also indicate 
that the coverage of the public charging infrastructure is particularly beneficial for vehi-
cles with a limited battery capacity. 
 
For example, a vehicle with a 9.4 kWh battery and 3.7 kW charging facilities at the 
primary and secondary parking locations can provide for an average portion of 62% of 
electrically drivable mileage. With a 70% coverage of a 50 kW public charging infra-
structure, this value is increased to 78%. 
 
With larger batteries, the benefit of an extended charging infrastructure diminishes. For 
example, with a large 112.8 kWh battery and with 3.7 kW charging facilities at the pri-
mary and secondary parking locations, 94% of mileage could be covered electrically. A 
public 50 kW charging infrastructure at 10% of parking locations is sufficient to reach 
about 98% of destinations electrically or to cover about 96% of mileage electrically when 
using a 112.8 kWh battery. 
 
If a public 50 kW charging opportunity is available at 70% of parking locations, about 
99% of mileage could be electrified. It can also be shown exemplarily that a vehicle with 
a 56.4 kWh battery and a single 3.7 kW primary charging facility can reach roughly the 
same portion of destinations electrically as a 9.4 kWh vehicle with a ubiquitous 3.7 kW 
public charging infrastructure. 
 
Charging power appears to be less critical if common parking events are considered for 
charging. For example, a private charging power increase from 3.7 kW to 22.1 kW im-
proves the electric reachability figure by up to 2% and a public charging power increase 
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from 50 kW to 120 kW improves reachability figures by less than 0.5%, if public charging 
opportunities exist at 10% of parking locations. If the ubiquitous 3.7 kW public charging 
infrastructure was replaced by 120 kW chargers at 70% of parking locations, the portion 
of electrically reachable destinations would increase by up to 2%. 
 

Table 14: Portion of destinations that are electrically reachable (%) 

Portion of destinations that are electrically reachable (%). 

9.4 18.8 37.6 56.4 112.8 
Battery Cap. 

(kWh) 

3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 
Charging pow. 

(kW) 

73 74 74 75 82 82 83 83 88 89 89 90 91 92 93 93 95 96 97 97 Home charging 

79 80 80 81 86 87 87 88 92 92 93 93 94 95 95 95 97 98 98 98 
Home charging 

+ secondary 

84 84 84 84 89 90 90 90 94 94 95 95 96 97 97 97 98 99 99 99 
+10% public 

(50kW) 

90 90 90 90 94 94 94 94 97 97 97 97 98 99 99 99 100 100 100 100 
+40% public 

(50kW) 

93 93 93 93 96 96 96 96 98 98 98 98 99 99 99 99 100 100 100 100 
+70% public 

(50kW) 

84 84 84 85 90 90 90 91 94 95 95 95 96 97 97 97 99 99 99 99 
+10% public 

(120kW) 

90 90 90 90 94 95 95 95 97 98 98 98 99 99 99 99 100 100 100 100 
+40% public 

(120kW) 

93 93 93 93 96 96 96 96 99 99 99 99 99 99 99 99 100 100 100 100 
+70% public 

(120kW) 

91 91 91 92 94 95 95 95 97 97 97 97 98 99 99 99 99 100 100 100 
+ 100% public 

(3.68kW) 

 
Table 15: Portion of mileage that is electrically drivable (%) 

Portion of mileage that is electrically drivable (%). 

9.4 18.8 37.6 56.4 112.8 
Battery Cap. 

(kWh) 

3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 
Charging pow. 

(kW) 

57 57 58 58 68 69 69 70 79 79 80 80 84 85 85 85 91 93 93 93 Home charging 

62 63 63 63 73 73 74 74 82 83 83 84 87 88 88 89 94 95 95 95 
Home charging 

+ secondary 

66 67 67 67 76 77 77 77 86 86 86 86 90 91 91 91 96 97 97 97 
+10% public 

(50kW) 

73 74 74 74 83 83 83 83 91 91 91 91 95 95 95 95 98 98 98 99 
+40% public 

(50kW) 

78 78 78 78 86 87 87 87 93 94 94 94 96 96 97 97 99 99 99 99 
+70% public 

(50kW) 

67 67 67 68 77 77 77 78 86 87 87 87 91 91 91 92 96 97 97 97 
+10% public 

(120kW) 

74 74 74 74 84 84 84 84 92 92 92 92 95 95 96 96 99 99 99 99 
+40% public 

(120kW) 

78 78 78 78 87 87 88 88 94 95 95 95 97 97 97 97 99 99 99 99 
+70% public 

(120kW) 

74 75 75 75 82 83 83 83 90 90 90 91 94 94 94 94 98 98 98 98 
+ 100% public 

(3.68kW) 
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3.3.2 Energy demand and grid impactiv 

 
A comparison of Table 15 and Table 16 verifies that the daily total electric energy de-
mand rises with a greater portion of electrically drivable mileage. A PHEV with a 
9.4 kWh battery that could be charged with 3.7 kW at the home charging facility requires 
about 3.9 kWh per day to cover 57% of mileage. With an additional extensive fast 
120 kW charging infrastructure at 70% of parking locations, this value rises to 6.8 kWh 
per day and 78% of mileage could be covered. If instead of a 9.4 kWh battery, a 
112.8 kWh battery was available, these figures would rise to 8.8 kWh (91% of mileage) 
and 10.3 kWh (99% of mileage) per day. 
 
In Table 17, the daily peak power demand is given. In the home charging scenario, the 
power demand peak increases from 0.4 kW to 0.6 kW if instead of a 9.4 kWh battery 
capacity, 112.8 kWh were available. With the additional public charging opportunities, 
respective figures increase from 0.5 kW to 0.7 kW. With greater charging power at pri-
mary charging facilities, energy demand peaks further increase. Additional secondary 
or public charging opportunities can mitigate electrical peak demand (for batteries with 
a capacity of 37.6 kWh or more and charging power greater than 3.7 kW at the primary 
charging facility). The demand peak hours for each scenario are compared in Table 18. 
Energy demand was examined on an hourly granularity. Peak demand usually occurs 
in the late morning and in the evening with figures indicating the highest peak hour. 
 

Table 16: Daily total energy demand (kWh) 

Daily total energy demand (kWh) 

9.4 18.8 37.6 56.4 112.8 
Battery Cap. 

(kWh) 

3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 
Charging pow. 

(kW) 

3.9 4.0 4.0 4.1 5.3 5.4 5.5 5.5 6.9 7.0 7.1 7.2 7.7 8.0 8.0 8.1 8.8 9.2 9.3 9.3 Home charging 

4.4 4.5 4.6 4.7 5.8 5.9 6.0 6.1 7.3 7.5 7.6 7.7 8.1 8.4 8.5 8.6 9.2 9.5 9.6 9.7 
Home charging 

+ secondary 

5.0 5.1 5.1 5.2 6.4 6.5 6.5 6.6 7.9 8.0 8.1 8.1 8.7 8.9 8.9 8.9 9.6 9.8 9.8 9.9 
+10% public 

(50kW) 

6.1 6.1 6.1 6.1 7.5 7.5 7.6 7.6 8.9 8.9 8.9 9.0 9.5 9.6 9.6 9.6 10.1 10.2 10.2 10.2 
+40% public 

(50kW) 

6.7 6.7 6.7 6.7 8.1 8.2 8.2 8.2 9.4 9.4 9.4 9.4 9.9 9.9 9.9 9.9 10.3 10.3 10.3 10.3 
+70% public 

(50kW) 

5.1 5.1 5.2 5.2 6.5 6.6 6.6 6.7 8.0 8.1 8.2 8.2 8.8 9.0 9.0 9.0 9.7 9.9 9.9 9.9 
+10% public 

(120kW) 

6.2 6.2 6.2 6.2 7.7 7.7 7.7 7.8 9.1 9.1 9.1 9.1 9.7 9.7 9.7 9.7 10.2 10.2 10.2 10.2 
+40% public 

(120kW) 

6.8 6.8 6.8 6.8 8.3 8.3 8.3 8.4 9.5 9.5 9.6 9.6 10.0 10.0 10.0 10.0 10.3 10.3 10.3 10.3 
+70% public 

(120kW) 

6.0 6.0 6.1 6.1 7.2 7.3 7.3 7.4 8.6 8.6 8.7 8.7 9.2 9.4 9.4 9.4 10.0 10.1 10.1 10.1 
+ 100% public 

(3.68kW) 
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Table 17: Daily demand peak (kW) 

Daily demand peak (kW) 

9.4 18.8 37.6 56.4 112.8 
Battery Cap. 

(kWh) 

3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 
Charging pow. 

(kW) 

0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.6 0.5 0.7 0.7 0.8 0.5 0.7 0.8 0.9 0.6 0.7 0.8 0.9 Home charging 

0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 
Home charging 

+ secondary 

0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.5 0.6 0.7 0.7 0.5 0.6 0.7 0.8 
+10% public 

(50kW) 

0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.5 0.6 0.6 0.7 0.6 0.6 0.6 0.7 
+40% public 

(50kW) 

0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.7 
+70% public 

(50kW) 

0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.5 0.6 0.7 0.7 0.5 0.6 0.7 0.8 
+10% public 

(120kW) 

0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 
+40% public 

(120kW) 

0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.6 0.6 0.7 
+70% public 

(120kW) 

0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.5 0.6 0.7 0.7 0.5 0.6 0.7 0.8 
+ 100% public 

(3.68kW) 

 
Table 18: Demand peak hour 

Demand peak hour 

9.4 18.8 37.6 56.4 112.8 
Battery Cap. 

(kWh) 

3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 3.7 7.4 11.0 22.1 
Charging pow. 

(kW) 

18.0 18.0 18.0 17.0 18.0 18.0 18.0 17.0 19.0 18.0 18.0 18.0 19.0 18.0 18.0 18.0 19.0 18.0 18.0 18.0 Home charging 

18.0 17.0 17.0 17.0 18.0 18.0 17.0 17.0 18.0 18.0 18.0 17.0 18.0 18.0 18.0 17.0 18.0 18.0 18.0 18.0 
Home charging 

+ secondary 

18.0 17.0 17.0 17.0 18.0 18.0 17.0 17.0 18.0 18.0 18.0 17.0 18.0 18.0 18.0 17.0 18.0 18.0 18.0 18.0 
+10% public 

(50kW) 

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 11.0 11.0 11.0 11.0 11.0 18.0 17.0 17.0 11.0 18.0 18.0 17.0 
+40% public 

(50kW) 

8.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 11.0 11.0 11.0 
+70% public 

(50kW) 

18.0 17.0 17.0 17.0 18.0 17.0 17.0 17.0 18.0 18.0 18.0 17.0 18.0 18.0 18.0 17.0 18.0 18.0 18.0 18.0 
+10% public 

(120kW) 

10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 11.0 17.0 
+40% public 

(120kW) 

8.0 10.0 10.0 10.0 9.0 10.0 10.0 10.0 8.0 10.0 10.0 10.0 8.0 10.0 10.0 10.0 8.0 10.0 10.0 10.0 
+70% public 

(120kW) 

11.0 11.0 10.0 10.0 18.0 11.0 11.0 11.0 18.0 18.0 18.0 17.0 18.0 18.0 18.0 17.0 18.0 18.0 18.0 18.0 
+ 100% public 

(3.68kW) 
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3.3.3 Distinct characteristics of driver segmentsiv 

 
A base case is created to provide a basis for comparing the influence of scenario pa-
rameter changes for eight different driver segments. This way, the influence of three 
scenario parameters – battery capacity, charging power, and charging infrastructure 
coverage – can be assessed. The base case scenario comprises an 18.8 kWh battery 
capacity with a 7.4 kW home charging infrastructure. 
 
In Figure 11, the portion of electrically reachable destinations are depicted as an aver-
age for all vehicles (ALL) and for eight segments. The grey color indicates the base 
case. At least 51% of destinations are reachable for every segment. All but “long-dis-
tance occasional drivers” (LDOD), “technical service vehicles” (TSV), and “company 
representatives” (CR) reach at least 86% of destinations electrically. 
 
A vehicle with limited range (18.8 kWh battery capacity) and limited charging opportu-
nities (7.4 kW at a primary charging facility) is well suited for private car holders who 
drive within a limited area (FLD) or who commute without exceeding the vehicle’s elec-
tric range (SC and UC). Private car holders who use the vehicle occasionally to cover 
long-distances (LDOD) require more range or a better charging infrastructure. Given car 
and infrastructure configuration is well suited for business vehicles if covered distances 
rarely exceed the electric range of the vehicle (SDDV, LDDV). If large distances are 
covered and great variations in trip length exist (TSV, CR), larger batteries and better 
infrastructure coverage may be required. 
 

3.3.3.1 Influence of battery capacitiesiv 

 
It appears likely that the battery capacity has a great impact on the electric reachability 
target value for all segments, as it directly influences the electric range of the vehicle. 
Therefore, we modify the base case scenario in Figure 11 (grey color) by decreasing 
and increasing the battery capacity value to 9.4 kWh (red color) and to 37.6 kWh (blue 
color) respectively. 
 
With a smaller 9.4 kWh battery, the “long-distance delivery vehicle” (LDDV) segment’s 
reachability value drops from 89% to 70%. For the “technical service vehicle” (TSV) this 
value drops from 62% to 47% and for the “company representative” (CR) segment it 
drops from 51% to 34%. 
 
With a larger 37.6 kWh battery, reachability values rise to 79% for the “technical service 
vehicle” (TSV) segment and to 71% for the “company representative” (CR) segment. 
The “long-distance occasional drivers” (LDOD) reach 75% of destinations electrically. 
Both “technical service vehicles” (TSV) and the “company representatives” (CR) benefit 
the most from larger 37.6 kWh batteries. 
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Figure 11: Base case versus 9.4 kWh and 37.6 kWh battery capacity 

 
Figure 12 compares results for 5 different battery capacity values from 9.4 kWh to 
112.8 kWh. The generally high reachability figure for all segments when using very large 
112.8 kWh batteries is noteworthy. Every segment electrically reaches 90% of destina-
tions (“long-distance occasional drivers”, LDOD) or more. Long-distance drivers (LDOD, 
LDDV, TSV, and CR) profit the most from having larger batteries. 
 
Still, the benefit from battery capacities greater than 18.8 kWh is relatively low for drivers 
in the “long-distance delivery vehicle” (LDDV) group. This limited battery capacity de-
mand can be explained by a comparatively low average driving speed and variance in 
roundtrip distances. For drivers with shorter roundtrip distances (FLD, SC, UC, SDDV) 
the battery parameter is generally less important. 
 

 
Figure 12: Comparison of electric reachability figures for different battery ca-
pacities when charging is possible with 7.4 kW at the primary charging facility 
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3.3.3.2 Influence of charging infrastructureiv 

 
In the base case scenario, a charging facility at the primary parking location is assumed. 
This infrastructure can be extended by adding an additional private secondary charging 
facility. Such an infrastructure expansion increases the portion of electrically reachable 
destinations, as shown in Figure 13 (blue color). “Frequent local drivers” (FLD), “steady 
commuters” (SC), and “short-distance delivery vehicles” (SDDV) only slightly benefit 
from the additional charging opportunity, with an increase of 3%, 3%, and 1% respec-
tively. With an increase of 12%, 11%, and 15%, “long-distance occasional drivers” 
(LDOD), “technical service vehicles” (TSV), and “company representatives” (CR) benefit 
the most. 
 

 
Figure 13: Base case versus additional charging at the secondary charging fa-
cility (blue color) or at both the secondary charging facility and at 70% of park-

ing locations (green color) 

 
Such a private charging infrastructure can be further extended by adding public charg-
ing facilities. With an extensive 50 kW public charging infrastructure that covers 70% of 
parking locations, every segment reaches at least 89% of destinations electrically, as 
depicted in Figure 13 (green color). Again, this infrastructure expansion is particularly 
beneficial to “long-distance occasional drivers” (LDOD), “technical service vehicles” 
(TSV), and “company representatives” (CR). 
 
Figure 14 compares five infrastructure coverage scenarios, including two private charg-
ing scenarios (“primary”, “both primary and secondary”) and three scenarios that com-
bine private and public charging (both locations plus 10%, 40%, or 70% public charging 
coverage). An extensive charging infrastructure coverage would indeed make a great 
share of destinations reachable electrically. However, the expectedly great expenses 
for such an infrastructure measure (National Academy of Sciences, 2015) make its re-
alization unlikely. Although each infrastructure improvement also increases the reacha-

P00368B0736 18.8 HOME
P00368B0736 18.8 BOTH

P00368B0736 18.8 BOTH70

Segments

El
ec

tri
c 

re
ac

ha
bi

lit
y 

of
 d

es
tin

at
io

ns

ALL FLD LDOD SC UC SDDV LDDV TSV CR

25%

50%

75%

100%



Jürgen Wenig  - 66- 

bility key figure, the increase from a 40% public charging infrastructure to 70% is com-
paratively small. Ultimately, an increase in battery capacity, as depicted in Figure 12  
creates similar benefits. 
 

 
Figure 14: Comparison of electric reachability figures for different charging in-
frastructure coverages when an 18.8 kWh battery capacity is available. Private 
charging power is set to 7.4 kW and public charging power is set to 50 kW 

 

3.3.3.3 Influence of charging poweriv 

 
Besides battery capacity and charging infrastructure coverage, an increase in charging 
power can potentially improve the portion of electrically reachable destinations, as illus-
trated in Figure 15. However, the comparison of four different charging power values 
from 3.7 kW to 22.1 kW indicates that the benefit from an increase in charging power in 
a home charging scenario is very low. 
 

 

Figure 15: Comparison of electric reachability figures for different charging 
power parameters when an 18.8 kWh battery capacity is available and charging 

is possible at the primary charging facility 
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Also in a public charging scenario the benefit of increased charging power is limited, as 
Figure 16 shows. Here, 7.4 kW private chargers are available both at the primary and 
secondary charging facility. In addition, 10% of parking locations provide public charging 
opportunities with a charging power of 50 kW or 120 kW. 
 

 
Figure 16: Comparison of electric reachability figures for different charging 

power parameters when an 18.8 kWh battery capacity is available and charging 
is possible at both the primary and secondary charging facility and at 10% of 

parking locations 

 

3.3.3.4 Detailed description of the grid impact 

 
In the following Figure 17 to Figure 25, 24-hour charging demand profiles are depicted 
that give detailed information on the expected grid impact of PHEV charging for infra-
structure and battery capacity variations. It is assumed that the charging power at pri-
vate locations is 7.4 kW. The black line indicates an 18.8 kWh battery capacity. The red 
line indicates a 9.4 kWh battery capacity. The three blue lines indicate 37.6 kWh, 
56.4 kWh, and 112.8 kWh with darker color shades for larger batteries. 
 
A public charging infrastructure, particularly with higher charging power, tends to shift 
energy demand from evening hours to daytime hours. Even though a public infrastruc-
ture leads to an overall increase in energy demand and in electrified mileage, peak 
demand is decreased in average charging demand profiles. 
 
An increased battery capacity typically increases energy demand and peak demand. In 
that regard it is particularly noteworthy that the overall demand is shifted to the right, 
because it takes more time to charge larger batteries (e.g., during night hours). Inter-
estingly, a close examination of demand profiles reveals that in some cases the peak 
power demand for smaller batteries is higher than for very large batteries. This is due 
to the assumption that charging power is reduced after the battery is charged to 80%, 
as explained in (Sodenkamp, Wenig, Thiesse, et al., 2019; Wenig, Sodenkamp, and 
Staake, 2015), and in chapter 2, respectively. 
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(a) Average across the entire fleet (100%) 
 

    
Segment 1: “Frequent 

local driver” 
(FLD, 16.4%) 

Segment 2: “Long-dis-
tance occasional 

driver” LDOD, 11.3%) 

Segment 3: “Steady 
commuter” 
(SC, 18.9%) 

Segment 4: “Unsteady 
commuter” 
(UC, 30.4%) 

    
Segment 5: “Short-dis-
tance delivery vehicle” 

(SDDV, 4.4%) 

Segment 6: “Long-dis-
tance delivery vehicle” 

(LDDV, 5.4%) 

Segment 7: “Technical 
service vehicle” 
(TSV, 4.0%) 

Segment 8: “Company 
representative” 
(CR, 9.2%) 

 
(b) Segment-wise 

Figure 17. Grid impact of charging on the electric power network if charging is 
possible at the primary parking location 
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(a) Average across the entire fleet (100%) 
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local driver” 
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Segment 8: “Company 
representative” 
(CR, 9.2%) 

 
(b) Segment-wise 

Figure 18. Grid impact of charging on the electric power network if charging is 
possible both at the primary and secondary parking location 
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(a) Average across the entire fleet (100%) 
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local driver” 
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(b) Segment-wise 

Figure 19. Grid impact of charging on the electric power network if charging is 
possible both at the primary and secondary parking location and at 10% of park-

ing locations with 50 kW charging power 
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(a) Average across the entire fleet (100%) 
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(CR, 9.2%) 

 
(b) Segment-wise 

Figure 20. Grid impact of charging on the electric power network if charging is 
possible both at the primary and secondary parking location and at 10% of park-

ing locations with 120 kW charging power 
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(a) Average across the entire fleet (100%) 
 

    
Segment 1: “Frequent 

local driver” 
(FLD, 16.4%) 

Segment 2: “Long-dis-
tance occasional 

driver” LDOD, 11.3%) 

Segment 3: “Steady 
commuter” 
(SC, 18.9%) 

Segment 4: “Unsteady 
commuter” 
(UC, 30.4%) 

    
Segment 5: “Short-dis-
tance delivery vehicle” 

(SDDV, 4.4%) 

Segment 6: “Long-dis-
tance delivery vehicle” 

(LDDV, 5.4%) 

Segment 7: “Technical 
service vehicle” 
(TSV, 4.0%) 

Segment 8: “Company 
representative” 
(CR, 9.2%) 

 
(b) Segment-wise 

Figure 21. Grid impact of charging on the electric power network if charging is 
possible both at the primary and secondary parking location and at 40% of park-

ing locations with 50 kW charging power 
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(a) Average across the entire fleet (100%) 
 

    
Segment 1: “Frequent 

local driver” 
(FLD, 16.4%) 

Segment 2: “Long-dis-
tance occasional 

driver” LDOD, 11.3%) 

Segment 3: “Steady 
commuter” 
(SC, 18.9%) 

Segment 4: “Unsteady 
commuter” 
(UC, 30.4%) 

    
Segment 5: “Short-dis-
tance delivery vehicle” 

(SDDV, 4.4%) 

Segment 6: “Long-dis-
tance delivery vehicle” 

(LDDV, 5.4%) 

Segment 7: “Technical 
service vehicle” 
(TSV, 4.0%) 

Segment 8: “Company 
representative” 
(CR, 9.2%) 

 
(b) Segment-wise 

Figure 22. Grid impact of charging on the electric power network if charging is 
possible both at the primary and secondary parking location and at 40% of park-

ing locations with 120 kW charging power 
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(a) Average across the entire fleet (100%) 
 

    
Segment 1: “Frequent 

local driver” 
(FLD, 16.4%) 

Segment 2: “Long-dis-
tance occasional 

driver” LDOD, 11.3%) 

Segment 3: “Steady 
commuter” 
(SC, 18.9%) 

Segment 4: “Unsteady 
commuter” 
(UC, 30.4%) 

    
Segment 5: “Short-dis-
tance delivery vehicle” 

(SDDV, 4.4%) 

Segment 6: “Long-dis-
tance delivery vehicle” 

(LDDV, 5.4%) 

Segment 7: “Technical 
service vehicle” 
(TSV, 4.0%) 

Segment 8: “Company 
representative” 
(CR, 9.2%) 

 
(b) Segment-wise 

Figure 23. Grid impact of charging on the electric power network if charging is 
possible both at the primary and secondary parking location and at 70% of park-

ing locations with 50 kW charging power 
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(a) Average across the entire fleet (100%) 
 

    
Segment 1: “Frequent 

local driver” 
(FLD, 16.4%) 

Segment 2: “Long-dis-
tance occasional 

driver” LDOD, 11.3%) 

Segment 3: “Steady 
commuter” 
(SC, 18.9%) 

Segment 4: “Unsteady 
commuter” 
(UC, 30.4%) 

    
Segment 5: “Short-dis-
tance delivery vehicle” 

(SDDV, 4.4%) 

Segment 6: “Long-dis-
tance delivery vehicle” 

(LDDV, 5.4%) 

Segment 7: “Technical 
service vehicle” 
(TSV, 4.0%) 

Segment 8: “Company 
representative” 
(CR, 9.2%) 

 
(b) Segment-wise 

Figure 24. Grid impact of charging on the electric power network if charging is 
possible both at the primary and secondary parking location and at 70% of park-

ing locations with 120 kW charging power 
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(a) Average across the entire fleet (100%) 
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(b) Segment-wise 

Figure 25. Grid impact of charging on the electric power network if charging is 
possible both at the primary and secondary parking location and at 100% of 

parking locations with 3.7 kW charging power 
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Figure 17 and Figure 24 can be compared to show the segment specific implications of 
a charging infrastructure extension most prominently. Here, primary, or home charging 
is compared with a scenario where charging is possible at both private parking locations 
and publicly at 70% of parking locations with 120 kW charging power. 
 
For segments 1, 2, 3, and 4 (FLD, LDOD, SC, and UC), which are also assumed to be 
typically privately held vehicles, demand continues to peak in the evening, but these 
demand peaks become less noteworthy because charging demand during the day con-
siderably increases. For segments 5, 6, 7, and 8 (SDDV, LDDV, TSV, CR), which are 
considered to be vehicles with a business purpose, a greater charging infrastructure 
coverage leads to a shift of energy demand and peak demand to the left. 
 
A comparison of Figure 24 and Figure 25, respectively of public charging at 70% of 
destinations with 120 kW charging power and of public charging at 100% of destinations 
with 3.7 kW charging power indicates that an increase in charging power shifts curves 
to the left, because more energy can be charged in less time and thus batteries are fully 
recharged earlier. This is most striking for segment 7 (TSV) and segment 8 (CR), where 
peak demand is shifted from the evening to late morning hours and noon. The combi-
nation of long individual trips and relatively short parking durations in these segments 
explains the extensive use and impact of fast public chargers. 
 

3.3.4 Comparison of selected electric mobility scenarios 

 
In the following, three interesting and very distinct electric mobility scenarios (and two 
sub-scenarios) are compared for eight different driver segments. First, the “modest” 
scenario assumes that a PHEV with a small 9.4 kWh battery is available and that charg-
ing is only possible at 3.7 kW home charging facilities. Two sub-scenarios assume either 
a large 112.8 kWh battery capacity or an excellent charging infrastructure (22.1 kW 
home and secondary charging, 120 kW charging at 70% of public parking locations). In 
the “ambitious” scenario, a 56.4 kWh PHEV is available, together with 7.4 kW charging 
at primary and secondary locations and 50 kW public charging at 10% of parking loca-
tions. Finally, the “excellent” scenario assumes that each vehicle has a 112.8 kWh bat-
tery capacity and that charging is possible with 22.1 kW at primary and secondary 
charging facilities and with 120 kW at 70% of parking locations. An overview is given: 
 
Modest: 
- 9.4 kWh battery capacity 
- 3.7 kW home charging 

Modest with excellent battery capacity: 
- 112.8 kWh battery capacity 
- 3.7 kW home charging 
Modest with excellent infrastructure: 
- 9.4 kWh battery capacity 
- 22.1 kW home and secondary charging 
- 120 kW public charging at 70% of parking locations 
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Ambitious: 
- 56.4 kWh battery capacity 
- 7.4 kW home and secondary charging 
- 50 kW public charging at 10% of parking locations 
 
Excellent: 
- 112.8 kWh battery capacity 
- 22.1 kW home and secondary charging 
- 120 kW public charging at 70% of parking locations 
 
In Table 19, results for these 5 scenarios are compared in terms of absolute electrified 
mileage in km, the relative share of electrified mileage and the portion of electrically 
reachable destinations for the average driver. Moreover, differences between segments 
are pointed out. 
 

3.3.4.1 Comparison of the mileage electrification potential 

 
Table 19: Electrification potential for selected electric mobility scenarios 

Segment 1 2 3 4 5 6 7 8 ALL 
Segment name FLD LDOD SC UC SDDV LDDV TSV CR ALL 
Segment size 149 103 172 276 40 49 36 84 909 
% of fleet 16.4% 11.3% 18.9% 30.4% 4.4% 5.4% 4.0% 9.2% 100% 
Monthly mileage [km] 1,563 1,453 1,434 1,587 2,514 2,583 5,491 5,402 2,140 
Modest scenario 
Electrified mileage [km] 1,104 484 1,031 875 1,977 1,744 1,990 1,477 1,215 
Electrified mileage share 71% 33% 72% 55% 79% 67% 36% 27% 57% 
Electr. reach. destinations 89% 54% 86% 79% 86% 69% 44% 33% 73% 
Modest scenario with excellent battery capacity 
Electrified mileage [km] 1,463 1,169 1,376 1,447 2,422 2,534 4,847 4,612 1,952 
Electrified mileage share 94% 80% 96% 91% 96% 98% 88% 85% 91% 
Electr. reach. destinations 98% 88% 99% 97% 98% 98% 90% 87% 95% 
Modest scenario with excellent infrastructure 
Electrified mileage [km] 1,307 886 1,232 1,195 2,335 2,500 4,209 3,714 1,679 
Electrified mileage share 84% 61% 86% 75% 93% 97% 77% 69% 78% 
Electr. reach. destinations 97% 85% 96% 95% 97% 99% 86% 81% 93% 
Ambitious scenario 
Electrified mileage [km] 1,454 1,151 1,358 1,418 2,450 2,567 5,152 4,764 1,943 
Electrified mileage share 93% 79% 95% 89% 97% 99% 94% 88% 91% 
Electr. reach. destinations 99% 90% 99% 97% 99% 100% 95% 91% 97% 
Excellent scenario 
Electrified mileage [km] 1,552 1,433 1,430 1,575 2,513 2,583 5,490 5,398 2,128 
Electrified mileage share 99% 99% 100% 99% 100% 100% 100% 100% 99% 
Electr. reach. destinations 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Overall, great shares of mileage (57%) can be electrified, even in an electric mobility 
scenario with a “modest” vehicle and infrastructure configuration. Drivers who cover 
long average roundtrip distances or whose average speed is high can electrify the least 
(LDOD: 33%, TSV: 36%, CR: 27%). If the mobility needs are less demanding, greater 
mileage shares can be covered electrically (FLD: 71%, SC: 72%, UC: 55%, SDDV: 79%, 
LDDV: 67%). Typically, the portion of destinations that can be reached electrically is 
higher than the portion of electrically covered mileage (73%). Almost all segments can 
reach more than 50% of destinations electrically (FLD: 89%, LDOD: 54%, SC: 86%, UC: 
79%, SDDV: 86%, LDDV: 69%). Only drivers in two segments reach less than 50% 
(TSV: 44%, CR: 33%). 
 
When considering the “modest” scenario and increasing the battery capacity, results 
show that all groups profit, such that the average portion of electrified mileage increases 
to 91%. Drivers with demanding mobility patterns profit the most from the increased 
battery capacity (LDOD: 80%, TSV: 88%, CR: 85%). Drivers who already covered great 
shares of mileage in the previous scenario could now electrify more than 90% of mileage 
(FLD: 94%, SC: 96%, UC: 91%, SDDV: 96%, LDDV: 98%). 
 
If instead of the battery capacity, the infrastructure is improved in the “modest” scenario, 
results show that again, drivers generally profit. Still, the overall increase in electrified 
mileage is significantly lower (78% of mileage is electrified). Only in two segments more 
than 90% of mileage is electrified (SDDV: 93%, LDDV: 97%). A slow average driving 
speed and frequent stops during roundtrips could explain this result. For the other seg-
ments, the electrification potential is limited, which shows that an excessive charging 
infrastructure can’t compensate for small battery capacities (FLD: 84%, LDOD: 61%, 
SC: 86%, UC: 75%, TSV: 77%, CR: 69%). 
 
In the “ambitious”, yet realistic scenario, about 91% of mileage could be electrified. Con-
sequently, most driver groups cover large mileage shares of more than 90% electrically 
(FLD: 93%, SC: 95%, SDDV: 97%, LDDV: 99%, TSV: 94%). Only drivers with demand-
ing mobility requirements (e.g., long roundtrip distances, respectively high variations in 
roundtrip distance, or high speed) cover less (LDOD: 79%, UC: 89%, CR: 88%). Drivers 
in all segments could electrically cover about 90% of destinations or more. 
 
With both an “excellent” charging infrastructure and a very large battery capacity, the 
average driver could cover about 99% of mileage electrically. In all groups, between 
99% and 100% are covered (FLD: 99%, LDOD: 99%, SC: 100%, UC: 99%, SDDV: 
100%, LDDV: 100%, TSV: 100%, CR: 100%). Drivers of all groups can reach almost 
every destination electrically. 
 
A great share of electrified mileage does not necessarily imply a large number of elec-
trified kilometers travelled. Drivers with typically high monthly mileage figures (SDDV, 
LDDV, TSV, CR) can electrify greater amounts of mileage, even if the relative share is 
low. Naturally, if monthly mileage is lower (as in segments FLD, LDOD, SC, and UC), 
also the relative share is low. 
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3.3.4.2 Comparison of the gasoline saving potential 

 
In Table 20 the gasoline saving potential that is derived from the electrical energy de-
mand is given for the “modest”, “ambitious”, and “excellent” scenario. It is assumed that 
the electric car has an efficiency of 90%, as inspired by (Diehlmann and Häcker, 2013; 
Karlsson and Kushnir, 2013; Mi, Masrur, and Gao, 2011) and that the internal combus-
tion engine’s efficiency is about 30% (Diehlmann and Häcker, 2013). It is further as-
sumed that gasoline contains 8.9 kWh/liter (Natural Resources Canada, 2018). 
 
Table 20: Daily gasoline saving potential for selected electric mobility scenarios 

Segment 1 2 3 4 5 6 7 8 ALL 
Segment name FLD LDOD SC UC SDDV LDDV TSV CR ALL 
Segment size 149 103 172 276 40 49 36 84 909 
% of fleet 16.4% 11.3% 18.9% 30.4% 4.4% 5.4% 4.0% 9.2% 100% 
Daily mileage [km] 51 48 47 52 83 85 181 178 70 
Modest scenario 
Electrified mileage [km] 36 16 34 29 65 57 65 49 40 
Electrified mileage share 71% 33% 72% 55% 79% 67% 36% 27% 57% 
Electricity demand [kWh] 3.90 1.97 4.06 3.40 4.87 5.67 6.39 5.12 3.91 
Gasoline savings [liters] 1.31 0.66 1.37 1.15 1.64 1.91 2.15 1.72 1.32 
Modest scenario with excellent battery capacity 
Electrified mileage [km] 48 39 45 48 80 83 159 152 64 
Electrified mileage share 94% 80% 96% 91% 96% 98% 88% 85% 91% 
Electricity demand [kWh] 6.56 6.60 6.30 7.38 8.79 9.78 20.72 19.59 8.80 
Gasoline savings [liters] 2.21 2.23 2.12 2.49 2.96 3.30 6.99 6.60 2.97 
Modest scenario with excellent infrastructure 
Electrified mileage [km] 43 29 41 39 77 82 138 122 55 
Electrified mileage share 84% 61% 86% 75% 93% 97% 77% 69% 78% 
Electricity demand [kWh] 5.14 4.33 5.23 5.33 7.53 9.58 16.77 15.07 6.85 
Gasoline savings [liters] 1.73 1.46 1.76 1.80 2.54 3.23 5.65 5.08 2.31 
Ambitious scenario 
Electrified mileage [km] 48 38 45 47 80 85 169 157 64 
Electrified mileage share 93% 79% 95% 89% 97% 99% 94% 88% 91% 
Electricity demand [kWh] 6.49 6.47 6.16 7.11 9.24 10.08 22.39 20.67 8.87 
Gasoline savings [liters] 2.19 2.18 2.08 2.40 3.12 3.40 7.55 6.97 2.99 
Excellent scenario 
Electrified mileage [km] 51 47 47 52 83 85 180 178 70 
Electrified mileage share 99% 99% 100% 99% 100% 100% 100% 100% 99% 
Electricity demand [kWh] 7.26 9.05 6.74 8.50 10.15 10.23 24.55 24.61 10.32 
Gasoline savings [liters] 2.45 3.05 2.27 2.86 3.42 3.45 8.28 8.30 3.48 
 
The gasoline saving potential is correlated with the amount of electrified mileage. Thus, 
particularly scenarios and segments with a high absolute mileage electrification poten-
tial are most promising candidates for gasoline saving. For example, in the “ambitious” 
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scenario the “technical service vehicle” (TSV) could save about 7.6 liters and the “com-
pany representative” (CR) could save about 7.0 liters of gasoline per day. In the “excel-
lent” scenario the gasoline saving potential increases to about 8.3 liters of gasoline per 
day for both segments. 
 
It is particularly interesting to note that the gasoline saving potential per 100 electrified 
km considerably increases with battery and infrastructure improvements. In the “mod-
est” scenario, on average 3.3 liters of gasoline per 100 electrified km (57% of overall 
mileage) could be saved. In the “excellent” scenario, this value increases to 5 liters of 
gasoline per 100 electrified km (99% of overall mileage). The most likely explanation is 
that improvements allow drivers to cover more energy-demanding distances electrically. 
 

3.4 Conclusioniv 
 
This study utilizes the high granularity and heterogeneity of a large sample of GPS driv-
ing data from conventional cars to assess the influence of battery capacity, charging 
infrastructure coverage, and charging power on the electrification of vehicle mileage. 
Results confirm – in line with the existing literature – that vehicles with small battery 
capacities and with a limited charging infrastructure are sufficient for a considerable 
portion of trips. 
 
With 3.7 kW primary (e.g., home) charging, a 9.4 kWh PHEV can reach 73% of desti-
nations fully electrically. Both charging infrastructure measures and larger PHEV bat-
teries foster the electrification of transport. In this context, the systematic assessment 
of 180 distinct electric mobility scenarios allows us to evaluate the interdependence of 
charging infrastructure and vehicle battery capacity requirements with regard to their 
usefulness. 
 
Current automotive market developments in terms of electric range (Slowik, Pavlenko, 
and Lutsey, 2016) and the anticipation that costs for infrastructure measures – including 
labor and equipment – remain high (National Academy of Sciences, 2015) particularly 
emphasize the significance of long-range electric vehicles. Furthermore, the acquisition 
of a vehicle with sufficient electric range lies within the individual driver’s domain which 
suggests an appropriate use of resources, while large scale charging infrastructure 
measures entail the risk of misallocation and low utilization of charging facilities. 
 
In fact, an extensive charging infrastructure development is not essential for a vast ma-
jority of trips, if vehicles are equipped with reasonably large batteries. For example, if 
abovementioned vehicles could be charged with 3.7 kW at every parking location, the 
portion of electrically reachable destinations would be increased by 24% from 73% to 
91%. However, the same portion of about 91% would be feasible if instead a 56.4 kWh 
PHEV could be charged at 3.7 kW at home only. With a large 112.8 kWh battery, this 
figure rises to 95% when home charging is the only charging option and to 97% if charg-
ing is also possible at the secondary parking location. 
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Still, even elementary electric mobility scenarios have a considerable impact on the 
electric grid. For example, abovementioned 9.4 kWh PHEV that is charged at the pri-
mary charging facility with 3.7 kW demands about 3.9 kWh per day to reach 73% of 
destinations electrically (i.e., electrify 57% of mileage). This strain placed on the electric 
grid is particularly high during peak times in the evening around 18 o’clock. 
 
With larger PHEV batteries, the portion of electrically drivable mileage and with it the 
demand for energy increases. For example, if the 9.4 kWh battery was replaced by a 
112.8 kWh battery, 95% of destinations could be reached electrically (i.e., electrify 91% 
of mileage), however, daily energy demand would rise to 8.8 kWh. With additional 
charging infrastructure expansions, such as a secondary private charging opportunity 
and 50 kW public chargers at 10% of parking locations, 9.6 kWh would be required each 
day to reach 98% of destinations (i.e., electrify 96% of mileage). 
 
While results suggest that both battery capacity and charging infrastructure improve-
ments increase the portion of electrically reachable destinations, the impact of charging 
power improvements is negligible. This is particularly important for the evaluation of 
home charging opportunity expansions. Due to long parking times (e.g., at night) the 
availability of a fast charging opportunity at home is hardly relevant. Still, public fast 
charging facilities may provide convenience and flexibility for the driver (Schroeder and 
Traber, 2012). 
 
Furthermore, distinct mobility characteristics – including mileage, speed, and parking 
time – can be used to segment drivers into distinct groups. Such an approach shows 
that some segments are better suited for electric mobility than others and that variations 
in the actual driving needs of customer groups greatly influence the effectiveness of 
solutions and therefore should be given close attention. 
 
For particular groups, such as “frequent local drivers” (FLD), “commuters” (SC and UC), 
or “short-distance delivery vehicles” (SDDV), limited battery capacities and basic charg-
ing opportunities are sufficient. For example, a 9.4 kWh battery capacity and a 3.7 kW 
home charging facility are sufficient to reach more than 79% of destinations electrically 
(89%, 86%, 79%, and 86%). Other groups, such as “company representatives” (CR) or 
“technical service vehicles” (TSV) reach only about 33% and 44% of destinations elec-
trically. Here, a 56.4 kWh and a 37.6 kWh battery capacity would be required to make 
more than 75% of destinations electrically reachable (77% and 76%). With a 56.4 kWh 
battery, “long-distance occasional drivers” (LDOD) and “long-distance delivery vehicles” 
(LDDV) would increase their portion of electrically reachable destinations from 54% and 
69% to 80% and 97%. “Frequent local drivers” (FLD), “commuters” (SC and UC), and 
“short-distance delivery vehicles” (SDDV) would reach 96%, 97%, 93%, and 96% of 
destinations electrically. 
 
With a very large battery (112.8 kWh), results further improve. While drivers of most 
segments would reach almost all destinations electrically (FLD: 98%, SC: 99%, UC: 
97%, SDDV: 98%, LDDV: 98%). Fast long-range “long-distance occasional drivers” 
(LDOD), “company representatives” (CR), and “technical service vehicles” (TSV) would 
reach about 90% of their destinations (88%, 87%, 90%). 
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If instead of a larger battery, a better charging infrastructure was available, such that 
7.4 kW charging was possible both at home and at a secondary charging facility and 
50 kW public charging was possible at 10% of parking locations, drivers of most seg-
ments would reach about 90% of destinations electrically (FLD: 94%, SC: 92%, UC: 
88%, SDDV: 93%, LDDV: 90%). “Long-distance occasional drivers” (LDOD), “company 
representatives” (CR), and “technical service vehicles” (TSV) would reach only about 
70%, 54%, and 64% of destinations electrically. 
 
If both a larger battery (56.4 kWh) and a better charging infrastructure (7.4 kW home 
and secondary charging, 50 kW public charging at 10% of parking locations) were avail-
able, drivers in most segments would reach almost all of their destinations electrically 
(FLD: 99%, SC: 99%, UC: 97%, SDDV: 99%, LDDV: 100%, TSV: 95%). “Long-distance 
occasional drivers” (LDOD) and “company representatives” (CR) would both reach only 
about 90% and 91% of their destinations electrically. 
 
If both a very large battery (112.8 kWh) and a better charging infrastructure (7.4 kW 
home and secondary charging, 50 kW public charging at 10% of parking locations) were 
available, reachability figures for drivers in almost all segments would increase to about 
99-100% (FLD: 100%, SC: 100%, UC: 99%, SDDV: 100%, LDDV: 100%, TSV: 99%). 
“Long-distance occasional drivers” (LDOD) and “company representatives” (CR) could 
reach about 96% and 97% of destinations electrically. 
 
In conclusion, it can be summarized that for a great majority of drivers the availability of 
PHEVs with large but realistic battery capacities can resolve concerns about the avail-
ability of an extensive charging infrastructure. Still, results might be somewhat biased 
by particular characteristics of the data. With long electric range vehicles in mind and 
regarding current research literature, future work should focus on an assessment of the 
need for a long-distance charging infrastructure and on regional variations of charging 
infrastructure and electricity demand. 
 

iii Major parts of this chapter (also including figures and tables) have been taken from an earlier version of the coauthored 

work (Wenig, Sodenkamp, and Staake, 2019) and were adapted where applicable. 

iv Major parts of this subchapter (also including figures and tables) have been taken from an earlier version of the coauthored 

work (Wenig, Sodenkamp, and Staake, 2019) and were adapted where applicable. 
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4 Potential for photovoltaic charging and load 
shifting at home 

 

4.1 Introduction 
 
The transition from combustion-based transportation to electric transportation has a 
considerable impact on the power grid, which is clearly shown when directly comparing 
the increased energy demand for vehicle charging with the electricity demand of do-
mestic households (Wenig, Sodenkamp, and Staake, 2015). Still, while conventional 
combustion-based vehicles heavily depend on crude oil resources, one favorable as-
pect of electric mobility is that other energy sources, such as solar energy, can be used 
for transportation (Lund, 2007). 
 
Against this backdrop, feasible measures to reduce the additional strain on the grid 
caused by PHEV charging include the utilization of household level photovoltaic sys-
tems to support both energy for the household itself and the charging of the vehicle and 
the application of managed charging. 
 
In the following, related research work that employs GPS driving data analytics to have 
a closer look at the grid impact of both PHEVs and battery electric vehicles is reviewed. 
Here, particularly the utility of home charging, of managed charging, and of photovoltaic 
systems for vehicle charging is addressed. 
 
(Betz, Walther, and Lienkamp, 2017) estimate the amount of energy demanded by com-
mercial vehicles when the employee charges the electric car at home and 
(Shahidinejad, Filizadeh, and Bibeau, 2012) assess the grid impact of electric vehicles 
at the home charging location and provide the respective load profiles. 
 
(De Gennaro, Paffumi, Scholz, et al., 2014, 2013; Paffumi, De Gennaro, Martini, et al., 
2015) compare several charging strategies and assume that characteristics such as 
overnight charging or a certain minimum parking duration indicate home charging. They 
discuss the need for and the potential of managed charging – such as off-peak charging 
at night – to manage the grid impact of electric mobility. 
 
(Ashtari, Bibeau, Shahidinejad, et al., 2012) compare the grid impact of electric vehicles 
with the typical load profile (without electric vehicles) in the respective region. This par-
ticularly includes home charging scenarios and shows that the charging of electric ve-
hicle leads to increased peaks in the load profile. The impact of parameter variations, 
such as arrival and departure times, charging scenarios, or vehicle parameters on the 
load profile is discussed. 
 
Similarly, (Dong, Lin, Liu, et al., 2014) compare the grid impact of electric vehicles with 
the typical load profile of the related region. Their assessment particularly includes a 
scenario in which charging at home is prioritized. The utilization of managed charging 
is briefly discussed. 
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(Betz and Lienkamp, 2016) demonstrate the use of a photovoltaic system for electric 
vehicle charging within a commercial company. They show that – combined with a stor-
age system for surplus electrical energy – the self-consumption rate in such an organi-
zation can be considerably increased. 
 
(Denholm, Kuss, and Margolis, 2013) compare the grid impact of PHEVs with a typical 
local energy demand profile. They state that while off-peak charging of PHEVs at night 
relieves the stress on the electric grid, daytime charging – i.e., opportunity charging 
while the vehicle is parked – is necessary to maximize the mileage electrification poten-
tial. Against this background, they assess the potential for photovoltaic charging, includ-
ing charging delay to prioritize photovoltaic charging. They find that photovoltaic based 
charging opportunities can reduce the increased peak power grid impact caused by 
daytime PHEV charging. 
 
Similarly, (Chaouachi, Bompard, Fulli, et al., 2016) assess the grid impact of electric 
vehicles in the context of the typical electricity demand profile of the considered area. 
They state that home charging typically begins in the late afternoon and thus overlaps 
to a large part with high overall electricity demand. At the same time, photovoltaic gen-
eration is only available at daytime. Thus, they suggest a shift of charging demand to 
daytime hours and quantify the increased utility of such photovoltaic systems. 
 
(Wenig, Sodenkamp, and Staake, 2015) can be seen as a preparatory study that pre-
cedes this chapter. Here it was discussed to what extent energy from solar panels – at 
home and work place locations – during sunlight hours could be used to charge the 
battery of an electric vehicle. 
 
These studies assess the grid impact from PHEV charging and they discuss the use of 
managed charging and of photovoltaic systems. While they may also be viable for the 
assessment of the grid impact from PHEV charging at home locations, previous results 
particularly stress the importance of home charging for mileage electrification (c.f. 
(Sodenkamp, Wenig, Thiesse, et al., 2019; Wenig, Sodenkamp, and Staake, 2019, 
2015), and chapters 2 and 3, respectively), such that in the course of this chapter, an 
in-depth focus on the residential domain is set and a closer examination of the private 
household case is carried out. 
 
In (Wenig, Sodenkamp, and Staake, 2015) also the noteworthy potential for photovoltaic 
charging at a secondary charging facility was shown. Still, The perception of home 
charging as a most convenient method (Wenig, Sodenkamp, and Staake, 2015) and 
the importance of the residential sector for photovoltaic generation (SolarPower Europe, 
2017; U.S. Energy Information Administration, 2017) further motivate the focus on the 
home charging scenario. 
 
Linking the electricity demand of a single car to the electric load profile of a potentially 
larger organization is out of the scope of this chapter, because here strong assumptions 
which are difficult to justify (e.g., regarding the energy demand profile and size of a 
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typical enterprise or the availability and capacity of a photovoltaic system) would be 
necessary. 
 
As a consequence, and to contribute to the related work, this chapter aims at quantifying 
the grid impact of PHEVs in the private household domain by comparing the charging 
demand of vehicles with the load profile of a typical private household. Particularly, the 
availability of a home-based photovoltaic system is considered in order to assess its 
impact on the energy demand profile. 
 
Results from previous work also indicate that with unmanaged charging, vehicles are 
typically charged in the evening (or at noon), which results in power demand peaks if 
charging takes place immediately, using the available charging power (c.f. (Sodenkamp, 
Wenig, Thiesse, et al., 2019; Wenig, Sodenkamp, and Staake, 2019, 2015) and chap-
ters 2 and 3, respectively). However, home parking times are often much longer than 
charging times. Thus, peak power demand could be managed by shifting charging de-
mand from peak hours to less critical time periods (Palensky and Dietrich, 2011; 
Prüggler, 2013; Shimizu, Ono, Hirohashi, et al., 2016), or by reducing the charging 
power (Shimizu, Ono, Hirohashi, et al., 2016). 
 
In the following, the integration of PHEV charging demand and household electricity 
demand time series is suggested. The PHEV charging demand is derived from the GPS 
driving data-based simulation, while the household electricity demand is based on a 
typical standard household load profile (Schellong, 2016), as published by (Stadtwerke 
Unna; GIPS, 2018; Stadtwerke Unna, 2018). Statements on the energy demand of 
home-charged PHEVs can be provided at the individual household’s level for the entire 
time period represented in the mobility data and 24-hour load profiles can be derived. 
From here, two research tasks emerge. 
 
First, the potential for residential photovoltaic charging under realistic conditions can be 
estimated and compared with the assumed electricity demand profile of related private 
households of PHEV drivers. Location- and time-specific solar irradiation data (MINES 
ParisTech and Transvalor S.A., 2017) is utilized to estimate the energy generation po-
tential of a residential photovoltaic system (Hofierka and Kaňuk, 2009; Hopf, Kormann, 
Sodenkamp, et al., 2017). On this basis it can be assessed, to what extent a residential 
photovoltaic system could be used for PHEV charging and how this would change a 
household’s power demand curve. 
 
Second, also the application of a managed charging (i.e., load shifting) strategy for 
home-charging PHEVs takes place and the potential of load shifting for peak grid de-
mand reduction is assessed. A simple load shifting strategy is suggested that exploits 
the entire parking time window during a home charging event and thus allows PHEV 
charging with reduced power for a longer period of time. Consequently, during peak 
hours, the power demand impact is reduced while at the end of the parking event the 
same amount of energy has been charged. 
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4.2 Methodology 
 

4.2.1 Integration of household load profiles 
 
From 909 data sets used in (Wenig, Sodenkamp, and Staake, 2019) and in chapter 3, 
700 data sets that are supposed to relate to privately held vehicles form the data basis 
for this chapter. More specifically, the four segments (1) “frequent local driver” (FLD, 
n=149), (2) “long-distance occasional driver” (LDOD, n=103), (3) “steady commuter” 
(SC, n=172), and (4) “unsteady commuter” (UC, n=276) are included for the assessment 
of households. A manual inspection of satellite imagery supports the selection of these 
groups. The majority of respective primary charging locations (median coordinates) are 
typically residential. 
 
For this study, the Coordinated Universal Time in Central Europe (UTC+1) is assumed 
(Central Intelligence Agency, 2018a, 2018b) to merge the GPS data-based time series 
and both solar irradiation data and a synthetic household load profile. Such a choice 
appears to be reasonable as data from an Italian data provider and from Italian motorists 
was used (Ippisch, 2010). Only on rare occurrences, vehicles drive outside of the de-
scribed time zone, possibly because of vacation, business trips, etc. Thus, for the sake 
of comparability of results, UTC+1 is used in the overall context of this work. 
 
A standard load profile for generic private households can be used as a data basis for 
household electricity demand assessment (Schellong, 2016; Stadtwerke Unna; GIPS, 
2018; Stadtwerke Unna, 2018). The data provides information for work days, Saturdays, 
Sundays, summer, winter, and intermediate seasons. Furthermore, the data can be ad-
justed to the varying yearly electricity consumption of an average household in the re-
spective region (Schellong, 2016; World Energy Council, Enerdata, and ADEME, 2016). 
The process of generating a household load profile is based on (Schellong, 2016). 
 
Additional regional or seasonal adjustments of the standard load profiles, caused for 
example by temperature (Schellong, 2016), are out of the scope of this chapter. Partic-
ularly the popularity of air conditioning equipment in warmer Mediterranean regions (De 
Almeida, Fonseca, Schlomann, et al., 2011) is not considered in this study. 
 
According to (Schellong, 2016), holidays equate Sundays when applying the standard 
household load profile. Therefore, the households’ load curves for Sundays are used 
during national holidays (Ambasciata d’Italia Londra, 2018). Furthermore, instead of the 
seasonal time periods from (Schellong, 2016), meteorological seasons (Trenberth, 
1983) are used for reasons of comprehensibility and comparability of results. Apart from 
this, the standard load profile is adjusted to the typical yearly energy demand of house-
holds. 
 
GPS data of Italian drivers from 2007 to 2009 is combined with a German standard load 
profile from 2002. No representative standard load profile for Italy or the European area 
was found. (Eckstein, Buddeke, and Merten, 2015) support the observation that cur-
rently no appropriate alternative to the German standard load profile is available and 
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also indicate that load profiles for different parts of Europe are roughly comparable. 
Therefore, the proposed utilization of the standard load profile is justified. 
 
In summary, for each vehicle – respectively for each car owner – a synthetic household 
electricity demand time series is generated and merged with the home charging demand 
data derived from the PHEV simulation. 
 

4.2.2 Integration of residential photovoltaic systems 
 
The home location of a car (i.e., primary cluster with monthly variation) is assumed to 
be the location of the household. Consequently, time and location sensitive global hor-
izontal irradiation (GHI) data from CAMS radiation service (MINES ParisTech and 
Transvalor S.A., 2017) can be  obtained for these locations. The basic functionality of 
merging GPS driving data with irradiation data was demonstrated in (Wenig, 
Sodenkamp, and Staake, 2015). 
 
15 latitudinal locations (daily limit of solar data service at the time of implementation) 
between the most northern and the most southern home locations of all vehicles are 
assumed in order to grab GHI data. The observation of annual average GHI on a world 
map (as for example provided in (World Bank Group, 2018)) indicates that such an 
approach sufficiently considers variations in irradiation for different latitudinal locations. 
For the longitudinal location, the mean longitude of entries is used. 
 
Irradiation data will refer to the closest primary parking location of the vehicle. Because 
of the monthly clustering approach, a vehicle (respectively a driver) can have several 
primary – or home base – locations. However, the assumed household remains the 
same. When the vehicle is not parked at home, the location of the household is assumed 
to be the average of latitudinal and longitudinal coordinates. 
 
GHI data from CAMS radiation service is grabbed automatically (MINES ParisTech and 
Transvalor S.A., 2017) at these locations and adjusted to the UTC+1 time zone. GHI 
data is merged with household data and parking event data to provide an integrated 
time series with one-hour granularity. 
 
A photovoltaic system can be integrated into the household. Based on (Hofierka and 
Kaňuk, 2009; Hopf, Kormann, Sodenkamp, et al., 2017) the hourly generated energy 
𝐺&' of the photovoltaic system is estimated as follows: 𝐺&' = 𝐴&' ∙ 𝛿&' ∙ 𝐺𝐻𝐼. 
 
Here, the surface area of the photovoltaic cells 𝐴&' is assumed to be 10 m2, as inspired 
by (Hofierka and Kaňuk, 2009) and the efficiency of the photovoltaic system 𝛿&' is as-
sumed to be 14% (17% module efficiency and 80% performance ratio (Fraunhofer ISE, 
2017)). GHI is derived from the time series provided by (MINES ParisTech and 
Transvalor S.A., 2017). 
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4.2.3 Integration of a load shifting strategy 
 
The electricity demand of the PHEV can be managed by means of a load shifting strat-
egy. Particularly charging at night appears to be promising. In the algorithmic implemen-
tation, the energy demanded for charging the car is shifted such that the entire time 
window of the parking event can be exploited for charging. The approach could poten-
tially lower the electric vehicle charging peak demand (for example in the evening) with-
out changing the state of charge of the vehicle’s battery at the end of the parking event 
when the next trip begins. 
 
In the following, the basic idea of the load shifting strategy is briefly explained. Note 
however, that in the algorithmic implementation the hourly-based charging behavior of 
a lithium-ion battery is assumed, such that a state of charge greater than 80% leads to 
a longer charging time (c.f. (Sodenkamp, Wenig, Thiesse, et al., 2019; Wenig, 
Sodenkamp, and Staake, 2019, 2015) and chapters 2 and 3). The unmanaged charging 
approach assumes that the car can be charged as fast as possible by taking advantage 
of the full available charging power 𝑃 without using the entire available parking time for 
charging. 
 
If the parking duration 𝑑 is long, such that 𝑃 ∙ 𝑑 < 𝐵 − 𝑠𝑜𝑐X with 𝐵 being the battery 
capacity and 𝑠𝑜𝑐X being the state of charge when the vehicle arrives at the charging 
location, only a part of the duration 𝑑 is used for charging. However, the entire parking 
time – for example during long night parking time windows – could be utilized, such that 
the vehicle could be fully charged just in time when a driver wants to depart after the 
parking event. 
 

Here, 𝑃Y =
ZPY[#\

*
, such that the charging strategy takes advantage of the entire parking 

duration and charging power 𝑃Y ≤ 𝑃 with 𝑃Y being the charging power when a load shift-
ing strategy is applied. This has the potential to reduce peak power demand, as will be 
shown in subsequent sections, while the amount of charged energy remains un-
changed. 
 

4.3 Results 
 

4.3.1 Comparison of parking and charging times 
 
First, parking times and charging times are compared using the average profile of 700 
simulated PHEVs. A PHEV with a 112.8 kWh battery is assumed. This is motivated by 
the considerably high mileage electrification potential of large PHEVs with large batter-
ies in home charging scenarios, as demonstrated in chapter 3 and in (Wenig, 
Sodenkamp, and Staake, 2019). Furthermore, 7.4 kW home charging facilities are con-
sidered. Parking time is assessed at hourly granularity. 
 
The analysis of average parking times indicates that at this home location the vehicle is 
typically parked during nighttime hours. In the previous chapter it was shown that there 
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is a charging demand peak in the evening, while the remaining parking time at night is 
not used for charging. From this, a considerable potential for load shifting with the ob-
jective of peak demand reduction in the evening can be identified. A smaller charging 
demand peak around noon indicates a potential for photovoltaic charging during day-
time hours. 
 

4.3.2 Grid Impact on the Household Level and Photovoltaic System 
Integration 

 
In the following, the implementation of the suggested simulation model is presented for 
a representative electric mobility scenario. It again assumes a 7.4 kW home charging 
opportunity, a 10 m2 residential photovoltaic system, and a 112.8 kWh battery capacity 
of the PHEV. Again, the average of 700 synthetic households, together with 700 simu-
lated PHEVs and 700 simulated photovoltaic systems is given. In addition to the as-
sessment of a residential photovoltaic system, both a managed and an unmanaged 
charging approach are compared. 
 

 

 
Figure 26: 24-hour load profiles for the average household with PHEV use and 

photovoltaics 
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Figure 27: 24-hour load profiles for the average household with PHEV use and 

load shifting 

 

 

 
Figure 28: 24-hour load profiles for the average household with PHEV use and 

both photovoltaics and load shifting 
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Figure 26 and Figure 27 draft the average 24-hour load profile of a household (blue 
line). The red line shows the charging demand profile of the PHEV. The energy demand 
of both the household and the PHEV is depicted in black. The dashed lines indicate the 
effect of using electricity from a photovoltaic system for the household and for PHEV 
charging (Figure 26) and of a load shifting approach for vehicle charging (Figure 27). 
The yellow line in Figure 26 depicts the electricity that can be generated by the photo-
voltaic system. 
 
The utilization of a photovoltaic system reduces the daytime energy demand; particu-
larly during peak demand hours around noon. With a load shifting approach, energy 
demand in the evening is shifted to night and morning hours. 
 
In Figure 28 the impact of both the use of a photovoltaic system and the application of 
load shifting is shown. The figure clearly shows that this combination leads to decreased 
electricity demand peaks both at noon and in the evening. 
 

4.3.3 Comparison of Driver Segments 
 
Results are based on presumably private car holders. From this, differences between 
groups of drivers can be further analyzed, such that the PHEV charging load, the house-
hold load profile, the impact of the utilization of a residential photovoltaic system, and 
the impact of a load shifting strategy can be compared for each of the considered seg-
ments. 
 
In (Wenig, Sodenkamp, and Staake, 2019) and in chapter 3, four driver segments that 
are assumed to be related to private car holders were identified. Key results for the grid 
impact assessment at household level differ for each segment, as depicted in Table 21. 
 
Table 21: Grid impact assessment for each segment (112.8 kWh PHEV, 7.4 kW 

home charging, 10 m2 photovoltaic system) 

Segment 1 2 3 4 ALL 
Segment name FLD LDOD SC UC ALL 
Segment size 149 103 172 276 700 
% of fleet 21.3% 14.7% 24.6% 39.4% 100% 
Daily photovoltaic energy output [kWh] 5.5 5.5 5.5 5.5 5.5 
Daily electricity grid demand [kWh] 
Household 7.6 7.6 7.6 7.6 7.6 
PHEV charging 6.7 6.8 6.3 7.5 6.9 
" using photovoltaics 5.9 6.4 5.8 6.9 6.3 
" using photovoltaics & load shifting 5.5 6.0 5.4 6.6 6.0 
Household and PHEV charging 14.3 14.4 14.0 15.1 14.5 
" using photovoltaics 10.7 11.0 10.5 11.6 11.0 
" using photovoltaics & load shifting 10.5 10.8 10.3 11.4 10.9 
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The average household in this simulation requires 7.6 kWh of electricity per day and 
additional 6.9 kWh for charging the PHEV. The residential photovoltaic system can gen-
erate 5.5 kWh per day on average. If energy from the photovoltaic system is used to 
cover the household energy demand and the charging demand of the PHEV, a demand 
of about 11 kWh remains on average per day and has to be drawn from the power grid. 
 
It is interesting to note that with load shifting, slightly more energy from the photovoltaic 
system can be used for charging. Apparently, with the resulting decrease in peak charg-
ing power and with longer charging time windows during daytime hours, more solar 
energy that is not consumed by the household can be used to charge the vehicle. 
 

 
Figure 29: 24-hour load profiles for the average household with PHEV use and 

both photovoltaics and load shifting (FLD) 

 

 
Figure 30: 24-hour load profiles for the average household with PHEV use and 

both photovoltaics and load shifting (LDOD) 
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Figure 31: 24-hour load profiles for the average household with PHEV use and 

both photovoltaics and load shifting (SC) 

 

 

Figure 32: 24-hour load profiles for the average household with PHEV use and 
both photovoltaics and load shifting (UC) 

 
Supplementary to Figure 28, in Figure 29 to Figure 32, the varying 24-hour load profiles 
for the average PHEV (solid red line) and the average household with PHEV use (solid 
black line) are depicted for each segment. Profiles are roughly comparable with peak 
charging demand occurring at noon and in the evening. Still, these peaks are less pro-
nounced for the “long-distance occasional driver” (LDOD) segment. For all of the seg-
ments, peaks at noon and in the evening can be reduced by means of photovoltaic 
charging and load shifting, as a comparison of the solid and the dotted red and black 
lines shows. 
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4.3.4 The impact of home charging power 
 
In the following Figure 33 to Figure 35, results for the low 3.7 kW and high 22.1 kWh 
home charging power scenarios from (Wenig, Sodenkamp, and Staake, 2019) and 
chapter 3 are contrasted. This comparison includes the impact of photovoltaic charging 
(Figure 33) and of a load shifting strategy (Figure 34) for the average over all residential 
households for each pair of graphical representations. In (Figure 35), the impact of a 
combination of photovoltaic charging and load shifting is depicted. 
 
A comparison of Figure 33 a) and Figure 33 b), shows that power demand peaks at 
noon and in the evening are significantly greater if charging power is higher. However, 
electricity from a photovoltaic system (yellow line) can be used more effectively during 
sunlight hours, particularly at noon, if the overall charging power is lower, as can be 
observed when comparing the  grid power demand of a car with (dotted red line) and 
without the use of photovoltaic charging (solid red line) in Figure 33 a) and in Figure 33 
b). 
 
In Figure 34 the effect of load shifting on the 24-hour-load profile for the average driver 
is visualized when a) 3.7 kW or b) 22.1 kW charging power is available. For the 3.7 kW 
case the effect is limited, while for the 22.1 kW case, a load shifting strategy has a 
noteworthy effect on peak grid impact alleviation; apparently because often the higher 
available charging power is not needed to fully charge the battery just in time before the 
start of the next trip. This becomes clear when comparing the solid red line (without load 
shifting) and the dotted red line (with load shifting) in Figure 34 a) and in Figure 34 b). 
 
Figure 35 visualizes the 24-hour load profiles for a combination of both a photovoltaic 
system and a load shifting strategy. Again, a) 3.7 kW and b) 22.1 kW are compared. 
Particularly in the 22.1 kW case, such a combination helps further alleviating demand 
peaks, both at noon and in the evening. 
 
Notably, here the combination of a load shifting strategy and photovoltaic charging can 
help further reducing the peak charging power demand at noon, as becomes clear when 
comparing Figure 33 b) with Figure 35 b). The load shifting approach leads to longer 
charging time windows with reduced charging power if the parking duration is sufficiently 
high. This also results in a prolonged use of the photovoltaic energy output for PHEV 
charging. 
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a) 3.7 kW charging power 

 
b) 22.1 kW charging power 

 
Figure 33: 24-hour load profiles for the average household with PHEV use and 
photovoltaics when a) 3.7 kW and b) 22.1 kW charging power is available. 
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a) 3.7 kW charging power 

 
b) 22.1 kW charging power 

 
Figure 34: 24-hour load profiles for the average household with PHEV use and 

load shifting when a) 3.7 kW or b) 22.1 kW charging power is available. 
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a) 3.7 kW charging power 

 
b) 22.1 kW charging power 

 
Figure 35: 24-hour load profiles for the average household with PHEV use and 
both photovoltaics and load shifting when a) 3.7 kW or b) 22.1 kW charging 

power is available. 

 
In Table 22, these results are provided in aggregated form for the average of an entire 
day and in addition, key figures are given for each segment. These key figures support 
the observation that a combination of photovoltaic charging and a load shifting strategy 
is particularly valuable in the 22.1 kW charging scenario. 
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If 3.7 kW home charging is possible, photovoltaic charging can reduce the grid energy 
demand from 6.8 kWh to 6.0 kWh per day (88%). With a load shifting strategy this value 
further decreases to 5.7 kWh (85%). 
 
If 22.1 kW home charging is possible, photovoltaic charging reduces the energy demand 
from the grid from 7.0 kWh to 6.5 kWh (94%). However, if both photovoltaic charging is 
possible and a load shifting strategy is applied, this value decreases further to 6.1 kWh 
(87%). 
 
About two third of energy generated by the photovoltaic system can be used to provide 
energy for the household and to charge the PHEV with solar energy in both the 3.7 kW 
and 22.1 kW home charging power case. The remaining one third could not be used 
locally. 
 
Table 22: Grid impact assessment for each segment, comparing a home charg-

ing power of a) 3.7 kW and b) 22.1 kW 

Segment 1 2 3 4 ALL 
Segment name FLD LDOD SC UC ALL 
Segment size 149 103 172 276 700 
% of fleet 21.3% 14.7% 24.6% 39.4% 100% 
Daily photovoltaic energy output [kWh] 5.5 5.5 5.5 5.5 5.5 
Daily electricity grid demand [kWh] 
Household 7.6 7.6 7.6 7.6 7.6 
a) 3.7 kW home charging power           
PHEV charging 6.6 6.5 6.3 7.3 6.8 
" using photovoltaics 5.5 5.9 5.5 6.5 6.0 
" using photovoltaics & load shifting 5.3 5.6 5.3 6.3 5.7 
Household and PHEV charging 14.2 14.1 13.9 14.9 14.4 
" using photovoltaics 10.5 10.6 10.4 11.3 10.8 
" using photovoltaics & load shifting 10.3 10.5 10.2 11.2 10.7 
b) 22.1 kW home charging power           
PHEV charging 6.7 6.9 6.3 7.5 7.0 
" using photovoltaics 6.1 6.7 5.9 7.1 6.5 
" using photovoltaics & load shifting 5.6 6.2 5.4 6.7 6.1 
Household and PHEV charging 14.4 14.5 14.0 15.1 14.6 
" using photovoltaics 10.8 11.2 10.5 11.7 11.2 
" using photovoltaics & load shifting 10.6 10.9 10.3 11.5 10.9 
 

4.3.5 The effect of a larger photovoltaic system 
 
The effect of a larger photovoltaic system is assessed as well. While in the previous 
scenarios, a 10 m2 photovoltaic system was considered, in this section, the area of the 
photovoltaic system is assumed to be 42.56 m2, which is inspired by the average living 
area of a person in Europe (European Commission, 2011). Typical living areas of 
households may be larger, but when considering for example the roof slope or multiple 
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floors, this assumption appears to be reasonable. Results are provided for the 7.4 kW 
home charging case, using a 112.8 kWh PHEV. 
 
Table 23: Grid impact assessment for each segment, using 42.56 m2 photovol-

taic systems 

Segment 1 2 3 4 ALL 
Segment name FLD LDOD SC UC ALL 
Segment size 149 103 172 276 700 
% of fleet 21.3% 14.7% 24.6% 39.4% 100% 
Daily photovoltaic energy output [kWh] 23.2 23.3 23.2 23.3 23.3 
Daily electricity grid demand [kWh] 
Household 7.6 7.6 7.6 7.6 7.6 
PHEV charging 6.7 6.8 6.3 7.5 6.9 
" using photovoltaics 4.7 5.8 4.9 6.0 5.4 
" using photovoltaics & load shifting 4.6 5.2 4.7 5.8 5.2 
Household and PHEV charging 14.3 14.4 14.0 15.1 14.5 
" using photovoltaics 8.5 9.4 8.6 9.7 9.2 
" using photovoltaics & load shifting 8.4 9.0 8.5 9.6 9.0 
 

 
Figure 36: 24-hour load profiles for the average household with a 42.56 m2 pho-

tovoltaic system, PHEV use and load shifting 

 
In Table 23, key figures for the average driver and for each segment are provided. It is 
assumed that a 42.56 m2 photovoltaic system is available. When comparing Table 23 
(42.56 m2) and Table 21 (10 m2), results show that even more solar energy can be used 
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to provide the electricity both for the household and for PHEV charging. Still, the overall 
daily photovoltaic energy output is only used to a lesser part for self-consumption. 
 
Figure 36 provides the 24-hour load profile for an average household with PHEV use 
and load shifting, when instead of a 10 m2 photovoltaic system, a 42.56 m2 area is 
available. Figure 36 can be compared with Figure 28 (10 m2 photovoltaic system) to 
show that on average, such a sufficiently large photovoltaic system can provide almost 
the entire demanded electricity around noon. 
 

4.3.6 The effect of a smaller vehicle battery capacity 
 
In this subsection, the effect of a smaller 18.8 kWh vehicle battery capacity is assessed. 
This capacity value was chosen to enable an appropriate comparison of observations 
from the previous chapter 3 and (Wenig, Sodenkamp, and Staake, 2019). Results are 
given for the 7.4 kW home charging case, assuming a 10 m2 area of the photovoltaic 
system. 
 

 
Figure 37: 24-hour load profiles for the average household with 18.8 kWh PHEV 

use and both photovoltaics and load shifting 

 
Figure 37 depicts the 24-hour load profiles for the average household when instead of 
a battery capacity of 112.8 kWh (c.f. Figure 28), a smaller 18.8 kWh battery is used. 
Again, the impact of both a residential photovoltaic system and of a load shifting strategy 
is assessed. Results show that energy demand peaks at noon and in the evening are 
reduced. 
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Table 24 provides key figures for the average driver and for individual segments. The 
comparison of Table 24 (112.8 kWh) and Table 21 (18.8 kWh), shows that despite a 
lower energy demand, the amount of energy that could be used from the photovoltaic 
system is roughly the same. 
 
Table 24: Key results for each segment when an 18.8 kWh PHEV is available 

Segment 1 2 3 4 ALL 
Segment name FLD LDOD SC UC ALL 
Segment size 149 103 172 276 700 
% of fleet 21.3% 14.7% 24.6% 39.4% 100% 
Daily photovoltaic energy output [kWh] 5.5 5.5 5.5 5.5 5.5 
Daily electricity grid demand [kWh] 
Household 7.6 7.6 7.6 7.6 7.6 
PHEV charging 4.7 3.0 4.9 4.5 4.4 
" using photovoltaics 4.0 2.8 4.4 4.0 3.9 
" using photovoltaics & load shifting 3.6 2.4 4.0 3.7 3.6 
Household and PHEV charging 12.3 10.6 12.5 12.1 12.0 
" using photovoltaics 8.8 7.3 9.0 8.7 8.6 
" using photovoltaics & load shifting 8.6 7.1 8.9 8.5 8.4 
 

4.4 Conclusion 
 
The comparison of the home charging demand profile of a typical PHEV and the load 
profile of a private household shows that they roughly resemble each other. Charging 
events of PHEVs frequently occur at noon or in the evening and therefore overlap with 
peak electricity demand times of typical private households, such that both the overall 
electricity demand of these households and peak electricity demand at noon and in the 
evening considerably increase. 
 
Consequently, the utility of a residential photovoltaic system for electricity demand peak 
mitigation was assessed in a data-based simulation approach. Results show that resi-
dential photovoltaic systems could be utilized to relief the stress on the electric grid and 
to reduce the amount of demanded energy. Particularly during time windows around 
noon with both high solar irradiation and a peak in electricity demand, solar energy could 
be used to reduce the peak load. 
 
Such a utilization of solar energy for PHEV charging increases the energy self-suffi-
ciency of the household and the utility of the household’s photovoltaic system. Further-
more, a part of the energy required for passenger transportation can be provided by a 
renewable source. Still, only a portion of the energy that is generated by the residential 
photovoltaic system can be used by the household itself or for PHEV charging because 
the usage is limited to daylight hours. Electricity demand peaks in the evening remain 
unchanged. 
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Here, results indicate that he application of a load shifting strategy could help reducing 
these pronounced power demand peaks in the evening. To do so, long overnight park-
ing time windows are exploited for charging, such that charging power and as a conse-
quence, peak power demand in the evening can be significantly decreased. By utilizing 
such a managed charging approach, the electricity demand is distributed more evenly 
over the whole parking period without affecting the state of charge of the battery at the 
end of the parking period, when the PHEV is used again. 
 
Finally, the comparison of distinct private driver segments shows that electricity demand 
profiles of different groups share some similarities. Notably, power demand peaks occur 
at noon and in the evening, even though the average peak demand level may vary. This 
indicates that suggested measures to influence the PHEV charging demand profile – 
using solar energy and applying a load shifting strategy – could be applied by a greater 
variety of PHEV driver groups. 
 
The results that were presented in this chapter and the underlying methodology can 
help to assess the potential use of solar energy and of load shifting for vehicle charging. 
The observations indicate that electric mobility has a considerable impact on the energy 
demand profile of individual households and that both residential photovoltaic systems 
and managed home charging can relax the peak electricity demand of PHEVs. 
 
To further increase the utility of photovoltaic systems for PHEV charging, future work 
could assess stationary batteries that temporarily store surplus solar energy during time 
windows with high photovoltaic energy generation (e.g., at noon) for later use during 
hours with little or no solar energy output (i.e., at night) (Betz and Lienkamp, 2016; 
Truong, Naumann, Karl, et al., 2016). Furthermore, managed charging strategies that 
prioritize the use of solar energy (Chaouachi, Bompard, Fulli, et al., 2016) could be 
created and assessed. 
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5 Discussion 
 

5.1 Research problem and aim of this thesis 
 
This work is concerned with the assessment of mobility scenarios to help making better 
decisions concerning the implications of electric driving. The thesis builds upon a simu-
lation based approach that employs GPS driving data to assess electric mobility sce-
narios and to derive insights on the potential for mileage electrification of combustion-
based vehicles and the resulting electricity grid impact (Wenig, 2014a, 2014b; Wenig, 
Sodenkamp, and Staake, 2015). To further develop and extend this preliminary work, 
four specific research problems are approached. 
 
First, the application of a cluster analysis procedure is applied in chapter 2 and in 
(Sodenkamp, Wenig, Thiesse, et al., 2019), respectively, to identify and compare typical 
vehicle usage patterns. To do so, variables that appropriately reflect the energy con-
sumption and charging behavior of an electric car (such as driven distance and speed 
or the home parking duration) are utilized to segment drivers according to their mobility 
needs. Distinct driver segments emerge and are evaluated with regard to their readiness 
for electric car adoption. 
 
Second, an evaluation of both vehicle battery size and private and public charging in-
frastructure requirements for electric mobility takes place. The topic is presented in 
chapter 3 and in (Wenig, Sodenkamp, and Staake, 2019), respectively. 
 
Influencing factors – battery capacity, charging power, charging infrastructure coverage 
– are systematically evaluated. The presented methodology allows for the assessment 
of the substitutability between extended battery capacities (and therefore electric range) 
and charging infrastructure measures. 
 
Third, in chapter 4, home charging demand time series are derived from the previous 
application of the simulation approach and compared with typical private household 
electricity demand patterns and with the expected photovoltaic energy generation po-
tential of a residential photovoltaic system. 
 
Consequently, the utility and effect of distributed (i.e., solar) energy sources for PHEV 
charging can be included in the simulation. From this, the potential for peak grid impact 
reduction – particularly during time windows around noon with strong solar irradiation – 
is estimated. 
 
Fourth, and in addition to the procedure in chapter 4, an assessment of managed charg-
ing (i.e., load shifting) for peak grid demand reduction takes place. A simple load shifting 
strategy takes advantage of parking durations that exceed regular charging times, such 
that the charging power usage and consequently the peak electricity demand – partic-
ularly in the evening – are reduced and shifted to later hours. 
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In the following, these four research issues are addressed in more detail. Major results 
and observations are recapitulated, and consequent implications are discussed from 
the policy, customer, energy supplier, automotive industry, research, and environmental 
perspective. 
 

5.2 Major findings and implications 
 

5.2.1 Driver segmentation 
 
In chapter 2 and in (Sodenkamp, Wenig, Thiesse, et al., 2019), real-world GPS-based 
mobility data from a large sample of conventional car drivers was assessed and by 
means of a partitioning-based cluster analysis approach, individual driver segments 
were identified on the foundation of their distinct vehicle usage patterns. Thus, group 
specific knowledge on drivers is utilized for a segment-wise evaluation of electric vehicle 
utility and impact. 
 
This particularly includes the quantification of mileage that could be electrified and the 
charging impact on the power network for each group. It can be discovered that the 
mileage electrification potential for different segments varies drastically, indicating that 
mobility solutions such as vehicle range and the availability of secondary (e.g., work-
place) charging facilities should be tailored to realistic customer needs. 
 
For example, drivers with demanding mobility requirements especially profit from larger 
batteries and long roundtrip distance drivers gain from an additional charging oppor-
tunity. This is particularly important to note because drivers with high overall mileage 
can electrify the highest absolute number of kilometers, even though this does not nec-
essarily imply a high relative share. 
 
The impact on the power grid was quantified and compared, such that it could be eval-
uated which driver groups put particular stress on grid. Variations of the grid impact of 
different groups and peaks in the late morning and afternoon are identified. Notably, 
vehicles that are assumed to be used for business activities consume more energy than 
average and their peak power demand is usually highest during weekdays and lowest 
on weekends. This emphasizes the necessity for a segment-specific electric mobility 
assessment and provides results beyond one-size-fits-all solutions. 
 
In Figure 38, the daily energy demand for the average driver and for seven segments, 
as identified in chapter 2 and in (Sodenkamp, Wenig, Thiesse, et al., 2019) is given: (1) 
“frequent local driver” (FLD), (2) “commuter (short)” (CS), (3) “commuter (long)” (CL), 
(4) “delivery (short)” (DS), (5) “service provider” (SP), (6) “delivery (long)” (DL), and (7) 
“company representative” (CR). In the depicted case, an 18.8 kWh battery and 7.4 kW 
charging facilities at the primary and secondary parking location are available. The dif-
ferent results for each segment become clearly visible. 
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Figure 38: Average daily energy demand for PHEV charging when an 18.8 kWh 
battery capacity and 7.4 kW charging power at a primary and a secondary park-

ing location are available 

 
For the same scenario, in Figure 39, the share of mileage that could be driven electri-
cally is depicted for the average driver and for each of the identified driver groups. Again, 
the visualization highlights that results for the seven identified driver segments are sig-
nificantly different. 
 

 
Figure 39: Share of mileage that can be electrified when an 18.8 kWh battery ca-
pacity and 7.4 kW charging power at a primary and a secondary parking location 

are available 
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For example, while a short-distance commuter (CS) would require about 4.6 kWh per 
day to electrify about 85% of mileage, a typical “company representative” (CR) would 
demand about 11 kWh per day to electrify only about 49% of mileage. These differences 
can be explained by the distinct driving behavior of each group. Here, on average the 
“company representative” (CR) drives faster and covers longer distances than the short-
distance commuter (CS). 
 
A segmentation of drivers according to their driving behavior shows that the assumption 
of one average driving pattern does not sufficiently consider the varying mobility de-
mand of individuals. Instead, distinct groups of individual drivers with a similar mobility 
demand should be assessed to provide a more realistic evaluation of electric mobility. 
The comparison of driver segments identifies groups with a high potential for mileage 
electrification and thus can help to better quantify the potential for increased future elec-
tric vehicle market shares. 
 

5.2.1.1 Policy perspective 

 
A segmentation based electric mobility assessment approach could help to set attaina-
ble policies and plans that are based on realistic predictions and assumptions concern-
ing what driver groups could readily switch to a PHEV (Anable, Skippon, Schuitema, et 
al., 2011). On this basis, governmental incentives could be better targeted by address-
ing the actual mobility requirements of distinct driver groups (Anable, 2005; Anable, 
Skippon, Schuitema, et al., 2011). 
 
For example, by driving a PHEV with a small size 6.3 kWh battery, a “commuter (short)” 
(CS) that charges only at home could electrify about 66% (82% with 18.8 kWh) of mile-
age. This accounts for about 879 to 1,087 km per month. Also “delivery (short)” (DS) 
vehicles with many short-haul routes could electrify about 64% (86% with 18.8 kWh) of 
mileage or 1,797 to 2,417 km per month. Thus, with comparatively little effort – and thus 
with comparatively inexpensive support measures – major mobility needs could be met 
electrically. 
 
On the other hand, for example, a “company representative” (CR) could electrify only 
about 17% (43% with 18.8 kWh) of mileage. Although this corresponds to about 1,008 
to 2,472 km per month that could be electrified in absolute terms, to reach larger relative 
shares of electrified mileage, vehicles with a greater electric range (or more charging 
facilities) would be necessary. For example, with a 56.4 kWh battery, corresponding 
figures rise to 78% and 4,469 km. Consequently, for a large-scale hybridization and 
electrification of such a corporate vehicle fleet, more expensive incentive measures ap-
pear to be necessary. 
 

5.2.1.2 Customer perspective 

 
Car customers are encouraged to consider similarities with certain driver groups to eval-
uate with a higher reliability whether a certain PHEV satisfies their mobility needs or not. 
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As was shown, given a certain electric range and charging opportunity, the mileage 
electrification potential varies between different driver groups. 
 
A group specific comparison of the electric mobility potential and impact also offers a 
better reference point for possible future PHEV customers. Drivers can relate to the 
mobility patterns of a distinct segment, which thus serves as solid basis for making pur-
chase decisions regarding vehicle features. 
 
Individuals can plan with and manage possible limitations or characteristics of electric 
mobility particularities, such as a limited electric range or a charging infrastructure that 
is different from the familiar gas station network. For example, it is unproblematic to 
electrify short-distance roundtrips with a limited electric range vehicle. In that regard, 
driver segments with short median roundtrip distances (“frequent local driver” (FLD), 
11.43 km; “commuter (short)” (CS), 24.50 km; “delivery (short)” (DS), 0.73 km) could 
electrify 59%, 66%, and 64% of their mileage, using only a 6.3 kWh battery capacity 
and a home charging facility. 
 
To also cover long-distance travel demands electrically, specific mobility needs of 
groups can be considered. Besides acquiring longer electric range vehicles and the 
application of hybrid technologies (for example, with a 56.4 kWh battery, the “frequent 
local driver” (FLD) could cover 87%, the “commuter (short)” (CS) 91%, and the “delivery 
(short)” (DS) vehicle 94% of mileage electrically), alternative means of transport – such 
as car rental services (Bühler, Cocron, Neumann, et al., 2014; Greaves, Backman, and 
Ellison, 2014) or public transportation (Greaves, Backman, and Ellison, 2014) – could 
address varying range needs. 
 

5.2.1.3 Energy supplier perspective 

 
It was shown that the mileage electrification potential of individual drivers of a larger 
fleet varies. Therefore, a segment specific assessment of electrifiable mileage allows 
for more realistic predictions and consequently, for a more realistic estimation of the 
expected additional power grid impact of a certain group. 
 
It has to be considered that the additional stress that is put to the power grid is very 
different for distinct driver groups. For example, a “service provider” would require 
22.2 kWh per day to electrify 81% of mileage. Quite in contrast to this, a “commuter 
(short)” (CS), would require only 5.2 kWh per day to electrify 91% of mileage. Against 
this backdrop, electricity suppliers can consider the composition of a geographic re-
gion’s car fleet and can consequently derive measures to ensure a dependable future 
power supply. 
 
Apart from this, providers could utilize knowledge on distinct drivers’ electricity demand 
profiles to provide group-specific electricity tariffs. For example, night tariffs could be 
offered to “frequent local drivers” (FLD) or to commuters (CS and CL) to encourage 
them to shift load from peak hours in the evening to night hours. Moreover, providers 
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could promote the installation of charging facilities, for example at workplaces, to sup-
port charging of PHEVs during the day. 
 

5.2.1.4 Automotive industry perspective 

 
The automatic acquisition of mobility data during trips and its customer-oriented use is 
a still relatively novel approach in the automotive context (Paefgen, Staake, and 
Thiesse, 2013). With the utilization of driving data for electric mobility assessment and 
with the consequent prediction of the mileage electrification potential of driver groups, 
knowledge on the electric range and battery requirements of customers can be derived. 
This allows manufacturers to provide valuable group-specific information of their prod-
ucts to customers and to better diversify their portfolio according to their customer 
groups. 
 
Moreover, manufacturers can utilize information on segment specific vehicle require-
ments to create advertising that corresponds to the customers’ needs (Hodson and 
Newman, 2009). For example, short electric range vehicles with 6.3 kWh batteries could 
be advertised to “commuters (short)” (CS) to electrify about 66% of their mileage (as-
suming home charging). More expensive long electric range vehicles (International 
Economic Development Council, 2013) with 56.4 kWh batteries could be offered to po-
tentially less cost-sensitive “company representatives” (CR), which allows them to elec-
trify 78% of mileage (again assuming home charging). 
 

5.2.1.5 Research perspective 

 
The comparison of distinct driver groups derived from a segmentation approach can 
provide added value for electric mobility assessment  (Anable, 2005; Anable, Skippon, 
Schuitema, et al., 2011). In this work, the use of a clustering algorithm (Hartigan and 
Wong, 1979) is suggested to derive distinct groups of drivers based on their mobility 
patterns and to assess them in terms of their readiness for PHEV adoption.  
 
To do so, the work applies a model that processes GPS-based mobility data and that 
derives statements on the expected electric driving potential and power grid impact of 
PHEVs (Wenig, Sodenkamp, and Staake, 2015) and evaluates and compares results 
for distinct groups of drivers. A general observation of results indicates that there are 
indeed significant differences between clusters, both in terms of mileage electrification 
potential und power grid impact, such that for future research, an increased focus on 
differences between distinct groups of drivers can be recommended. 
 

5.2.1.6 Environmental perspective 

 
Differences in the mileage electrification potential of drivers also imply distinct impacts 
of PHEVs from an environmental perspective. While groups such as the “commuter 
(short)” (CS) could electrify 66% of their mileage using a 6.3 kWh battery (and assuming 
home charging), groups with more demanding mobility patterns, such as the “company 
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representative” (CR) would require much larger batteries to electrify similarly large 
shares of mileage (here: 78% using a 56.4 kWh battery). However, the use of a larger 
battery does not only imply higher monetary costs (International Economic 
Development Council, 2013), but also an increased demand in scarce raw materials for 
battery production (International Energy Agency, 2018). 
 
On the other hand, with larger batteries, the range requirements of long-distance drivers 
can be better met. For example, when assuming a charging opportunity at the primary 
parking locations (i.e., the home base) and the availability of 56.4 kWh battery, a “com-
muter (short)” (CS) could electrify only about 1,211 km per month. “Company represent-
atives” (CR) however could electrify 4,469 km per month and “service providers” (SP) 
could electrify 5,260 km per month. As a consequence, greater amounts of fossil fuel 
could be saved, and thus local car exhaust emission could be substantially reduced. 
 

5.2.2 Battery versus infrastructure assessment 
 
Chapter 3 and (Wenig, Sodenkamp, and Staake, 2019) emphasize the comparison of 
battery and charging infrastructure configurations for PHEV driving scenarios to find 
characteristics that enable a large share of electrified mileage. The provided method 
allows for a systematic and large-scale electric mobility assessment based on real-world 
data. From this, trade-offs between battery capacity and charging infrastructure expan-
sions can be evaluated. Subsequently, driver segments that could readily utilize PHEVs 
in the regarded scenario can be identified. 
 
The systematic comparison of electric mobility scenarios includes short to long electric 
range vehicles and infrastructure coverages from home to ubiquitous charging, with 
charging power variations. Even with limited electric range vehicles and if only home 
charging was possible, a great portion of mileage could be electrified by the average 
driver. 
 
An increase in charging power also increases peak power demand, however the avail-
ability of more charging facilities (such as a secondary private charging location or a 
public charging infrastructure) can reduce the demand peak. Charging infrastructure 
expansions have particular value for vehicles with limited electric range. In contrast, the 
importance of an extensive charging infrastructure is reduced if large batteries that pro-
vide long electric range are utilized. So, vehicles with a large – yet realistic – electric 
range can alleviate constraints imposed by the non-availability of widespread public 
charging opportunities for a large majority of drivers. 
 
Results show – in compliance with cost-benefit considerations – that realistically large 
battery capacities outperform even large-scale infrastructure expansions. Such a bat-
tery increase is particularly valuable for drivers with demanding driving behavior (e.g., 
long roundtrips and fast driving). With increasing amounts of electrified mileage also 
gasoline savings increase. Interestingly, with both battery capacity and infrastructure 
improvements, the gasoline saving potential per electrified kilometer further increases, 
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presumably because more energy intensive, i.e., fast and long-distance trips can be 
electrified. 
 
In Figure 40 to Figure 42, 24-hour load profiles for charging in three selected electric 
mobility scenarios from chapter 3 are compared. Figure 40 shows the load profile in a 
“modest” scenario, where a 9.4 kWh battery could be charged at the primary parking 
location with 3.7 kW. Demand peaks in the evening. A smaller peak can be seen around 
noon. In this scenario about 57% of mileage could be electrified. 
 
Figure 41 provides the load profile for an “ambitious” electric mobility scenario. Here, a 
56.4 kWh battery could be charged both at a primary and at a secondary parking loca-
tion with 7.4 kW and at 10% of parking locations with 50 kW. About 91% of mileage 
could be electrified, but the energy demand is considerably increased and the energy 
demand peak in the evening becomes more prominent. 
 
Finally, in the scenario underlying Figure 42, the battery of the vehicle has a capacity of 
112.8 kWh. Charging is possible at the primary and secondary location with 22.1 kW or 
in public at 70% of parking locations with 120 kW. In this “excellent” electric mobility 
scenario, about 99% of mileage could be electrified. However, once again the overall 
energy demand is increased. This time more energy is consumed during the day and 
particularly the demand peak at noon is significantly higher. 
 

 
Figure 40: “Modest” electric mobility scenario: Grid impact of charging on the 
electric power network if charging is possible at the primary parking location 
with 3.7 kW charging power and if a 9.4 kWh battery capacity is available 

 

HOME P00368B0368 9.4 ALL

Hour of the day

kW

5 10 15 20

0

0.2

0.3

0.5

0.7

0.9

1



Jürgen Wenig  - 113- 

 
Figure 41: “Ambitious” electric mobility scenario: Grid impact of charging on 
the electric power network if charging is possible both at the primary and sec-
ondary parking location with 7.4 kW and at 10% of parking locations with 50 kW 

charging power and if a 56.4 kWh battery capacity is available 

 

 
Figure 42: “Excellent” electric mobility scenario: Grid impact of charging on the 
electric power network if charging is possible both at the primary and second-
ary parking location with 22.1 kW and at 70% of parking locations with 120 kW 

charging power and if a 112.8 kWh battery capacity is available 

 
Overall, results indicate that under the assumption of an extensive electrification of 
transport, the electricity that is demanded for vehicle charging has a considerable effect 
on the power grid. Besides battery size, charging power, and infrastructure coverage, 
also the charging behavior of individuals has been found to be a relevant influencing 
factor for the assessment of electricity demand. Variations in both individual mobility 
needs and electric mobility scenario parameters have to be taken into account to gain 
insights into the energy demand and grid impact of electric mobility and to provide a 
sufficient planning basis for energy suppliers. 
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The results imply that the technical requirements for a complete electrification of mile-
age are high and that a reasonable assessment of the utility of the electric range of 
vehicles should consider both electric range parameters and the available charging in-
frastructure – including both the location of the charging facilities and the available 
charging power. 
 
Due to an already established and dense fuel station infrastructure (Fuels Europe, 
2017), so far these issues played a lesser role for combustion-based vehicles and now 
have to be put into focus as key components of electric transportation to satisfy driver 
needs (Anderson, Lehne, and Hardinghaus, 2018; Rezvani, Jansson, and Bodin, 2015). 
Nevertheless, it has been shown that with sufficiently long electric range cars, charging 
infrastructure requirements decrease. 
 
Only a smaller share of mileage can be driven electrically if the battery capacity of the 
vehicle is limited. Moreover, range anxiety further increases the electric range that is 
actually demanded and desired by drivers (Neubauer and Wood, 2014). Thus, in such 
cases, range extenders (National Academy of Sciences, 2015) could be utilized to com-
pensate for a limited electric range of the vehicle. 
 

5.2.2.1 Policy perspective 

 
Policy targets concerning the electrification of transport have to consider the limitations 
of both vehicles and the charging infrastructure (National Academy of Sciences, 2015). 
The approach that is suggested in this work includes the systematic assessment of bat-
tery capacity and charging infrastructure parameters. From this, strategies could be de-
veloped that can help reaching electric mobility goals. 
 
For example, an average PHEV driver with an 18.8 kWh battery could electrify about 
69% of mileage, if charging was possible at home (assuming a 7.4 kW charging facility). 
By doubling the battery capacity to 37.6 kWh, 79% of mileage could be electrified. 
 
A similar share of 77% could be achieved by adding a secondary charging opportunity 
and a public 50 kW charging infrastructure that enables the driver to charge at 10% of 
parking locations. Consequently, policy measures should regard the effect of both 
PHEV battery capacities and of infrastructure measures to foster an increase in electri-
fied mileage of a vehicle fleet. 
 
Moreover, by comparing the outcome of different electric mobility scenarios, more real-
istic goals could be derived that aim at providing cost-efficient and effective measures 
to foster electric driving. For example, if the abovementioned 37.6 kWh battery capacity 
was increased by a factor of 3, leading to a 112.8 kWh battery capacity, instead of 79% 
of mileage, 93% could be electrified. 
 
To reach a similar share of mileage of 94% using a 37.6 kWh battery, a secondary 
charging facility and an extensive 50 kW public charging infrastructure that enables 
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charging at 70% of parking locations would be necessary. Most probably, due to high 
costs, such an infrastructure would be unfeasible under realistic conditions (National 
Academy of Sciences, 2015). 
 
From these results, reasonable incentive measures could be derived. For example, pol-
icy measures to increase the electric car market share could particularly include both 
financial incentives for electric driving and charging infrastructure measures 
(International Energy Agency, 2018). Here, the provided methodology could help as-
sessing the usefulness of such measures before implementing them. 
 

5.2.2.2 Customer perspective 

 
From a customer perspective, the battery capacity of a PHEV appears to be highly 
relevant for mileage electrification. Provided a 7.4 kW home charging opportunity, the 
average driver of a limited electric range vehicle with a 9.4 kWh battery could electrify 
about 57% of mileage. If instead a 112.8 kWh battery was available, the share of 
electrified mileage would go up to about 93%. 
 
However, the high prices of long electric range vehicles appear to be problematic 
(International Economic Development Council, 2013). Nevertheless, the prices of 
batteries – which are considered key cost drivers of electric cars  – decreased 
significantly over the past years (Nykvist and Nilsson, 2015). Nykvist and Nilsson (2015) 
found that battery prices declined by about 14% annually from 2007 to 2014 and Kapoor 
and MacDuffie (2017) showed that average battery prices further decreased since 2014, 
resulting in an annual decline of about 16% from 2007 to 2017. Such an assumed 
annual decline by 14% to 16% implies a price drop of about 80% after 10 years, as 
depicted in Figure 43. 
 

 
Figure 43: Battery price trend, assuming a 14% (red line, based on (Nykvist and 
Nilsson, 2015)) or 16% (black line, based on (Kapoor and MacDuffie, 2018)) an-

nual price drop 
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When deciding which electric car characteristics are both affordable and meet the indi-
vidual mobility demand, potential PHEV customers should take into account both the 
battery capacity of the car and the availability of a charging infrastructure. As was shown 
above, comparing a 9.4 kWh and a 112.8 kWh battery capacity, the average driver could 
electrify 57% and 93% of mileage – or reach 74% and 96% of destinations fully electri-
cally – if only a 7.4 kW home charging facility was installed. The share of electrified 
mileage increases to 63% and 95%, if a secondary charging opportunity exists. With an 
additional 50 kW public charging infrastructure, accessible from 10% of parking loca-
tions, this value further rises to only about 67% and 97%. 
 

5.2.2.3 Energy supplier perspective 

 
A variety of both private and public parking lots, for example at home or at work, but 
also at the roadside or at commercial buildings are suitable locations to set up charging 
points (International Energy Agency, 2018; San Román, Momber, Abbad, et al., 2011), 
which facilitates the development of a public charging infrastructure. In that regard, the 
globally increasing number of public charging opportunities supports the continuation of 
the trend towards greatly increased electric vehicle market shares (International Energy 
Agency, 2018). Regarding the thus increasing charging demand and consequently the 
related electricity requirements, energy suppliers can be considered to be among the 
main stakeholders of the electric car industry (International Energy Agency, 2018). 
 
In that regard, power suppliers have to adjust to this increasing electricity demand. For 
example, a typical driver that uses a PHEV with an 18.8 kWh battery and charges at 
home requires about 5.4 kWh per day to charge the vehicle. With a 112.8 kWh battery, 
this value increases to about 9.2 kWh per day. 
 
In these home charging scenarios, charging power demand peaks at 0.6 kW and 0.7 kW 
in the evening. Interestingly, while the availability of a secondary charging facility and a 
50 kW public charging infrastructure at 10% of parking locations increases the overall 
electricity demand to 6.5 kWh and to 9.8 kWh, charging demand peaks decrease to 
0.5 kW and 0.6 kW. Consequently, suppliers could support infrastructure measures that 
provide additional charging opportunities during the daytime to mitigate peak electricity 
demand caused by PHEV charging in the evening. 
 

5.2.2.4 Automotive industry perspective 

 
Presented results and the underlying methodology can help car manufacturers to make 
realistic estimates concerning the potential for electric driving. Here, results particularly 
emphasize the importance of making affordable PHEVs with sufficiently long electric 
range available.  
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For example, even with a (rather improbable) charging infrastructure that allows drivers 
to charge with 3.7 kW during every parking event, about 74% of mileage could be elec-
trified if the available PHEV had a battery capacity of 9.4 kWh. However, with a 
112.8 kWh battery capacity, 91% of mileage could be covered electrically, even if charg-
ing with 3.7 kW was possible only at the primary parking location. With an additional 
secondary charging opportunity, the value increases to 94%. 
 
Nevertheless, to extensively increase the share of electrically driven mileage and con-
sequently to make all electric driving thinkable for an average driver, a combination of 
both long electric range and an extensive infrastructure of fast charging opportunities 
appears to be necessary. For example, an average driver that owns a 112.8 kWh PHEV 
requires 22.1 kW charging opportunities at the primary and secondary parking location 
and a 50 kW public charging infrastructure that allows charging at 40% of parking loca-
tions to electrify about 99% of mileage. 
 
Consequently, next to the electric range of the vehicle, car makers should also consider 
the locally available charging infrastructure when marketing PHEVs. Besides providing 
long electric range vehicles, automotive manufactures can carry out measures to pro-
vide access to a sufficient charging infrastructure for their customers (International 
Energy Agency, 2018). 
 

5.2.2.5 Research perspective 

 
The presented methodology can be utilized with the GPS mobility data of a fleet that 
represents a given area and possibly different groups of drivers. Based on such data, it 
helps shedding a light on the impact of variations in electric range and in charging infra-
structure characteristics. By systematically comparing the results of different scenarios, 
potentially subjective assumptions on the availability of battery capacities and charging 
opportunities can be avoided.  
 
Results, both in terms of electrified mileage and power grid impact, clearly differ for 
distinct scenarios. For example, the share of electrifiable mileage ranges from 57% 
(PHEV with a 9.4 kWh battery capacity and 3.7 kW home charging) to 99% (PHEV with 
a 112.8 kWh battery capacity, 22.1 kW home and secondary charging, 50 kW charging 
at 70% of parking locations). In the first scenario, a daily electricity demand increase of 
3.9 kWh with a peak in the evening can be observed. The second scenario shows an 
additional electricity demand of 10.3 kWh per day, peaking shortly before noon. Conse-
quently, the research results suggest that parameter choices (here: charging power, 
charging infrastructure coverage, and battery capacity) have a significant impact on the 
outcome of electric mobility studies and should thus be particularly well-considered. 
 

5.2.2.6 Environmental perspective 

 
Exhaust pollution, caused by gasoline (and diesel) combustion is a major concern both 
from an environmental and from a public health perspective (Hickey, Boscarato, and 



Jürgen Wenig  - 118- 

Kaspar, 2014). In this context, electric mobility can greatly contribute to fuel saving, as 
was shown in chapter 3 and thus help reducing the environmental and health impact of 
passenger transportation. This is particularly the case if electricity for vehicle charging 
can be generated from renewable sources (Carvalho, 2016; Liserre, Sauter, and Hung, 
2010). After all, both environmental and health issues motivate governmental electric 
mobility incentives and may lead to a continuation thereof (International Energy Agency, 
2018). 
 
Besides predicting the potential for mileage electrification, the provided methodology 
estimates the additional electricity demand that is required for vehicle charging. For ex-
ample, given the availability of a 9.4 kWh PHEV and a 3.7 kW home charging oppor-
tunity, the average driver would demand about 3.9 kWh of electric energy per day. With 
a 56.4 kWh battery capacity, 22.1 kW charging opportunities at home and secondary 
parking locations, and a 50 kW public charging infrastructure available at 10% of parking 
locations, this value rises to 8.9 kWh per day. 
 
Based on the prediction of mileage electrification potential and energy demand for 
charging, the gasoline (or possibly diesel) saving potential can be estimated. Here, the 
abovementioned 3.9 kWh of energy used per day for electric driving correspond to 1.4 
liters of gasoline per car and day. 8.9 kWh correspond to 3.0 liters per car and day. 
 

5.2.3 Integration of vehicle charging into residential households 
 
Home charging allows for the electrification of a major share of mileage, given a suffi-
ciently large battery capacity. However, the energy demand for vehicle charging is high. 
Thus, chapter 4 puts a particular focus on the power grid impact of home charging in 
the residential domain. Both residential photovoltaic charging and a load shifting strat-
egy are identified as possible means for grid impact alleviation and their potential is 
assessed. 
 
A comparison of home charging demand and the typical 24-hour load profile of private 
households shows that in both cases typical energy demand peaks occur at noon and 
in the evening. However, vehicles of assumed private car owners are regularly parked 
during night hours for an extended period of time which leads to a great load shifting 
potential in the evening. 
 
Instead of charging with maximum power and as quickly as possible, peak power de-
mand could be decreased during peak hours in the evening. Consequently, the energy 
that is required for charging could be consumed more evenly between the evening and 
morning hours without adversely affecting the mileage electrification potential. Such a 
load shifting strategy is most beneficial for peak demand reduction in the evening if the 
available charging power is high and it is useful for peak demand reduction both for 
charging small and large vehicle batteries. 
 
While vehicles are regularly parked at night, also parking at noon is common, such that 
a potential for photovoltaic charging can be identified. Photovoltaic charging can remove 



Jürgen Wenig  - 119- 

stress from the grid during daytime hours and especially during peak demand hours at 
noon. 
 
This is particularly true if charging power is limited because a common photovoltaic 
system is not necessarily sufficient to provide a high peak power. Load shifting allows 
more energy from the photovoltaic system to be used during daytime hours, presumably 
because of the lower power demand and longer charging times. 
 
Depending on the electricity generation capacity (i.e., size) of the photovoltaic system, 
greater parts of the electricity peak demand and of the overall daytime electricity de-
mand can be covered. Interestingly, larger batteries do not considerably increase the 
overall self-consumption because many charging events typically take place at night. 
 
Figure 44 provides the 24-hour load profile for the average private household with a 
112.8 kWh PHEV that is charged with 7.4 kW (black line). The red line represents the 
load profile if a 10 m2 photovoltaic system is available. Here, peak power demand at 
noon is considerably decreased. The blue line shows a scenario where load shifting is 
possible for vehicle charging. It indicates that a load shifting procedure clearly reduces 
the energy demand peak in the evening. 
 

 
Figure 44: 24-hour load profile for the average private household with PHEV 
charging (112.8 kWh battery capacity, 7.4 kW charging power; black line) and 
when either a photovoltaic system (10 m2; red line) is available or load shifting 

is possible (blue line) 

 
Figure 45 shows the charging demand profile of the average PHEV (black line). Again, 
the photovoltaic system considerably reduces the grid energy demand of the PHEV 
during daytime hours (red line), such that peak power demand for vehicle charging at 
noon is decreased. Still, as discussed in chapter 4, the usage of the photovoltaic system 
for vehicle charging in this scenario is limited, which can be explained by a limited charg-
ing demand during daytime hours. The blue line represents the reduced peak charging 
power demand in the evening when load shifting is possible. 
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Figure 45: 24-hour load profile for the average PHEV that is charged at the pri-
mary location (112.8 kWh battery capacity, 7.4 kW charging power; black line) 
and when either a photovoltaic system (10 m2; red line) is available or load shift-

ing is possible (blue line) 

 

5.2.3.1 Policy perspective 

 
The possibility to use energy that was generated by a residential photovoltaic system to 
charge a PHEV contributes to the household’s self-supply of energy. For example, 
charging the 112.8 kWh PHEV with solar energy at home increases the electricity self-
consumption rate of the household by about 8%. Consequently, incentives that foster 
the purchase of residential photovoltaic systems by PHEV owners and vice versa could 
be taken into consideration by policy decision makers that aim at increasing the share 
of renewable energy consumption (European Commission, 2018; International 
Renewable Energy Agency, 2017). 
 
Furthermore, the use of electricity from a residential photovoltaic system for PHEV 
charging can reduce an electricity peak demand from PHEV charging at noon by about 
36%. To reduce the larger PHEV charging demand peak in the evening, a load shifting 
strategy could be applied to decrease peak power demand by about 24% and to shift it 
to later hours. In this context, policy makers could set up suitable frameworks that en-
courage both load shifting from the demand-side and the integration of renewable en-
ergy (International Renewable Energy Agency, 2017). 
 

5.2.3.2 Customer perspective 

 
Results of this work also indicate that the availability of a residential photovoltaic system 
could influence the evaluation of a PHEV that is charged at home from a customer’s 
perspective. It was shown that the use of solar energy for PHEV charging decreases 
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peak power demand of the PHEV at noon (about 36%) and increases the self-consump-
tion rate of the household (about 8%). Together with price trends that indicate that pho-
tovoltaic module prices dropped by about 10% per year since 1980 (Farmer and Lafond, 
2016) (c.f. Figure 46), these results indicate that the integration of residential 
photovoltaic power generation could be a promising approch for PHEV drivers. 
 

 
Figure 46: Photovoltaic module price trend, assuming a 10% annual price drop, 

based on (Farmer and Lafond, 2016) 

 
Furthermore, load shifting could reduce the peak charging demand in the evening (24%) 
and shift the electricity demand to night hours without changing the state of charge of 
the PHEV at the beginning of the next trip after the parking event. Thus, from the PHEV 
customer’s perspective, electricity tariffs that offer lower electricity prices at night be-
come attractive (Prüggler, 2013). 
 

5.2.3.3 Energy supplier perspective 

 
Energy supplies could offer such tariffs and thus allow their customers to exploit lower 
energy prices during off-peak hours at night (Prüggler, 2013). The reduction of power 
demand peaks could thus help to reduce the demand for potentially expensive reserve 
capacities (Prüggler, 2013). 
 
Here, both means of peak power demand reduction, photovoltaic charging (36% at 
noon) and load shifting (24% in the evening) could be fostered to manage the increased 
electricity demand from PHEV charging at home. Consequently, measures that support 
residential photovoltaic generation or load management could mitigate the negative side 
effects of peak home charging demand. 
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5.2.3.4 Automotive industry perspective 

 
Given regular daytime parking hours at home, owners of both, residential photovoltaic 
systems and PHEVs could improve the photovoltaic systems’ monetary benefits by in-
creasing the self-consumption of generated energy (Lang, Ammann, and Girod, 2016). 
Consequently, from the automotive manufacturers’ perspective, the availability of home 
charging opportunities that support photovoltaic charging (and possibly the use of a load 
shifting strategy) could increase the value of PHEVs for residential photovoltaic system 
owners. 
 
Moreover, car manufacturers could emphasize that PHEV driving provides the oppor-
tunity to use locally generated renewable energy for transportation. This observation 
could have a positive impact on the product evaluation of environmentally aware cus-
tomer groups (Anable, Skippon, Schuitema, et al., 2011). 
 

5.2.3.5 Research perspective 

 
To the author’s knowledge and with reference to the literature review from chapter 4, 
the available research literature on GPS data-based electric mobility scenarios assess-
ment only rarely includes the impact of photovoltaic charging and of load shifting in the 
domestic domain. Consequently, a novel method to observe the potential for both, pho-
tovoltaic charging and load shifting in the context of a private household that uses a 
PHEV, is provided. 
 
The research work thus constitutes an innovative integration of behavioral (i.e., mobility) 
time series data, and of both household load profiles and location and time specific 
irradiation data. Results show that the potential grid impact of PHEVs has to be re-
garded in the context of realistic scenarios, such as the already existing grid impact of 
private households, both with and without residential photovoltaic systems and applied 
load shifting strategies to derive reliable and applicable conclusions. 
 

5.2.3.6 Environmental perspective 

 
The globally increasing photovoltaic power generation (Farmer and Lafond, 2016) (c.f. 
Figure 47) makes an electric transportation scenario that is at least partially powered by 
solar energy conceivable. Recent publications state that the global photovoltaic energy 
generation capacity increased by more than 40% annually from 1983 to 2013 (Farmer 
and Lafond, 2016), respectively from 2000 to 2017 (Jäger-Waldau, 2017). Naturally, 
such past developments do not necessarily indicate a future growth. However, they give 
reason for the expectation of a further upward trend. 
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Figure 47: Global photovoltaic generation capacity growth, assuming an annual 

42.5% increase, based on (Farmer and Lafond, 2016) 

 
With regard to residential photovoltaic electricity generation, results show that charging 
PHEVs with solar energy can increase the energy self-consumption rate of the house-
hold (about 8%). Consequently, more energy that is required for transportation could be 
generated locally from renewable sources. 
 

5.3 Limitations and recommendations for future research 
 
The informative value of results presented in this work is limited by the quality and bias 
of underlying data. The methodology that was used in this work could be adapted and 
used with alternative data sets that represent different regions and different vehicle 
fleets. Following this, a comparison of the driving behavior and electric mobility potential 
could include far-reaching statements on the impact of country- and area-specific par-
ticularities. 
 
Furthermore, a higher level of granularity of mobility time series would enable the con-
sideration of measured acceleration data or respective values derived from speed 
measurements. Instead, in (Wenig, Sodenkamp, and Staake, 2015) and in the course 
of this work, the suggested estimation of additional energy required for acceleration was 
derived from driving cycles. 
 
Such a higher granularity of data would also make the integration of measured or de-
duced altitude feasible. Still, the influence of altitude is assumed to be limited when 
regarding a longer period of time, such as in the presented results, because the total 
tractive effort required to move a car increases during an uphill ride, but in turn de-
creases when driving downhill (Larminie and Lowry, 2003). 
 
To improve the comparability of results, it was assumed that distinct driver segments 
use the same vehicle model. In future work, the impact of car characteristics that go 
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beyond the capacity of batteries, including the weight and external dimensions of the 
vehicle, could be assessed and varied for distinct groups. 
 
Also, the scenarios that were emphasized could be extended to address further ques-
tions that lie beyond the scope of this work. For example, a focus could be put on the 
identification of the specific charging infrastructure requirements for long distance trips 
and for interregional mobility. In addition, the utility of alternative and on-demand means 
of mobility – such as public transportation – to complement limited electric range vehi-
cles (International Energy Agency, 2018) could be studied in a data-driven approach for 
groups with infrequent long-distance roundtrips. 
 
With respect to the assessment of electrifiable mileage and the power impact of vehicle 
charging, a particular focus of future work could also lie on the effect of seasonal differ-
ences and on the regional variety of weather conditions. Here, possible topics include 
the reduced electric range of PHEVs in cold climate (Assum, Kolbenstvedt, and 
Figenbaum, 2014), but also the impact of auxiliaries such as air conditioning or heating 
(Greaves, Backman, and Ellison, 2014). 
 
Results of this work also show that with an increased electricity demand at domestic 
households, caused by vehicle charging, the self-consumption of energy generated by 
possibly available residential photovoltaic systems could be increased. Moreover, pho-
tovoltaic charging could significantly reduce power demand peaks at noon. Still, parking 
time windows with high solar irradiation are limited. A possible solution would be the 
use of residential batteries that could temporarily store electricity from the photovoltaic 
system during periods of high solar irradiation and provide the stored energy when elec-
tricity demand exceeds photovoltaic generation (for example at night) (Betz and 
Lienkamp, 2016; Truong, Naumann, Karl, et al., 2016) or the application of a managed 
charging strategy that prioritizes photovoltaic charging (Chaouachi, Bompard, Fulli, et 
al., 2016). 
 
Both further economic (Bubeck, Tomaschek, and Fahl, 2016; Wu, Inderbitzin, and 
Bening, 2015) and environmental (Hawkins, Singh, Majeau-Bettez, et al., 2013) cost-
benefit calculations in the context of electric mobility and concerns regarding the as-
sessment of an increased demand in scarce resources for electricity storage (Ziemann, 
Grunwald, Schebek, et al., 2013) are out of the scope of this work. Still, future work 
could address these issues and provide predictions on the expected costs and benefits 
of different electric mobility scenarios in greater detail. 
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