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Abstract
With the advent of platform economies and the increasing availability of online 
price comparisons, many empirical markets now select on relative rather than abso-
lute performance. This feature might give rise to the ‘winner takes all/most’ phe-
nomenon, where tiny initial productivity differences amount to large differences in 
market shares. We study the effect of heterogeneous initial productivities arising 
from locally segregated markets on aggregate outcomes, e.g., regarding revenue dis-
tributions. Several of those firm-level characteristics follow distributional regulari-
ties or ‘scaling laws’ (Brock in Ind Corp Change 8(3):409–446, 1999). Among the 
most prominent are Zipf’s law describing the largest firms‘ extremely concentrated 
size distribution and the robustly fat-tailed nature of firm size growth rates, indi-
cating a high frequency of extreme growth events. Dosi et  al. (Ind Corp Change 
26(2):187–210, 2017b) recently proposed a model of evolutionary learning that 
can simultaneously explain many of these regularities. We propose a parsimoni-
ous extension to their model to examine the effect for deviations in market structure 
from global competition, implicitly assumed in Dosi et al. (2017b). This extension 
makes it possible to disentangle the effects of two modes of competition: the global 
competition for sales and the localised competition for market power, giving rise 
to industry-specific entry productivity. We find that the empirically well-established 
combination of ‘superstar firms’ and Zipf tail is consistent only with a knife-edge 
scenario in the neighbourhood of most intensive local competition. Our model also 
contests the conventional wisdom derived from a general equilibrium setting that 
maximum competition leads to minimum concentration of revenue (Silvestre in J 
Econ Lit 31(1):105–141, 1993). We find that most intensive local competition leads 
to the highest concentration, whilst the lowest concentration appears for a mild 
degree of (local) oligopoly. Paradoxically, a level playing field in initial conditions 
might induce extreme concentration in market outcomes.

Keywords  Agent-based modelling · Replicator dynamics · Pareto distribution · Fat 
tails · Evolutionary learning · Competition

Extended author information available on the last page of the article

http://orcid.org/0000-0001-8841-407X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11573-021-01047-8&domain=pdf
https://creativecommons.org/licenses/by/4.0/


1358	 J. Schulz, D. M. Mayerhoffer 

1 3

JEL Classification  C63 · D21 · D43 · L11 · L13 · L14

1  Introduction

Within an increasing number of markets, an individual firm‘s fate is no longer 
determined by absolute performance but by its performance relative to its com-
petitors. Put differently, individual success in the market is a function of the now 
widespread availability of price comparisons on the internet (Akerman et  al. 
2021) and platform competition (Autor et  al. 2020). In those ‘winner takes all/
most’ markets, tiny differences in initial productivity can manifest themselves 
into large differences in market shares, typically leading to a high emergent con-
centration of market power. Somewhat surprisingly, the determinants of initial 
productivity at market entry have received little scholarly attention. We systemat-
ically explore the aggregate effects of heterogeneous initial conditions by exploit-
ing a plausible notion of industry-specific productivity within locally segregated 
markets. Our approach builds on the intuition that comparisons of relative perfor-
mance are seldom global and typically localised. For example, Uber and Alphabet 
not competing within the same submarket, even though their business strategies 
building on network effects and intangibles appear to be very similar. Our results 
suggest that market segmentation exhibits sizeable and counter-intuitive effects 
on the distribution of market shares, on firm growth and firm survival.

Empirically, these aforementioned firm-level characteristics follow distri-
butional regularities or ‘scaling laws’ (Brock 1999), whose underlying mecha-
nisms require explanation. Dosi et  al. (2017b) recently proposed a model of 
industrial dynamics that features evolutionary learning: Individual firms inno-
vate and increase their productivity but compete for market shares according to 
a global selection mechanism based on productivity. This evolutionary learning 
mechanism combines cumulative learning with a ‘winner takes all/most’ market 
structure. Despite its bare-bones, partial equilibrium nature, the model is able 
to explain a surprising number of stylised facts in industrial dynamics, such as 
strongly heterogeneous size distributions, scaling between size growth rates and 
their variance as well as (persistent) heterogeneity in productivity. The model has 
been applied successfully and essentially unchanged in a macroeconomic set-
ting both for explanatory purposes and policy experiments in the ‘Keynes meets 
Schumpeter’ (K+S) modelling approach (Dosi et  al. 2010, 2013, 2015, 2017a). 
Apart from the K+S approach, the distributional regularities, which even the par-
tial model produces, have been identified to be of great macroeconomic relevance 
(Gabaix 2011; di Giovanni et al. 2011).

We propose a parsimonious extension to this model to examine the effect for 
deviations in market structure from global competition. Namely, we introduce a 
network structure of localised competition and innovation. This extension makes 
it possible to disentangle effects from two modes of competition: global competi-
tion for sales and localised competition for market power, giving rise to indus-
try-specific productivity differences. Our contribution is thus twofold: Firstly, 
we test the benchmark model results’ robustness for different market structures, 
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as defined by local competition for market shares and localised entry, where the 
entry process’ precise nature has recently been identified as the most important 
driver of aggregate outcomes within the model (Dosi et  al. 2018). By this, we 
are able to constrain the range of possible competitive mechanisms in light of the 
empirical evidence in more detail. Secondly, we take a complementary approach 
to the macroeconomic implementations and examine even further the micro pro-
cesses that different competition structures induce. These microeeconomic con-
siderations have consequences for regulatory policy and implications even at the 
managerial level, in particular, for market entry timings.

Besides the cumulative idiosyncratic learning mechanism from our benchmark, for 
a non-complete network, our model also features a second process that distinguishes 
between firms’ different productivity levels: When a new firm enters the model market, 
it acquires an industry-specific productivity level, modelled as the weighted average 
productivity of its direct competitors. This mechanism applies to a firm only once in 
its lifetime, namely at foundation/market entry. Nonetheless, it can crucially shape the 
entire life of a firm, since initial productivity determines whether an entrant can stabi-
lise its position in the market or is quickly forced out of it again: We show that success-
ful entrants typically join highly productive product markets. Hence, from a manage-
ment perspective, our findings underline the importance of timing market entrance and 
thorough search prior to entry. Namely, our model can explain, why Schlichte et  al. 
(2019) find the most successful firms to be fast followers in innovative markets rather 
than the original innovators themselves.

We find that the empirically well-established combination of ‘superstar firms’ and 
Zipf tails is consistent only with a knife-edge scenario in the neighbourhood of most 
intensive local competition. Moreover, our contests the conventional wisdom derived 
from a general equilibrium setting that maximum competition leads to minimum con-
centration of revenue (Silvestre 1993). Instead, we find that most intensive local com-
petition leads to the highest concentration and the lowest concentration appears for 
a mild degree of (local) oligopoly. Relating to a different notion of competition, this 
finding might also be interpreted as evidence that ‘winner takes all/most’ markets are 
far from the ordoliberal ideal which considers “competition [to be] the most ingenious 
disempowerment instrument in history” (Böhm 1960, p. 22, author’s translation). By 
contrast, it is precisely the ordoliberal demands for a ‘level playing field’ in combina-
tion with ‘performance based competition’ which lead to the highest concentration of 
revenue and hence power asymmetries within such markets that ordoliberals hope to 
avoid (Dold and Krieger 2019).

The remainder of this paper is organised as follows: We firstly discuss the stylised 
empirical facts that we intend to study as well as concepts and models on which we 
build (Sec. 2), followed by a detailed introduction of our model, based on Dosi et al. 
(2017b) (Sect.  3). Thereafter, we present the core simulation outcomes and explain 
their generating mechanisms (Sect.  4). Finally, we situate our findings in economic, 
policy and business discussions, drawing practical as well as normative implications, 
before closing with proposals for further research (Sect. 5).
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2 � Models of evolutionary learning as a representation of empirical 
findings

2.1 � Stylised facts in industrial dynamics

As a selection criterion for the parameter range that our proposed model spans, 
we use a set of stylised facts from traditional microeconometric literature and 
the industrial dynamics literature on distributional regularities in various firm-
specific variables. The most prominent of these regularities is the finding of 
Zipf’s law, originally based in linguistics (Zipf 1949), for the upper tail of firm 
size distributions. This implies that the size distributions of the largest firms are 
extremely concentrated, where the second-largest firm has only approximately 
one half of the size of the largest, the third-largest only a third and so on. Zipf’s 
law in firm sizes appears to be a genuine and universal characteristic of market 
economies. A non-exhaustive list of studies on Zipf’s findings include Axtell 
(2001) for the US, di Giovanni et al. (2011) for France, Pascoal et al. (2016) for 
Portugal, Okuyama et  al. (1999) for Japan, Kang et  al. (2011) for the Republic 
of Korea, Zhang et al. (2009) along with Heinrich and Dai (2016) for China, and 
Fujiwara et  al. (2004) for several European countries. This empirical regularity 
not only constrains the set of possible generating mechanisms, but Zipf’s law has 
also been linked to several important economic phenomena, such as the surge in 
CEO payments in recent decades (Gabaix and Landier 2008), the explanation of 
aggregate fluctuations from the micro-level together with increases in aggregate 
volatility (Gabaix 2011) and the welfare effects of barriers to entry and trade lib-
eralisation (Di Giovanni and Levchenko 2013). This whole strand of macroeco-
nomic literature takes Zipf’s law as their starting point but does not examine pos-
sible conditions for which it emerges. Our findings on the determinants for Zipf’s 
law might also provide insights on how to influence this wide range of phenom-
ena, from CEO payments to aggregate fluctuations and international trade, which 
from a structural perspective this literature takes as given.

Another phenomenon of similar attributed economic relevance is the recent 
emergence of ‘superstar firms’, that operate in ‘winner takes most/all’ markets. 
They have experienced substantial and sustained increases in revenue over rel-
atively short amounts of time (Autor et  al. 2020). Anecdotal examples for this 
behavior are Alphabet and Uber. The rise of these firms has been proposed as an 
explanation for the recent decline in the labour share of national income (Autor 
et  al. 2020), otherwise famously staying constant throughout the most part of 
recorded history of capitalist economies (Kaldor 1961) and the rise of wage ine-
quality (Gabaix and Landier 2008).

Growth in various measures of size such as gross sales, total assets or num-
ber of employees for the whole range of firms has also been shown to be fat-
tailed with relatively frequent extreme events, where empirical growth rate den-
sities display a characteristic ‘tent shape’ on a semi-logarithmic scale, implying 
an exponential power functional form (Amaral et al. 1997; Bottazzi et al. 2001, 
2002; Bottazzi and Secchi 2005, 2006; Alfarano and Milaković 2008; Bottazzi 
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et al. 2011; Erlingsson et al. 2013; Mundt et al. 2015). These distributions have 
frequently been identified as Laplacian (Kotz et  al. 2012), which though has 
recently been challenged theoretically and empirically (Mundt et  al. 2015). We 
stick to the exponential power or Subbotin (1923) shape and focus on the fat-
tailed nature of size growth rates.

Concerning the firm age distribution, empirical findings are scarcer. However, the 
(limited) consensus appears to be that firm age is approximated well by an exponen-
tial distribution, as shown by a number of studies: Coad and Tamvada (2008) for 
several developing countries; Kinsella (2009) for Irish firms; Coad (2010) for the 
plant level in the US and Daepp et al. (2015) for publicly listed firms in the US. This 
exponential age distribution also has the crucial theoretical implication that death 
rates are independent of firm age, as Daepp et al. (2015) confirm empirically.

The main stylised facts which our model aims to replicate are thus: a Zipf law in 
the upper tail of firm sizes;1 fat-tailed growth behaviour; and a high frequency of 
‘superstar’ high growth events coupled with an exponential age distribution with a 
common insolvency probability for all firms, irrespective of age.

2.2 � Agent‑based models

Competition within industries, which produces the stylised facts discussed here, 
constitutes a socio-economic system. To study the dynamics in this system and find 
candidates for mechanisms that lead to empirically observed facts, an agent-based 
model (ABM) forms an adequate approach (Klein et al. 2018): Due to competitive 
interactions between individual firms, one cannot properly describe the system by 
additive aggregation of the model, but observed phenomena are emergent (Cole-
man 1990). Agent-based models can highlight and explain emergent phenomena and 
open the black box of competitive interactions on a system level in order to uncover 
interactions in and structures of subsystems (Hedström and Ylikoski 2010). Given 
the high level of idealisation, we do not intend to make quantitative predictions, but 
are nevertheless confident that the model can reveal central qualitative features of its 
economic target system (Grüne-Yanoff 2009).

2.3 � An agent‑based model of learning and selection

We introduce a layer of locality to the model of learning and selection of industrial 
dynamics by Dosi et al. (2017b).2 This model understands learning as an increase in 
productivity by a random factor, as detailed in Sect. 2.4 for details. Gabaix (2009) 
identifies this stochastic process featuring a multiplicative component as an adequate 
generating mechanism for the empirically observed power-law distribution of firm 
size.

1  The focus on the upper tail is partially motivated by the fact that about a third of variations in US GDP 
growth can be explained by the idiosyncratic destinies of the 100 largest firms (Gabaix 2011).
2  Here, we only describe the basic notion of the benchmark model and our extension. For details and all 
equations, see Sect. 3.
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Given the resulting heterogeneous and dynamic levels of productivity, market 
shares are allocated accordingly. Our proposed allocation mechanism makes use 
of a biological metaphor, the Darwinian ‘survival of the fittest’ principle, now in 
the form of a ‘replicator dynamics’ approach (Fisher 1930). The fittest or most pro-
ductive firms grow to dominate the market, while less productive firms fall victim 
to competition and are driven out (Cantner 2017). In our formal description, we 
remain agnostic about the precise nature of the mechanism translating productiv-
ity increases into growing market shares to allow for a reasonably general appli-
cation. These translation mechanisms by which higher market shares might accrue 
due to enhanced productivity include: increased product quality for given unit costs; 
decreasing unit costs for products of equal quality; freed up funds for increased mar-
keting spending; or any other mechanism.

More specifically, in our representation the market share of a firm grows or 
shrinks according to how its productivity compares with the weighted average pro-
ductivity of all firms in the model; thereafter, firms whose shares have fallen below 
a threshold leave the market and are replaced by new entrants. This constitutes a 
selective replicator dynamics process for which Cantner and Krüger (2008) as well 
as Cantner et al. (2012) present empirical evidence.

Dosi et  al. (2017b) use these replicator dynamics in their model: Initially, all 
firms have equal market shares and productivity levels. At each time step, firms 
increase their productivity by a random factor, following which they gain or lose 
market share depending on how their own productivity compares with global aver-
age productivity. Firms whose share falls below a threshold value are replaced by 
new entrants. These new entrants start with the market share with which firms were 
initialised (and shares of all incumbents are adjusted so that the aggregate market 
size remains constant), but have their productivity level set to the current weighted 
global average productivity in the model. We carefully extend this model by adding 
a network layer to capture actual competitive interactions between agents. There are 
various ABM that emphasise the role of locality in economic interaction (Tesfatsion 
2017). Our careful extension allows to gain more specific insights on the impact 
of localised competition without losing track of the core mechanisms. Hence, we 
validate the model by showing that the specific case of a complete network, which 
resembles the model by Dosi et al. (2017b), also displays a similar behaviour and 
yields the same stylised facts.

2.4 � Productivity gain through stochastic learning

Our model features two channels of learning. Firstly, incumbent firms increase 
their productivity periodically. Secondly, the initial productivity of entrant firms 
depends on the localised market that they enter and hence they learn from their link 
neighbours.

The periodical learning describes the efforts of each firm to improve its pro-
ductivity continually. In economics, the general concept of learning as a belief 
update justified by self-collected or socially acquired evidence (Zollman 2010) is 
often understood as a rational endeavour that agents explicitly control, as Evans 
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and Honkapohja (2013) point out in their overview. Moreover, approaches such 
as Bray and Savin (1986) or Milani (2007) reveal a close connection between 
learning and rational expectations. While such detailed understanding of learn-
ing is appropriate when investigating a learning process itself, a macroscopic 
approach seems sufficient for a study of industrial dynamics, where the outcome 
of learning contributes to one of many mechanisms. This macroscopic approach 
focuses on the productivity gain that any learning activities of firms yield. Thus, 
the model abstracts from details of the learning process and does not distinguish 
where (e.g. product improvements, production efficiency, marketing) or how (e.g. 
new inventions, imitation of others, deliberate management choices) the produc-
tivity gain takes place. When abstracting from subject-specific features of learn-
ing, one can treat success as being randomly distributed among individual learn-
ers and hence understand learning as an increase of productivity by a random 
factor. This stochastic learning seems to be an appropriate way to capture actual 
outcomes, as empirical findings are approximately represented (Luttmer 2007). 
Moreover, replicator dynamics are also consistent with an understanding of learn-
ing as imitating more successful others’ behaviour. Schlag (1998) demonstrates 
this analytically by showing that the aggregate population behaviour follows a 
replicator dynamics whenever agents choose the individually most successful 
learning rule.

Accordingly, we follow Dosi et  al. (2017b) and deliberately keep the learn-
ing process purely stochastic—do not explicitly include rational expectations or 
adaption to other firms—in order to focus on the network structure effects. With 
a purely stochastic process, we circumvent the problem that the precise form and 
effect of an innovation is per definition unpredictable and thus resort to much 
more modest statistical assumptions about the average rate of technological pro-
gress (Arrow 1991).

Besides the periodical stochastic learning of incumbent firms, the network 
layer and namely the localised market entry that it implies constitutes a second 
implicit mechanism of learning, which depends on asymmetric innovation. ABM 
studies that employ multiple or asymmetric learning processes in other con-
texts reveal unexpected system behaviour and have high explanatory power. For 
example, Klein and Marx (2018) and Klein et  al. (2019) show in a model how 
asymmetric learning and information cascades shape individual estimates of how 
likely political revolution is. Asymmetric learning also plays a role in iterated 
games, as Macy and Flache (2002) show. Mayerhoffer (2018) runs a variant of the 
Hegselmann-Krause bounded confidence model (Hegselmann and Krause 2002) 
parallel to a network-based opinion update procedure and finds that the coexist-
ence of both learning mechanisms can explain group-specific attitudes towards 
queerness among adolescents. In their model of Humean moral theory, Will and 
Hegselmann (2014) also employ explicit and implicit asymmetric learning in par-
allel. Models of learning and knowledge diffusion in networks also find appli-
cation in business science, where they can provide explanations for competitive 
advantage, as Greve (2009) shows for shipbuilders and shipping companies. In 
these structures, Skilton and Bernardes (2015) find that successful market entry 
empirically depends on the network layout (Table 1).
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3 � Model description

This section provides a content-oriented presentation, see Table 1 for an overview 
of  the chosen parameters; for technical details see the commented model, which 
is appended electronically3 and the description following the accompanying ODD 
protocol.4 

3.1 � Model properties and initialisation

The model observes a population of 150 firms that constitute an economy. We adopt 
this intuitively low number from Dosi et al. (2017b), but sensitivity analyses showed 
that our results also hold for larger populations. In this economy, firms try to max-
imise their sales revenue by improving their productivity through learning. How-
ever, whilst a firm does act rationally, this is only in a bounded manner due to its 
possession of imperfect information and environmental complexity. Hence, it does 
not adapt to the behaviour of other firms or form expectations. Undirected links con-
nect some firms, but the firms themselves have no perception of their links.

Links between firms do not mean that they cooperate in research and develop-
ment or in production; on the contrary, each link represents a direct competitive 
relationship between two firms in their selling of products that are (almost) perfect 
substitutes for each other. Pellegrino (2019) recently used the same methodology in 
a general equilibrium setting to identify aggregate trends and welfare costs of mar-
ket power in the US. Thus, the model adds a level of locality to competition by link-
ing firms. Clusters of densely linked firms represent an industry with aggravated 
competition. With this modelling approach, we combine two concepts of market 
structure that have enjoyed great success in the macroeconomic literature: Chamber-
linian monopolistic competition (Chamberlin 1949; Robinson 1969) and the concept 
of a product space first introduced by Hidalgo and Hausman (Hidalgo and Haus-
mann 2009). From monopolistic competition, we take the notion that market power 

Table 1   Parameters, initial values and calculation

The interpretation of variables is given in Sect. 3.1

Parameter Variable (Initial) values Equation

Population size N 150 Constant
Linking probability p 0.01–1 (in steps of 0.01) Constant
Local market competitors K Dependent on p –
Firm Productivity a 1 (1), (6) (at entry)
Global market share s 1/N (2)
Localised market power l 1/K (4)

3  The computer simulation was implemented in Netlogo (Wilensky 1999).
4  We describe the model according to the protocol guidelines by Grimm et al. (2010) and the extension 
proposed by Müller et al. (2013).
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in differentiated, localised product markets is consistent with strong global com-
petition, as indicated in the Chamberlinian concept by zero long-run profits. From 
Hidalgo and Hausmann (2009), we take the idea that similarity of products can be 
formalised by a network structure in a product space, where a network linkage indi-
cates similarity.

In this context, to formalise local monopolistic competition within the prod-
uct space, a Erdős–Rényi (ER) random network structure (Erdős and Rényi 1960) 
seems most appropriate because it does not call for an assumption that firms delib-
erately form competitive links. To generate the random network at initialisation, a 
link appears between any pair of firms with probability p. This probability is global, 
exogenously set and constant. p = 1 represents the model by Dosi et  al. (2017b). 
One major advantage of ER networks is the myriad of analytical results pertaining 
to the network structure for different p. We make use of two results in particular. 
Firstly, the degree distribution of the network is asymptotically Poisson with thin 
tails (Newman 2005). This result provides assurance that our findings on the fat-
tailed nature of growth rates and the size distribution are no artefacts of the network 
structure we impose, but rather a genuine emergent feature of interaction within the 
model.5 Secondly, there almost surely exists a single giant component for the range 
of network probabilities between 1 and 100% as the parameter range we consider. 
All other components have, almost surely, size of order O(log(N)), where N is the 
number of firms. Hence, we can also examine the relevance of highly heterogeneous 
competitive environments, where the intensity of competition depends on whether 
or not a firm is connected to the single giant component or not (Erdős and Rényi 
1960).

Besides its position in the network, each firm possesses three attributes that may 
vary over time. Firstly, there is the global market share s, which one can understand 
as sales revenue generated by each firm; it measures a firm’s level of success and 
ultimately determines its survival. Initial shares of firms are equal: ∀i(si(t0)) = 1∕N . 
Secondly, local competition represented by the network structure means that firms 
also possess a localised market power l, which measures how productive a firm is 
in comparison with its immediate competitors that are the link-neighbours in our 
model. There is no immediate relationship between localised market power and 
sales revenue; high localised market power does not necessarily imply a high global 
share; for example, firms with great power in a small or unproductive industry may 
be small at the level of the whole market. Initial localised market powers are calcu-
lated following the same logic as global shares ∀i(li(t0)) = 1∕|Ki| , where Ki is the 
set containing all link-neighbours of i and i itself. Thirdly, productivity or level of 
competitiveness a of a firm indicates how well this firm is equipped for selling its 
products. It includes a firm’s technological and business knowledge along with its 
skill base, but it could also be shaped by a specific demand for products that the 

5  Note that even though empirical degree distributions are often fat-tailed warranting an explanation on 
their own (Johnson et al. 2014), there is no reason to impose a specific network structure a priori, as to 
the best of our knowledge, there exists no evidence on topologies of competition networks. We thus opt 
for as minimal assumptions as possible, leaving us with ER-type networks.
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firm offers. This attribute improves through learning and in turn, the productivity of 
a firm impacts the global share and localised market power of the firm itself as well 
as of other firms. However, for the purposes of our model, firms start with an equal 
level of competitiveness: ∀i(ai(t0)) = 1.

3.2 � Events during the simulation

The simulation proceeds in discrete time steps, within each of which the following 
processes take place in sequential order: 

1.	 Learning: Firms (potentially) increase their productivity.
2.	 Assessment of global shares and localised market powers.
3.	 Entry and exit: Firms with low global market shares leave the market and new 

entrants replace them

3.2.1 � Learning

In the model, learning incorporates all processes that improve a firm‘s level of com-
petitiveness. This includes an intentional quest for innovations in product design, 
efficiency of production, and supply-chain management as well as marketing. At 
the same time, according to this concept, a firm can also ‘learn’ if customers grow 
more interested in its products independent of deliberate actions by the firm (e.g., 
products become popular due to some trends set by third parties). We subsume this 
variety of aspects under a firm-specific and idiosyncratic learning mechanism that 
we take from Dosi et al. (2017b), while the general concept of this learning dates 
back to earlier work by Dosi et al. (1995) who propose this as a baseline condition 
in their model. For this multiplicative stochastic process, each firm i determines its 
productivity ai as follows:

where �i(t) describes a firm’s learning parameter and is drawn from a rescaled beta 
distribution with � = 1.0 , � = 5.0 , �min = 0.0 , �max = 0.3 and an upper notional limit 
�max = 0.2 . This notional limit ensures that the maximum productivity growth rate 
is indeed 0.2, as we fix all drawn values higher than that for the notional limit. Firms 
do not experience negative learning because their productivity is measured in abso-
lute terms rather than being compared with that of other firms at this stage. Learn-
ing in this sense does not entail failures which would imply negative productivity 
gains. This deliberate modelling choice excludes planning mistakes on the part of 
individual firm management, and isolates effects generated by the interplay between 
stochastic learning and market selection. Furthermore, absolute productivity growth 
depends on the firm’s previous productivity level, meaning that the expected pro-
ductivity gain grows proportionally to its past productivity. However, learning is 

(1)ai(t) = ai(t − 1)(1 + �i(t)),
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independent of firm size, and hence, there is no (direct) amplifier that would reward 
larger firms with a potential for higher rates of productivity gain.

3.2.2 � Assessment of global shares

A replicator dynamics formulation reproducing the one used by Dosi et  al. 
(2017b) determines the global market share:

For any market containing at least two firms, it holds that 0 < si(t) < 1 . The global 
parameter a is the weighted average productivity of all firms N in the global market:

A firm’s global share depends not only on its own productivity level, but also the 
weighted productivity levels of all other firms in the market. The weighting ensures 
that larger rather than smaller firms shape the market more distinctively. The sales 
revenue of a firm grows (or shrinks) according to how much the productivity level of 
this firm exceeds (or undercuts) the weighted average productivity level.

3.2.3 � Assessment of localised market power

The calculation of localised market power li is similar to that of global market 
share:

However, agents now compare their productivity level only to those of their link 
neighbours and the firm itself, the set K:

Consequently, a completely unconnected firm (i.e., one with a local monopoly on all 
its products) has a localised market power of 1, while the value for each other firm 
may be above or below its global share.

3.2.4 � Entry and exit

When the global share of a firm drops below the threshold of 0.001, it leaves the 
market. Using the global share rather than the localised market power here makes 
sense because a firm becomes unprofitable or goes bankrupt if its sales revenue 

(2)si(t) = si(t − 1)(1 +
ai(t) − a(t)

a(t)
).

(3)a(t) =
∑
j
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is too low. This may happen even to firms that possess high power in an indus-
try which ultimately proves to be too small and unsustainable, while conversely 
firms that are small players in a large industry may create a high revenue. Firms 
leaving the market disappear from the model and also destroy all their links, 
which improves the local position of their old link-neighbours (i.e., former direct 
competitors).

Each departing firm is immediately replaced by a new entrant. This entrant links 
with incumbents and other new entrants with the same probability p used for initial 
network generation. The global share of entrants is 1/N, and their localised market 
power is 1∕|Ki| (with Ki again being the set of all link-neighbours and the entrant i 
itself). However, entrants do not start with a low productivity value of 1, but instead 
acquire the specific productivity level of the industry they enter (or of the whole 
market as a fallback should the entrant have no links) altered by the common learn-
ing parameter:

Generally, entrants benefit from past technological and management innovations 
as well as local market conditions that shape competitiveness in the industries that 
they enter. Locally stronger incumbents in the industry play a more central role here. 
The productivity level of link-neighbours weighted by their localised market power 
reflects this notion. Here, localised market power is used as the weighting instead of 
global share, because the local importance of an incumbent firm matters for entrants 
and not absolute sales revenue. This again reflects the boundedly rational nature of 
our model, where entrants learn indirectly from the experience of local incumbents, 
particularly in regard to their tacit product domain knowledge (Glauber et al. 2015). 
Some entrants are uniquely innovative, meaning that they increase their own produc-
tivity levels beyond those of their environments.

Because entrants’ global shares are higher than those of market leavers, the sum 
of all global shares now exceeds 1. To correct for this, the share of each firm is 
reduced proportionally (divided by the sum of all shares). Likewise, the entry/exit 
process altered the network structure and thus each firm divides its localised market 
power by the sum of all localised market powers in K. These adjustments normalise 
the corresponding values and ensure comparability over time.

4 � Simulation results

To ensure comparability, the results presented in this section generally follow the 
parametrisation in Dosi et  al. (2017b): in particular, we opt for 50 Monte Carlo 
iterations of simulation runs with time-series length T = 200 and for N = 150 
firms each. Given that the trajectories of all aggregate statistics for all linkage prob-
abilities converge to a stationary state very quickly, we present our estimations for 

(6)ai(tentry) =

{
aL
i
(tentry) + �i(tentry) if Ki⧵i ≠ �

a(tentry) + �i(tentry) if Ki⧵i = �
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t = 200 only, but for the pooled Monte Carlo simulation runs. For p = 1 , which in 
its model assumptions fully corresponds to the model set-up in Dosi et al. (2017b), 
we derive results that are also in full qualitative agreement with the results obtained 
by Dosi et al. (2017b), indicating that we are indeed generalising their case.6 For all 
p, we find that the productivity distribution is very heterogeneous with fat tails and 
hence consistent with Dosi et al. (2017b) and the empirical evidence cited therein. 
The negative relationship between size and variance in growth rates, though, holds 
only for p = 1 and its neighbourhood, strengthening the case we are building in this 
section to confirm that the fully connected network is indeed the empirically rel-
evant benchmark.7 In contrast to non-parametric descriptive statistics, we analyse 
our three main results by fitting parametric distributions to the data that allow us to 
examine the generating mechanisms pertaining to the variable in question.

4.1 � Size distribution

We find that the upper tail of the firm size distribution (measured by market 
shares) is for all p characterised by a power-law distribution. The distribution can-
not be statistically distinguished by standard non-parametric tests such as the Cra-
mér–von-Mises test and the Kolmogorov–Smirnov test from a continuous power-law 

Table 2   Summary of test statistics and estimated p values for a fitted power-law distribution to the simu-
lated sales shares with p in increments of 0.1 for the whole parameter space

“CvM” refers to the Cramér–von-Mises test, and “KS” to the Kolmogorov–Smirnov test. For both tests 
and all reported linkage probabilities p, the hypothesis of a power-law cannot be rejected at the usual 
significance level of 5%

p Test statistic KS p value KS Test statistic CvM p value CvM

0 0.0496 0.327 0.265 0.171
0.1 0.0165 0.785 0.062 0.802
0.2 0.0225 0.347 0.140 0.421
0.3 0.0218 0.356 0.161 0.357
0.4 0.0124 0.930 0.0428 0.918
0.5 0.0210 0.569 0.0939 0.615
0.6 0.0178 0.935 0.0501 0.876
0.7 0.0196 0.452 0.194 0.279
0.8 0.0149 0.860 0.066 0.776
0.9 0.0211 0.515 0.152 0.383
1 0.0565 0.143 0.320 0.119

6  We are strongly indebted to Giovanni Dosi and Marcelo Pereira for their helpful comments and sharing 
their code with us to establish this comparability in all subtle details.
7  The results on the variance-size scaling, as well as the productivity distribution, are available upon 
request.
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distribution (Anderson and Darling 1952; Anderson 1962; Smirnov 1948). We 
report the corresponding test statistics and p values in Table 2 below.

Furthermore, for all p, the power-law regime spans approximately two orders of 
magnitude and hence meets the common minimum requirement for a power-law 
to be present (Stumpf and Porter 2012). This is equivalent to saying that the dis-
crete distribution of shares can be approximated by this probability density function 
(PDF) for the continuous analogue of this power-law distribution as

where: smin denotes the minimum share from which on the power-law applies; � 
denotes the characteristic exponent of the power-law distribution, and C is a normal-
ising constant letting the probability density integrate to 1. Notice that � ≥ 1 is an 
inverse measure of concentration, where a lower � indicates a higher degree of ine-
quality. Figure 1 shows the complementary cumulative distribution function (CCDF) 
of the upper tail firm size distribution for three different linkage probabilities. The 
minimum was determined by the standard procedure in this field first outlined by 
Clauset et al. (2009), essentially by: fitting a reverse-order-statistic to a power-law 
with increasing sample sizes; obtaining the Kolmogorov–Smirnov test statistic; and 
choosing the smin that minimises it. This method has been shown to outperform other 

(7)p(s) = Cs−� , for s ≥ smin,

Fig. 1   Empirical complementary cumulative distribution function of firm sizes for p = 0.05, 0.9 and 1
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methods robustly, such as minimising the Bayesian information criterion (Clauset 
et al. 2009). Indeed, as the non-parametric tests also suggest, all three distributions 
display an approximately linear behaviour on a double-logarithmic scale (Newman 
2005). The slope for each p is approximately � , where a lower � indicates that the 
CCDF does decay more slowly, indicating a higher concentration with a higher fre-
quency of large shares.

Given the set-up of our model, this is not surprising as it essentially comprises a sto-
chastically multiplicative process with an entry-exit mechanism that has been shown to be 
the most promising candidate for generating power-laws (Gabaix 2009). Hence, for our 
set-up the path-dependent stochastically multiplicative process seems to remain the most 
critical feature of the model, irrespective of the underlying network structure. Moreover, 
regardless of the underlying mode of local competition, we want to highlight that this 
extremely heterogeneous power-law distribution implies a situation that is far from the 
perfect competition usually assumed as a benchmark for general equilibrium models.

The functional form for the upper tail of empirical firm size distributions is thus 
seemingly broadly consistent with all connectivity patterns for the underlying local-
ised network. However, the empirical consensus that the upper tail of firm sizes is 
characterised by Zipf’s law with an estimated 𝛼̂ not statistically different from 1 
constrains the permissible p to a much more narrow range. In Fig. 2, we show the 

Fig. 2   Estimated 𝛼̂ for all p in increments of 1%. Lines between estimates are visual aids only
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behaviour of estimated 𝛼̂ for the whole range of p in our model using 1% increments 
and with error bands corresponding to two sample standard deviations upwards and 
downwards, implying that the plotted intervals span the true � with 95% confidence.8

Two features are striking in the plot: firstly, Zipf’s law is consistent only with the 
two knife-edge scenarios of an extremely sparse network in the (narrow) neighbour-
hood of p = 0 and the other extreme of a very dense network in the (narrow) neigh-
bourhood of p = 1 . This, in turn, implies that the empirical evidence constrains us 
to these two extremes. Secondly, contrary to economic intuition built within gen-
eral equilibrium models, measured concentration is maximal—Zipf—for the highest 
degree of local competition and lowest for a mild (local) oligopoly around p = 0.9.

4.2 � Growth rates of market shares

Another focal point of the industrial dynamics literature is the presence of fat-
tailed growth rate distributions in sales. In more colloquial terms, this implies 
that jumps in firms’ market shares are relatively more frequent than one would 
would expect from a Gaussian distribution. Note that the presence of non-
Gaussian growth rate distributions alone indicates that the growth process is not 

Fig. 3   Empirical density of firm size growth rates g on a semi-logarithmic scale for p = 0.05, 0.9 and 1

8  The estimation of 𝛼̂ was carried out by using the associated maximum likelihood estimator (MLE) or 
Hill estimator that has been shown to be less biased compared to OLS methods or fitting a linear func-
tion onto the power-law on a double-logarithmic scale. Cf. also Goldstein et al. (2004) for a more rigor-
ous analysis of different graphical methods and their respective shortcomings compared to an MLE. The 
standard errors were obtained exploiting the asymptotic Gaussianity of the Hill estimator (De Haan and 
Resnick 1998).
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independent in time. According to the central limit theorem, this would induce 
Gaussian growth rates. Of course, stochastically multiplicative growth processes 
like ours responsible for emergence of the power-law in levels are actually path-
dependent and thus violate independence. Indeed, Dosi et  al. (2018) produce 
robust findings which support fat-tailed growth rates for the baseline specification 
we use together with a vast range of different specifications and parameter constel-
lations. Their baseline model corresponds to our p = 1 parametrisation. We also 
find fat-tailed growth rate distributions for p different than 1, as can be seen for 
p = 0.05 and 0.9 in Fig. 3. However, at least for the not fully connected network, 
the fat-tailed nature of growth rates is primarily due to extreme losses, rather than 
frequent extreme growth events which are at odds with the presence of superstar 
firms. We want to highlight also that this fat-tailed nature is a different concept 
from mere ‘dispersion’. While dispersion does indeed seem to decline with p, 
being fat-tailed refers to the frequency of extreme events relative to the frequency 
of events closer to the expected growth rates, for which inference by visual inspec-
tion is a much harder task. Within Fig. 3, frequent extreme growth events are pre-
sent only for the fully connected network. This finding, though, might merely be 
an artefact of the three network connectivities under consideration and thus will 
not hold for the whole parameter space. We need to explore the full parameter 
space to identify possible switching behaviour concerning the source of fat tails in 
the simulated growth rate distributions.

A standard procedure for identifying fat tails and quantifying the degree of ‘fat-
tailedness’ in growth rate distributions is to fit a Subbotin distribution (Subbo-
tin 1923) to the data and take its shape parameter b as a measure of heavy tails’ 
strength. The Subbotin density includes the Gaussian for b = 2 , the Laplacian for 
b = 1 , the Dirac-Delta for b → 0 (from above), and the uniform distribution for 
b → ∞ as special cases. Consequently, we define fat-tailed behaviour for all b ≥ 0 
significantly smaller than 2 for the Gaussian case. As the contemporary relevance of 
superstar firms is central to our concerns within this study, we are primarily inter-
ested in extreme growth events as opposed to extreme losses. We opt for an asym-
metric variant of the Subbotin distribution, introduced by Bottazzi (2014), to distin-
guish extreme growth events from extreme losses. The PDF is given by:

where Θ(⋅) denotes the Heaviside theta function; m is a centrality parameter; al and 
ar are the scale parameters of the left and right tails, respectively; whilst bl and br 
are shape parameters for both tails with the analogous interpretation as in the sym-
metric case. In the language of this distributional analysis, ‘superstar-like’ behav-
iour is obtained for relatively frequent extreme growth events, that is, a fat right tail 
of the growth rate distribution with br significantly lower than 2. We estimate both 
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parameters for the growth rate distributions of market shares by MLE for each p 
in 1% increments. The corresponding standard errors are obtained by utilising the 
Fisher information (Ruppert 2014).9 Figure 4 shows the values of bl and br as a func-
tion of p with p increasing in 1% increments.

The figure highlights two distinct regimes with respect to the growth rate distribu-
tions. Taken as a whole, all growth rate distributions seem to be fat-tailed in agreement 
with empirical studies. However, the source of this fat-tailed behaviour differs between 
regimes. While for the broadest range of p between 0 and about 0.93, thus between a com-
pletely sparse and a very dense network, relatively frequent extreme losses are respon-
sible for the fat tails, the situation changes dramatically in the neighbourhood of a fully 
connected network, where relatively frequent extreme growth dominates. Superstar-like 
behaviour is thus consistent only with extremely dense networks implied by a p close to 1.

4.3 � Age

Finally, for age, our model can mimic the empirically observed exponential distri-
bution in age levels for all p. This can be seen in Fig. 5, where the three age dis-
tributions being considered display approximately linear behaviour on a semi-log-
arithmic scale, consistent with an exponential functional form.10 This emergent 

Fig. 4   Estimated b̂l and b̂r for all p in increments of 1%. Black estimates for bl , gray estimates for br . 
Lines between estimates are visual aids only

10  The exponential might appear to not fit the age distribution too well for p = 0.9 . However, this impres-
sion is mainly an artefact of the semi-logarithmic scale and pertains only to the largest 0.1% of values. 
For the remaining 99.9%, the fit is extremely good, leaving us confident that the exponential is a reason-
able choice here.

9  In particular, we employ the freeware Subbotools 1.3.0 specifically designed for the estimation of dif-
ferent flavours of the Subbotin distribution (Bottazzi 2014), which delivered by far the most efficient 
parameter estimates for different samples of data we simulated.
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exponential stationary age distribution coupled with stable population levels has, in 
itself, an important implication: The exit probability or insolvency rate is common 
and constant for all firms (Artzrouni 1985). Thus, every firm irrespective of its age 
has the same probability of becoming insolvent in any period and, consequently, has 
the same expected age. The relatively stable distributions of size and growth rates 
within time at the meso-level are consistent with a very dynamical economic sys-
tem underlying these regularities and high rates of ‘churning’ in the composition of 
firms, where even local and global market leaders face the same certain prospect of 
insolvency at some point.

While the functional form of the emergent age distribution is constant for dif-
ferent p, its estimated parameter 𝜆̂ as the insolvency rate changes with p. As can be 
seen, the firms’ life expectancies vary widely with p. For p = 0.05 , the firms clus-
ter around a very young age, while exhibiting much wider dispersion and higher 
expected age for p = 1 . Life expectancies thus seem to increase in the network con-
nectivity, but also grow more heterogeneous.

When examining the whole parameter space of p, the insolvency rate falls mono-
tonically with p as we show in Fig. 6.11

Thus, while all firms irrespective of their age face the same estimated insolvency 
probability 𝜆̂ per regime or per p, this insolvency probability differs widely between 

Fig. 5   Empirical density of firm age on a semi-logarithmic scale for p = 0.05, 0.9 and 1 with exponential 
fits obtained by MLE

11  The estimated 𝜆̂ was estimated through MLE. The standard errors were obtained by utilising the fact 
that 𝜆̂ is just the inverse of the sample mean and that the associated sample standard deviation is therefore 
(𝜆̂
√
N)−1 (Lehmann and Casella 2006).
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the regimes. Given that expected age is just the inverse of 𝜆̂ , this implies that with 
a higher p, firms tend to stay in the market for a much longer time, and there is less 
‘churning’ between periods.

4.4 � Generating mechanisms

Dosi et al. (2017b) explain their model outcomes based on the idiosyncratic learning 
process and replicator dynamics; this explanation also straightforwardly applies for 
the complete network in our model. However, the tails of the global share distribu-
tion, the growth distribution and market exit probability of firms react in a highly 
elastic way towards changes in the network topology. Thus, these results suggest the 
presence of a second model mechanism that depends on network density and the 
implied distribution of localised market power. Because the learning of incumbents 
and assessment of their global shares work irrespective of network layout, the suc-
cess of entrants remains the sole candidate for such a driving mechanism.

Since all entrants have identical initial market shares, the individual success of each 
entrant depends largely on its initial level of competitiveness. To gain a high level of 
initial competitiveness, an entrant must connect to as many highly productive incum-
bents with high localised market power as possible (i.e., join a thriving industry). Such 
connections become less likely for smaller link probabilities p. Thus, in sparse net-
works, most entrants start with low productivity. Furthermore, since the assessment of 
global market share compares the productivity of the firm in question with the weighted 

Fig. 6   Estimated 𝜆̂ for all p in increments of 1% . Lines between estimates are visual aids only
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global average productivity, these relatively unproductive entrants quickly lose market 
share in the first periods of their lives. That explains the fat left tail of the growth rate 
distribution for small p.

At the same time, those entrants that connect to highly productive and powerful 
incumbents have a comparative advantage, increase their sales quickly, and manage to 
catch up with even the most successful firms in the market. Hence, firms within the 
power-law tail exhibit more homogeneous sizes, the sparser the network is. The low 
maximum firm age and high probability of exit for sparse networks is a corollary of 
these two aspects: even successful firms are challenged, find themselves outperformed 
by productive younger competitors and finally leave the market, while most entrants 
do so after only a few simulation periods. Without explicit targeting, we are able to 
replicate ‘imprinting’ behaviour or the empirically well established phenomenon that 
founding conditions exhibit lasting effects on the entrants’ survival probabilities (Ger-
oski et al. 2010).

For higher linking probabilities, the rate of entrants with a high initial productiv-
ity level grows, making the left tails of the growth distribution thinner. However, the 
most productive entrants are also hindered by the higher average productivity level and 
consequently have a harder time becoming superstars; thus, the inequality within the 
power-law tail decreases even more.

Furthermore, the importance of the birth productivity mechanism, which favours 
few entrants and lets many suffer, becomes weaker the denser the network is and hence 
the more similar localised market power as well as global market share become. If 
the entrants’ fate is no longer determined at birth, learning becomes more important. 
Thereby, the replicator dynamics of global share assessment means a fat right tail of the 
growth distribution and tails of the firm size distribution in accordance with Zipf’s law.

To summarise, two distinct mechanisms govern the productivity of firms and conse-
quently their commercial success. The first is a process of learning that occurs within 
each period and is equally strong for all network layouts, but its effects depend on atten-
dant productivity levels. The second mechanism is the allocation of initial productivity 
based on link-neighbours, which applies only once to each entrant at birth. The mode 
of operation and the strength of this second mechanism depends to a great extent on 
network density. For least dense networks, it dooms most of the entrants to a fast mar-
ket exit while it is at the same time also subsidising a few of them in an extreme way, 
prolonging their accumulation of market shares. For denser networks, more firms share 
this subsidy and hence the most successful firms become more equal in terms of their 
size. Furthermore, it is noteworthy that the second mechanism takes precedence over 
the first for all but the densest networks, according to simulation outcomes. That is the 
case because birth productivity also implies a path-dependency: For an unequal birth 
productivity distribution of entrants, learning stabilises, and amplifies this inequality 
due to a higher productivity, also meaning a potential for a higher absolute gain through 
learning.
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5 � Discussion

We introduce a network-structure to the bare-bones model of a ‘winner takes 
most/all’ market proposed by Dosi et  al. (2017b). This extension generates sur-
prisingly rich dynamics and intriguing implications when deviating from the 
benchmark of a fully competitive localised market. In particular, we have been 
looking to highlight both the positive and normative implications we draw from 
our modelling exercise and their practical relevance for economic regulation as 
well as management decisions in the case of a single firm.

Empirically, we find that the stylised facts of industrial dynamics, namely 
Zipf’s law in the firm-size distribution and fat-tailed, ‘superstar-like’ firm growth 
rates are consistent only with a situation very close to the benchmark of a fully 
connected network, meaning most intensive localised competition. All other net-
work connectivities lead to significant deviations from the stylised facts in at least 
one regard. Hence, if we can accurately identify parts of the empirical mecha-
nism—and there exists evidence that replicator dynamics play an essential role 
in empirical markets (Cantner and Krüger 2008; Cantner et al. 2012), our results 
will point to product markets that are relatively undifferentiated. Thus, market 
power comes from global rather than localised dynamics. These results are in 
stark contrast to our initial expectations of low concentration and high rates of 
‘churning’ for relatively high degrees of localised competition. This indicates that 
anecdotal insights gained from analysing static frameworks of competition do not 
necessarily transfer well to situations where strong non-linearities and feedback 
mechanisms are present.

In our model, the coexistence and partial interaction of two learning mecha-
nisms and replicator dynamics explain the results: (1) stochastic productivity 
improvements in each period for each incumbent firm constitute the first way of 
learning; (2) works indirectly at market entry because an entrant’s initial produc-
tivity depends on the weighted average productivity of the incumbents that it links 
to, meaning within its specific industry. The less densely connected a network, 
the fewer entrants form connections to highly productive incumbents; hence, 
their initial productivity is low, and consequently, their market shares decrease, 
which explains the fat left tail of growth rate distributions and lower average firm 
age. However, those entrants connected to highly productive incumbents thrive 
because their initial productivity is high in comparison to most incumbents. Thus, 
they can catch up with even the most successful incumbents and market concen-
tration decreases. Methodologically, our model of networked competitive interac-
tion can thus be thought as a complement to the foundational theoretical study by 
Cantner et  al. (2019) who study collaboration in networks to explain especially 
the instability of early-lifecycle firms by lock-in effects within suboptimal value 
chains. Namely, our model suggests a mechanism that may be present in addition 
to ‘failures of selection’ (Cantner et al. 2019) and cause the high rates of churn-
ing and volatility in market shares of young firms already observed by Mazzu-
cato (1998). We demonstrate that such instability can also emerge for functioning 
selection and industry-specific initial productivity, as long as markets are locally 
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segregated or, equivalently, the competitive network exhibits rather low density. 
We aim to investigate the interplay of both the collaborative and competitive net-
work channels in further research.

Since inequalities of initial productivity shrink with increasing network density 
and do not exist for the complete network, a lower level of competitiveness implies 
lower market concentration. Furthermore, for the complete network, other sources 
of inequality in initial productivity could replace the market entry learning mecha-
nism: The absence of inequality in starting conditions leads to the most successful 
firms acquiring a greater market share. Consequently, one must accept the success 
of these superstars as an outcome if the aim is to create full equality of opportu-
nity; otherwise, to avoid high market concentration by the most successful firms, 
one must deliberately create inequality of opportunity. In less abstract terms, our 
model suggests the common fear that active industrial policy creating unequally 
favourable starting conditions for specific firms and thus being anticompetitive to 
be at least partially misguided (cf. Sokol (2014) for a vocal proponent of this view): 
The relevant metric for consumers is perhaps ex post concentration in market shares, 
indicating that one can accept or even foster ex ante inequality in starting conditions 
to decrease such concentration after the fact. Active industrial policy enhancing the 
productivity of incumbents can even lead to positive productivity spill-overs, since 
entrants benefit from the average productivity of the market they enter. The more 
relevant trade-off within such markets appears to be between decreasing concentra-
tion in market power (lowering p) or decreasing the amount of turnover in the mar-
ket (increasing p), with ‘turnover’ typically also implying (transient) increases in 
unemployment and the destruction of firm-specific capital and knowledge. In this 
way, our model can help to identify the relevant trade-offs for regulatory policy and 
contribute to a richer view apart from standard static efficiency considerations.

Besides these global findings, the model also suggests that there are localised 
cycles of productivity and firm size: If incumbents have acquired high localised 
market power and a high productivity level, new entrants joining the market seg-
ment and engaging in competitive interaction (i.e., linking to the productive incum-
bents) also start with a high productivity rate. Consequently, the industry in ques-
tion becomes even more productive until it overheats, and incumbents are repressed 
from the market while the high productivity shifts to another (possibly new), related 
market segment. This effect is entirely in line with the empirical study, in which 
Schlichte et al. (2019) show that the timing of entry to highly specified submarkets 
between two technology waves is crucial for the success of new firms. Moreover, our 
model supports their finding that there is a first-follower advantage (in our model 
represented by successful entrants) as opposed to a first-mover advantage (moder-
ately successful incumbents that are nonetheless outperformed by entrants) because 
of growing consumer acceptance of new technology (Davis 1989). These findings 
might be of particular interest to practitioners in Venture Capital and are consistent 
with their empirical emphasis on ‘deal selection’ compared to other phases of the 
investment process (Gompers et  al. 2020). However, there exists no consensus on 
the correct selection strategy, with some trend-following venture capitalists selecting 
‘hot sectors’ and other contrarian ones avoiding them (Gompers et al. 2020). In prin-
ciple, our model points to the trend-following strategy to benefit from the high initial 
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local productivity of the relevant submarket. This is still no guarantee for success, 
though, as the submarket in question might be on the brink of overheating, also pro-
viding a rationale for the contrarian view. Venture capitalists, in our model, should 
thus pick sectors with high expected growth in contrast to present size in levels to 
avoid entering markets near the end of a technology wave.

The validity of our model depends to a great extent on the validity of the base-
line model by Dosi et  al. (2017b), which we assume to be given. However, since 
we re-implement the mechanisms from scratch and include the baseline model as 
a special case reproducing its findings, we can affirm the internal validity of the 
baseline model and our extension. With regard to external validity, we hope that 
including a network structure of localised competition can facilitate resemblance 
(Mäki 2009) between model and real-world economies. Our explanans can actually 
be true and the cause for the observed empirical fact. Hence, our proposed mecha-
nism fulfils the minimum conditions for a good epistemically possible how-possibly 
explanation formulated by Grüne-Yanoff and Verreault-Julien (2021). Nevertheless, 
with the inclusion of localised market power, the nature of our model and thus, the 
implied mode of analysis remains highly stylised. Hence, the validity of the model is 
based on its “qualitative agreement with empirical macrostructures” (Fagiolo et al. 
2019, p. 771), namely the replication of the stylised empirical facts that our model 
successfully attempts. Put differently, we develop a specific parallel reality (Sug-
den 2009) that features generating mechanisms for empirical findings in our real-
ity and hence our results present a candidate explanation for the stylised empirical 
facts (Epstein 1999). Consequently, there may be different, more adequate, parallel 
realities featuring either these or even better mechanisms, despite to the best of our 
knowledge there being no existing models that fulfil these characteristics.

Alternative mechanisms firstly concern the network that we use. While we test 
for any network density, we limit ourselves to random link formation as we are not 
aware of empirical evidence for any specific network topology in our context. How-
ever, a non-random (e.g., preferential attachment or spatial-dependent) link forma-
tion may impact simulation results, especially for low network densities. Moreover, 
we distinctly interpret links as indicators for localised competition that only mat-
ters for a firm’s initial productivity level. One could further explicate such localised 
competition and track it over time. Alternative or additional layers of links could 
also represent cooperation between firms or their products being complements. Our 
model’s most apparent limitation concerns the baseline replicator dynamics equa-
tion, though, which implies that the emergent concentration is ‘good concentration’ 
(Covarrubias et  al. 2020) and fully justifiable by productivity differences. Empiri-
cally, it is questionable if concentration indeed only reflects productivity (Covarru-
bias et al. 2020), with firms erecting artificial barriers to entry or acquiring competi-
tors and discontinuing their innovative product lines in so-called ‘killer acquisitions’ 
(Cunningham et al. 2021) leading to ‘bad concentration’. Since it is at least conceiv-
able that a high concentration of the good type is preferable to lower bad concentra-
tion, the inclusion of strategic anticompetitive behaviour might alter the policy con-
clusions of our model and tilt them more towards antitrust measures, which might 
like in our baseline model induce high ex-post concentration purely based on pro-
ductivity differences.
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Furthermore, the stylised nature of our findings points to obvious extensions and 
avenues for further research. To analyse not only the consistency with stylised facts, 
but also for quantitative predictions and even policy experiments, the ABM commu-
nity has recently developed certain new methods. These are aimed at bringing mod-
elling closer to the data and calibrating parameters (Hassan et al. 2010), particularly 
by utilising the method of simulated moments (Gourieroux et al. 1996) and related 
approaches (Bargigli et al. 2018). Given the partial equilibrium nature of our model, 
this would probably also necessitate allowing for a variable total number of firms 
over time by including mergers and acquisitions as well as consumer demand, a 
state sector and even financial markets for meaningful policy experiments. With the 
benchmark model by Dosi et al. (2017b), this was attempted by the K+S ABM (Dosi 
et al. 2010). An extension of this sort would enable us in future research to conduct 
policy experiments and quantify welfare effects for different market structures.

We believe our model to be a valuable contribution to the discussion on market 
structures and a key step towards a unifying explanation for both the microecono-
metric evidence on ‘superstar’ firms and the distributional findings in industrial 
dynamics. To the best of our knowledge, these two strands of literature have not as 
yet been linked. We find that for the replicator dynamics approach from industrial 
dynamics to be consistent with the existence of superstar firms, shown by mirco-
econometric studies, there needs to be an almost perfect level of competition. These 
outcomes emerge because in each simulation period, the firms improve their produc-
tivity by idiosyncratic stochastic learning, while new entrants adopt the specific pro-
ductivity level of their sub-market (i.e., the productivity of their immediate competi-
tors weighted by localised market power). Thus, the model suggests that new firms 
are most successful if they join existing, highly productive submarkets with high 
growth potential. Accordingly, while accepting bounds on rationality, we can single 
out the strategy which a perfectly rational market entrant would pick when faced 
with a certain market structure. This not only fosters an understanding of market 
dynamics, but can also be applied to highlight the importance of market intelligence 
for the management in new firms and new technology markets.
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