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Abstract

In the light of standardization, the model-driven engineering (MDE) is becoming increasingly important for the development
of DSLs, in addition to traditional approaches based on grammar formalisms. Metamodels define the abstract syntax and static
semantics of a DSL and can be created by using the language concepts of the Meta Object Facility (MOF) or by defining a
UML profile.

Both metamodels and UML profiles are often provided for standardized DSLs, and the mappings of metamodels to UML
profiles are usually specified informally in natural language, which also applies for the static semantics of metamodels and/or
UML profiles, which has the disadvantage that ambiguities can occur, and that the static semantics must be manually translated
into a machine-processable language.

To address these weaknesses, we propose a new automated approach for deriving a UML profile from the metamodel of a
DSL. One novelty is that subsetting or redefining metaclass attributes are mapped to stereotype attributes whose values are
computed at runtime via automatically created OCL expressions. The automatic transfer of the static semantics of a DSL to
a UML profile is a further contribution of our approach. Our DSL Metamodeling and Derivation Toolchain (DSL-MeDeTo)
implements all aspects of our proposed approach in Eclipse. This enabled us to successfully apply our approach to the two

DSLs Test Description Language (TDL) and Specification and Description Language (SDL).

1 Introduction

The use and development of domain-specific languages
(DSL) is becoming increasingly important. In recent years,
various approaches for developing DSLs have been pro-
posed, which can be divided into two categories. The first
category comprises approaches based on formalisms already
used for general purpose languages, such as context-free
grammars. The advantage is that existing language devel-
opment tools such as parser generators can be employed for
DSLs. The second category encompasses approaches that
apply model-driven engineering (MDE) [51], where the most
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important activity [3,17,53] is the design and creation of a
metamodel. Typically, a metamodel defines the abstract syn-
tax and static semantics of the DSL to be implemented; it can
also capture the semantics of a DSL [3,49]. Metamodels can
be defined using the language concepts of the Meta Object
Facility (MOF) [47], either the Essential MOF (EMOF) or
the Complete MOF (CMOF). The latter variant is based on
EMOF but provides additional language concepts. A higher
degree of abstraction and reuse of existing metamodels is
achieved by employing the CMOF, which can be advanta-
geous for the creation of more complex DSLs.

Apart from metamodelling, a DSL can also be imple-
mented by customizing the Unified Modeling Language
(UML) [40]. Either the UML metamodel can be modified
or extended to meet the requirements of a DSL, or so-called
UML profiles [11] can be used. Because UML profiles do
not alter the UML metamodel, they are considered to be a
lightweight extension to the UML [4,23]. When a UML pro-
file is created, a set of UML stereotypes is introduced. A
stereotype is a specific type of UML element that adds addi-
tional attributes, operations, and constraints to a metaclass.
Different manual or generative approaches for implementing
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a DSL based on UML profiles can be found in the literature,
e.g. in [15,30,50].

While working on a new version of the UML profile [20]
for the Specification and Description Language (SDL) [21],
we found several shortcomings [24,25] in the old edition [ 18],
which resulted from the manual creation of the profile. The
well-formedness rules of this profile are captured in natu-
ral language, not in a machine-processable language such
as the Object Constraint Language (OCL) [45] that is used
in the metamodelling domain. To create a toolchain [26]
for the UML profile for SDL, we manually translated the
well-formedness rules into OCL constraints. During this
process, we noticed that these rules are often ambiguous.
Likewise, the well-formedness rules of other standardised
DSLs (e.g. [37,42,43]) are frequently provided only in natu-
ral language.

To remedy the shortcomings of hand-crafted UML pro-
files, we propose an approach for the fully automated
derivation of UML profiles from CMOF-based metamodels.
This is especially relevant for DSLs, for which a metamodel
and a corresponding UML profile shall be created, which is
often the case for standardized DSLs such as [6,43,44,46]. In
contrast to a manual derivation of UML profiles from meta-
models as proposed in [30,50,54], our approach performs
this task fully automatically. In addition to generating model
elements for a UML profile, our approach also enables the
transfer of the OCL-defined static semantics of a metamodel
to such a profile. While the work presented in [13,14] also
supports this, the OCL constraints of a metamodel must be
revised manually before they can be copied to a UML profile,
whereas this is not required by our approach. Furthermore,
we enable the mapping of subsetting or redefining meta-
class attributes to OCL-defined stereotype attributes, which
is a novel feature compared to [13,14,48]. Moreover, our
approach supports the semi-automatic generation of CMOF-
based metamodels from grammar production rules and of
model transformations for model interoperability from DSL
models to UML models with applied profile, and vice versa.

The remainder of this article is structured as follows. The
next section provides an overview of our approach, while
we detail the derivation of UML profiles from metamodels
in Sec. 4. Then, we discuss our automatic transfer of the
OCL-defined static semantics in Sec. 5. Based on a case
study for the 7Test Description Language (TDL) [6], which
is an international standard maintained by the European
Telecommunications Standards Institute (ETSI), we evalu-
ate the results of our approach described in Sec. 6. Finally,
we discuss the related work in Sec. 7, while Sec. 8 presents
our summary and conclusions.

The concepts of our derivation approach have already
been sketched as extended abstract in [28], and its appli-
cability to automatically derive a UML profile for SDL has
been demonstrated in another extended abstract [27]. In the
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present article, we give a fully comprehensive insight into
our derivation of UML profiles and our automatic transfer of
the OCL-defined static semantics. In particular, we detail
our considerations that inspired this derivation approach.
Furthermore, we analyse the applicability of our derivation
approach based on a further case study involving TDL. To
evaluate all aspects of our approach and to conduct case
studies on SDL and TDL, we implemented the DSL Meta-
modeling and Derivation Toolchain (DSL-MeDeTo) [58] in
Eclipse.

2 Overview

This section provides an overview of our overall approach to
derive a metamodel, a UML profile, and model transforma-
tions for model interoperability. In addition, we give a short
introduction to our DSL-MeDeTo toolchain that implements
our approach.

2.1 Our overall approach

Our overall derivation approach shown in Fig. 1 consists
of Steps (A)—(E), some of which are optional. The DSL-
specific metamodel MM pomqin is the central artefact for
almost all derivations. If production rules of a grammar-
based DSL are available, the metamodel can be generated
semi-automatically in Step (A); otherwise, it has to be cre-
ated manually.

To obtain a metamodel that does not require too much
effort for further refinement (e.g. adding additional meta-
classes), we reuse ‘Abstract Concepts’ that are defined by an
existing metamodel (MM 4¢), as proposed in [10,49]. Apart
from these works, the reuse of artefacts of existing languages
is recommended in other works, e.g. in [3,22]). In contrast to
the approach proposed in [10,49], we use particular annota-
tions for a given DSL’s production rules so that relationships
between generated metaclasses and the ‘Abstract Concepts’
must not be created manually.

We define ‘Abstract Concepts’ as a set of generic language
concepts that are commonly shared across several DSLs and
not only applicable to a specific language. For example, lan-
guage concepts such as generalization or redefinition can be
regarded as ‘Abstract Concepts’. Furthermore, we assume
that each ‘Abstract Concept’ is represented by a particular
metaclass contained in MM 4c.

If we derive MM popmain from production rules in Step (A)1 s
we have to review and, if necessary, refine it before it can
be used as input for Steps (B)—(E). In particular, it must be

1" Our approach to create metamodels from production rules is similar to
that of existing tools (e.g. EMFText [57] or xText [59]) and is therefore
not entirely novel. Further details can be found in [29].
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Fig. 1 Transformation steps and their derived artefacts

assessed whether all metaclasses derived for MM pypain are
required from a semantic point of view, and if not, the affected
ones must be removed. Otherwise, we create MM pomain
from scratch. To do so, we copy the ‘Abstract Concepts’
from MM ac to MM pomain- Then, we capture the abstract
semantics of the DSL of interest by creating appropriate
metaclasses. Thereafter, we use inheritance relationships to
associate these metaclasses with the ‘Abstract Concepts’
copied to MM pomain. Finally, we capture the DSL’s static
semantics via OCL constraints and enrich MM p,qin With
toolchain-specific meta-information. For this purpose, we
apply the UML profile ‘MM2Profile’ to MM pomain as shown
inFig. 1. This UML profile contains five stereotypes and a set
of constraints (see Sec. 4.2) that ensure a proper processing
of MM pomain via our toolchain.

After creating MM pomain, We can automatically derive a
DSL-specific UML profile UP pomain in Step (B). If required,
additional metaclasses (contained in MM 44,4) that extend
the MMy are derived in Step (C). The derivation of
additional metaclasses may be an option if stereotypes can-
not be employed due to their restrictions as defined by the
UML [41]. For instance, such an approach is applied for the
value and expression languages of the SDL-UML profile [20]
and of the MARTE profile [42]. Because the input and out-
put artefacts of Steps (B) and (C) are models, we realize
both derivations by two dedicated Model-to-Model (M2M)
transformations.

In Steps (D) and (E), we derive two M2M transformations
that can be used to obtain model interoperability between
DSL-specific models and UML models with an applied
UML profile. For this purpose, we develop two Model-to-
Text (M2T) transformations that generate the source code of
the M2M transformations Tppy—ro—umr and Ty ML —to—DM
resp.

Even though our automatic derivation approach eliminates
the need for manual creation of UML profiles, the quality

of these artefacts depends significantly on the experience
of the language engineer who manually created the meta-
models used as input. As with other hand-crafted software
artefacts, metamodels can contain errors due to manual cre-
ation. Therefore, metamodels used as input for our derivation
approach should be subject to quality assurance.

2.2 The‘Abstract Concepts’

The metamodel MM 4c holds a key role for our entire
derivation approach, because metaclasses of the metamodel
MM pomain inherit from ‘Abstract Concepts’ defined by
MM 4c. An important prerequisite for MM 4 ¢ is that it must
match a subset of MMy pr. Otherwise, a straightforward
mapping of MM pomain 10 UP pomain» as implemented by our
approach, is impossible.

We consider a metamodel MM ¢ to be matching with
MMy p 1, if the following constraints are fulfilled:

Constraint 1 For each metaclass MC of MM yc, a corre-
sponding metaclass MC ' with an equal name shall be present
in MMy . In addition, MC shall have an equal or lesser
number of attributes than MC ' .

This constraint is essential for the derivation of UML profiles
according to our approach, because the UML metaclasses to
be extended by Stereotypes are identified based on the cor-
relation between ‘Abstract Concepts’ and UML metaclasses.
To determine such a correlation, we employ the name prop-
erty of the metaclasses. Even though an ‘Abstract Concept’
may have fewer attributes than the corresponding UML meta-
class, we consider a correlation as given. For instance, such
a situation may occur if some attributes of an ‘Abstract Con-
cept’ are removed? because they are not required to define
the syntax of a DSL.

Constraint 2 For each attribute att of a metaclass MC, a
corresponding attribute att ' with an equal name shall be
present in metaclass MC ' . In addition, att and att ' shall
have the same properties, especially the same type and mul-

tiplicity.

The condition imposed by Constraint 2 is important because
OCL constraints in MM pomqin may capture attributes of
‘Abstract Concepts’. When deriving a UML profile, such an
attribute access must be translated into an access to a UML
metaclass attribute. In addition, attributes of metaclasses
in MMpomain may redefine or subset ‘Abstract Concept’
attributes. During the UML profile derivation, we have to

2 Removing metaclass attributes requires extreme care and should only
be done for optional attributes (lower multiplicity == 0). Otherwise, it
cannot be ensured that a generated UML profile is semantically com-
patible with the UML.
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translate such attribute relationships into appropriate con-
structs that access UML metaclass attributes.

In addition to metaclasses, the ‘Abstract Concepts’ may
contain DataTypes. Therefore, each of these DataTypes must
have a corresponding type in MMy ps1 . We capture this con-
dition by the following constraint:

Constraint 3 A data type in MM s¢ shall have a correspond-
ing data type in MMy pm 1.

Different approaches can be applied to obtain a metamodel
MM 5c. Apart from creating such a metamodel from scratch,
Clark et al. [3] argue that also a reuse of metaclasses of an
existing metamodel, by copying or importing them, can be
considered. Because MM 4 shall match with MMy 1., we
consider a creation of MM 4¢ from scratch to be too error-
prone and expensive. Another option is to use the MOF or the
UML Infrastructure Library [39]. Because the metaclasses of
these metamodels are primarily employed to define UML’s
‘Kernel’ package, they may be reused to create an MM 4 ¢ that
only supports structural language concepts (e.g. Classifier).
Finally, also the reuse of parts of MMy 1, may be consid-
ered if language concepts for behavioural specifications (e.g.
StateMachines) are required.

Our approach does not support the import of metaclasses;
otherwise, there would be a dependency between MM pypmain
and the metamodel from which the metaclasses are imported.
In addition, imported metaclasses cannot be modified. For
example, it is impossible to remove non-required features
from them. Therefore, we assume that MM 4 ¢ is created man-
ually as a copy, or automatically using the Package Merge
feature provided by the CMOF.

2.3 The DSL metamodelling and derivation
toolchain

We have implemented all aspects of our approach in the
novel DSL Metamodelling and Derivation Toolchain (DSL-
MeDeTo) [58] using well-established standards and open
source components. We choose the Model Development
Tools (MDT)? edition of Eclipse to realize our toolchain,
which consists of a set of particular plug-ins as shown in
Fig. 2. To create a metamodel or to derive other artefacts
such as UML profiles, the components of our toolchain have
access to acommon model repository. Because our derivation
approach is designed for CMOF-based metamodels, we have
to employ UML models instead of Ecore models [52]. The
code generators of Eclipse-MDT can handle both formats.
The most important plug-ins of our toolchain are:

Textual editor. The textual editor enables the specification
of production rules for the DSL or computer language of

3 https://www.eclipse.org/modeling/mdt/
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Fig.2 The Eclipse-based toolchain and its components

interest. In addition, the production rules can be associated
with different types of annotation, e.g. to define a relation-
ship to the ‘Abstract Concepts’. The parsed production rules
are stored by the textual editor in an intermediate model-
based format; thus, they can be transformed to a metamodel
by employing an M2M transformation. As we have made
good experiences with Spoofax for creating our SU-MoVal
framework [26], we also employed this DSL workbench to
create the textual editor for DSL-MeDeTo.

UML profile ‘MM2Profile’. The UML profile ‘MM2Profile’
is used to enrich a metamodel MM pymain With additional
information, which is processed by different components
of DSL-MeDeTo. The application of this UML profile to a
metamodel MM pypmaqin 1s a prerequisite for the derivation of
a UML profile UP pomain and of the additional metaclasses
MM 444. In addition, ‘MM?2Profile’ defines a set of OCL con-
straints that must be met by MM pomain SO that its processing
by our toolchain is sound. More details of ‘MM?2Profile’ are
discussed in Sec. 4.2.

OCL Updater. Before the metamodel MM p,main With
applied ‘MM?2Profile’ can be used for the derivation of other
artefacts, all its OCL-defined Operations, Properties and
Constraints have to be adapted in such a way that they can be
utilized for a derived UML profile. This adaptation is imple-
mented by the ‘OCL Updater’ component, which consists of
an OCL parser and a pretty printer. The update is based on
the abstract syntax tree (AST) of a parsed OCL expression,
as argued in Sec. 5.

M2M transformations. We employ the operational lan-

guage of the Query/View/Transformation specification (QVT) [38]

for implementing three M2M transformations that are used
by DSL-MeDeTo to derive different kinds of artefacts. The
first transformation implements Step (A) of our approach;
its output is the CMOF-based metamodel MM popain- A sec-
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ond transformation derives the UML profile UP pyqin from
MM pomain (Step (B)). Optionally, the ‘additional’ meta-
classes for MM 44,4 can be created with a third transformation
(Step (O).

M2T transformations. We use the MOF M2T Language
(MTL) [36] for realizing two M2T transformations: the M2T
transformation TGenpym—ro—vumr is employed to generate
the M2M transformation Tpy—;o—vpm 1 in Step (D), while
TGenumL—to—pm generates Tpy—o—umr in Step (E). The
source code of both M2M transformations is generated in
terms of the operational language of QVT. We utilize the
Acceleo* component of Eclipse to execute both M2T trans-
formations.

Model editors. Apart from the discussed components, either
Eclipse’s UML tree editor or the UML modelling tool
Papyrus’ can be used for creating or modifying the metamod-
els that are processed by our toolchain (see Fig. 2). Hence,
one of these tools also has to be utilized for applying the
UML profile ‘MM2Profile’ to a metamodel.

3 Running example

The Test Description Language (TDL) [6] is anew DSL [32,
55] for the design and specification of test descriptions. Its
development and standardization is driven by the European
Telecommunications Standards Institute (ETSI). Because a
metamodel [6] and a corresponding UML profile are avail-
able, we employ TDL as an exemplary DSL for our case
study in Sec. 6 in order to investigate the applicability of our
derivation approach. Furthermore, TDL serves us as running
example to illustrate the various steps in deriving a UML
profile from a CMOF-based metamodel.

Background. Ulricht et al. [55] point out that TDL bridges
the gap between high-level test requirement specifications
and executable test cases. Thus, TDL test descriptions can
serve as the basis to create executable test cases in any kind
of target language, such as the Testing and Test Control
Notation-Version 3 (TTCN-3) [8]. Because TDL is a new
language, the literature concerning the application of TDL is
rather limited. Marroquin et al. [34] report on a successful
application of TDL in the telecommunications domain. The
automatic derivation of TDL test descriptions from Use Case
Maps (UCM) is discussed by Boulet et. al [2]. A TDL test
description consists of the following parts:

Test configuration: A testconfiguration defines the tester
components and the components of
a system under test (SUT) involved

4 http://www.eclipse.org/acceleo/

3 https://www.eclipse.org/papyrus/

ina particular test scenario. All com-
ponents communicate among each
other via defined gates and associ-
ated connections.

Test descriptions: A particular test scenario is described
in terms of a test description that
defines the set of interactions between
the test and SUT components of its
associated test configuration. Vari-
ous types of behavioural elements
are available for specifying the con-
trol flow of a test description, e.g.
sequential or parallel behaviour.

Data definitions: Data types can be specified as sim-
ple or structured data types, and their
instances are used in interactions
or can be passed as arguments for
the invocation of parameterized test
descriptions.

Behavioural elements: The various behavioural element
types can be used to define the con-
trol flow, send messages, start and
stop timers, or set the test result.

A TDL test description example is given in Fig. 3. The shown
diagram contains the definitions of data types and associated
data instances. In addition, the ‘DataResourceMapping’ ele-
ments are used to specify a resource that contains an external
representation for data types or their instances. Such an exter-
nal representation is identified by a ‘DataElementMapping’.
For instance, the structured data type MSG is associated with
the ‘DataResourceMapping’.

Apart from data type definitions, the shown diagram also
contains a TestConfiguration consisting of a tester and an
SUT component. Because both components are instances of
the ComponentType Defaul tCTwithVariable,each of
them owns a gate, which is of type defaultGT. The gates
of the component instances are interconnected via a Connec-
tion.

Based on the type definitions and their instances, we can
specify the behaviour of an TDL test description. The nota-
tion employed for TDL’s test behaviour is similar to Message
Sequence Charts (MSC) [19].

4 The derivation of UML profiles

As claimed in Introduction, we can automatically derive a
UML profile based on a metamodel for a DSL in Step (B)
of our approach. In this section, we first discuss the design
decisions of our derivation approach. Then, we treat the pre-
requisites for the suitability of a metamodel as input for our
UML profile derivation, and also consider the enrichment of
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Fig.3 Data and test configuration definition example ([7]—Annex A.1), specified in TDL’s graphical notation

a metamodel with information that is required for the deriva-
tion. Thereafter, we discuss the details of our approach.

4.1 Design decisions for the profile derivation

As our objective is to derive a UML profile and option-
ally ‘additional’ metaclasses, the metaclasses contained in
the metamodel MM ponqin have to be processed in differ-
ent ways. In addition, we have to consider that MM pypmain
also contains metaclasses that represent ‘Abstract Concepts’.
Hence, we presume that the metaclasses in MM pmqin can
be divided into three different sets. The first set repre-
sents ‘Abstract Concepts’; a metaclass of this set is denoted
as MCyc. The second set includes those metaclasses that
shall be mapped to Stereotypes of the derived UML profile
UP pomain- We use the term MCy; to refer to a metaclass of
this set. The third set contains metaclasses that map to ‘addi-
tional’ metaclasses in the metamodel MM 4,4,. A metaclass
of this set is denoted by MCpc.

Design Decision 1 A metamodel MM pomain consists of a set
of MCac metaclasses, a set of MCs; metaclasses, and an
optional set of MC 4 pc metaclasses.

@ Springer

Each ‘Abstract Concept’ metaclass has a ‘matching” UML
metaclass in MMy pr, and their names are prefixed with
‘AC_’ to avoid name clashes with those metaclasses that
are generated based on production rules. Hence, we do not
map MC 4c metaclasses contained in MM pyp4irn - In addition,
we employ the name prefix to identify that a metaclass of
MM pomain 1s an MC 4 metaclass.

Design Decision 2 An ‘Abstract Concept’ metaclass MC ac
has a name prefix *AC_" and is not mapped to any kind of
element.

Hence, all metaclasses without a name prefix are MCg; or
MC 4 pc metaclasses. To make a clear distinction between
these two metaclass types, an additional qualifier is required.
As the derivation of ‘additional’ metaclasses is optional, it
is sufficient to use such a qualifier only for MC4 /¢ meta-
classes. For this reason, we define metaclasses that have no
special qualifier or name prefix as MCgs; metaclasses. By
default, we use this type of metaclasses of MM pymain tO
derive Stereotypes for a UML profile, as shown in Fig. 4.

Design Decision 3 A metaclass of MM pomain without a qual-
ifier is assumed to be an MCys; metaclass, whereas a meta-
classwith existing qualifier represents an MC 4y c metaclass.
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Fig.4 Mapping of metaclasses to Stereotypes

“An element imported as a metaclassReference is
not specialized or generalized in a Profile” [41, Sec.
12.4.7.5].

“A Stereotype may only generalize or specialize another
Stereotype” [41, Sec. 12.4.9.6].

Hence, a Stereotype is not permitted to generalize a UML
metaclass. Instead, an Extension association has to be used.
Consequently, we introduce an Extension for each Stereo-
type, which is derived from an MCg; that inherits directly
from an MCyc in MM pomqain. For example, an Extension
is introduced only for Stereotypes derived from metaclasses
MCg; A and MCgs; D in Fig. 4.

Design Decision 4 An Extension shall be introduced for each
Stereotype, which is derived from an MCs; metaclass that
directly inherits from an MC 4c metaclass.

In contrast to the previous case, a Stereotype can inherit
from another Stereotype without restrictions. Therefore, we
can introduce a Generalization between two Stereotypes that
are derived from two MCys, metaclasses that are in a Gener-
alization relationship (e.g. metaclasses MCs; E and MCgs; D
in Fig. 4).

Design Decision 5 A Generalization is introduced for each
Stereotype that is derived from an MC's; metaclass that inher-
its directly from another MCys; metaclass.

One of our key objectives for the derivation of a UML
profile is the preservation of the syntactic structure defined by
ametamodel. This is a prerequisite for transferring the OCL-
defined static semantics of a metamodel to a UML profile.
Therefore, we map each Property that is an ownedAttribute
of an MCg; to a corresponding Property of a Stereotype.
However, we have to obey the following rule of the UML
specification:

“The type of a composite aggregation Stereotype Prop-
erty cannot be a Stereotype (since Stereotypes are
owned by their Extensions) or a metaclass (since

instances of metaclasses are owned by other instances
of metaclasses)” [41, Sec. 12.3.3.4].

Therefore, we map an MCsg; attribute whose type property
refers to a metaclass, to a stereotype attribute whose aggrega-
tion property has value ‘none’. Thus, this stereotype attribute
represents a reference to a metaclass instance.

Design Decision 6 An MCs; attribute is mapped to a corre-
sponding Stereotype attribute. If the type property of an MC'g;
attribute refers to a metaclass, the aggregation property of
the mapped Stereotype attribute shall have value ‘none’.

If an ownedAttribute of an MC 4 ¢ is redefined or subsetted
by an ownedAttribute of an MCj;,, this kind of relationship
cannot be preserved for a derived UML profile. This is caused
by the two UML constraints above and the fact that redefini-
tion and subsetting can only be used for Classes that are in a
direct or indirect inheritance relationship.

In general, such metaclass attributes may be mapped to
stereotype attributes in two different ways. The first possi-
bility is a one-to-one mapping to a stereotype attribute, where
existing redefinition/subsetting relationships are removed.
However, the drawback of this approach is that values for
stereotype attributes have to be assigned manually. The sec-
ond option is to map a metaclass attribute to a ‘derived’
stereotype attribute whose value is computed automatically
via an OCL expression at runtime. Because of this advantage,
we choose the latter option.

Design Decision 7 An MCsy; attribute that redefines or sub-
sets an MC 4 ¢ attribute is mapped to a derived and read-only
stereotype attribute, and an OCL expression is introduced as
its defaultValue.

When specifying a UML model, a model element must
be created before a stereotype can be applied to it. While
the model element is always located at a certain position in
the UML model, the instance of its applied stereotype is not
directly contained in the model. However, the UML model
and associated stereotype instances are contained in the same
resource or container. This fact could become an issue when
the type of an ownedAttribute of a Stereotype refers to another
Stereotype. In this case, the designer of a UML model has to
identify a valid Stereotype instance that shall be assigned as
value for a Stereotype attribute, which is non-trivial because
Stereotype instances have no unique identification feature.

Consequently, we do not use a Stereotype as the type of
a stereotype attribute; instead, we refer to a UML metaclass
that is extended by a Stereotype, or to an ‘additional’ meta-
class contained in the MM 44,4 metamodel.

Design Decision 8 The type property of an stereotype attribute
either refers to a UML metaclass that is extended by a Stereo-
type, or to an ‘additional’ metaclass in MM 44.
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(b) MCs; metaclass that inherits from an MCs; and an MCyc metaclass

Fig.5 Inheritance and the type of a stereotype attribute

The discussed recomputation of the fype of a stereotype
attribute also affects the modelling of inheritance relation-
ships between MCg; and MC 4c metaclasses in MM pomain-
As long as an MCyg; only inherits from a single MC4c, there
are no restrictions on the modelling of MM p4in- But this
is not the case for multiple inheritance.

Assume that an MCgs,; A that inherits from at least two
MC 4c metaclasses is used as the fype of a metaclass attribute
att_A, and the MCg; is mapped to a Stereotype A, as shown
in Fig. Sa. According to Design Decision 4, this stereotype
would have two Extension associations with different UML
metaclasses. Due to Design Decision 8§, two possibilities
would exist as fype of the mapped attribute att_A.

To avoid this ambiguity, we must ensure that a derived
Stereotype has only an Extension to a single UML metaclass.
One possible solution would be that an MCs; of MM pymain
inherits from at most one MC4c, so that only one Extension
would be derived for a Stereotype. However, this approach
would require a modification of MM pomain, Or its mod-
elling would become too restrictive. Hence, we consider this
approach to be inappropriate.

Another solution would be to introduce a specific kind
of metadata that can be attached to an MCyg;, so that the
UML metaclass to be extended by a Stereotype can be defined
explicitly. Because this approach does not require a modifi-
cation of MM pymain, we prefer this solution.

Design Decision 9 A particular kind of meta-information
(e.g. provided by an applied stereotype) shall be applica-
ble to an MCgs; so that the UML metaclass to be extended by
a Stereotype can be defined explicitly.
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Table 1 Properties that redefine and/or subsets other properties of
UML metaclasses (analysis based on the UML metamodel [40])

Number of ‘Properties’ Number of occurrence

subsetted redefined in MMy
1 0 437 (75,7%)
>2 0 79 (13,7%)
0 1 53 (9,1%)

0 >2 3(0,5%)
>1 > 1 6 (1,0%)

For the sake of completeness, it is mentioned that an MCg;
can also inherit from an MC 4¢ and one or more MCg; meta-
classes, as shown in Fig. 5b. In contrast to the previous
scenario, no ambiguities for the determination of the fype
property of a stereotype attribute exist, because a derived
Stereotype has only a single Extension to a UML metaclass.
Due to Design Decision 8, Generalizations to other Stereo-
types do not affect type determination.

A metaclass attribute can redefine and subset other
attributes at the same time. In addition, a metaclass attribute
cannot only redefine or subset a single attribute, but also sev-
eral attributes. We have to consider this when introducing
OCL expressions as substitute for redefining or subsetting
attributes (see Design Decision 7).

Because subsetting or redefinition of several attributes
usually occurs only in the case of multiple inheritance, we
must pay particular attention to Design Decision 9, which
requires that a derived stereotype extends only a single UML
metaclass. Thus, only attributes of this UML metaclass can
be invoked in generated OCL expressions for stereotype
attributes. Hence, in the case of multiple inheritance, we must
either be able to specify which UML metaclass attributes
should be invoked in OCL expressions, or there must be a
possibility to provide OCL expressions manually.

To decide which solution shall be implemented by our
derivation approach, we have analysed the UML metamodel
concerning the utilization of ‘subsetting’ and ‘derivation’.
The results are summarized in Table 1. Based on these, we
suppose that the ‘subsetting’ of a single attribute (75.7%) is
much more common than that of multiple attributes (13.7%).
A similar situation exists for ‘redefinition’, whereas a com-
bined use of ‘redefinition’ and ‘subsetting’ (1%) can be
considered as a rarely used special case. Hence, we automat-
ically introduce OCL expressions only for such stereotype
attributes derived from MCyg; attributes, which ‘redefine’ or
‘subset’ a single attribute. In all other cases, we prefer a man-
ual specification of OCL expressions.

Design Decision 10 An ownedAttribute of an MCys; can have
an alternative OCL expression, which is used as defaultValue
of a corresponding stereotype attribute.
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Due to Design Decision 8, we recompute the type property
of a stereotype attribute so that it refers to a UML meta-
class. A disadvantage is that syntactically invalid values can
be assigned to such kind of attribute. For example, a value
assigned to a stereotype attribute may have the correct UML
type, but it may have applied an invalid stereotype. There-
fore, we introduce OCL constraints to ensure that only those
UML elements having applied a particular stereotype can
be assigned to such stereotype attributes. However, we do
not generate OCL constraints for ‘derived’ and ‘read-only’
stereotype attributes, because no values can be assigned to
them manually (Design Decision 7).

Design Decision 11 An OCL Constraint is created for each
Stereotype attribute that is not defined as ‘derived’ and ‘read-
only’ and that is mapped from an MCg; attribute with a type
property that refers to an MCg;.

Even though we do not introduce OCL constraints for
‘derived’ and ‘read-only’ stereotype attributes, this does not
apply for those UML metaclass attributes that are employed
as computational basis for the defaultValue of stereotype
attributes (Design Decision 7). Because of the same reason
as above, only UML elements having applied a particu-
lar stereotype shall be assignable to such UML metaclass
attributes. Hence, we introduce appropriate OCL constraints.
We identify the UML metaclass attributes that shall be con-
strained based on the redefinition and subsetting relationships
of MCsg, attributes.

Design Decision 12 An OCL Constraint is created for each
UML metaclass attribute that is the computation base for the
value of a ‘derived’ and ‘read-only’ stereotype attribute.

4.2 Enriching the source metamodel

Provided that MM pomain is generated from production rules
in Step (A) of our approach, we can use it directly as input for
the UML profile derivation. By definition, we consider that
such a metamodel contains a set of MC 4 metaclasses and a
set of MCys, metaclasses (Design Decisions 2 and 3). In this
case, we determine the UML metaclass to be extended by a
derived Stereotype based on the inheritance relationships of
the source MCgs; in MM pomain.

However, the direct use of MM pypain to derive a UML
profile is not always possible. For example, we cannot define
that, instead of a ‘matching’ UML metaclass, one of its
subtypes shall be extended by a Stereotype. Therefore, the
stereotypes of our UML profile ‘MM2Profile’ presented
below must be applied to metaclasses of MM pomain-

As shown in Fig. 6, the UML profile ‘MM2Profile’ con-
sists of five stereotypes that extend four different UML
metaclasses. Except for stereotype <<MM2Profile>>

59
¢ ’\FA,:Lakc;ases» «Metaclass»
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«stereotype» «stereotype»
MM2Profile ToTaggedValue
attributes attributes

+oclSpecification : String [0..1]
+alternativeName : String [0..1]
+derivationSource : Property [0..1]

+sourceBasePackage : String
+profileName : String
+profileNsPrefix : String
+profileNsUri : String
+profilePrefix : String
+addMmName : String [0..1]
+addMmNsPrefix : String [0..1]
+addMmNSsUri : String [0..1]
+addMmPrefix : String [0..1]

«Metaclass»
Generalization

T

«stereotype»
OmitGeneralization

«Metaclass»
Class

?

«stereotype»

«stereotype» ToStereotype

ToMetaclass “oP
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attributes
+alternativeName : String [0..1]
+superClass : Class [0..*]

+extendedMetaclass : Class [0..1]
+alternativeName : String [0..1]
+noMapping : Boolean = false

Fig.6 Stereotypes of the UML profile ‘MM2Profile’

that is automatically applied to a Package element, the appli-
cation of all other stereotypes is optional. We thus enable the
application of these stereotypes only in cases when additional
information is required for the derivation.

The <<MM2Profile>> stereotype Because this stereo-
type has an Extension that is specified as required, it is auto-
matically applied to the Package that represents MM pomain -
Most of the stereotype attributes define input parameters
for the code generator of Eclipse and, therefore, are passed
directly to the derived UML profile and to the metamodel
MM sqq.

While attributes prefixed with ‘profile’ are passed

to the derived UML profile UPpomain, all attributes with
the *add’ prefix are passed to the metamodel MM 4,44 that
contains the ‘additional’ metaclasses.
The <<ToStereotype> > stereotype If the default creation
of a Stereotype according to our approach is infeasible, the
attributes of the <<ToStereotype>> can be used as
follows:

extendedMetaclass overrides the automatically determined
UML metaclass to be extended by a
Stereotype.
alternativeName defines an alternative name for a derived
Stereotype.
noMapping determines whether a Stereotype is gen-
erated for the current MCg; metaclass.
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The <<ToMetaclass>> stereotype According to Design
Decision 3, an additional qualification for an MC 4 p7c meta-
class in MM pomain is required. Hence, we employ the
stereotype <<ToMetaclass>> to define that a meta-
class of MM pymain represents an MC4pc metaclass. The
<<ToMetaclass>> stereotype provides the following
attributes:

alternativeName defines an alternative name for an ‘addi-
tional’ metaclass contained in MM 44,4.

superClass overrides the automatically determined UML

metaclass from which an ‘additional’ meta-
class inherits.

The <<ToTaggedValue>> stereotype We employ this
stereotype to explicitly define a name or to specify an
alternative OCL expression (used as defaultValue) for an
attribute of a derived Stereotype. To support these, the
<<ToTaggedValue>> stereotype provides the follow-
ing attributes:

alternativeName defines an alternative name for an ownedAt-
tribute of a derived Stereotype.
oclSpecification defines an OCL expression that is used as
defaultValue for an ownedAttribute of a
Stereotype.
derivationSource specifies the computation source for the
oclSpecification.

The <<OmitGeneralization>> stereotype A metaclass
can have more than one Generalization relation to other meta-
classes. However, for the derivation of a UML profile, it may
be required that a Generalization to a particular metaclass is
not taken into account. This can be specified by applying the
<<OmitGeneralization>> stereotype to a General-
ization contained in MM pomain.

For example, assume an MCg; A is given that inherits
from an MCac at a high level of abstraction (e.g. AC_
Namespace) and another MCxc (e.g. AC_DataType).
In this case, we want to prevent that the stereotype derived
from A extends the UML metaclass Namespace. To achieve
this, we apply the <<OmitGeneralization>> stereo-
type to the Generalization from A to AC_Namespace.

4.3 TDL Example: Input Metamodel

TDL’s standardized metamodel MM, is divided into sev-
eral Packages, one of which is the Foundation package.
The metaclasses contained in this package define generic
language concepts, such as NamedElement and Package-
ableElement. These metaclasses are comparable to those
contained in the UML ‘Kernel’ package. Thus, one can
assume that these metaclasses of MM, already correspond
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to the MC4¢ metaclasses required by our approach. How-
ever, differences in syntax and semantics exist. For instance,
metaclass attributes contained in TDL’s Foundat i on pack-
age do not match those of UML metaclasses. Because
identically named attributes of ‘Abstract Concepts’ and UML
metaclasses are a prerequisite (see Sec. 2.2) of our deriva-
tion approach, we cannot use MM, as input to derive a
UML profile. Therefore, we have aligned MM, 4 to meet the
requirements of our derivation approach. Below, we refer to
the revised metamodel of TDL using the term MMrpy .

To obtain MMt p1,, we replace the metaclasses contained
in TDL’s Foundation package with equally named meta-
classes of the UML Kernal package. Then, we put the
copied metaclasses in inheritance relationships to TDL’s
metaclasses by introducing Generalization relationship. Fur-
thermore, we redefine or subset the attributes inherited from
the copied metaclasses where required. Finally, we apply
our UML profile MM2Profile to enrich MM7 py with the
meta-information that we require to derive a UML profile.

An excerpt of our modified MMt py, is shown in Figs. 7a
and 7b, where the contained metaclasses define the syntax of
TDL’s data types and test configurations. Some of the meta-
classes (e.g. MappableDataElement) and attributes
contained in the figures have stereotypes of our UML profile
MM2Profile applied. We assume that metaclasses whose
names start without the prefix *AC_’ represent MCs,; meta-
classes that are mapped to Stereotypes.

Without additional meta-information, a Stereotype derived
from the DataType metaclass shown in Fig. 7a would
extend the UML metaclass Type or Namespace. Con-
sequently, this Stereotype could then be applied to all
UML elements that are instances of subclasses of these
UML metaclasses. This would not correspond to the syn-
tax specified by the MM7p; metamodel. Applying the
<<ToStereotype>> stereotype on an MCg, metaclass
remedies this issue, because its extendedMetaclass
attribute can be employed to explicitly specify the UML
metaclass to be extended by a Stereotype.

As the abstract metaclass MappableDataElement
has neither constraints, nor attributes, or operations, we do
not intend to derive a Stereotype for it. For this reason, we
apply the <<ToStereotype>> stereotype to this meta-
class and assign the value ‘true’ to its noMapping attribute.

We use the <<ToTaggedValue>> stereotype to pre-
vent an MCj; attribute being mapped according to the default
rules of our derivation approach. An MCyg; attribute marked in
this way is mapped to a stereotype attribute that is defined as
‘read-only’ and ‘derived’, and the oc1Specificationof
the applied < <ToTaggedValue>> stereotype is employed
to define the defaultValue. For instance, the MCg;, attributes
dataType and memberAssignment in Fig. 7a have the
<<ToTaggedValue>> stereotype applied.
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Fig.7 An excerpt of the metamodel MM7py,

4.4 Our derivation approach

In the following, we discuss the details of our approach
for deriving a UML profile UPpomqin from a metamodel
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(b) Metaclasses that define TDL’s test descriptions

If an MCy, has applied the <<ToStereotype>>
stereotype, the mapping to a Stereotype can be omitted due
to the noMapping attribute. For example, when comparing
Figs. 7a and 8a, we find that the latter does not contain a

MM pomain thatis enriched with the UML profileMM2Profile. stereotype for the MCs; MappableDataElement. This

To illustrate certain aspects of our approach, we use the
MMt p; metaclasses and their corresponding Stereotypes
in the UML profile UPrpy shown in Fig. 7. In addition to
explaining our derivation approach by examples in this paper,
we detail the various derivation steps using pseudocode in
[29].

4.4.1 Mapping to ‘Stereotypes’

The first step of our approach to derive a UML profile
UP pomain from a metamodel MM poqin coOnsists in the cre-
ation of Stereotypes. Therefore and as argued for Design
Decision 3, we create a Stereotype and map various properties
(e.g. name and isAbstract) of the source MCs; one-to-one to
its corresponding properties, while a few properties must be
processed in a particular manner. Further details concerning
this topic are discussed below.

is because we have applied the <<ToStereotype>>
stereotype to this metaclass and assigned value ‘true’ to the
noMapping attribute.

Relationships to super-types. After the stereotypes are
created, we introduce inheritance relationships (i.e. a Gen-
eralization) between them and their super-types. However,
according to Design Decision 5, a Generalization must be
introduced only for those Stereotypes created from MCsg;
metaclasses that inherit from other MCs; metaclasses.

For the reason above, we identify the set of super-
types for a Stereotype ST based on the generalization
property of its source MCs; metaclass, where we regard
only MCs; metaclasses that have not applied the
<<OmitGernalization>> stereotype. Based on the
resulting set of MCgs; metaclasses, we identify the corre-
sponding Stereotypes in UPpomain and assign them to the
superClass property of Stereotype ST. This also causes an
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(a) TDL’s data type concept

Fig. 8 Introduced Extensions and Generalizations in UPrpy,

implicit creation of Generalization relationships between
Stereotype ST and the super-types.

An example is shown in Fig. 8a, where the

<<SimpleDataInstance>> stereotype inherits from
the <<DataInstance>> stereotype. This is because the
two source metaclasses in Fig. 7a are MCs; metaclasses that
are in an inheritance relationship.
Extension relationships to UML metaclasses. Apart from
Generalizations, we create an Extension association between
amapped Stereotype ST and the UML metaclasses to extend,
which can be determined in two ways. Implicitly, we can
identify them based on generalization relationships between
MC sc and MCgr metaclasses in MM pomain (Design Deci-
sion 4). However, this can be overridden by explicitly
specifying the UML metaclasses of interest (Design Deci-
sion 9) using the <<ToStereotype>> stereotype.

To obtain the set of UML metaclasses for a Stereotype ST,
we employ its source metaclass MCs; SMin MM pomain - First,
we check whether UML metaclasses are explicitly defined
via the <<ToStereotype>> stereotype, and if so, we
use these UML metaclasses as extension target for stereotype
ST. Otherwise, we determine the MC 4 metaclasses that are
super-types of the MCg; SM. Then, we resolve the ‘matching’
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(b) TDL’s test descriptions

UML metaclasses for that MC s metaclasses. Afterwards,
we introduce an Extension between stereotype ST and each
identified UML metaclass.

For example, the Extensions of the stereotypes
<<DataUse>> and <<Parameter>> shownin Fig. 8
are create because the source MCs; metaclasses in Fig. 7
inherit from MC4¢ metaclasses. In contrast, the Extensions
of all remaining stereotypes in Fig. 8 are created based on
an explicit specification using the <<ToStereotype>>,
which is applied to the source MCs; metaclasses.

4.4.2 Mapping of DataTypes

Apart from Stereotypes, a UML profile can also introduce
different kinds of data types, which can be DataTypes, Prim-
itiveTypes, or Enumerations. For the derivation of a UML
profile, we determine those data types of MM pomain that do
not represent ‘Abstract Concepts’ and that are not mapped
to data types of MM 444. Then, we copy these data types
one-to-one into the UML profile.

For instance, the Enumerations UnassignedMember
Treatment and ComponentInstanceRole in Fig. 7
do neither represent ‘Abstract Concepts’ nor data types that
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Fig.9 Mapping to derived attributes

map to a metamodel MM 444. Thus, they are copied one-to-
one to UPrpr, as shown in Fig. 8.

4.4.3 Mapping to stereotype attributes

According to Design Decision 6, we map an M Cs; metaclass
attribute to a corresponding attribute of a Stereotype. How-
ever, we must also respect UML’s extension mechanism for
Stereotypes. Therefore, we cannot simply map every kind of
metaclass attribute to a corresponding stereotype attribute.
The most important rule in this context is that subsetting and
redefinition are only applicable to stereotype attributes as
long as no attribute of a UML metaclass is involved.
Subsetting and redefining metaclass attributes. Due to the
reason above and according to Design Decision 7, we map a
redefining or subsetting metaclass attribute to a ‘derived’ and
‘read-only’ stereotype attribute, and we introduce an OCL
expression so that the attribute’s value is automatically com-
puted at runtime. To explain this mapping in more detail, we
employ the example given in Fig. 9, where we distinguish
two cases.

In Case (A) of our example, an MCg, A with an attribute
a and an MCyc T_AC are given. Furthermore, attribute a
redefines attribute t_ac, and its type property also refers
to T_AC. We obtain a ‘read-only’ and ‘derived’ attribute a
of stereotype A’ as mapping result, and the type property
of a now refers to the ‘matching” UML metaclass T_AC".
In addition, an OCL expression is introduced to define the
defaultValue of a. Case (B) differs from (A) only in the
detail that attribute a of MCyg; A is subsetting attribute t_ac,
instead of redefining it.

In both cases, we also create an OCL expression and
assign it to the defaultValue property of a mapped stereo-
type attribute, as described in Sec. 4.5.

For example, see the type attribute of the MCs, meta-
class ComponentInstance in Fig. 7b. As it redefines
the type attribute of the MC ¢ AC_TypedElement, itis

mapped to a ‘derived’ and ‘read-only’ attribute of the stereo-
type <<ComponentInstance>> in Fig. 10b.

In addition to the scenario above, we also create ‘derived’
and ‘read-only’ stereotype attributes for all MCg; attributes
that have an ‘alternative’ OCL specification (Design Deci-
sion 10). This can be defined via the oc1Specification
attribute of the < <ToTaggedvValue> > stereotype applied
to an MCsg; attribute in MM pynqin. During the mapping, we
first create the stereotype attribute, and then we assign the
given OCL specification to the attribute’s defaultValue prop-
erty.

For instance, see the various MCyg; attributes with applied

<<ToTaggedValue>> stereotype in Fig. 7b. Accord-
ing to Design Decision 10, these attributes are mapped
to ‘derived’ and ‘read-only’ stereotype attributes shown in
Fig. 10b.
Other metaclass attributes. All remaining kinds of MCg;
attributes are mapped one-to-one to corresponding stereotype
attributes, including those MCsg; attributes that are redefin-
ing/subsetting other MCyg; attributes, or that are specified to
be a superset. Because only stereotype attributes are involved,
no UML restrictions apply and we can preserve such rela-
tionships. To do so, we usually map all properties of an
MCs; attribute to corresponding properties of the stereotype
attribute to be created.

However, an exception are the properties type and aggre-
gation. The mapping of the former property depends on
whether the fype property of the MCg; attribute in question
refers to a metaclass. If this is the case, the aggregation prop-
erty of a created stereotype attribute must be set to the value
‘none’, as we argued for Design Decision 6. Because the
mapping rules for the fype property are more complex, we
discuss this separately in the next section.

4.4.4 Recomputing the type property

As we argued for Design Decision 8, a stereotype attribute
shall not have a stereotype as its fype. Therefore, we recom-
pute the type property of a created stereotype attribute during
the mapping; but for this, we must consider that a metamodel
MM pomain can contain three types of metaclasses (Design
Decision 1) that are mapped in different ways. In the follow-
ing, we analyse the different cases.

Let Abe an MCs; in MM pomain and A its corresponding
Stereotype in UPpomain- In addition, assume that MCg; A
has an attribute att that maps to a corresponding attribute
att’ of A’, and the type property of att can refer to an
MCac (Case A), an MCg, (Case B), or an MC ¢ (Case
C) metaclass, as shown in Fig. 11. We determine the type
property of att ' as follows:

Case A: By Design Decision 2, we assume that a ‘matching’
UML metaclass exists for each MC4¢c metaclass
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Fig. 10 Introduced Properties and Associations in UPrpr,

in MM pomain. Hence, when we recompute a type
property that refers to an MC4c, we determine the
‘matching” UML metaclass and use it as the new
type.

For example, consider attribute att of MCg; A in
Fig. 11a as input, and assume that the fype prop-
ertyofattreferstoan MCac T_ACIn MM pomain-
Then, the recomputed fype of at t ’ refers to meta-
class T_AC’ in MMy prL.

If the rype of an attribute refers to an MCg;, the type
of the mapped attribute must refer to a UML meta-
classes, as we argued for Design Decision 8. Thus,
when we recompute a fype property that refers to an
MCg; metaclass, we determine a UML metaclass
rather than the Stereotype that extends it.

For instance, consider attribute att of MCgs; A
in Fig. 11b as input, and assume the type prop-
erty of att refers to MCs; T_ST in MM pomain-
Then, the recomputed type of att ' refers T_AC’
in MMy pr..

An MC gpc in MM pomain maps to an ‘additional’
metaclass in MM 444 (Design Decision 1). If such
an MCxpc is referenced as type of a metaclass

Case B:

Case C:
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attribute in MM pomain, then only the correspond-
ing metaclass in MM 444 has to be determined and
used as type of the mapped attribute.

For example, let attribute att of MCs; A in
Fig. 11c be the input for the recomputation, and
assume that the fype of att refers to the MCxpc
T_AMC in MM pomain- Then, the recomputed type
of att’ refers to T_AMC’ of MM s44.

All metaclass attributes that are implicitly defined via asso-
ciation ends in Fig. 10 are an example of Case B because
their type properties refer to UML metaclasses extended by
Stereotypes.

In addition to metaclasses, a metamodel MM popqin May
contain data types, which we copy one-to-one to the UML
profile UP pomain oOr the metamodel MM 4,4,4. Because such
data types can also be used as attribute type in MM pomain, W€
must recompute the fype of a mapped attribute in this case,
too. But unlike metaclasses, we only determine whether a
data type is contained in UP pymain, MMagq or MMy ;
then, we use it as the new fype of a mapped attribute.

The unassignedMember  attribute of the
<<StructureDataInstance>> stereotype and the
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Fig. 11 Variants for recomputing the attribute type

role attribute of the < <ComponentInstance> > stereo-
type in Fig. 10 are examples for the described recomputation
of an attribute type that refers to a data type.

4.4.5 Mapping to stereotype operations

In addition to attributes, a metaclass MCg; can also have
Operations specified, which we map to corresponding items
of a created Stereotype in UP pomain- To do so, we map most
of the properties of an MCy; operation one-to-one, excluding
the redefinedOperation property and the operation’s param-
eters.

Similar to attributes and because of the restrictions spec-
ified for UML profiles, an operation of a Stereotype is not
permitted to redefine an operation of a UML metaclass.
In contrast, no restrictions exist for a redefinition between
stereotype operations. For these reasons, when mapping an

Metamodel MMpozin

+att_mcb |0..*

Metamodel MMy

+att_meb |0..*

«Metaclass» «Metaclass»
{subsets att_mcb AC_MCB ;A ' MCB +att
+atta| b~
= base_MCB {readOnly}
extension_A
«Metaclass» «stereotype»
A = A
I

UML Profile UPponsin

Fig.12 Subsetting MCs; attribute and the corresponding ‘derived” and
‘read-only’ stereotype attribute

M(Cg; operation to a corresponding stereotype operation, we
only process those items of the redefinedOperation prop-
erty, which refer to other MCg; operations. Consequently,
a created stereotype operation in UP pyuqin only redefines
operations of other stereotypes, but not of UML metaclasses.

Asdiscussed earlier, the type property must be recomputed
while creating a stereotype attribute. Because a Parameter of
an Operation also has a type, we recompute this property in
the same way.

4.5 OCL expressions for stereotype attributes

By Design Decision 7, we map a redefining or subsetting
MCsg; attribute to a ‘derived’ and ‘read-only’ stereotype
attribute. Consequently, the value of this attribute is com-
puted at runtime based on its defaultValue property. To
enable this computation, we introduce an OCL expression
for each of these attributes. However, as argued for Design
Decision 10, the automatic creation of OCL expressions is
restricted to the subsetting or redefinition of a single attribute
only. In all other cases, an OCL expression must be provided
using the <<ToTaggedValue>> stereotype.

Assume we have given an MCy; A that inherits from an
MC pc AC_MCB, and A has an attribute at t_ a that is subset-
ting an attribute at t_mcb of AC_MCB, as shown in Fig. 12.
According to our mapping rules, A is mapped to a Stereotype
A’,and att_a maps to a ‘derived’ and ‘read-only’ stereo-
type attribute att_a’. Because AC_MCB has a ‘matching’
UML counterpart MCB, AC_MCB is not mapped. In addition,
we introduce an Extension between Stereotype A’ and UML
metaclass MCB, which implies the creation of the attributes
extension_A and base_MCB. However, the subsetting
relationship of at t_a is not preserved foratt_a’;instead,
we create an OCL expression so that the attribute’s value is
computed at runtime.

In the created OCL expression, we first navigate from the
instance of A’ to the instance of MCB by employing attribute
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base_MCB. Then, we access attribute att_MCB to collect
all items required to compute the value of attribute att_a’.
We select these items either based on their applied stereotypes
or according to their type. The latter option is applied if the
type property of att_a’ refers to an ‘additional’ metaclass.
Finally, we typecast the set of all determined values so that
they match the type and cardinality of att_a’.

A generated OCL expression as a substitution for redefin-
ing or subsetting MCg; attributes always consists of the
following parts:

— Navigation to UML metaclass MCB that is extended by a
Stereotype ST;

— Navigation to attribute at t _src of MCB, so this attribute
serves as the source for the value computation;

— Selection of all relevant items of at t_src based on their
applied stereotype or element type;

— Type-cast of the selected items to match the fype and
cardinality of the stereotype attribute att_st.

We generate all OCL expressions according to two patterns.
The first pattern is used for stereotype attributes that have an
upper cardinality one, while the second pattern is employed
in all other cases:

(1) self.base_<MCB>.<att_src>—>any(<sel_exp>).<type—cast>
(2) self.base_<MCB>.<att_src>—>select(<sel_exp>)—><type—cast>

For example, when we employ Pattern (1) for the type
attribute of the MCg, ComponentInstanceinFig. 7b, we
obtain the following OCL expression for the corresponding
attribute of <<ComponentInstance>> in Fig. 10b:

if self.base_Property.type
—>one(isStereotypedBy(* UP4TDL: : ComponentType’))
then self.base_Property.type—>any(isStereotypedBy(
‘UP4TDL: : ComponentType’)).oclAsType(UML::Class)
else null endif

Asthe type attribute of the < <ComponentInstance>>
stereotype is only single-valued, we evaluate in the first
two lines of the generated OCL expression whether an
element with applied <<ComponentType>> stereotype
is assigned to the type attribute of the UML metaclass
Property. If so, we type-cast and return the determined
element.

4.6 Additional OCL constraints

Because the rype properties of stereotype attributes are
recomputed, we introduce additional OCL constraints to pre-
serve the static semantics defined by MM pymain. Due to
Design Decisions 11 and 12, we distinguish between two
categories of OCL constraints. The first is introduced to
ensure the well-formedness of stereotype attributes that are
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not ‘derived’ and ‘read-only’. The second ensures the well-
formedness of UML metaclass attributes that are relevant
for computing the defaultValues of ‘derived’ and ‘read-only’
stereotype attributes.

4.6.1 OCL constraints for stereotype attributes

As argued for Design Decision 11, a syntactically invalid
value can be assigned to a stereotype attribute that is not
defined as ‘derived’ and 'read-only’. Therefore, we introduce
OCL constraints to ensure that only UML elements having
applied particular stereotypes can be assigned to such stereo-
type attributes.

Assume an MCyg; attribute att, where its type property
refers to an MCgs; A. This attribute is mapped to a corre-
sponding attribute at t ’, and a Stereotype A’ is derived from
A. In addition, this stereotype has an Extension to a UML
metaclass MCB. Furthermore, the type property of att’ is
recomputed so that it refers to MCB. Thus, any kind of MCB
instance can be assigned to att’. However, att’ is only
well formed if all elements assigned to it have A’ applied.
To ensure this, we create an OCL constraint that consists of
the following parts:

— Navigation to stereotype attribute att_st;
— Verification that all items of at t_st have stereotype ST
applied.

Apart from the components above, the cardinality of the
stereotype attribute must also be respected because different
constraint kinds have to be used for single-valued and multi-
valued attributes:

(1) self.<att_st> <> null implies self.<att_st>.isStereotypedBy(<ST>)
(2) self.<att_st>—>forAll(isStereotypedBy(<ST>))

For instance, the frype property of the component
attribute of the MCs, GateReference in Fig. 7b refers
to the MCs; ComponentInstance. As we recompute the
type property of stereotype attributes, that of the component
attribute of <<GateReference>> refers to the UML
metaclass Property. For this attribute, we introduce the
following OCL Constraint by applying Pattern (1) above:

self.component <> null implies
self.component.isStereotypedBy( ' UPATDL: : ComponentInstance’)

In Line 1, we evaluate whether a value is assigned to the
stereotype attribute. If so, we employ the isStereotyped
By () operation in Line 2 to test whether the element
assigned to the component attribute has applied the
<<ComponentInstance>> stereotype. Consequently,
only elements with applied < <Component Instance>>
stereotype can be assigned to the component attribute.
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4.6.2 OCL constraints for UML metaclass attributes

We introduce a second category of OCL constraints for ensur-
ing the well-formedness of UML metaclass attributes that
serve as value computation source for the defaultValue of
‘derived’” and ‘read-only’ stereotype attributes (Design Deci-
sion 12).

Suppose that the same excerpt of a metamodel MM pomain
(see Fig. 12) is given as we have employed to explain the gen-
eration of OCL expressions. After applying our derivation
approach, we obtain a ‘derived’ and ‘read-only’ stereotype
attribute att_a’ that has an OCL expression as default-
Value. Moreover, an attribute at t_mcb of a UML metaclass
MCB serves as basis for computing this OCL expression.
To preserve well-formedness, we have to ensure that only
permitted elements can be assigned to metaclass attribute
att_mcb. For the given example, only the assignment of
elements with an applied stereotype A’ is permitted. Hence,
we introduce an appropriate OCL Constraint that constrains
attribute at t_mcb.

Apart from the given example, a UML metaclass attribute
can also be used to compute several stereotype attributes.
This is always the case if several MCyg, attributes in the
source model MM pomain are subsetting or redefining the
same MC 4¢ attribute. In such a scenario, we obtain a set of
valid stereotypes that can be applied to items of the attribute
att_mcb, and therefore, these also must be verified via a
generated OCL constraint, which consists of the following
parts:

— Navigation to attribute att_mcb of UML metaclass
MCB, which is extended by Stereotype ST;

— Verification that each item of att_mcb has one of the
permitted stereotypes applied.

We employ the following two patterns to generate an OCL
Constraint. As in the case of the previous constraint category,
we must obey the attribute cardinality here:

(1) self.base_<MCB>.<att_mcb> <> null implies
self.base_<MCB>.<att_mcb>.<verify_exp>
(2) self.base_<MCB>.<att_mcb>—>forAll(verify_exp)

For example, the type attribute of the MCs; Component
Instance in Fig. 7b redefines an attribute of the MCy4¢
AC_TypedElement. As only one attribute of the MCg;
ComponentInstance redefines the type attribute of
the MCy4c AC_TypedElement, only one attribute of the
<<ComponentInstance>> stereotype has an OCL
expression for a value computation based on the type
attribute of UML metaclass TypedElement. Consequently,
according to Design Decision 12, only elements with applied
<<ComponentType>> stereotype shall be assignable to

this UML metaclass attribute. To ensure this, we create the
following OCL constraint by employing Pattern (1):

self.base_Property.type <> null implies self.base_Property
.type.isStereotypedBy(* UPATDL: : ComponentType’)

Line 1 tests whether a value exists at all. If this is the case,

starting from an instance of <<ComponentInstance>>,
we navigate in Line 2 to the type attribute and invoke the

isStereotypedBy () operation to evaluate whether the

element assigned to this attribute has the

<<ComponentType>> stereotype applied.

5 Update of existing OCL expressions

A metamodel includes OCL expressions for different pur-
poses. OCL expressions can be used to define Constraints on
metaclasses, so that the static semantics of a computer lan-
guage or DSL is captured. They can also serve as the basis
for computing values of metaclass attributes and operations
at runtime.

The automatic transfer of the static semantics of a meta-
model MM pomain to a derived UML profile UPpomain 1S a
key feature of our approach. Because Stereotypes and their
extended UML metaclasses exist as separate instances in a
model, an automatic transfer of OCL expressions from a
metamodel to a UML profile is impossible without updat-
ing them at the same time. As argued in the Sec. 2.3, we do
not consider the OCL update as a separate process but as an
action of our UML profile derivation process.

First, we give an overview of the OCL metamodel as a
basis for specifying our design decisions for the OCL update.
Then, we discuss the details for updating OCL expressions,
and finally, we elaborate on the most important aspects of
our implementation.

5.1 The OCL metamodel

We briefly introduce the relevant parts of OCL’s abstract syn-
tax, which is defined by a MOF-compliant metamodel [45].
The OCL metamodel is divided into several packages, and
the most important of them are:

— The ‘Expressions’ package, which specifies the different
OCL expression types;

— The ‘“Types’ package defines OCL’s type system, which
includes concepts for using predefined types as well as
user-defined types introduced by a metamodel.

Because only the OCL metaclasses that define the abstract
syntax of OCL expressions are of interest for our OCL
update, we just treat some metaclasses of the ‘Expressions’
package. The basic structure of the abstract syntax of OCL
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Fig. 13 Basic structure of OCL’s abstract syntax

expressions is shown in Fig. 13. OCL is a ‘typed language’.
Therefore, the most general metaclass OCLExpression inher-
its from the TypedElement, so that all OCL expressions own
the type property. Typically, an abstract syntax tree (AST)
of an analysed OCL expression consists of any number of
nested OCL expression instances. Each of these instances
has a static type specified, which is determined by a recur-
sive analysis of all nested expressions. The result value of an
expression is determined by performing an evaluation, and
the obtained value must conform to the static type of the
expression.

The objectives of the metaclasses shown in Fig. 13 are
explained below. Only the metaclasses MsgExp and StateExp
are excluded, because they cannot be used for OCL expres-
sions contained in metamodels.

CallExp is used to obtain the evaluation result
of an operation or attribute of a clas-
sifier or the result of a collection type
iterator. The purpose of a CallExp is
defined by its concrete subtypes.

is employed to determine the evalua-
tion result of an attribute or operation
of a classifier. This abstract OCL
metaclass is more precisely defined
by further subtypes, see below.
represents a literal of a primitive type
such as Integer or String.
refers to a classifier in a model or
a predefined type. Typically, a Type-

FeatureCallExp

LiteralExp

TypeExp
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Exp is passed as argument to invoke
one of the predefined OCL operations
oclAsType(),oclIsTypeOf (),
or oclIsKindOf ().

is a super-type of Variable and Param-
eter. Variable represents user-defined
variables, and Parameter specifies
operation parameters.

is areference to an explicitly declared
variable, an operation parameter, or
the implicitly introduced variables
‘self” and ‘result’.

iterates over all items of a collection
type. The invocation of a predefined
collection iterator is represented by
IteratorExp, which is a concrete sub-
type of LoopExp.

always consists of two mandatory
alternative expressionsandaBoolean
condition. Depending on the con-
dition’s result, one of the alterna-
tive expressions is evaluated and the
obtained result is returned.

VariableDeclaration

VariableExp

LoopExp

IfExp

The subtypes of the abstract OCL metaclass Feature-
CallExp are shown in Fig. 14. Depending on the subtype,
a NavigationCallExp represents a reference to a classifier
attribute or an association class. Because the latter element
type is not applicable to OCL expressions of metamodels,
we do not consider the metaclass AssociationClassCallExp
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Fig. 14 Abstract syntax of OCL’s FeatureCallExp

further. The PropertyCallExp is used to evaluate the value of
a classifier attribute, and the referredProperty property is the
reference to this attribute.

Another subtype of the FeatureCallExp metaclass is the
OperationCallExp that is employed to evaluate the result of
an operation invocation. The referredOperation property of
this metaclass identifies the operation to be invoked, and the
items of the ownedArguments property define the values that
are passed to the operation’s parameters.

5.2 Design decisions for updating OCL expressions

Based on our design decisions for deriving UML profiles
specified in Sec. 4.1, we map MCgs, metaclasses of the
metamodel MM ppqin to corresponding Stereotypes of the
UML profile UPpomain, and MCsg; attributes to stereotype
attributes. Furthermore, we map Operations and Constraints
of MCyg; metaclasses to corresponding counterparts in Stereo-
types. As the result of the mappings, all elements of an MCys;
are owned by Stereotypes. The ‘self’ variable of an OCL
expression contained in a Stereotype always refer to this
Stereotype instead of a metaclass. If a feature of the extended
UML metaclass is accessed based on the ‘self’ variable, the
‘base_<metaclass>" attribute must be accessed first when
navigating to that metaclass feature.

Hence, we must update all OCL expressions that access
an MCyc attribute or MCyc Operation based on a ‘self’
variable that refers to an MCgs;. During this update, we
introduce a PropertyCallExp that accesses the attribute
‘base_<metaclass>".

Design Decision 13 A PropertyCallExp that accesses the
‘base_<metaclass>" attribute shall be introduced for OCL
expressions that access an MC 4c attribute or MC zoc Oper-
ation via a ‘self’ variable that refers to an MCg;.

The type properties of attributes are recomputed during the
mapping, so that only Classifiers (Classes or DataTypes) of
the MMy 1, or MM 544 metamodel are referenced (Design
Decision 9). Moreover, the same recomputation is applied
to the type property of an operation Parameter. Thus, nei-
ther the type properties of stereotype attributes nor those of
operation parameters refer to Stereotypes. This situation also
applies to attributes and operation parameters of ‘additional’
metaclasses of MM 444. Thus, accessing mapped stereotype
attributes or operation parameters always returns a metaclass
instance.

If a Property or Operation of a Stereotype shall be accessed
based on the result returned by an OCL expression, then
the ‘extension_<stereotype>’ attribute has to be employed
for navigating to the stereotype feature. For this reason, we
update all OCL expressions that contain a navigation from
one MCyg, feature to another MCg; feature, and during this
update we introduce a PropertyCallExp that accesses the
‘extension_<stereotype>" attribute.

Design Decision 14 A PropertyCallExp that accesses the
‘extension_<stereotype>" attribute shall be introduced for
OCL expressions that contain a navigation from one MCg,

feature to another.

The predefined OCL operations oc1IsTypeOf () and
oclIsKindOf () are used to verify whether the evalu-
ation result of an OCL expression is an instance of the
Classifier defined as argument. The oclIsTypeOf ()
operation returns only value ‘true’, if the evaluation result
exactly matches the type specified as argument, while the
oclIsKindOf () operation returns ‘true’ also for sub-
types.

Because the type property of stereotype attributes and
operation parameters is recomputed during the mapping,
OCL expressions that access these elements can never return
a stereotype instance as result. Thus, we cannot utilize the
aforementioned operations to verify whether a particular
stereotype is applied. Instead, we employ the operations
isStrictStereotypedBy () and isStereotyped
By (). We update an OperationCallExp that invokes the
oclIsTypeOf () or oclIsKindOf () operation, pass-
ing an MCgs; metaclass as argument. During this update,
we introduce a new OperationCallExp that invokes the
operation isStrictStereotypedBy () or isStereo
typedBy ().

Design Decision 15 An OperationCallExp that invokes the
oclIsTypeOf () or oc1lIsKindOf () operation, pass-
ing an MCs; as argument, shall be replaced by an Opera-
tionCallExp that invokes the operation 1sStrictStereo
typedBy () or isStereotypedBy ().

The elements of MM pymain are located in UPpomain,
MM gq4, and MMy ;. after the mapping. Because a Type-
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Exp refers to a particular Classifier of a metamodel, we have
to update all OCL expressions of that type, so that they
refer to elements in MM aqq or MMy 1. The Stereotypes
of UP pomain are not considered for this update, because the
type properties of stereotype attributes and parameters are
recomputed during the mapping so that Stereotypes are not
referenced.

Design Decision 16 All TypeExp shall be updated so that they
refer to Classifiers of MMy pp or MM p44.

5.3 The OCL update in detail

We now detail our approach for updating OCL expressions
contained in the metamodel MM pymain. We assume that a
textually specified OCL expression is parsed and the result-
ing abstract syntax tree (AST) is present. This AST is an
instantiation of OCL’s metamodel.
FeatureCallExp. By Design Decisions 13 and 14, an addi-
tional PropertyCallExp thatrefers to the ‘base_<metaclass>"
or ‘extension_<stereotype>" attribute must be introduced
for an existing FeatureCallExp in certain situations. How-
ever, this applies only to instances of PropertyCallExp and
OperationCallExp, because only these subtypes of Feature-
CallExp are applicable in the context of metamodels.
Following Design Decision 13, we create an additional
PropertyCallExp to access an ‘extension_<stereotype>’
attribute if all criteria below are met:

1. The type of the ownendSource expression of a Feature-
CallExp refers to an MC§s; metaclass;

2. The referredProperty of a PropertyCallExp is an MCyg;
attribute, or in case of an OperationCallExp, the referre-
dOperation is an MCg; operation.

Assume that the PropertyCallExp shown below is used as
input for the OCL update, and that the above criteria are
met. After applying the update, we obtain the result shown
in the second line, where the <stereotype> placeholder
represents the name of the Stereotype that owns the referred-
Property:

input: source.referredProperty
result: source.extension_<stereotype>.referredProperty

For example, the update defined by Design Decision 13 is
applied to the constraint of the MCs; StructuredData
TypeinFig. 7a. ThemembersAreDistinguishable ()
operation that is invoked by this constraint is inherited from
MCyc AC_Namespace. In UPrpy, this operation is not
inherited by the derived StructuredDataType stereo-
type, but we can invoke it via the extended UML metaclass.
For this purpose, we introduce an PropertyCallExp for the
attribute base_DataType based on Design Decision 13:
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input: self.membersAreDistinguishable()
result: self.base_DataType.membersAreDistinguishable()

Due to Design Decision 14, another kind of update of an
existing FeatureCallExp is required in order to access a UML
metaclass feature based on a ‘self” variable that refers to a
Stereotype instance. We create an additional PropertyCall-
Exp that refers to the ‘base_<metaclass>" attribute, so we
can access the UML metaclass feature. We only conduct this
update if all following criteria are met:

1. The ownendSource expression of a FeatureCallExp is a
VariableExp that refers to the ‘self” variable, and the fype
of this VariableExp expression refers to an MCys, meta-
class;

2. The referredProperty of a PropertyCallExp is an MC ¢
attribute, or in case of an OperationCallExp, the referre-
dOperation is an MC 4¢ operation.

Assume that the PropertyCallExp shown below is used
as input for the OCL update, and the above criteria are met.
The result of this update is shown in the second line. The
<metaclass> placeholder corresponds to the name of
the UML metaclass that owns the referredProperty:

input: self.referredProperty
result: self.base_<metaclass>.referredProperty

For example, the MCs; StructuredDataInstance
in Fig. 7a has defined the constraint below, which includes
two sub-expressions that meet the discussed criteria of
Design Decision 14. Hence, we introduce a PropertyCall-
Exp for both attributes extension_ StaticDataUse
and extension_Parameter.

input: self. memberSpec.determinedType = self.member.dataType
result: self. memberSpec.extension_StaticDataUse.determinedType =
self.member.extension_Parameter.dataType

OperationCallExp. The predefined OCL operations ocl
IsTypeOf () and oclIsKindOf () can be employed to
determine whether the result type of an expression matches
the expected type. By Design Decision 15, an update of
an OperationCallExp is required if one of the operations is
applied to an MCg, metaclass. We conduct this update as
follows:

— The referred operation oc1IsTypeOf () of an Oper-
ationCallExp is replaced by the isStrictStereo
typedBy () operation, if the passed argument is an
MCg; metaclass.

— The operation oc1IsKindOf () that is referred by an
OperationCallExp is replaced by the i sStereotyped
By () operation, if the passed argument is an MCs; meta-
class.
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For instance, suppose the two OCL expressions below
are used as input for the update, and both expressions
meet the above criteria. In Case (A), we introduce the
operation isStrictStereotypedBy (), whereas the
operation isStereotypedBy () isemployed in Case (B).
The placeholder <stereotype> represents the stereotype
name that is derived from the M Cs; shown in the input expres-
sions:

input:

(A) source.oclIsTypeOf(MCSt)

(B) source.oclIsKindOf(MCSt)

result:

(A) source.isStrictStereotypedBy(<stereotype>)
(B) source.isStereotypedBy(<stereotype>)

Below, for example, we apply the OCL update accord-
ing to Design Decision 15 to a constraint of the MCg;
SimpleDataInstance in Fig. 7a. As shown, the call of
the operation oc1IsKindOf () is replaced by an invoca-
tion of the operation oc1IsStereotypedBy (). In addi-
tion, the MCs; SimpleDataType specified as argument
is substituted with the qualified name of the corresponding
Stereotype:

input: self.dataType.ocllsKindOf(SimpleDataType)
result: self.dataType.isStereotypedBy(‘UP4TDL::SimpleDataType’)

TypeExp. According to Design Decision 16, we have to
update all occurrences of TypeExp that refer to an MCac
or an MCys; metaclass. A TypeExp that refers to an MCyc
metaclass is updated so that the ‘matching” UML counter-
part of the MC 4 is referenced. Furthermore, a TypeExp that
refers to an MC 4 ;¢ metaclass is updated so that it refers to
an ‘additional’ metaclass.

We explain the application of the update based on
the getTestDescription() operation of the MCg;
AtomicBehaviour. Line 3 of this operation invokes the
operation oclAsType (T), where a TypeExp is passed as
argument T that refers to the MCs;, TestDescription.
After conducting our update, the UML metaclass
BehavioredClassifier is passed as argument, as
required by Design Decision 16.

input:

if self.allNamespaces()—>one(oclIsTypeOf(TestDescription))

then self.allNamespaces()—>any(oclIsTypeOf(TestDescription))
.oclAsType(TestDescription)

else null endif

result:
if self.base_InteractionFragment.allNamespaces()—>one(
isStrictStereotypedBy('UP4TDL: : TestDescription’))
then self.base_InteractionFragment.allNamespaces()—>any(
isStrictStereotypedBy(' UP4TDL: : TestDescription’)
).0clAsType(UML::BehavioredClassifier)
else null endif

6 Case study-based evaluation

We employ the Test Description Language (TDL) as a run-
ning example to explain the details of deriving a UML profile
from a metamodel. Below, we detail our case study on TDL,
where we fully automatically derive a UML profile from
TDL’s metamodel using our derivation approach. First, we
investigate whether all elements of the UML profile UPrpy,
are created as expected. Then, we compare our UPr p with
the UML profile [6] standardized for TDL. In this way, we
assess the quality of UML profiles generated via our approach
against manually created ones.

6.1 Evaluation of the generated UML profile UPrp,

In Table 2, we compare the metaclasses of MM7p; with
the stereotypes that we have derived for the UML profile
UPrpr.Because of Design Decision 1, we donotmap MC 4 ¢
metaclasses to model elements of UPr py . Accordingly, the
13 MC 4¢ metaclasses have no counterparts in UPrpy .

The <<ToStereotype>> stereotype is applied to 59

of the 80 MCys, metaclasses in MMt pr, mainly to define
the UML metaclasses to be extended by generated Stereo-
types (Design Decision 9). Based on the number of MCg;
metaclasses in MMt pr, one could assume that UP7pr con-
tains a total of 80 Stereotypes. As shown in Table 2, only
79 Stereotypes are created for UPrpy. This corresponds
to the desired result, because we have defined the MCsg;
MappableDataElement in MMt py (see Fig. 7a) as not
to be mapped.
Stereotype extensions and generalizations. To explain
more clearly for which kinds of MCys, metaclasses Stereo-
types are introduced either with Extensions or Generaliza-
tions, we distinguish two MCgs; groups in Table 2:

For MCs; metaclasses that inherit directly from MCy4¢
metaclasses, we introduce Extensions between generated
Stereotypes and UML metaclasses identified based on the
MC sc metaclasses (Design Decision 4). Because one of
the 33 MCys, metaclasses that inherit directly from MC4c
metaclasses is specified as not mappable, we derive only 32
Stereotypes with an Extension to a UML metaclass. 29 of
these MCg; metaclasses have the <<ToStereotype>>
stereotype applied, so that the UML metaclasses to be
extended are explicitly specified (Design Decision 9) and
not determined based on MC 4¢ metaclasses.

The second MCg; group summarizes all MCs; meta-
classes that inherit from other MCy; metaclasses by means
of Generalization. This group comprises 47 MCs; meta-
classes of which 30 have the <<ToStereotype>>
stereotype applied. For all Stereotypes that are created from
these 47 MCgs; metaclasses, we introduce Generalizations
to other Stereotypes (Design Decision 5). In addition, we
create 30 Extension relationships from Stereotypes to UML
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Table 2 Metaclasses in MMt py vs. stereotypes in UPrpr,

MM TDL uvp TDL

MC 5c metaclasses 13 -

MCg; metaclasses in total 80 79 Stereotypes in total

MCsg; inheriting from MCac (29 MCs; with applied 33 32 Stereotypes with Extensions to UML metaclasses
<<ToStereotype>> stereotype)

MCsg; inheriting from other MCs; 47 17 Stereotypes inheriting from other Stereotypes

(30 MCs; with applied <<ToStereotype>> 30 Stereotypes inheriting from other Stereotypes and
stereotype) Extensions to UML metaclasses

metaclasses, because the source MCg; metaclasses have
applied the <<ToStereotype>> stereotype (Design
Decision 9).

Stereotype attributes. Due to the higher number of relevant
design decisions, the mapping of attributes is more complex
than the one of Stereotypes. Accordingly, several types of
attribute mappings are considered in Table 3:

‘Derived’ stereotype attributes: This group summarizes
all mapped stereotype
attributes that are defined
as ‘derived’ and ‘read-
only’.

‘Non-derived’ stereotype attributes: This group captures all
stereotype attributes that
do not belong to the first

group.

As shown in Table 3, MMt p contains a total of 126 meta-
class attributes, of which 99 are considered as M Cy; attributes
that map to 52 ‘non-derived’ and 47 ‘derived’ stereotype
attributes. The remaining 27 attributes are owned by MCc
metaclasses and, therefore, are not considered when deriving
UPTDL .

To discuss the mapping of MCsg; attributes to ‘derived’ or
‘non-derived’ stereotype attributes, we group them accord-
ing to their type in Table 3. In addition, we specify
how many of the MCgs; attributes of a group have the

<<ToTaggedValue>> stereotype applied. This is because

the application of this stereotype overrides the default map-
ping for MCsg; attributes, so that these attributes are mapped
to ‘derived’ stereotype attributes.

The first group of MCy; attributes subsumes all MCg;
attributes that are already defined as ‘derived’ and ‘read-only’
in MM pr. By default, these MCg; attributes are mapped
to stereotype attributes also defined as ‘derived’ and ‘read-
only’. During the mapping, we copy an OCL expression
available as defaultValue and subject it to our OCL update.

However, if an M Cg; attribute has the < <ToTaggedvValue>>

stereotype applied, we use the OCL expression defined by
this Stereotype instead of the existing one in MMrpy .
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Overall, MMt p1 contains three MCg; attributes defined
as ‘derived’ and ‘read-only’, of which one has applied the
<<ToTaggedvalue>> stereotype. Accordingly, exist-
ing OCL expressions are transferred to UPr py. for only two
MCyg; attributes. In the case of the MCg; attribute with applied
<<ToTaggedValue>> stereotype, the OCL expression
defined by this Stereotype was copied to UPTpp .

The second MCsg; attribute group contains nine MCs;
attributes that redefine other metaclass attributes. Eight of
these MCg; attributes are mapped to ‘derived’ and ‘read-
only’ stereotype attributes, where six attributes are mapped
based on Design Decision 7 and two others based on the
applied <<ToTaggedvValue>> stereotype, as required
by Design Decision 10. One further MCyg; attribute is mapped
to a ‘non-derived’ stereotype because it redefines an MCg;
attribute and is thus not captured by Design Decision 7.

All attributes that subset other metaclass attributes are
captured by the third MCg, attribute group. In total, this
group comprises 43 MCg; attributes, of which 29 have
the <<ToTaggedvValue>> stereotype applied. Based
on Design Decision 7, these 29 attributes are mapped to
‘derived’ and ‘read-only’ stereotype attributes. In addition,
we introduce OCL expressions as defaultValues, which are
used to compute the values of stereotype attributes at runtime.

One could now expect that all 14 remaining MCs;
attributes would also be mapped to ‘derived’ and ‘read-
only’ stereotype attributes according to the rules defined by
Design Decision 7. However, this is not the case as we have
supplemented these rules during the implementation of our
derivation approach, as argued in Sec. 4.4. Therefore, only
those MCyg; attributes that redefine or subset MC 4 ¢ attributes
not declared as ‘derivedUnion’ or ‘read-only’, are mapped
according to Design Decision 7. Because the 14 remaining
MCsy; attributes do not meet this condition, they are mapped
to ‘non-derived’ stereotype attributes.

The last MCyg; attribute group comprises all attributes
that are not captured by one of the three other groups. This
applies to 44 MCsg; attributes, of which seven have applied the
<<ToTaggedvalue>> stereotype, so they are mapped
to seven stereotype attributes that are defined as ‘derived’
and ‘read-only’ (Design Decision 10). The 37 remaining
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EZ:;L lrl/ic?t;atcelrz;sost;g;ibutes in ) Steljeotype attributes.
attributes in UP7p; Metaclass attributes 126 ‘non-derived’ ‘derived’
MC 5c attributes 27 — —
MCyg; attributes in total 99 52 47
MCsg; attributes defined as ‘derived’ and ‘read-only’ 3 — 2
Attributes with <<ToTaggedValue>> stereotype (1) — 1
Redefining MCsg; attributes 9 1 6
Attributes with <<ToTaggedValue>> stereotype (2) — 2
Subsetting MCsg; attributes 43 14 —
Attributes with <<ToTaggedValue>> stereotype (29) — 29
Other kind of MCg; attributes 44 37 —
Attributes with <<ToTaggedValue>> stereotype (7) — 7
Table4 OCL artefacts of MM7 py, vs. the ones of UP7pp. Table 5 Comparison of the UML profiles UPs;y and UPTpy,
MMrpr, UPrpL UPgy UPrpL
OCL Constraints 67 113  OCL Constraints Mappings for UML elements 23 —
67  Copied and updated from MMrp/, without stereotypes
40  TIntroduced for stereotype attributes Stereotypes 56 79
that refer to UML metaclasses Stereotype attributes 52 99
with applied stereotypes OCL Constraints 2 113
6 Creat.ed for redefining MCg; OCL Operations 0 10
attributes
OCL Operations 10 10 OCL Operations

metaclass attributes of this group are mapped one-to-one to
‘non-derived’ stereotype attributes (Design Decision 6).
OCL-defined elements. The metamodel MMy p; contains
67 Constraints and ten Operations defined via OCL, which
we map to corresponding elements in UP7pr. When com-
paring MM7pr and UPTpr, we find that UPr p; comprises
113 OCL Constraints instead of 67. This is because we intro-
duce additional OCL Constraints for Stereotypes of UPTpr,
(Design Decisions 11 and 12).

To ensure that only UML elements with certain Stereo-
types can be assigned to ‘non-derived’ stereotype attributes,
we create appropriate OCL Constraints. Table 4 shows that
UPrp contains 52 ‘non-derived’ stereotype attributes, but
only 40 OCL Constraints are created for these. This is
because only 40 of the 52 ‘non-derived’ stereotype attributes
are derived from MCsg; attributes whose type property refers
to an MCg; (Design Decision 11).

In addition, further OCL Constraints are provided accord-
ing to Design Decision 12 for ‘derived’ and ‘read-only’
stereotype attributes derived from subsetting or redefining
MCsg; attributes. These OCL Constraints ensure that only
UML elements with matching Stereotypes can be assigned
to UML metaclass attributes that serve as computation source
for the values of the stereotype attributes in question. As six
stereotype attributes in UP7 p, are derived from redefining

M(Cyg; attributes, an equal number of OCL constraints is intro-
duced based on Design Decision 12.

6.2 The standardized versus the derived UML profile

In the following, we investigate whether an automatic gener-
ated UML profile is comparable to a manually created one.
Therefore, we compare our derived UML profile UP7py,
with the one standardized for TDL [6]. We refer to the
latter UML profile via the acronym UPj;,. First, we anal-
yse the number of model elements contained in UPy;; and
UP7 py., so that we can draw initial conclusions. Afterwards,
we review some Stereotypes of both UML profiles to obtain
a detailed view on the quality of the UML profile UPrpy .
Quantitative comparison. To compare the various elements
in UPs;q and UPrpr, we summarize their quantities in
Table 5. A particularity of UP;q is shown in the first table
row. UPg;4 defines a mapping to TDL metaclasses for 23
UML element types without defining Stereotypes, i.e. the
relevant UML model elements are mapped without TDL-
specific Stereotypes applied to them. The disadvantage of
this approach is that no OCL Constraints are defined for the
affected UML element types due to the missing Stereotypes;
thus, the static semantics of the relevant language concepts
of TDL is not captured.
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UP;;4 embraces a lower number of Stereotypes than
UPrpr, which is due to the above reason. In contrast
and except of the MappableDataElement metaclass,
UPrpr provides a specific Stereotype for each MCg; meta-
class of MM7py. In addition, the Stereotypes of UPTpr
have a larger number of attributes. One might assume that
this is due to the larger number of Stereotypes in UPTpp.
However, the question arises whether the different numbers
of Stereotypes is the only reason, because UPr pj contains
with 99 stereotype attributes almost twice as many as UPq.
Another reason might be that not each metaclass attribute has
a corresponding Stereotype attribute in UPr py,. This aspect
is analysed in more detail below.

The compliance of UML elements with TDL’s static
semantics can only be evaluated if Stereotypes with appro-
priate OCL Constraints exist. Because UPy;4 has only two
OCL Constraints, this statement also applies to those TDL
language concepts for which corresponding Stereotypes are
present. In contrast, UPrpy provides 113 Constraints and
10 Operations that are defined via OCL. These include not
only the Constraints transferred from MM py,, but also those
introduced during the derivation of UPr py . Therefore, we
conclude that UPg;, cannot be used to ensure TDL’s static
semantics, whereas this drawback does not exist for UP7pr..
Comparison of the syntactic structure. After we deter-
mined that UPg;; has some limitations over UPrpr, we
now compare the structure of the Stereotypes in both UML
profiles. For this purpose, we examine the Stereotypes that
define the abstract syntax for TDL test descriptions. The rel-
evant Stereotypes of UPj,4 are shown in Fig. 15a, and those
defined for UPr p; can be found in Fig. 15b.

Considering the Stereotypes and the UML metaclasses
extended by them in Figs. 15a and 15b, we can identify two
significant differences. The <<ComponentInstance>>
stereotype in UPgq extends the UML metaclasses
EncapsulatedClassifier and Property, whereas
the one in UPrpp extends only the latter. Both UML
metaclasses extended by the stereotype of UPy;4 are funda-
mentally different language concepts. The UML metaclass
Property represents a specialization of Structural
Feature, whereas EncapsulatedClassifier is a
specialization of Classifier that can provide various
Features, such as StructuralFeature.

If we consider the TDL metaclasses shown in Fig. 7b,
we see that the componentInstance attribute of the
TestConfigurationmetaclassisacomposition. Hence,
instances of ComponentInstance are parts of Test
Configuration instances. In addition, Component
Instance provides a type attribute that is employed
to refer to a ComponentType. Thus, from a seman-
tic point of view, a TDL ComponentInstance can be
compared with a UML Property rather than a UML
EncapsulatedClassifier. For this reason, we con-
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sider an extension of this UML metaclass by the
<<ComponentInstance>> stereotype in UPgq as
semantically incorrect, and therefore, this Stereotype should
only extend the UML metaclass Property, as is the case
in UPrpr.

Comparing Figs. 15a and 15b, we find that the stereo-
types of UPt py, have six and those of UPj,4 have only three
attributes defined by Association ends. Because stereotypes
of UPrpy are derived from MCys; metaclasses in MMr1py,
they have the same number of attributes as the corresponding
metaclasses. In contrast, stereotypes in UPs;4 have a lower
number of attributes than TDL metaclasses.

Instead of the non-existent stereotype attributes, a map-
ping of UML metaclass attributes to certain TDL metaclass
attributes is defined in UPj,4. This is a viable way, but due to
the absence of OCL Constraints in UPy,4, the values per-
mitted for UML metaclass attributes are not constrained.
Therefore, UP;;4 allows the specification of models that are
invalid in relation to the static semantics of TDL. Because
UP;;:4 does not specify a corresponding stereotype attribute
for each metaclass attribute, this also explains the difference
in the number of attributes between UP,;q and UPTpy .

All stereotype attributes introduced by Association ends
in UPrpy refer to UML metaclasses extended by Stereo-
types. In contrast, the stereotype attributes in UPy,4 (e.g. see
Fig. 15a) always refer to Stereotypes. Because navigation
from a Stereotype instance to the extended UML element or
vice versa is possible, referencing Stereotypes or extended
UML metaclasses is comparable from a syntactical point of
view. However, the latter option requires the use of appropri-
ate OCL Constraints to ensure that only UML elements with
a specific applied Stereotype can be assigned to a stereotype
attribute. As discussed above, exactly such OCL Constraints
are automatically introduced by our derivation approach.

Another difference between the stereotype attributes of
UPrpr and UPg;q shown in Fig. 15 is their cardinality. If
we compare the stereotype attributes in Fig. 15b with the
corresponding metaclass attributes in Fig. 7b, we find that
their cardinalities match. In contrast, the stereotype attributes
shown in Fig. 15a have different cardinalities than their corre-
sponding metaclass attributes of MMt py . Thus, a syntactical
difference between UP;,; and the TDL metamodel exists.
The TDL standard [6] does not indicate that the deviating
attribute cardinalities are an explicit design decision for the
creation of UP,4. We therefore assume that these are issues
that result from the manual creation of UPy;,.

6.3 Discussion of the evaluation results

We investigated the applicability of our approach to derive
a UML profile and used the Test Description Language
(TDL) [6] to evaluate the applicability of our derivation
approach to new DSLs. In contrast, the Specification and
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(@) Stereotypes of UPyy as defined in [6]

TestConfiguration

(b) Stereotypes of UPrpy, that are derived from the metaclasses
shown in Fig. 7b

Fig. 15 Stereotypes in UPs;q and UP7py, used to define the syntax of TDL test descriptions

Description Language (SDL) [21] was subject of another case
study [27,28] to evaluate the applicability of our approach for
existing DSLs with available production rules.

In Sects. 4 and 5, we already employed TDL as running
example to detail our approach for deriving a UML profile
and updating the associated OCL-defined static semantics;
therefore, here we only quantitatively investigated whether
UPrpr was derived from MM p, according to our Design
Decisions 1-12. The comparison of UPrpy with MMt py,
showed that exactly the number of model elements we
expected, such as stereotypes, was generated for UPrpr.
Hence, we conclude that our derivation approach conforms to
our Design Decisions. However, this does not answer whether
a UML profile automatically derived by our approach is com-
parable to a manually created one.

Thus, we compared TDL'’s standardized UML profile
UP:4 with our automatically derived UML profile UPrpy,
quantitatively and qualitatively. This comparison showed that
some of TDL’s language concepts in UPgy are not rep-
resented as Stereotypes but as UML elements, for which
mapping rules but no OCL constraints exist. Furthermore,
we also noticed that the Stereotypes in UPg;; have fewer
attributes than the respective TDL metaclasses. Moreover,
the cardinalities of some stereotype attributes did not match
those of the corresponding metaclass attributes.

When compared to UPy4, our automatically derived
UPrpr showed a certain correlation regarding the Stereo-
types and extended UML metaclasses. Due to the one-to-one
derivation of Stereotypes from TDL metaclasses, the high-
lighted syntactic drawbacks of UPg;4 are not present in the
automatically derived UP7 py . Furthermore and because of
our automatic OCL update, UP7 p enables an evaluation of
the static semantics of TDL, which is infeasible with UP;,q4
due to the absence of OCL Constraints.

As mentioned before, we conducted another case study [27,
29] where the Specification and Description Language
(SDL) [21] served us to evaluate our derivation approach for
grammar-based DSLs. The focus of our investigation was on
the semi-automatic creation of an SDL metamodel based on
production rules and on the automatic derivation of a UML
profile and ‘additional’ metaclasses. In the following, we
briefly summarize the results of our SDL case study.

By comparing our generated UML profile UPsp;, with the
one standardized for SDL [20], we observed that the Stereo-
types in the latter have a much smaller number of attributes.
Furthermore, we noticed that many Stereotypes of the stan-
dardized UML profile represent not just one but several SDL
language concepts. Both identified differences result in more
complex mapping rules and OCL constraints in the standard-
ized variant. In contrast, the Stereotypes of our UPgp; have
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a one-to-one relationship to SDL’s language concepts they
represent. Consequently, we could decrease the complexity
of mapping rules and OCL constraints.

Furthermore, we found that some of SDL’s well-formed
rules were not captured by OCL constraints in the stan-
dardized UML profile, while in our UPgspy all rules are
considered. Furthermore, we identified differences regard-
ing OCL constraints that ensure the syntactic structure:
OCL constraints of the standardized UML profile capture
less syntactic aspects than those of our UPgpy. This is
because our derivation approach automatically introduces
OCL constraints in order to ensure syntactic aspects, e.g.
the application of specific Stereotypes to attribute items.
In contrast, this kind of OCL constraints may be ignored
when manually creating a UML profile, because they are
often the result of implicit requirements imposed by struc-
tural aspects. Hence, we consider the automated derivation
of UML profiles to be less error-prone when compared to
manual creation.

The above comparison clearly shows that a UML profile
generated with our derivation approach captures all lan-
guage concepts of a DSL as dedicated Stereotypes. This is
the essential prerequisite for an automatic transfer of the
OCL-defined static semantics from a metamodel to a UML
profile and enables the evaluation of the static semantics
for UML models with applied UML profile. For manually
created UML profiles, an OCL-defined static semantics is
either not available or not all well-formedness rules are
captured. Furthermore, our automatic derivation prevents
manual modelling errors such as false multiplicities of stereo-
type attributes.

7 Related work

Apart from manual approaches (e.g. [30,50]) for creat-
ing UML profiles, the most closely related works to ours
are [13,14,48,56], which also automatically derive UML pro-
files from existing DSL metamodels. Their commonality is
that, in addition to the metamodel, mapping rules must be
provided as input for the profile derivation. Depending on
the approach, this is realized in terms of so called ‘Inte-
gration Metamodels’ or ‘Mapping Models’. In contrast, our
approach expects CMOF-based metamodels as input for the
derivation of UML profiles, which reuse ‘Abstract Concepts’
as proposed in [10,49].

Giachetti et al. propose an approach [13,14] that can be
applied to generate UML profiles and mapping rules for
model transformations. To derive these artefacts, they employ
a certain type of EMOF-based metamodel called ‘Integration
Metamodels’ [15]. Such a metamodel is initially created as
a copy of a metamodel for the DSL of interest. In the next
step, the copy must be altered manually by adding additional
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metaclasses, until all rules defined for ‘Integration Metamod-
els’ are met. In addition, the structure and semantics of the
UML metaclasses that are defined as a mapping target and
the ones of the DSL metamodel have to be considered dur-
ing the rework. Because of the creation of new metaclasses, a
revision of the OCL constraints contained in the ‘Integration
Metamodel’ is required. Furthermore, the mappings to UML
metaclasses also have to be specified in the ‘Integration Meta-
model’. Finally, a UML profile and the mapping rules can be
generated based on the revised ‘Integration Metamodel’. Gia-
chetti et al. state in [12,13] that the OCL constraints contained
in an ‘Integration Metamodel’ must be included in a derived
UML profile. Therefore, all references in OCL constraints
to elements of the ’Integration Metamodel’ are modified so
that corresponding UML metaclasses or stereotypes are ref-
erenced after UML profile generation.

In contrast, our approach for deriving UML profiles can
be applied to CMOF-based metamodels that are created by
reusing ‘Abstract Concepts’. Due to the correlation between
‘Abstract Concepts’ and UML metaclasses, we do not have
to modify a metamodel so that its structure matches that
of the UML metamodel, as is required for an ‘Integration
Metamodel’. In most cases, we can use these correlations to
automatically determine the information required for deriv-
ing the different elements of a UML profile. The explicit
definition of mapping information is only necessary if ‘addi-
tional’ metaclasses shall be derived, or if a derived Stereotype
shall extend a UML metaclass that does not have a matching
‘Abstract Concept’ counterpart.

Another advantage of our approach is the possibility to
define ‘alternative’ OCL expressions so that the values of
stereotype attributes are computed at runtime without manual
assignment. This is also useful if the value of an attribute can
only be determined based on UML model elements that do
not have stereotypes applied, or if several model elements
must be accessed to obtain the required values.

Equally important and in contrast to our work, the
approach of Giachetti et al. [13,14] does not consider the
generation of OCL expressions and constraints for subset-
ting and redefining stereotype attributes. While they discuss
a transfer of OCL constraints of an ‘Integration Metamodel’
towards generated stereotypes by adapting the referenced ele-
ment types, this is insufficient to obtain valid OCL constraints
for generated UML profiles. Because stereotypes and UML
metaclasses are instantiated separately, additional attribute
navigations must be inserted in OCL expressions, as sup-
ported by our approach.

Another category of related works covers the derivation
of metamodels based on existing UML profiles, as proposed
in [33,35], which is exactly the inverse of our approach. The
creation of a UML profile from scratch may be an option for
a new DSL with low complexity, but for an existing DSL
with higher complexity this can be difficult. This is because
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not only the static semantics of the DSL but also UML’s
static semantics must be taken into account. Therefore, the
manual creation of a metamodel followed by an automatic
derivation of a UML profile should be preferred for more
complex DSLs such as SDL [21]. This variant should also be
chosen if the production rules for a DSL are given, because
then existing tools [16] (e.g. EMFText [17] or xText [1,5])
can be employed for automatically deriving metamodels.

8 Summary and Conclusions

In addition to our overview on all aspects of our derivation
approach given in [28] and our SDL case study [27], which
evaluates the applicability of our approach to grammar-based
DSLs, the present article details the fully automated deriva-
tion of UML profiles and the transfer of static semantics from
metamodels to these profiles. In addition, we present another
case study on TDL, where we evaluate the applicability of
our approach for DSLs to be created from scratch. Our DSL-
MeDeTo tool chain, which implements our approach, and the
case studies on TDL and SDL are available via our home-
page [58].

While only syntactic constructs for UML profiles can be
automatically derived from EMOF-based metamodels using
existing works [13,14,48,56], our approach also supports
CMOF-based metamodels. Particularly noteworthy is the
mapping of redefining or subsetting metaclass attributes to
‘derived’ and ‘read-only’ stereotype attributes, whose values
are computed at runtime via automatically generated OCL
expressions. The advantage of such stereotype attributes is
that a manual value assignment at runtime is not required,
which also reduces the modelling effort.

The automated update and transfer of OCL-defined
attributes, Operations and Constraints to a UML profile is a
further contribution of our approach when compared to exist-
ing works. This enables us to automatically transfer the static
semantics of a DSL metamodel to a derived UML profile.
Consequently, we make it possible to automatically evalu-
ate the static semantics for UML models that have applied a
UML profile for a particular DSL.

As highlighted in Introduction to this article, a manual
creation of UML profiles is often error-prone and, if present,
well-formedness rules of UML profiles are usually speci-
fied in natural language, which can lead to ambiguities. We
confirmed these statements with our TDL case study, where
we identified several shortcomings regarding the syntax and
static semantics of TDL’s standardized UML profile [6]. On
the one hand, we found that no corresponding stereotypes
exist for some TDL metaclasses, not all metaclass attributes
are captured by stereotype attributes, and the cardinalities of
metaclass and stereotype attributes do not match. On the other
hand, the standardized UML profile for TDL has only two

OCL constraints, while the metamodel has 62. Consequently,
TDL’s static semantics is not captured by the UML profile.
In contrast, the aforementioned shortcomings are fixed in the
UML profile for TDL that we derived via our DSL-MeDeTo
toolchain. In particular, a stereotype is present for each TDL
metaclass, and all metaclass attributes are captured by stereo-
type attributes. Furthermore, all OCL constraints of TDL’s
metamodel are updated and transferred to the derived UML
profile. Therefore, TDL’s static semantics can be automati-
cally validated for UML models that have the profile applied.

Because our work has overcome essential shortcomings
of existing approaches for the derivation of UML profiles,
especially the support of CMOF language concepts and
the automatic transfer of static semantics, we anticipate
that there is no demand for substantial future work in this
area. However, some limitations regarding the derivation of
CMOF-based metamodels and transformations for model
interoperability exist, because we only create these artefact
types semi-automatically based on a single metamodel. As
the main goal of our work is the derivation of UML profiles,
a semi-automatic generation of the other artefact types is
sufficient for us. The consideration of certain approaches pre-
sented in the literature, e.g. in [9,31,56]), could be of interest
for the fully automatic generation of model transformations.
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