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Abstract 

Over the past decades the machine and deep learning community has 
celebrated great achievements in challenging tasks such as image 
classification. The deep architecture of artificial neural networks together 
with the plenitude of available data makes it possible to describe highly 
complex relations. Yet, it is still impossible to fully capture what the deep 
learning model has learned and to verify that it operates fairly and without 
creating bias, especially in critical tasks, for instance those arising in the 
medical field. One example for such a task is the detection of distinct facial 
expressions, called Action Units, in facial images. Considering this 
specific task, our research aims to provide transparency regarding bias, 
specifically in relation to gender and skin color. We train a neural network 
for Action Unit classification and analyze its performance quantitatively 
based on its accuracy and qualitatively based on heatmaps. A structured 
review of our results indicates that we are able to detect bias. Even though 
we cannot conclude from our results that lower classification performance 
emerged solely from gender and skin color bias, these biases must be 
addressed, which is why we end by giving suggestions on how the 
detected bias can be avoided. 
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Introduction 

In recent years, Artificial Intelligence (AI) applications have become an 
increasingly important part of our everyday lives. Netflix recommends 
relevant films, Amazon offers comparisons to similar products and Siri 
tells jokes on inquiry. Artificial Intelligence also plays a role in other fields 
such as security or recruiting procedures. In medicine AI algorithms are 
also used, for example to detect distinct facial expressions in human faces. 
These so-called Action Units can help to determine for example whether 
a patient is in pain. This is especially important when a patient cannot 
articulate pain by self-assessment. 

In order to create such supporting AI solutions, developers usually 
employ machine learning algorithms which are designed to learn from 
training data. During the training process, the algorithm finds patterns in 
the input data and adjusts its operations accordingly and automatically. 
Some of the best performing machine learning algorithms, such as 
convolutional neural networks, select automatically which information is 
most relevant in the input data. In the case of Action Unit detection, the 
previously mentioned algorithm learns the characteristics of certain 
expressions in images of human faces and maps them to the 
corresponding Action Unit, e.g. eye brow lowering. This makes life easier 
for developers and analysts. However, these algorithms become 
nontransparent due to the complex decision making processes they rely 
on: it often remains unclear why they have made a certain decision. In 
fact, they are black boxes. The consequence of this non-transparency can 
be incorrectness or unfairness. For example, in their hiring process, 
Amazon made use of a machine learning algorithm to pre-select 
applicants for a software developer position, until they realized that the 
algorithm was biased towards recommending men over women (Dastin, 
2018). The algorithm had learned the unequal ratio of both genders in 
technical jobs from previous years. It had consequently rated the factor 
‘gender’ as highly important for a successful hiring process and effectively 
discriminated against women as a result. 
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To prevent such errors in the future, it is crucial to verify and ensure 
fairness of machine learning algorithms. In this contribution we aim to 
uncover bias resulting from unbalanced training data, taking the example 
of predicting Action Units. We show that an unbalanced training dataset 
can lead to a biased model. We attempt to uncover the bias by using 
interpretability tools, which visually highlight model-relevant parts of the 
input data and thus increase the transparency of the algorithm’s decision. 
This way, unfairness may be detected and mitigated in future 
applications. 

In the following chapters we want to provide an understanding of both 
machine and deep learning in general, as well as of the challenging task 
of Action Unit detection. We put our focus particularly on bias and 
provide explanations on how it arises and why it is so concerning, 
especially in machine learning. By manually skewing our data, we show 
the impact of biased training through the example of Action Unit 
detection. We also expound the challenges met in detecting and locating 
the bias. To the best of our knowledge, there is no previous research on 
uncovering bias for the use case of Action Unit detection. 

This contribution is structured as follows: First, a theoretical background 
is provided explaining machine and deep learning, bias, and Action Units. 
Next, the data and our experiments are described. In order to test for bias 
in Action Unit detection, we artificially created skewed, biased datasets 
that considered only specific subgroups by filtering the data on gender or 
skin color. For our experiments, we trained several deep learning models 
on the different dataset splits respectively. The subsequent 
sectiondescribes our evaluation metricsAfterwards we evaluate the 
performance of our deep learning models with respect to these metrics 
and an explainability method. In the final two sections of the contribution 
we summarize and discuss our results. 
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Background 

Machine Learning 

For hundreds of years, humans have been fascinated by the idea of 
creating Artificial Intelligence (AI). The term ‘Artificial Intelligence’ is not 
clearly defined and constantly changes along with progress made in the 
field of computer science. Intelligence in computer science was first 
defined as the ability to solve rule-based tasks, such as beating a chess 
champion, and only gradually changed towards more intuitive tasks such 
as word or image recognition. Such intuitive tasks are especially easy for 
humans because they can rely on previous experiences. Machine learning, 
a sub-field of AI, picked up this idea of solving tasks using previous 
experience. In other words, the machine learning algorithms were 
designed to ‘learn’, which here means identifying patterns from 
‘experience’. Experience is gained from examples, which are provided 
through training data (Goodfellow et al., 2016).  

In the classical sense of machine learning, the developer splits the data 
into training and test data, extracts features from the training data, and 
selects a model, for example a linear one. The goal is to find a suitable 
parameter setting for a model, which minimizes the deviation of the 
model's predictions from the true values (ground truth), provided by the 
data. Finding such a parameter setting corresponds to minimizing the 
error, which is calculated by a given error function, also called loss 
function. 

To give a simple example, consider a regression task of predicting income. 
The developer can choose useful features from the training data, e.g. the 
variable ‘age’ and a plausible model to fit the relation between ‘age’ and 
‘income’, e.g. a simple linear model, meaning that income increases with 
age. With these assumptions, the model can learn two parameters: the 
slope and the start height of this linear relation. ‘Learning’ in this case 
means that these parameters are adjusted continuously until a certain loss 
function - in this case least-squares is common - is minimized. In other 
words, we find the parameters that lead to the best match between 
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predictions made with our model and the labels of input data. We can also 
verify the performance of our model by using the test data. In this case, 
we need to apply the model to the test data and compare the predictions 
with the ground truth. Assuming that our model performs well, we can 
process a new data point, e.g. a 42-year-old, and predict the income of this 
person using our model.  

Of course, in a real-world scenario one variable (‘age’) will not be enough 
for this task. Other features, for example ‘graduation level’, ‘place of 
residence’ or ‘gender’ can also play a role in this case. Additionally, most 
machine learning tasks require not just multiple variables, but also a more 
complex model. Assuming a linear relationship between the variables and 
the target (‘income’) may not apply to children, as they usually have no 
income. Furthermore, we do not necessarily want to define relevant 
features beforehand. For example, if our input data consists of images, a 
manual extraction of relevant features would be challenging. Therefore, 
the first step, the feature selection, can be included in the modelling 
process, too. Thus, in the paradigm of our research, the model itself will 
make a decision about whether the ‘color’ or ‘position’ of a pixel (or 
combination of pixels) in an image is a useful feature for the task at hand 
by increasing the parameter, also called weight, for this feature. Coming 
back to our example of income prediction and transferring it to the task 
of classifying images, we would not need to define relevant features in an 
image, like information indicating older age. The model itself would 
extract relevant features automatically, for example wrinkles, in order to 
predict higher or lower income. 

A popular choice for models that do both, feature extraction and 
prediction for complex tasks, are artificial neural networks. In a neural 
network both of these steps are completed automatically in the training 
process. For complex data such as images, we consider deep artificial 
neural networks, Thus, our research forms part of a sub-discipline of 
machine learning called deep learning. (Deep) Artificial neural networks 
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received their name from their structure, which resembles the biological 
brain (Goodfellow et al., 2016). They can process a large amount of data, 
which is especially useful for images, where the data consists of multiple 
pixel values. Although (deep) artificial neural networks are structurally 
complex, their method of operation is in principal the same as that of a 
simple linear regression. The input data is processed by several 
mathematical functions that weight the input with adjustable (learnable) 
parameters. In contrast to linear regression, however, the produced 
outputs function in turn as inputs for another function, which combines 
and weights them again. This process is repeated several times. The more 
functions are chained together (the more so called 'layers' the network 
has), the deeper it is. If a network has more than 3 layers (input layer + 
intermediate layers + output layer), it is considered deep. In a nutshell, 
the input is weighted and recombined in several consecutive operations 
until we receive a final output representation which can be used to classify 
the input. For instance, we can use deep artificial neural networks to 
predict the emotion of a person shown in an image. To train this network, 
the weights of certain features need to be adjusted just as in other models. 
In this process, the loss function, which measures the error the model has 
made, is minimized. As a result the parameters or weights are adjusted 
such that the model can make a better prediction in the following runs.  

 

Figure 1: A schematic overview of the learning process for image classification. 
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The described learning process is depicted schematically in figure 1. The 
input data are images of people showing a particular emotion from which 
the label or ground truth is extracted. Each image pixel value provides 
information about the image and is processed by a deep learning model. 
Based on this input, the model is then given the task to return a class 
prediction, in this case the emotion depicted in the image. This prediction 
is either true or false. A loss function calculates the error. In an 
optimization step it is decided how to change the model weights to arrive 
at a smaller error. Thus, the model is adjusted by experience, which is 
called learning. Note that we synonymously use the term ‘classifier’ for a 
model performing a classification task. In order to train a deep learning 
model, a large amount of data is necessary. When we try to teach a model 
to classify facial expressions, we need several thousand images. 

Bias 

As explained in the previous section, machine learning algorithms heavily 
rely on data. The data contains all information a model can learn, making 
its careful selection essential. Skewed data can lead to a biased model, 
which in our context means that the model may treat certain subgroups, 
e.g. underrepresented subpopulations, unfairly. Even though the word 
bias can have several meanings (Dietterich et al., 1995) in our setting it is 
understood as a skew in the data or model towards certain assumptions 
which may lead to unfair outcomes. There are several kinds of bias which 
are not clearly separable. To name a few examples: Mehrabi et al. (2019) 
distinguishes between omitted variable bias, where critical features that 
influence the model outcome are missing in the data, and observer bias, 
which denotes the tendency of humans to see the expected and therefore 
label data according to their own expectations rather than the relevant 
feature. Another common bias is the historical bias, a bias reflecting social 
and historical beliefs in society. An example for the latter is given by 
Bolukbasi et al. (2016) in their investigation of gender bias in so-called 
word embeddings. A word embedding – in this case trained on a corpus 
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of 3 million English words from Google News texts – reveals semantic 
relationships between words in a statement like “London is to England as 
Berlin to Germany”. The same word embedding, however, also created 
statements such as “man is to doctor as woman to nurse”, unveiling 
outdated concepts in society and gender stereotypes promoted in 
journalism. 

The type of bias we concentrate on is sampling bias (Mehrabi et al., 2019). 
This kind of bias is introduced by a lopsided data selection that does not 
represent the population. There are plenty of examples for sampling bias. 
For instance, the popular dataset ImageNet (Deng et al., 2009) contains 
only 3% of images from China and India together (Shankar et al., 2017). 
Shankar et al. evaluate that a model trained on recognizing image content 
via ImageNet is for example likely to misclassify pictures of Indian 
bridegrooms while American bridegrooms were mostly classified 
correctly. Generally speaking, a model trained on a certain population 
(meaning e.g. a particular geographical location, gender or age group) 
cannot without issue be deployed on a different population (Kallus et al., 
2018). This means that the data used to train models that are to be used 
for more than one specific population needs to be sufficiently diverse. At 
this point the question of how to overcome the problem of such sampling 
bias is posed. 

Even in classical machine learning the reduction of bias is a challenge, 
despite the availability and interpretability of features. Taking a naïve 
approach – like the complete removal of critical variables such as ‘age’ or 
‘gender’ – does not prevent unfairness due to alternative correlations 
(Hardt et al., 2016; Pedreshi et al. 2008). Therefore, input data changes 
must work in a more sophisticated manner. In an attempt to effect this 
kind of sophisticated change in input data, Kamiran et al. (2009) reweight 
the input data using a learned ranking function to lose discriminatory 
information (e.g. skin color) in the data before training on the modified 
dataset. Another attempt to overcome bias is by adapting the model. 
Corbett-Davies et al. (2017) thus investigate algorithmic fairness in 
machine learning and formulate it as an optimization problem 
constrained by fairness measures. These fairness measures, however, 
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require an accurate statistical definition. A distinction between these 
measures can be found in Hardt et al. (2016). 

However, for image data and deep learning models, we need different 
approaches, as image data is too complex and unstructured to apply the 
kind of fairness measures Corbett-Davis et al. describe. For images, the 
protected attributes such as ‘skin color’ are not easily separable from other 
features because the feature extraction is also not interpretable for 
humans.  

 

Figure 2: Layer-wise relevance propagation measuring the relevance of each pixel for age 
estimation [image from (Lapuschkin et al., 2017)] 

As a first step, bias or unfairness needs to be discovered. Here 
interpretability and explainability are key. Research in this direction aims 
to make transparent how and why a machine learning algorithm has come 
to a certain decision and which features it has considered to be relevant. 

As Du et al. (2020) point out, interpretability tools can help to identify bias. 
The authors describe two ways of identifying bias: from top-down by 
checking most relevant features that led to a prediction or from bottom-
up by slightly changing input features, like changing the skin color of a 
person, and comparing the change in the prediction. As top-down 
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approach, we can make use of layer-wise relevance propagation (LRP) 
(Lapuschkin et al., 2017). LRP measures the relevance of each pixel, thus 
the extent each pixel contributes to the output. The relevance values can 
be translated into color values which creates a heatmap on the input image 
showing the most relevant parts in e.g. red and the values contradicting a 
class in blue. An example from Lapuschkin et al. (2017) is given in figure 
2. In this example ‘age’ is estimated (young vs old). Red pixels contribute 
to the class ‘young’, whereas blue pixels speak against it. Here we can 
identify a bias: The classifier apparently learned that smiling contradicts 
a person being old. As we find this tool particularly useful, we employ it 
for our research.  

In our research, we mainly focus on identifying bias. However, those 
interested in related work on mitigating bias may refer to Du et al. (2020) 
who summarize a few methods on this matter and Wang et al. (2020) who 
benchmark bias mitigation techniques. For a practical example of bias 
identification and mitigation, see for example the previously mentioned 
word embeddings in Bolukbasi et al. (2016). For a comprehensive 
overview of methods, IBM Research developed the AI Fairness 360 Open 
Source Toolkit1, a set of fairness metrics for datasets and models, 
explanations for these metrics, and algorithms to mitigate bias in datasets 
and models (Bellamy et al., 2018). 

Other research has put the focus on bias and Action Units, the use case 
this paper focuses on. In Kilbride et al. (1983) the authors conducted a 
survey on ethnic bias in emotion recognition where Action Units served 
as ground truth label. In this survey, human bias, as opposed to machine 
learning algorithm, was the topic of investigation. More directly related to 
our research field is Xu et al. (2020). In their research, the authors 
investigate bias in facial expression recognition, albeit without the 
consideration of Action Units. Also loosely related is the work of Serna et 
al. (2020) who examine and mitigate bias in face recognition. For the 

                                                           
1 The IBM AI Fairness 360 Open Source Toolkit and more information on its uses can be 

found here: https://aif360.mybluemix.net/. 

https://aif360.mybluemix.net/
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research presented here, we build on this previous research to uncover 
bias in classification of facial expressions based on Action Units. 

Action Units 

Action Units are individual facial expressions, which are distinguished 
and defined in the manual of the Facial Action Coding System (Ekman et 
al., 1987). The manual describes the occurrence and possible 
combinations of different Action Units. 
 

 
 

Figure 3: A subset of Action Units from the Facial Action Coding System (Yin et al., 
2017). 

Figure 3 lists a subset of existing Action Units. Action Units can occur in 
the lower parts of the face or the upper face. For example Action Unit 1, 
which is the inner brow raiser, belongs to the Action Units in the upper 
face. Action Unit 10, which corresponds to raising the upper lip, occurs 
in the lower face. 
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Interpreting facial expressions correctly is especially relevant in the 
clinical context. Combinations of Action Units can be indicators for 
emotions as well as pain and may help in the assessment of the state of a 
patient who cannot communicate the intensity of pain he or she feels. 
Therefore, reading emotions and pain in the patient’s face, which is to say 
predicting and interpreting Action Units correctly, can be helpful to 
decide about appropriate treatment. However, systems have to be trained 
carefully, since an unwanted sampling bias can be easily induced, 
producing severe consequences for individual patients or even groups of 
patients.  
 
Action Units can be expressed very differently, as their intensity and 
frequency vary. The appearance of Action Units can be influenced by age 
(for example through more wrinkled faces) and health (presence of scars 
etc.). In the following, we explore sampling bias for gender and skin color 
and examine these two research questions: 
 

1. Will a bias resulting from skewed data manifest in the model’s 
predictive performance? 

2. Will this bias be observable in visual explanations? 
 
The hypothesis underlying our research questions is that the neural 
network will analyze correct regions for male participants and irrelevant 
or even wrong regions for female participants, when its predictive 
performance is worse for female compared to male participants, and vice 
versa. The same is assumed for participants with light skin versus 
participants with dark skin. In the following section, we describe the 
experiments conducted in order to evaluate our research questions. 

Experiments 

We conducted experiments for evaluating bias by training on a skewed 
dataset distribution with imbalanced gender and skin color 
representation.  
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Figure 4: Our conducted experiments with skewed datasets. 

We split our first experiment for evaluating gender bias in three parts: We 
trained a model on 1) only female subjects, 2) only male subjects and 3) 
on male and female subjects. The number of subjects (37) for each of these 
training sets is the same for all experiments, thus making the number of 
images and annotated Action Units comparable. For experiment 3) with 
mixed genders, the subjects are a random subset of the female subjects of 
experiment 1) and the male subjects of experiment 2). Each of these 
gender experiments are evaluated on the same testing set of 10 subjects 
of each gender. The number of training and testing subjects is limited by 
the male subjects, where we have 47 subjects in total.  

In our second experiment, we train a model on a dataset with imbalanced 
skin color distribution. Since we have very few data on dark skin color, 
merely 19 subjects, we could only make one experiment, in which we train 
a model on people with relatively light skin and evaluate on a testing set 
of people with relatively dark skin. We thus trained a model on 104 ‘light-
skinned’ subjects and evaluated this model on 19 ‘dark-skinned’ subjects. 
In our experiment we looked at gender and skin color from the 
perspective of machine learning, and thus as a collection of facial 
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characteristics that possibly, but not necessarily, correlate with the racial 
identities and social positioning that are commonly associated with them. 

Data 

We used the recent Actor Study (Seuss et al., 2019) dataset and the widely 
used benchmark dataset CK+ (Lucey et al., 2010) for training and 
evaluation. The Actor Study (Seuss et al., 2019) contains sequences of 21 
actors, each of them filmed for about 68 minutes from different views. 
This results in 4,337 frames per subject on average. The recording took 
place in a lab setting, so there is no change in background and lighting. 
The actors were asked to display specific Action Units and to react to 
scenarios and enactments. Experts annotated each frame of the sequences 
with a set of Action Units. For our experiments, we used the center view 
of the low speed camera. This dataset was recently published and will be 
made publicly available for commercial research. 

The CK+ (Lucey et al., 2010) dataset contains 593 videos of 123 subjects in 
a lab setting. There are 87 frames on average available for each subject. 
Each sequence shows a facial expression - one of the basic emotions - from 
neutral to strong. All expressions are acted out. Experts then annotated a 
set of Action Units for the whole sequence, and not on a video frame level. 
For this, they only looked at the last frames, where the expression is the 
strongest. This dataset is for non-commercial research purposes only. 

Data Pre-Processing 

The occurrence of Action Units is naturally imbalanced in datasets, since 
Action Units do not occur with the same frequency for different facial 
expressions. The more input data provided, the better deep learning 
models perform. For training we therefore selected only Action Units that 
have at least 8,000 occurrences (see figure 5). Occurrence here means the 
display of the Action Unit on a face.  
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Figure 5: The number of occurrences per Action Unit of the whole training and 
evaluation dataset. 

Furthermore, neural networks perform better when the classes are 
balanced. There are techniques to balance multi-label multi-class datasets 
(Rieger et al., 2020), but in order to not skew the amount of images in an 
uncontrolled manner per gender or skin color, we do not balance our data. 
We trained our model on color images, as these provide additional 
information. For each experiment, we split the training data in a training 
and validation set and evaluated the trained model on the prepared testing 
dataset. 

Training 

As proposed in the paper of Pahl and Rieger (2020), we use a neural 
network with a VGG16 architecture (Simonyan et al., 2014) that is pre-
trained with the ImageNet dataset (Deng et al., 2009) (see figure 6). The 
ImageNet dataset used for pre-training has 1,000 classes with various 
objects. Therefore, these pre-trained models have already some idea of 
how to ‘read’ images and can be adapted to new domains by fine-tuning 
them. We fine-tune this pre-trained model in our experiments on our 
Action Unit training dataset.  
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Figure 6: Our training pipeline, where we adapt the pre-trained neural network to our 
Action Unit domain. 

In contrast to Pahl and Rieger (2020), we fine-tuned only the last layers - 
those that are fully connected. For further information on hyperparameter 
values, pre-processing, the loss function, and architectural details, please 
refer to Pahl and Rieger (2020). 

Performance Measurement 

Next to a quality evaluation using heatmaps, as explained previously, 
predictive performance was examined. One measure that can be applied, 
is accuracy. This measures how many instances from a dataset have been 
classified correctly. Accuracy ranges from 0 to 100%. However, it may not 
tell us whether our model is a sophisticated predictor. Let us take for 
instance an imbalanced dataset with seven instances belonging to a class 
(e.g. Action Unit 1) and three not belonging to that class (e.g. Action Unit 
2). A model which simply classifies all instances as positive (i.e. Action 
Unit 1), without taking into account any characteristics of the data and 
thus making a random decision for one label, achieves an accuracy of 70% 
on this dataset (see figure 7). Here, the model did not learn anything, 
since its choice of labels was random. We could do the same for the 
negative class. 
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Figure 7: The relationship between classifier accuracy and imbalanced class labels on 
the left and illustrates false positives (FP) and false negatives (FN) on the right. 

In the first case, we have false positives (meaning negative examples that 
were mistakenly classified as positive). In the second case, we have false 
negatives (meaning positive examples that the classifier missed). False 
positives (FP) and false negatives (FN) are illustrated in figure 7. A better 
measure in comparison to accuracy is the F1 score below. It takes 
precision and recall into account (see figure 8). Precision measures how 
well false positives are avoided by the algorithm. The recall measures how 
well false negatives are avoided. 

 
Figure 8: The formula for computing the F1 score 

In the following section, we present our results, evaluating our trained 
model qualitatively by means of heatmaps and quantitatively on predictive 
performance. 

Results 

Table 1 shows our first experiments, where we evaluate gender bias. As 
we recall from figure 4, we trained on 1) only female subjects, 2) only male 
subjects, and 3) subjects of both genders, and we evaluated on female and 
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male subjects. A weighted F1 macro score takes the number of samples 
per class into account, so the F1 score per class is weighted on the number 
of samples for this class. 

 
Table 1: The results of the experiments in which a potential gender bias is evaluated. 

We can see from the results that a gender bias is observable, as the results 
on the testing set change depending on which gender we train the model 
on. When training on male subjects, the results meet our expectation, as 
the F1 macro is lower when the trained model is evaluated on female 
subjects (0.44) than when evaluated on male subjects (0.55). Our 
expectation is also met when evaluating the model trained on subjects of 
both genders: The F1 macro for female testing subjects (0.54) is as high 
as when evaluating the model trained on female subjects (0.55). 
Furthermore, the F1 macro on the male testing subjects (0.60) is almost 
as high as when evaluating the model trained on male subjects (0.55). 

Our expectations are not met, however, when the model is trained on 
female subjects only, which shows in fact that the F1 macro scores are 
almost equal when the model is evaluated on the male testing subjects 
(0.56) and on the female testing subjects (0.55). We can put these results 
in perspective when comparing the F1 macro on the female testing 
subjects (0.55) from this experiment with the F1 macro on the female 
testing subjects from the experiment, where the model is trained on male 
subjects (0.44): The result is higher in the former experiment as expected. 

Trained on  Tested on female Tested on male 

F1 macro weighted 
F1 macro 

F1 macro weighted 
F1 macro 

female 0.55 0.55 0.56 0.58 

male 0.44 0.45 0.55 0.59 

mixed 0.54 0.55 0.60 0.63 
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But when we look at the male testing subjects and compare the 
experiment in which the model was trained on female subjects (0.56) with 
the experiment in which the model was trained on male subjects (0.55), 
the results are almost the same. We must therefore assume that there are 
additional dependent variables in the dataset that influence the results. 

Overall, we see for the gender experiment that the results for a successful 
recognition of the Action Units on the female testing subjects are always 
lower than on the male testing subjects. We hypothesize that there might 
be more diverse features in the female dataset than in the male dataset, 
such as more variance in appearance. Testing for this hypothesis is not 
trivial, however, as one must first define the scope of features that are 
taken to characterize men and women respectively, e.g. hairstyle. 
Furthermore, if these features are not labeled in the dataset, a model has 
to be trained to recognize them. We leave this to future work. 

Figure 9 shows sample heatmaps computed of female subjects that were 
created based on the LRP method. The heatmaps indicate how a model 
trained on male subjects ‘looks’ at these images of female subjects, when 
predicting Action Unit 1, the inner brow raiser:  

 

 

Figure 9: How a model trained with male subjects ‘sees’ images of female subjects when 
predicting the Action Unit 1 – the inner brow raiser. 

In all three images, Action Unit 1 is present in the face and the model 
predicted it correctly as present. The approximate position of the inner 
brow raiser is marked with a black rectangle. In the following, we describe 
the heatmaps and propose explanations for the results:  
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● In the first image (left) the person has a hairstyle with bangs that 
cover part of the forehead. These areas on the forehead are blue 
in the heatmap, which means that the trained model sees the 
strands of hair as opposing features that hinder the classification 
of Action Unit 1, the inner brow raiser. By contrast, the model 
sees the red area on the forehead as important for this Action 
Unit class. We can thus assume that the model is confused by the 
hairstyle.  

● In the second image (middle), the model does not only look 
closely at the forehead, which is the expected area of the relevant 
Action Unit class, but also at the hair and chin/mouth area. We 
can thus again assume that the model learned wrong statistical 
correlations: a correlation between the chin/mouth area and the 
forehead for recognizing Action Unit 1. This can also occur due 
to too little training data.  

● The third image (right) shows a prediction we would expect: the 
forehead is important for this class; everything else is blue. 

Table 2 shows our second experiment, where we explore a possible skin 
color bias. As expected, the F1 macro on the testing subjects with light 
skin color is higher (0.63) than the result on the testing subjects with dark 
skin color (0.55), when evaluated with a model trained on light skin color. 
Therefore, the skewed skin color training dataset here results in a biased 
and unfair model. 

Trained on 
light skin 
color  
 

Tested on light skin color Tested on dark skin color 

F1 macro weighted 
F1 macro 

F1 macro weighted 
F1 macro 

0.63 0.69 0.55 0.62 

 

Table 2: The results of the experiments, in which a potential skin color bias is evaluated. 
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Figure 10 shows three sample heatmaps computed on our testing subjects 
with darker skin: 

 

Figure 10: How a model trained with light-skinned subjects ‘sees’ images of dark-skinned 
subjects, when predicting the Action Unit 1 - the inner brow raiser. 

The heatmaps show how a model trained with light-skinned faces ‘sees’ 
dark-skinned faces, when predicting the Action Unit 1, the inner brow 
raiser. In the following, we describe the heatmaps and propose 
explanations for the results:  

● We can see again in the first heatmap (left) how a certain hairstyle 
affects or confuses the trained model. The model predicted that 
the Action Unit 1 would be present in this image, although it is 
not. Probably there were not enough training images featuring 
this particular hairstyle in order to avoid the bias.  

● For the second image (middle), the trained model predicts 
correctly that there is no Action Unit 1 present in this image. 
However, we can see that the model looks at the background to 
support its prediction, which can indicate a background bias, 
probably induced by the monotone lab background.  

● For the third image (right) the model correctly predicts the 
presence of Action Unit 1. The heatmap highlights the forehead 
area and especially the wrinkles, as we would expect. The rest of 
the face is considered by the trained model as opposing to the 
class, which is correct. 
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Discussion 

In this paper, we raised and experimentally examined two research 
questions. We focused on answering whether introducing an imbalance 
in gender and skin color into the training dataset would result in a bias. 
We assumed that the bias would manifest in the model’s predictive 
performance, since non-representative sampling corrupts performance. 
We further hypothesized that a bias would be observable in visual 
explanations, presented as heatmaps. 

Our quantitative results show that the predictive performance on female 
subjects was indeed reduced when the model had been trained only with 
male subjects, in comparison to training with a mixed dataset or only on 
female subjects. We can furthermore observe that the predictive 
performance of a model trained only on female subjects has a better 
prediction outcome on male subjects, compared to the all-male and mixed 
dataset case. For skin color, the model’s performance decreases on test 
subjects with darker skin compared to subjects with lighter skin. We can 
thus conclude that a bias arose from skewing the data with respect to 
gender and skin color. Otherwise, the predictive performance would have 
stayed approximately the same among the different settings. 

With respect to our qualitative analysis on the appearance of visual 
explanations, we assumed that the neural network would consider Action 
Unit-relevant image regions for male participants and irrelevant regions 
for female participants, when its predictive performance is worse on the 
test data for female subjects compared to male subjects. The same 
outcome was assumed for the experiment focusing on the participants’ 
skin color. Although the model seems to concentrate on specific areas in 
some cases (such as the forehead when the prediction was correct or the 
background of the image when the prediction was wrong, as in the 
example of the inner brow raiser), our main observation is that the 
heatmaps produced are hardly homogenous. 

We visually observed the potentially biased heatmaps. We found that 
regions irrelevant to Action Units have been highlighted, but we cannot 
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conclude in general that these are features specific of participants of a 
certain gender or with a certain skin color. 

At this stage, our second research question cannot be answered in a 
satisfactory manner, since we have not yet performed an extensive 
quantification of the appearance of the heatmaps. This must remain the 
object of future work. In order to sufficiently evaluate the heatmaps, a 
metric that calculates the aggregation of positive relevance in Action Unit-
specific facial regions needs to be applied. Additional annotations of these 
regions would have been required, but they were not available at the time 
of this work. 

With our experiments, we aimed to show that a sampling bias can reduce 
the performance of a model. Our results indicate that there is an 
influence, which is why mitigating bias in datasets is an important step 
towards more objectivity in machine learning algorithms. In order to 
reduce bias, using more diverse datasets can improve the model’s ability 
to generalize. Nevertheless, we do not think that it would be reasonable to 
try to eliminate any kind of bias completely. Bias is at the core of learning 
as it allows for abstraction from individual examples. There is no absolute 
knowledge in the world, so that every abstraction, being a reduction of 
information, can be an undesired or desired bias. Eliminating the bias 
completely would remove the model’s ability to perform an abstraction 
from examples. The model would then simply have to memorize each 
example in the given representation. Therefore, removing all bias is not 
desirable. Eliminating specific discriminatory bias, however, improves 
generalizability. 

We further want to point out that developers and deployers of machine 
learning algorithms and models respectively can end up conserving or 
even promoting stereotypes if they take the input data for training from a 
biased source. Such a bias (which may come from societal biases at large) 
would be inherent to the learned model and thus base its decisions on 
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prejudices and assumptions similar to those present in the human data 
collectors. It is therefore desirable to take data from different or diverse 
sources. This includes involving multiple and diverse human experts in 
the process of instance labelling for the training data in an effort to 
integrate various viewpoints. 

With respect to the step of decision making, we consider increasing 
transparency of machine learning and finding measures that ensure 
transparency, objectivity, and fairness to be crucial for the evaluation of a 
model’s performance. A central question is therefore, whether the 
model’s output should help to achieve the best possible results – here one 
that is as fair as possible – or whether it is enough if a model is as good as 
the world that has produced it. Nevertheless, without transparency, 
objectivity and fairness measures, bias evaluation and decision making 
would be limited. In our future research we therefore aim to proceed in 
this direction. 

Conclusion & Future Work 

In this paper, we show by means of Action Unit detection that an induced 
sample bias in the training data can lead to performance reduction on the 
underrepresented population. We considered gender and skin color bias 
that could lead to discrimination if a model is not representative enough. 
We built several models, each trained on the same number of subjects, 
but one specific subgroup respectively: only male, only female, both 
genders, only participants with light skin color and participants with all 
skin colors. Our gender analysis reveals that the performance on female 
subjects drops considerably when training on exclusively male subjects in 
comparison to training on both genders. We detect the same results for 
the skin color analysis: The score for dark skin improves when 
considering subjects with different skin colors in the training data as 
opposed to only subjects with light skin. Surprisingly however, inverting 
the experiment, thus training on only female subjects, does not result in 
a performance reduction for the male subgroup. We suspect, therefore, 
that another kind of bias is present in the data. We speculate that creating 
subsets has reduced diversity in the data, yielding inflexible models that 
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do not know enough variation. This could be avoided using a larger, more 
diverse and balanced dataset. For skin color, this reverse analysis was not 
possible due to the limited amount of data for subjects with darker skin 
color. 

In addition to the performance comparison, we investigated bias applying 
the explainability method LRP. We discovered that for the respective 
underrepresented group the models sometimes learned to consider 
spurious correlations, like when they looked at parts of the background in 
addition to the face, and also became confused by unexpected attributes, 
such as different hairstyles. This also suggests the importance of 
augmenting diversity in the dataset. However, evaluating these heatmaps 
is dependent on personal interpretations. In order to evaluate the quality 
of the produced explanatory heatmaps objectively, a domain-specific 
measure could be applied, as presented in Rieger et al. (2020). For the 
verification of the model’s performance, bounding boxes are defined for 
Action Unit relevant regions and the aggregated positive relevance inside 
and outside of the bounding boxes computed. Overall, with this research, 
we hope to contribute to a heightened state of awareness and 
comprehension for bias in deep learning and contribute particularly to 
research on Action Unit detection by presenting ways to uncover bias with 
respect to this task.  
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