
Software and Systems Modeling (2022) 21:51–79
https://doi.org/10.1007/s10270-021-00890-1

REGULAR PAPER

On the automation-supported derivation of domain-specific UML
profiles considering static semantics

Alexander Kraas1

Received: 5 May 2019 / Revised: 27 March 2021 / Accepted: 6 May 2021 / Published online: 25 May 2021
© The Author(s) 2021

Abstract
In the light of standardization, the model-driven engineering (MDE) is becoming increasingly important for the development
of DSLs, in addition to traditional approaches based on grammar formalisms.Metamodels define the abstract syntax and static
semantics of a DSL and can be created by using the language concepts of the Meta Object Facility (MOF) or by defining a
UML profile.
Both metamodels and UML profiles are often provided for standardized DSLs, and the mappings of metamodels to UML
profiles are usually specified informally in natural language, which also applies for the static semantics of metamodels and/or
UMLprofiles, which has the disadvantage that ambiguities can occur, and that the static semantics must bemanually translated
into a machine-processable language.
To address these weaknesses, we propose a new automated approach for deriving a UML profile from the metamodel of a
DSL. One novelty is that subsetting or redefining metaclass attributes are mapped to stereotype attributes whose values are
computed at runtime via automatically created OCL expressions. The automatic transfer of the static semantics of a DSL to
a UML profile is a further contribution of our approach. Our DSL Metamodeling and Derivation Toolchain (DSL-MeDeTo)
implements all aspects of our proposed approach in Eclipse. This enabled us to successfully apply our approach to the two
DSLs Test Description Language (TDL) and Specification and Description Language (SDL).

1 Introduction

The use and development of domain-specific languages
(DSL) is becoming increasingly important. In recent years,
various approaches for developing DSLs have been pro-
posed, which can be divided into two categories. The first
category comprises approaches based on formalisms already
used for general purpose languages, such as context-free
grammars. The advantage is that existing language devel-
opment tools such as parser generators can be employed for
DSLs. The second category encompasses approaches that
applymodel-driven engineering (MDE) [51], where themost

Communicated by Sebastien Gerard.

This article is an extended version of our contribution [28] to the 15th
European Conference on Modelling Foundations and Applications
(ECMFA) in 2017.

B Alexander Kraas
Alexander.Kraas@swt-bamberg.de

1 Software Technologies Research Group, University of
Bamberg, Bamberg, Germany

important activity [3,17,53] is the design and creation of a
metamodel. Typically, a metamodel defines the abstract syn-
tax and static semantics of the DSL to be implemented; it can
also capture the semantics of a DSL [3,49]. Metamodels can
be defined using the language concepts of the Meta Object
Facility (MOF) [47], either the Essential MOF (EMOF) or
the Complete MOF (CMOF). The latter variant is based on
EMOF but provides additional language concepts. A higher
degree of abstraction and reuse of existing metamodels is
achieved by employing the CMOF, which can be advanta-
geous for the creation of more complex DSLs.

Apart from metamodelling, a DSL can also be imple-
mented by customizing the Unified Modeling Language
(UML) [40]. Either the UML metamodel can be modified
or extended to meet the requirements of a DSL, or so-called
UML profiles [11] can be used. Because UML profiles do
not alter the UML metamodel, they are considered to be a
lightweight extension to the UML [4,23]. When a UML pro-
file is created, a set of UML stereotypes is introduced. A
stereotype is a specific type of UML element that adds addi-
tional attributes, operations, and constraints to a metaclass.
Different manual or generative approaches for implementing

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00890-1&domain=pdf
https://creativecommons.org/licenses/by/4.0/


52 A. Kraas

a DSL based on UML profiles can be found in the literature,
e.g. in [15,30,50].

While working on a new version of the UML profile [20]
for the Specification and Description Language (SDL) [21],
we found several shortcomings [24,25] in the old edition [18],
which resulted from the manual creation of the profile. The
well-formedness rules of this profile are captured in natu-
ral language, not in a machine-processable language such
as the Object Constraint Language (OCL) [45] that is used
in the metamodelling domain. To create a toolchain [26]
for the UML profile for SDL, we manually translated the
well-formedness rules into OCL constraints. During this
process, we noticed that these rules are often ambiguous.
Likewise, the well-formedness rules of other standardised
DSLs (e.g. [37,42,43]) are frequently provided only in natu-
ral language.

To remedy the shortcomings of hand-crafted UML pro-
files, we propose an approach for the fully automated
derivation of UML profiles from CMOF-based metamodels.
This is especially relevant for DSLs, for which a metamodel
and a corresponding UML profile shall be created, which is
often the case for standardized DSLs such as [6,43,44,46]. In
contrast to a manual derivation of UML profiles from meta-
models as proposed in [30,50,54], our approach performs
this task fully automatically. In addition to generating model
elements for a UML profile, our approach also enables the
transfer of the OCL-defined static semantics of a metamodel
to such a profile. While the work presented in [13,14] also
supports this, the OCL constraints of a metamodel must be
revisedmanually before they can be copied to a UMLprofile,
whereas this is not required by our approach. Furthermore,
we enable the mapping of subsetting or redefining meta-
class attributes to OCL-defined stereotype attributes, which
is a novel feature compared to [13,14,48]. Moreover, our
approach supports the semi-automatic generation of CMOF-
based metamodels from grammar production rules and of
model transformations for model interoperability from DSL
models to UML models with applied profile, and vice versa.

The remainder of this article is structured as follows. The
next section provides an overview of our approach, while
we detail the derivation of UML profiles from metamodels
in Sec. 4. Then, we discuss our automatic transfer of the
OCL-defined static semantics in Sec. 5. Based on a case
study for the Test Description Language (TDL) [6], which
is an international standard maintained by the European
Telecommunications Standards Institute (ETSI), we evalu-
ate the results of our approach described in Sec. 6. Finally,
we discuss the related work in Sec. 7, while Sec. 8 presents
our summary and conclusions.

The concepts of our derivation approach have already
been sketched as extended abstract in [28], and its appli-
cability to automatically derive a UML profile for SDL has
been demonstrated in another extended abstract [27]. In the

present article, we give a fully comprehensive insight into
our derivation of UML profiles and our automatic transfer of
the OCL-defined static semantics. In particular, we detail
our considerations that inspired this derivation approach.
Furthermore, we analyse the applicability of our derivation
approach based on a further case study involving TDL. To
evaluate all aspects of our approach and to conduct case
studies on SDL and TDL, we implemented the DSL Meta-
modeling and Derivation Toolchain (DSL-MeDeTo) [58] in
Eclipse.

2 Overview

This section provides an overview of our overall approach to
derive a metamodel, a UML profile, and model transforma-
tions for model interoperability. In addition, we give a short
introduction to our DSL-MeDeTo toolchain that implements
our approach.

2.1 Our overall approach

Our overall derivation approach shown in Fig. 1 consists
of Steps (A)–(E), some of which are optional. The DSL-
specific metamodel MMDomain is the central artefact for
almost all derivations. If production rules of a grammar-
based DSL are available, the metamodel can be generated
semi-automatically in Step (A); otherwise, it has to be cre-
ated manually.

To obtain a metamodel that does not require too much
effort for further refinement (e.g. adding additional meta-
classes), we reuse ‘Abstract Concepts’ that are defined by an
existing metamodel (MMAC ), as proposed in [10,49]. Apart
from these works, the reuse of artefacts of existing languages
is recommended in other works, e.g. in [3,22]). In contrast to
the approach proposed in [10,49], we use particular annota-
tions for a given DSL’s production rules so that relationships
between generated metaclasses and the ‘Abstract Concepts’
must not be created manually.

We define ‘Abstract Concepts’ as a set of generic language
concepts that are commonly shared across several DSLs and
not only applicable to a specific language. For example, lan-
guage concepts such as generalization or redefinition can be
regarded as ‘Abstract Concepts’. Furthermore, we assume
that each ‘Abstract Concept’ is represented by a particular
metaclass contained in MMAC .

IfwederiveMMDomain fromproduction rules inStep (A)1,
we have to review and, if necessary, refine it before it can
be used as input for Steps (B)–(E). In particular, it must be

1 Our approach to createmetamodels fromproduction rules is similar to
that of existing tools (e.g. EMFText [57] or xText [59]) and is therefore
not entirely novel. Further details can be found in [29].

123



On the automation-supported derivation... 53

Fig. 1 Transformation steps and their derived artefacts

assessed whether all metaclasses derived for MMDomain are
required froma semantic point of view, and if not, the affected
ones must be removed. Otherwise, we create MMDomain

from scratch. To do so, we copy the ‘Abstract Concepts’
from MMAC to MMDomain . Then, we capture the abstract
semantics of the DSL of interest by creating appropriate
metaclasses. Thereafter, we use inheritance relationships to
associate these metaclasses with the ‘Abstract Concepts’
copied to MMDomain . Finally, we capture the DSL’s static
semantics via OCL constraints and enrich MMDomain with
toolchain-specific meta-information. For this purpose, we
apply the UML profile ‘MM2Profile’ toMMDomain as shown
in Fig. 1. This UMLprofile contains five stereotypes and a set
of constraints (see Sec. 4.2) that ensure a proper processing
of MMDomain via our toolchain.

After creating MMDomain , we can automatically derive a
DSL-specificUMLprofileUPDomain in Step (B). If required,
additional metaclasses (contained in MMAdd ) that extend
the MMUML are derived in Step (C). The derivation of
additional metaclasses may be an option if stereotypes can-
not be employed due to their restrictions as defined by the
UML [41]. For instance, such an approach is applied for the
value and expression languages of the SDL-UMLprofile [20]
and of the MARTE profile [42]. Because the input and out-
put artefacts of Steps (B) and (C) are models, we realize
both derivations by two dedicated Model-to-Model (M2M)
transformations.

In Steps (D) and (E), we derive twoM2M transformations
that can be used to obtain model interoperability between
DSL-specific models and UML models with an applied
UML profile. For this purpose, we develop two Model-to-
Text (M2T) transformations that generate the source code of
theM2M transformations TDM−to−UML and TUML−to−DM ,
resp.

Even thoughour automatic derivation approach eliminates
the need for manual creation of UML profiles, the quality

of these artefacts depends significantly on the experience
of the language engineer who manually created the meta-
models used as input. As with other hand-crafted software
artefacts, metamodels can contain errors due to manual cre-
ation. Therefore, metamodels used as input for our derivation
approach should be subject to quality assurance.

2.2 The ‘Abstract Concepts’

The metamodel MMAC holds a key role for our entire
derivation approach, because metaclasses of the metamodel
MMDomain inherit from ‘Abstract Concepts’ defined by
MMAC . An important prerequisite for MMAC is that it must
match a subset of MMUML . Otherwise, a straightforward
mapping ofMMDomain toUPDomain , as implemented by our
approach, is impossible.

We consider a metamodel MMAC to be matching with
MMUML , if the following constraints are fulfilled:

Constraint 1 For each metaclass MC of MMAC, a corre-
spondingmetaclassMC’with an equal name shall be present
in MMUML. In addition, MC shall have an equal or lesser
number of attributes than MC’.

This constraint is essential for the derivation of UML profiles
according to our approach, because the UML metaclasses to
be extended by Stereotypes are identified based on the cor-
relation between ‘Abstract Concepts’ and UMLmetaclasses.
To determine such a correlation, we employ the name prop-
erty of the metaclasses. Even though an ‘Abstract Concept’
mayhave fewer attributes than the correspondingUMLmeta-
class, we consider a correlation as given. For instance, such
a situation may occur if some attributes of an ‘Abstract Con-
cept’ are removed2 because they are not required to define
the syntax of a DSL.

Constraint 2 For each attribute att of a metaclass MC, a
corresponding attribute att’ with an equal name shall be
present in metaclass MC’. In addition, att and att’ shall
have the same properties, especially the same type and mul-
tiplicity.

The condition imposed by Constraint 2 is important because
OCL constraints in MMDomain may capture attributes of
‘Abstract Concepts’. When deriving a UML profile, such an
attribute access must be translated into an access to a UML
metaclass attribute. In addition, attributes of metaclasses
in MMDomain may redefine or subset ‘Abstract Concept’
attributes. During the UML profile derivation, we have to

2 Removingmetaclass attributes requires extreme care and should only
be done for optional attributes (lower multiplicity == 0). Otherwise, it
cannot be ensured that a generated UML profile is semantically com-
patible with the UML.

123



54 A. Kraas

translate such attribute relationships into appropriate con-
structs that access UML metaclass attributes.

In addition to metaclasses, the ‘Abstract Concepts’ may
containDataTypes. Therefore, each of theseDataTypesmust
have a corresponding type inMMUML . We capture this con-
dition by the following constraint:

Constraint 3 A data type in MMAC shall have a correspond-
ing data type in MMUML.

Different approaches can be applied to obtain ametamodel
MMAC . Apart from creating such a metamodel from scratch,
Clark et al. [3] argue that also a reuse of metaclasses of an
existing metamodel, by copying or importing them, can be
considered. Because MMAC shall match with MMUML , we
consider a creation of MMAC from scratch to be too error-
prone and expensive. Another option is to use theMOF or the
UML Infrastructure Library [39]. Because themetaclasses of
these metamodels are primarily employed to define UML’s
‘Kernel’ package, theymay be reused to create anMMAC that
only supports structural language concepts (e.g. Classifier).
Finally, also the reuse of parts of MMUML may be consid-
ered if language concepts for behavioural specifications (e.g.
StateMachines) are required.

Our approach does not support the import of metaclasses;
otherwise, there would be a dependency betweenMMDomain

and themetamodel fromwhich themetaclasses are imported.
In addition, imported metaclasses cannot be modified. For
example, it is impossible to remove non-required features
from them. Therefore, we assume thatMMAC is createdman-
ually as a copy, or automatically using the Package Merge
feature provided by the CMOF.

2.3 The DSLmetamodelling and derivation
toolchain

We have implemented all aspects of our approach in the
novel DSL Metamodelling and Derivation Toolchain (DSL-
MeDeTo) [58] using well-established standards and open
source components. We choose the Model Development
Tools (MDT)3 edition of Eclipse to realize our toolchain,
which consists of a set of particular plug-ins as shown in
Fig. 2. To create a metamodel or to derive other artefacts
such as UML profiles, the components of our toolchain have
access to a commonmodel repository. Because our derivation
approach is designed for CMOF-based metamodels, we have
to employ UML models instead of Ecore models [52]. The
code generators of Eclipse-MDT can handle both formats.
The most important plug-ins of our toolchain are:
Textual editor. The textual editor enables the specification
of production rules for the DSL or computer language of

3 https://www.eclipse.org/modeling/mdt/

Fig. 2 The Eclipse-based toolchain and its components

interest. In addition, the production rules can be associated
with different types of annotation, e.g. to define a relation-
ship to the ‘Abstract Concepts’. The parsed production rules
are stored by the textual editor in an intermediate model-
based format; thus, they can be transformed to a metamodel
by employing an M2M transformation. As we have made
good experiences with Spoofax for creating our SU-MoVal
framework [26], we also employed this DSL workbench to
create the textual editor for DSL-MeDeTo.
UMLprofile ‘MM2Profile’.TheUMLprofile ‘MM2Profile’
is used to enrich a metamodel MMDomain with additional
information, which is processed by different components
of DSL-MeDeTo. The application of this UML profile to a
metamodelMMDomain is a prerequisite for the derivation of
a UML profile UPDomain and of the additional metaclasses
MMAdd . In addition, ‘MM2Profile’ defines a set of OCL con-
straints that must be met byMMDomain so that its processing
by our toolchain is sound. More details of ‘MM2Profile’ are
discussed in Sec. 4.2.
OCL Updater. Before the metamodel MMDomain with
applied ‘MM2Profile’ can be used for the derivation of other
artefacts, all its OCL-defined Operations, Properties and
Constraints have to be adapted in such a way that they can be
utilized for a derived UML profile. This adaptation is imple-
mented by the ‘OCL Updater’ component, which consists of
an OCL parser and a pretty printer. The update is based on
the abstract syntax tree (AST) of a parsed OCL expression,
as argued in Sec. 5.
M2M transformations. We employ the operational lan-
guageof theQuery/View/Transformation specification (QVT) [38]
for implementing three M2M transformations that are used
by DSL-MeDeTo to derive different kinds of artefacts. The
first transformation implements Step (A) of our approach;
its output is the CMOF-based metamodelMMDomain . A sec-

123

https://www.eclipse.org/modeling/mdt/


On the automation-supported derivation... 55

ond transformation derives the UML profile UPDomain from
MMDomain (Step (B)). Optionally, the ‘additional’ meta-
classes forMMAdd can be created with a third transformation
(Step (C)).
M2T transformations. We use the MOF M2T Language
(MTL) [36] for realizing twoM2T transformations: the M2T
transformation TGenDM−to−UML is employed to generate
the M2M transformation TDM−to−UML in Step (D), while
TGenUML−to−DM generates TDM−to−UML in Step (E). The
source code of both M2M transformations is generated in
terms of the operational language of QVT. We utilize the
Acceleo4 component of Eclipse to execute both M2T trans-
formations.
Model editors.Apart from the discussed components, either
Eclipse’s UML tree editor or the UML modelling tool
Papyrus5 can be used for creating ormodifying themetamod-
els that are processed by our toolchain (see Fig. 2). Hence,
one of these tools also has to be utilized for applying the
UML profile ‘MM2Profile’ to a metamodel.

3 Running example

The Test Description Language (TDL) [6] is a new DSL [32,
55] for the design and specification of test descriptions. Its
development and standardization is driven by the European
Telecommunications Standards Institute (ETSI). Because a
metamodel [6] and a corresponding UML profile are avail-
able, we employ TDL as an exemplary DSL for our case
study in Sec. 6 in order to investigate the applicability of our
derivation approach. Furthermore, TDL serves us as running
example to illustrate the various steps in deriving a UML
profile from a CMOF-based metamodel.
Background. Ulricht et al. [55] point out that TDL bridges
the gap between high-level test requirement specifications
and executable test cases. Thus, TDL test descriptions can
serve as the basis to create executable test cases in any kind
of target language, such as the Testing and Test Control
Notation-Version 3 (TTCN-3) [8]. Because TDL is a new
language, the literature concerning the application of TDL is
rather limited. Marroquin et al. [34] report on a successful
application of TDL in the telecommunications domain. The
automatic derivation of TDL test descriptions fromUse Case
Maps (UCM) is discussed by Boulet et. al [2]. A TDL test
description consists of the following parts:

Test configuration: Atest configurationdefines the tester
components and the components of
a system under test (SUT) involved

4 http://www.eclipse.org/acceleo/
5 https://www.eclipse.org/papyrus/

in a particular test scenario.All com-
ponents communicate among each
other via defined gates and associ-
ated connections.

Test descriptions: Aparticular test scenario is described
in terms of a test description that
defines the set of interactions between
the test and SUT components of its
associated test configuration. Vari-
ous types of behavioural elements
are available for specifying the con-
trol flow of a test description, e.g.
sequential or parallel behaviour.

Data definitions: Data types can be specified as sim-
ple or structured data types, and their
instances are used in interactions
or can be passed as arguments for
the invocation of parameterized test
descriptions.

Behavioural elements: The various behavioural element
types can be used to define the con-
trol flow, send messages, start and
stop timers, or set the test result.

A TDL test description example is given in Fig. 3. The shown
diagram contains the definitions of data types and associated
data instances. In addition, the ‘DataResourceMapping’ ele-
ments are used to specify a resource that contains an external
representation for data types or their instances. Such an exter-
nal representation is identified by a ‘DataElementMapping’.
For instance, the structured data type MSG is associated with
the ‘DataResourceMapping’.

Apart from data type definitions, the shown diagram also
contains a TestConfiguration consisting of a tester and an
SUT component. Because both components are instances of
theComponentTypeDefaultCTwithVariable, each of
them owns a gate, which is of type defaultGT. The gates
of the component instances are interconnected via aConnec-
tion.

Based on the type definitions and their instances, we can
specify the behaviour of an TDL test description. The nota-
tion employed for TDL’s test behaviour is similar toMessage
Sequence Charts (MSC) [19].

4 The derivation of UML profiles

As claimed in Introduction, we can automatically derive a
UML profile based on a metamodel for a DSL in Step (B)
of our approach. In this section, we first discuss the design
decisions of our derivation approach. Then, we treat the pre-
requisites for the suitability of a metamodel as input for our
UML profile derivation, and also consider the enrichment of

123

http://www.eclipse.org/acceleo/
https://www.eclipse.org/papyrus/


56 A. Kraas

Fig. 3 Data and test configuration definition example ([7]—Annex A.1), specified in TDL’s graphical notation

a metamodel with information that is required for the deriva-
tion. Thereafter, we discuss the details of our approach.

4.1 Design decisions for the profile derivation

As our objective is to derive a UML profile and option-
ally ‘additional’ metaclasses, the metaclasses contained in
the metamodel MMDomain have to be processed in differ-
ent ways. In addition, we have to consider that MMDomain

also contains metaclasses that represent ‘Abstract Concepts’.
Hence, we presume that the metaclasses in MMDomain can
be divided into three different sets. The first set repre-
sents ‘Abstract Concepts’; a metaclass of this set is denoted
as MCAC . The second set includes those metaclasses that
shall be mapped to Stereotypes of the derived UML profile
UPDomain . We use the term MCSt to refer to a metaclass of
this set. The third set contains metaclasses that map to ‘addi-
tional’ metaclasses in the metamodel MMAdd . A metaclass
of this set is denoted by MCAMC .

Design Decision 1 A metamodel MMDomain consists of a set
of MCAC metaclasses, a set of MCSt metaclasses, and an
optional set of MCAMC metaclasses.

Each ‘Abstract Concept’ metaclass has a ‘matching’ UML
metaclass in MMUML , and their names are prefixed with
‘AC_’ to avoid name clashes with those metaclasses that
are generated based on production rules. Hence, we do not
mapMCAC metaclasses contained inMMDomain . In addition,
we employ the name prefix to identify that a metaclass of
MMDomain is anMCAC metaclass.

Design Decision 2 An ‘Abstract Concept’ metaclass MCAC

has a name prefix ‘AC_’ and is not mapped to any kind of
element.

Hence, all metaclasses without a name prefix areMCSt or
MCAMC metaclasses. To make a clear distinction between
these two metaclass types, an additional qualifier is required.
As the derivation of ‘additional’ metaclasses is optional, it
is sufficient to use such a qualifier only for MCAMC meta-
classes. For this reason, we define metaclasses that have no
special qualifier or name prefix as MCSt metaclasses. By
default, we use this type of metaclasses of MMDomain to
derive Stereotypes for a UML profile, as shown in Fig. 4.

Design Decision 3 Ametaclass ofMMDomain without a qual-
ifier is assumed to be an MCSt metaclass, whereas a meta-
classwith existingqualifier represents anMCAMC metaclass.

123



On the automation-supported derivation... 57

Fig. 4 Mapping of metaclasses to Stereotypes

“An element imported as a metaclassReference is
not specialized or generalized in a Profile” [41, Sec.
12.4.7.5].

“AStereotypemayonly generalize or specialize another
Stereotype” [41, Sec. 12.4.9.6].

Hence, a Stereotype is not permitted to generalize a UML
metaclass. Instead, an Extension association has to be used.
Consequently, we introduce an Extension for each Stereo-
type, which is derived from an MCSt that inherits directly
from an MCAC in MMDomain . For example, an Extension
is introduced only for Stereotypes derived from metaclasses
MCSt A and MCSt D in Fig. 4.

Design Decision 4 AnExtension shall be introduced for each
Stereotype, which is derived from an MCSt metaclass that
directly inherits from an MCAC metaclass.

In contrast to the previous case, a Stereotype can inherit
from another Stereotype without restrictions. Therefore, we
can introduce aGeneralization between two Stereotypes that
are derived from two MCSt metaclasses that are in a Gener-
alization relationship (e.g. metaclassesMCSt E andMCSt D
in Fig. 4).

Design Decision 5 A Generalization is introduced for each
Stereotype that is derived fromanMCSt metaclass that inher-
its directly from another MCSt metaclass.

One of our key objectives for the derivation of a UML
profile is the preservation of the syntactic structure defined by
a metamodel. This is a prerequisite for transferring the OCL-
defined static semantics of a metamodel to a UML profile.
Therefore, we map each Property that is an ownedAttribute
of an MCSt to a corresponding Property of a Stereotype.
However, we have to obey the following rule of the UML
specification:

“The type of a composite aggregation Stereotype Prop-
erty cannot be a Stereotype (since Stereotypes are
owned by their Extensions) or a metaclass (since

instances of metaclasses are owned by other instances
of metaclasses)” [41, Sec. 12.3.3.4].

Therefore, we map an MCSt attribute whose type property
refers to ametaclass, to a stereotype attributewhose aggrega-
tion property has value ‘none’. Thus, this stereotype attribute
represents a reference to a metaclass instance.

Design Decision 6 An MCSt attribute is mapped to a corre-
sponding Stereotype attribute. If the type property of anMCSt

attribute refers to a metaclass, the aggregation property of
the mapped Stereotype attribute shall have value ‘none’.

If an ownedAttribute of anMCAC is redefined or subsetted
by an ownedAttribute of an MCSt , this kind of relationship
cannot be preserved for a derivedUMLprofile. This is caused
by the two UML constraints above and the fact that redefini-
tion and subsetting can only be used for Classes that are in a
direct or indirect inheritance relationship.

In general, such metaclass attributes may be mapped to
stereotype attributes in two different ways. The first possi-
bility is a one-to-onemapping to a stereotype attribute, where
existing redefinition/subsetting relationships are removed.
However, the drawback of this approach is that values for
stereotype attributes have to be assigned manually. The sec-
ond option is to map a metaclass attribute to a ‘derived’
stereotype attribute whose value is computed automatically
via anOCL expression at runtime. Because of this advantage,
we choose the latter option.

Design Decision 7 An MCSt attribute that redefines or sub-
sets anMCAC attribute is mapped to a derived and read-only
stereotype attribute, and an OCL expression is introduced as
its defaultValue.

When specifying a UML model, a model element must
be created before a stereotype can be applied to it. While
the model element is always located at a certain position in
the UML model, the instance of its applied stereotype is not
directly contained in the model. However, the UML model
and associated stereotype instances are contained in the same
resource or container. This fact could become an issue when
the type of an ownedAttribute of a Stereotype refers to another
Stereotype. In this case, the designer of a UML model has to
identify a valid Stereotype instance that shall be assigned as
value for a Stereotype attribute, which is non-trivial because
Stereotype instances have no unique identification feature.

Consequently, we do not use a Stereotype as the type of
a stereotype attribute; instead, we refer to a UML metaclass
that is extended by a Stereotype, or to an ‘additional’ meta-
class contained in theMMAdd metamodel.

Design Decision 8 The typeproperty of an stereotypeattribute
either refers to aUMLmetaclass that is extended by a Stereo-
type, or to an ‘additional’ metaclass in MMAdd .

123



58 A. Kraas

Fig. 5 Inheritance and the type of a stereotype attribute

The discussed recomputation of the type of a stereotype
attribute also affects the modelling of inheritance relation-
ships between MCSt and MCAC metaclasses in MMDomain .
As long as anMCSt only inherits from a singleMCAC , there
are no restrictions on the modelling of MMDomain . But this
is not the case for multiple inheritance.

Assume that an MCSt A that inherits from at least two
MCAC metaclasses is used as the type of ametaclass attribute
att_A, and theMCSt is mapped to a Stereotype A, as shown
in Fig. 5a. According to Design Decision 4, this stereotype
would have two Extension associations with different UML
metaclasses. Due to Design Decision 8, two possibilities
would exist as type of the mapped attribute att_A.

To avoid this ambiguity, we must ensure that a derived
Stereotype has only an Extension to a single UMLmetaclass.
One possible solution would be that an MCSt of MMDomain

inherits from at most oneMCAC , so that only one Extension
would be derived for a Stereotype. However, this approach
would require a modification of MMDomain , or its mod-
elling would become too restrictive. Hence, we consider this
approach to be inappropriate.

Another solution would be to introduce a specific kind
of metadata that can be attached to an MCSt , so that the
UMLmetaclass to be extended by a Stereotype can be defined
explicitly. Because this approach does not require a modifi-
cation of MMDomain , we prefer this solution.

Design Decision 9 A particular kind of meta-information
(e.g. provided by an applied stereotype) shall be applica-
ble to an MCSt so that the UML metaclass to be extended by
a Stereotype can be defined explicitly.

Table 1 Properties that redefine and/or subsets other properties of
UML metaclasses (analysis based on the UML metamodel [40])

Number of ‘Properties’ Number of occurrence
in MMUMLsubsetted redefined

1 0 437 (75,7%)

≥ 2 0 79 (13,7%)

0 1 53 (9,1%)

0 ≥ 2 3 (0,5%)

≥ 1 ≥ 1 6 (1,0%)

For the sake of completeness, it is mentioned that anMCSt

can also inherit from anMCAC and one or moreMCSt meta-
classes, as shown in Fig. 5b. In contrast to the previous
scenario, no ambiguities for the determination of the type
property of a stereotype attribute exist, because a derived
Stereotype has only a single Extension to a UML metaclass.
Due to Design Decision 8, Generalizations to other Stereo-
types do not affect type determination.

A metaclass attribute can redefine and subset other
attributes at the same time. In addition, a metaclass attribute
cannot only redefine or subset a single attribute, but also sev-
eral attributes. We have to consider this when introducing
OCL expressions as substitute for redefining or subsetting
attributes (see Design Decision 7).

Because subsetting or redefinition of several attributes
usually occurs only in the case of multiple inheritance, we
must pay particular attention to Design Decision 9, which
requires that a derived stereotype extends only a single UML
metaclass. Thus, only attributes of this UML metaclass can
be invoked in generated OCL expressions for stereotype
attributes. Hence, in the case ofmultiple inheritance, wemust
either be able to specify which UML metaclass attributes
should be invoked in OCL expressions, or there must be a
possibility to provide OCL expressions manually.

To decide which solution shall be implemented by our
derivation approach, we have analysed the UML metamodel
concerning the utilization of ‘subsetting’ and ‘derivation’.
The results are summarized in Table 1. Based on these, we
suppose that the ‘subsetting’ of a single attribute (75.7%) is
much more common than that of multiple attributes (13.7%).
A similar situation exists for ‘redefinition’, whereas a com-
bined use of ‘redefinition’ and ‘subsetting’ (1%) can be
considered as a rarely used special case. Hence, we automat-
ically introduce OCL expressions only for such stereotype
attributes derived from MCSt attributes, which ‘redefine’ or
‘subset’ a single attribute. In all other cases, we prefer a man-
ual specification of OCL expressions.

Design Decision 10 An ownedAttribute of anMCSt can have
an alternative OCL expression, which is used as defaultValue
of a corresponding stereotype attribute.

123



On the automation-supported derivation... 59

Due toDesignDecision 8, we recompute the type property
of a stereotype attribute so that it refers to a UML meta-
class. A disadvantage is that syntactically invalid values can
be assigned to such kind of attribute. For example, a value
assigned to a stereotype attribute may have the correct UML
type, but it may have applied an invalid stereotype. There-
fore, we introduce OCL constraints to ensure that only those
UML elements having applied a particular stereotype can
be assigned to such stereotype attributes. However, we do
not generate OCL constraints for ‘derived’ and ‘read-only’
stereotype attributes, because no values can be assigned to
them manually (Design Decision 7).

Design Decision 11 An OCL Constraint is created for each
Stereotype attribute that is not defined as ‘derived’ and ‘read-
only’ and that is mapped from an MCSt attribute with a type
property that refers to an MCSt .

Even though we do not introduce OCL constraints for
‘derived’ and ‘read-only’ stereotype attributes, this does not
apply for those UML metaclass attributes that are employed
as computational basis for the defaultValue of stereotype
attributes (Design Decision 7). Because of the same reason
as above, only UML elements having applied a particu-
lar stereotype shall be assignable to such UML metaclass
attributes. Hence, we introduce appropriate OCL constraints.
We identify the UML metaclass attributes that shall be con-
strainedbasedon the redefinition and subsetting relationships
of MCSt attributes.

Design Decision 12 An OCL Constraint is created for each
UMLmetaclass attribute that is the computation base for the
value of a ‘derived’ and ‘read-only’ stereotype attribute.

4.2 Enriching the source metamodel

Provided thatMMDomain is generated from production rules
in Step (A) of our approach, we can use it directly as input for
the UML profile derivation. By definition, we consider that
such a metamodel contains a set ofMCAC metaclasses and a
set of MCSt metaclasses (Design Decisions 2 and 3). In this
case, we determine the UML metaclass to be extended by a
derived Stereotype based on the inheritance relationships of
the source MCSt inMMDomain .

However, the direct use of MMDomain to derive a UML
profile is not always possible. For example, we cannot define
that, instead of a ‘matching’ UML metaclass, one of its
subtypes shall be extended by a Stereotype. Therefore, the
stereotypes of our UML profile ‘MM2Profile’ presented
below must be applied to metaclasses ofMMDomain .

As shown in Fig. 6, the UML profile ‘MM2Profile’ con-
sists of five stereotypes that extend four different UML
metaclasses. Except for stereotype <<MM2Profile>>

Fig. 6 Stereotypes of the UML profile ‘MM2Profile’

that is automatically applied to a Package element, the appli-
cation of all other stereotypes is optional. We thus enable the
application of these stereotypes only in caseswhen additional
information is required for the derivation.
The <<MM2Profile>> stereotype Because this stereo-
type has an Extension that is specified as required, it is auto-
matically applied to the Package that representsMMDomain .
Most of the stereotype attributes define input parameters
for the code generator of Eclipse and, therefore, are passed
directly to the derived UML profile and to the metamodel
MMAdd .

While attributes prefixed with ‘profile’ are passed
to the derived UML profile UPDomain , all attributes with
the ‘add’ prefix are passed to the metamodel MMAdd that
contains the ‘additional’ metaclasses.
The<<ToStereotype>> stereotype If the default creation
of a Stereotype according to our approach is infeasible, the
attributes of the <<ToStereotype>> can be used as
follows:

extendedMetaclass overrides the automatically determined
UML metaclass to be extended by a
Stereotype.

alternativeName defines an alternative name for a derived
Stereotype.

noMapping determines whether a Stereotype is gen-
erated for the current MCSt metaclass.

123



60 A. Kraas

The <<ToMetaclass>> stereotype According to Design
Decision 3, an additional qualification for anMCAMC meta-
class in MMDomain is required. Hence, we employ the
stereotype <<ToMetaclass>> to define that a meta-
class of MMDomain represents an MCAMC metaclass. The
<<ToMetaclass>> stereotype provides the following
attributes:

alternativeName defines an alternative name for an ‘addi-
tional’ metaclass contained inMMAdd .

superClass overrides the automatically determinedUML
metaclass fromwhich an ‘additional’meta-
class inherits.

The <<ToTaggedValue>> stereotype We employ this
stereotype to explicitly define a name or to specify an
alternative OCL expression (used as defaultValue) for an
attribute of a derived Stereotype. To support these, the
<<ToTaggedValue>> stereotype provides the follow-
ing attributes:

alternativeName defines an alternative name for an ownedAt-
tribute of a derived Stereotype.

oclSpecification defines an OCL expression that is used as
defaultValue for an ownedAttribute of a
Stereotype.

derivationSource specifies the computation source for the
oclSpecification.

The <<OmitGeneralization>> stereotype A metaclass
canhavemore thanoneGeneralization relation to othermeta-
classes. However, for the derivation of a UML profile, it may
be required that a Generalization to a particular metaclass is
not taken into account. This can be specified by applying the
<<OmitGeneralization>> stereotype to a General-
ization contained in MMDomain .

For example, assume an MCSt A is given that inherits
from an MCAC at a high level of abstraction (e.g. AC_
Namespace) and another MCAC (e.g. AC_DataType).
In this case, we want to prevent that the stereotype derived
fromA extends theUMLmetaclassNamespace. To achieve
this, we apply the<<OmitGeneralization>> stereo-
type to the Generalization from A to AC_Namespace.

4.3 TDL Example: Input Metamodel

TDL’s standardized metamodel MMstd is divided into sev-
eral Packages, one of which is the Foundation package.
The metaclasses contained in this package define generic
language concepts, such as NamedElement and Package-
ableElement. These metaclasses are comparable to those
contained in the UML ‘Kernel’ package. Thus, one can
assume that these metaclasses ofMMstd already correspond

to the MCAC metaclasses required by our approach. How-
ever, differences in syntax and semantics exist. For instance,
metaclass attributes contained inTDL’sFoundationpack-
age do not match those of UML metaclasses. Because
identically named attributes of ‘Abstract Concepts’ andUML
metaclasses are a prerequisite (see Sec. 2.2) of our deriva-
tion approach, we cannot use MMstd as input to derive a
UML profile. Therefore, we have alignedMMstd to meet the
requirements of our derivation approach. Below, we refer to
the revised metamodel of TDL using the term MMTDL .

To obtainMMTDL , we replace the metaclasses contained
in TDL’s Foundation package with equally named meta-
classes of the UML Kernal package. Then, we put the
copied metaclasses in inheritance relationships to TDL’s
metaclasses by introducingGeneralization relationship. Fur-
thermore, we redefine or subset the attributes inherited from
the copied metaclasses where required. Finally, we apply
our UML profile MM2Profile to enrich MMTDL with the
meta-information that we require to derive a UML profile.

An excerpt of our modified MMTDL is shown in Figs. 7a
and 7b, where the contained metaclasses define the syntax of
TDL’s data types and test configurations. Some of the meta-
classes (e.g. MappableDataElement) and attributes
contained in the figures have stereotypes of our UML profile
MM2Profile applied. We assume that metaclasses whose
names start without the prefix ‘AC_’ representMCSt meta-
classes that are mapped to Stereotypes.

Without additionalmeta-information, aStereotypederived
from the DataType metaclass shown in Fig. 7a would
extend the UML metaclass Type or Namespace. Con-
sequently, this Stereotype could then be applied to all
UML elements that are instances of subclasses of these
UML metaclasses. This would not correspond to the syn-
tax specified by the MMTDL metamodel. Applying the
<<ToStereotype>> stereotype on an MCSt metaclass
remedies this issue, because its extendedMetaclass
attribute can be employed to explicitly specify the UML
metaclass to be extended by a Stereotype.

As the abstract metaclass MappableDataElement
has neither constraints, nor attributes, or operations, we do
not intend to derive a Stereotype for it. For this reason, we
apply the <<ToStereotype>> stereotype to this meta-
class and assign the value ‘true’ to its noMapping attribute.

We use the <<ToTaggedValue>> stereotype to pre-
vent anMCSt attribute beingmapped according to the default
rules of our derivation approach.AnMCSt attributemarked in
this way is mapped to a stereotype attribute that is defined as
‘read-only’ and ‘derived’, and theoclSpecification of
the applied<<ToTaggedValue>> stereotype is employed
to define the defaultValue. For instance, the MCSt attributes
dataType and memberAssignment in Fig. 7a have the
<<ToTaggedValue>> stereotype applied.

123



On the automation-supported derivation... 61

(a)

(b)

Fig. 7 An excerpt of the metamodel MMTDL

4.4 Our derivation approach

In the following, we discuss the details of our approach
for deriving a UML profile UPDomain from a metamodel
MMDomain that is enrichedwith theUMLprofileMM2Profile.
To illustrate certain aspects of our approach, we use the
MMTDL metaclasses and their corresponding Stereotypes
in the UML profile UPT DL shown in Fig. 7. In addition to
explaining our derivation approach by examples in this paper,
we detail the various derivation steps using pseudocode in
[29].

4.4.1 Mapping to ‘Stereotypes’

The first step of our approach to derive a UML profile
UPDomain from a metamodelMMDomain consists in the cre-
ation of Stereotypes. Therefore and as argued for Design
Decision 3,we create aStereotype andmapvarious properties
(e.g. name and isAbstract) of the sourceMCSt one-to-one to
its corresponding properties, while a few properties must be
processed in a particular manner. Further details concerning
this topic are discussed below.

If an MCSt has applied the <<ToStereotype>>

stereotype, the mapping to a Stereotype can be omitted due
to the noMapping attribute. For example, when comparing
Figs. 7a and 8a, we find that the latter does not contain a
stereotype for the MCSt MappableDataElement. This
is because we have applied the <<ToStereotype>>

stereotype to this metaclass and assigned value ‘true’ to the
noMapping attribute.
Relationships to super-types. After the stereotypes are
created, we introduce inheritance relationships (i.e. a Gen-
eralization) between them and their super-types. However,
according to Design Decision 5, a Generalization must be
introduced only for those Stereotypes created from MCSt

metaclasses that inherit from other MCSt metaclasses.
For the reason above, we identify the set of super-

types for a Stereotype ST based on the generalization
property of its source MCSt metaclass, where we regard
only MCSt metaclasses that have not applied the
<<OmitGernalization>> stereotype. Based on the
resulting set of MCSt metaclasses, we identify the corre-
sponding Stereotypes in UPDomain and assign them to the
superClass property of Stereotype ST. This also causes an

123



62 A. Kraas

(a)
(b)

Fig. 8 Introduced Extensions and Generalizations in UPT DL

implicit creation of Generalization relationships between
Stereotype ST and the super-types.

An example is shown in Fig. 8a, where the
<<SimpleDataInstance>> stereotype inherits from
the<<DataInstance>> stereotype. This is because the
two source metaclasses in Fig. 7a areMCSt metaclasses that
are in an inheritance relationship.
Extension relationships to UML metaclasses. Apart from
Generalizations, we create anExtension association between
amapped Stereotype ST and the UMLmetaclasses to extend,
which can be determined in two ways. Implicitly, we can
identify them based on generalization relationships between
MCAC and MCST metaclasses in MMDomain (Design Deci-
sion 4). However, this can be overridden by explicitly
specifying the UML metaclasses of interest (Design Deci-
sion 9) using the <<ToStereotype>> stereotype.

To obtain the set of UMLmetaclasses for a Stereotype ST,
we employ its sourcemetaclassMCSt SM inMMDomain . First,
we check whether UML metaclasses are explicitly defined
via the <<ToStereotype>> stereotype, and if so, we
use these UMLmetaclasses as extension target for stereotype
ST. Otherwise, we determine theMCAC metaclasses that are
super-types of theMCSt SM. Then, we resolve the ‘matching’

UML metaclasses for that MCAC metaclasses. Afterwards,
we introduce an Extension between stereotype ST and each
identified UML metaclass.

For example, the Extensions of the stereotypes
<<DataUse>> and<<Parameter>> shown in Fig. 8
are create because the source MCSt metaclasses in Fig. 7
inherit from MCAC metaclasses. In contrast, the Extensions
of all remaining stereotypes in Fig. 8 are created based on
an explicit specification using the<<ToStereotype>>,
which is applied to the source MCSt metaclasses.

4.4.2 Mapping of DataTypes

Apart from Stereotypes, a UML profile can also introduce
different kinds of data types, which can beDataTypes, Prim-
itiveTypes, or Enumerations. For the derivation of a UML
profile, we determine those data types ofMMDomain that do
not represent ‘Abstract Concepts’ and that are not mapped
to data types of MMAdd . Then, we copy these data types
one-to-one into the UML profile.

For instance, the Enumerations UnassignedMember
Treatment and ComponentInstanceRole in Fig. 7
do neither represent ‘Abstract Concepts’ nor data types that

123



On the automation-supported derivation... 63

Fig. 9 Mapping to derived attributes

map to a metamodel MMAdd . Thus, they are copied one-to-
one to UPT DL as shown in Fig. 8.

4.4.3 Mapping to stereotype attributes

According to Design Decision 6, we map anMCSt metaclass
attribute to a corresponding attribute of a Stereotype. How-
ever, we must also respect UML’s extension mechanism for
Stereotypes. Therefore, we cannot simply map every kind of
metaclass attribute to a corresponding stereotype attribute.
The most important rule in this context is that subsetting and
redefinition are only applicable to stereotype attributes as
long as no attribute of a UML metaclass is involved.
Subsetting and redefiningmetaclass attributes.Due to the
reason above and according to Design Decision 7, we map a
redefining or subsettingmetaclass attribute to a ‘derived’ and
‘read-only’ stereotype attribute, and we introduce an OCL
expression so that the attribute’s value is automatically com-
puted at runtime. To explain this mapping in more detail, we
employ the example given in Fig. 9, where we distinguish
two cases.

In Case (A) of our example, an MCSt A with an attribute
a and an MCAC T_AC are given. Furthermore, attribute a
redefines attribute t_ac, and its type property also refers
to T_AC. We obtain a ‘read-only’ and ‘derived’ attribute a
of stereotype A’ as mapping result, and the type property
of a now refers to the ‘matching’ UML metaclass T_AC’.
In addition, an OCL expression is introduced to define the
defaultValue of a. Case (B) differs from (A) only in the
detail that attribute a ofMCSt A is subsetting attribute t_ac,
instead of redefining it.

In both cases, we also create an OCL expression and
assign it to the defaultValue property of a mapped stereo-
type attribute, as described in Sec. 4.5.

For example, see the type attribute of the MCSt meta-
class ComponentInstance in Fig. 7b. As it redefines
the type attribute of theMCAC AC_TypedElement, it is

mapped to a ‘derived’ and ‘read-only’ attribute of the stereo-
type <<ComponentInstance>> in Fig. 10b.

In addition to the scenario above, we also create ‘derived’
and ‘read-only’ stereotype attributes for all MCSt attributes
that have an ‘alternative’ OCL specification (Design Deci-
sion 10). This can be defined via the oclSpecification
attribute of the<<ToTaggedValue>> stereotype applied
to anMCSt attribute inMMDomain . During the mapping, we
first create the stereotype attribute, and then we assign the
given OCL specification to the attribute’s defaultValue prop-
erty.

For instance, see the variousMCSt attributes with applied
<<ToTaggedValue>> stereotype in Fig. 7b. Accord-
ing to Design Decision 10, these attributes are mapped
to ‘derived’ and ‘read-only’ stereotype attributes shown in
Fig. 10b.
Other metaclass attributes. All remaining kinds of MCSt

attributes aremappedone-to-one to corresponding stereotype
attributes, including those MCSt attributes that are redefin-
ing/subsetting other MCSt attributes, or that are specified to
be a superset. Because only stereotype attributes are involved,
no UML restrictions apply and we can preserve such rela-
tionships. To do so, we usually map all properties of an
MCSt attribute to corresponding properties of the stereotype
attribute to be created.

However, an exception are the properties type and aggre-
gation. The mapping of the former property depends on
whether the type property of the MCSt attribute in question
refers to a metaclass. If this is the case, the aggregation prop-
erty of a created stereotype attribute must be set to the value
‘none’, as we argued for Design Decision 6. Because the
mapping rules for the type property are more complex, we
discuss this separately in the next section.

4.4.4 Recomputing the type property

As we argued for Design Decision 8, a stereotype attribute
shall not have a stereotype as its type. Therefore, we recom-
pute the type property of a created stereotype attribute during
the mapping; but for this, we must consider that a metamodel
MMDomain can contain three types of metaclasses (Design
Decision 1) that are mapped in different ways. In the follow-
ing, we analyse the different cases.

Let A be anMCSt inMMDomain and A’ its corresponding
Stereotype in UPDomain . In addition, assume that MCSt A
has an attribute att that maps to a corresponding attribute
att’ of A’, and the type property of att can refer to an
MCAC (Case A), an MCSt (Case B), or an MCAMC (Case
C) metaclass, as shown in Fig. 11. We determine the type
property of att’ as follows:

Case A: ByDesignDecision 2,we assume that a ‘matching’
UML metaclass exists for each MCAC metaclass

123



64 A. Kraas

(a)

(b)

Fig. 10 Introduced Properties and Associations in UPT DL

in MMDomain . Hence, when we recompute a type
property that refers to anMCAC , we determine the
‘matching’ UML metaclass and use it as the new
type.
For example, consider attribute att of MCSt A in
Fig. 11a as input, and assume that the type prop-
erty ofatt refers to anMCAC T_AC inMMDomain .
Then, the recomputed type of att’ refers to meta-
class T_AC’ inMMUML .

Case B: If the type of an attribute refers to anMCSt , the type
of the mapped attribute must refer to a UMLmeta-
classes, as we argued for Design Decision 8. Thus,
whenwe recompute a type property that refers to an
MCSt metaclass, we determine a UML metaclass
rather than the Stereotype that extends it.
For instance, consider attribute att of MCSt A
in Fig. 11b as input, and assume the type prop-
erty of att refers to MCSt T_ST in MMDomain .
Then, the recomputed type of att’ refers T_AC’
inMMUML .

Case C: AnMCAMC inMMDomain maps to an ‘additional’
metaclass in MMAdd (Design Decision 1). If such
an MCAMC is referenced as type of a metaclass

attribute in MMDomain , then only the correspond-
ing metaclass inMMAdd has to be determined and
used as type of the mapped attribute.
For example, let attribute att of MCSt A in
Fig. 11c be the input for the recomputation, and
assume that the type of att refers to the MCAMC

T_AMC in MMDomain . Then, the recomputed type
of att’ refers to T_AMC’ of MMAdd .

All metaclass attributes that are implicitly defined via asso-
ciation ends in Fig. 10 are an example of Case B because
their type properties refer to UML metaclasses extended by
Stereotypes.

In addition to metaclasses, a metamodel MMDomain may
contain data types, which we copy one-to-one to the UML
profile UPDomain or the metamodel MMAdd . Because such
data types can also be used as attribute type inMMDomain , we
must recompute the type of a mapped attribute in this case,
too. But unlike metaclasses, we only determine whether a
data type is contained in UPDomain , MMAdd or MMUML ;
then, we use it as the new type of a mapped attribute.

The unassignedMember attribute of the
<<StructureDataInstance>> stereotype and the

123



On the automation-supported derivation... 65

Fig. 11 Variants for recomputing the attribute type

role attribute of the<<ComponentInstance>> stereo-
type in Fig. 10 are examples for the described recomputation
of an attribute type that refers to a data type.

4.4.5 Mapping to stereotype operations

In addition to attributes, a metaclass MCSt can also have
Operations specified, which we map to corresponding items
of a created Stereotype in UPDomain . To do so, we map most
of the properties of anMCSt operation one-to-one, excluding
the redefinedOperation property and the operation’s param-
eters.

Similar to attributes and because of the restrictions spec-
ified for UML profiles, an operation of a Stereotype is not
permitted to redefine an operation of a UML metaclass.
In contrast, no restrictions exist for a redefinition between
stereotype operations. For these reasons, when mapping an

Fig. 12 SubsettingMCSt attribute and the corresponding ‘derived’ and
‘read-only’ stereotype attribute

MCSt operation to a corresponding stereotype operation, we
only process those items of the redefinedOperation prop-
erty, which refer to other MCSt operations. Consequently,
a created stereotype operation in UPDomain only redefines
operations of other stereotypes, but not of UMLmetaclasses.

As discussed earlier, the typepropertymust be recomputed
while creating a stereotype attribute. Because a Parameter of
an Operation also has a type, we recompute this property in
the same way.

4.5 OCL expressions for stereotype attributes

By Design Decision 7, we map a redefining or subsetting
MCSt attribute to a ‘derived’ and ‘read-only’ stereotype
attribute. Consequently, the value of this attribute is com-
puted at runtime based on its defaultValue property. To
enable this computation, we introduce an OCL expression
for each of these attributes. However, as argued for Design
Decision 10, the automatic creation of OCL expressions is
restricted to the subsetting or redefinition of a single attribute
only. In all other cases, an OCL expression must be provided
using the <<ToTaggedValue>> stereotype.

Assume we have given an MCSt A that inherits from an
MCAC AC_MCB, and A has an attributeatt_a that is subset-
ting an attribute att_mcb of AC_MCB, as shown in Fig. 12.
According to our mapping rules, A is mapped to a Stereotype
A’, and att_a maps to a ‘derived’ and ‘read-only’ stereo-
type attribute att_a’. Because AC_MCB has a ‘matching’
UML counterpart MCB, AC_MCB is not mapped. In addition,
we introduce an Extension between Stereotype A’ and UML
metaclass MCB, which implies the creation of the attributes
extension_A and base_MCB. However, the subsetting
relationship ofatt_a is not preserved foratt_a’; instead,
we create an OCL expression so that the attribute’s value is
computed at runtime.

In the created OCL expression, we first navigate from the
instance of A’ to the instance of MCB by employing attribute

123



66 A. Kraas

base_MCB. Then, we access attribute att_MCB to collect
all items required to compute the value of attribute att_a’.
We select these items either basedon their applied stereotypes
or according to their type. The latter option is applied if the
type property of att_a’ refers to an ‘additional’ metaclass.
Finally, we typecast the set of all determined values so that
they match the type and cardinality of att_a’.

A generated OCL expression as a substitution for redefin-
ing or subsetting MCSt attributes always consists of the
following parts:

– Navigation to UML metaclass MCB that is extended by a
Stereotype ST;

– Navigation to attributeatt_srcofMCB, so this attribute
serves as the source for the value computation;

– Selection of all relevant items ofatt_src based on their
applied stereotype or element type;

– Type-cast of the selected items to match the type and
cardinality of the stereotype attribute att_st.

We generate all OCL expressions according to two patterns.
The first pattern is used for stereotype attributes that have an
upper cardinality one, while the second pattern is employed
in all other cases:

(1) self.base_<MCB>.<att_src>−>any(<sel_exp>).<type−cast>
(2) self.base_<MCB>.<att_src>−>select(<sel_exp>)−><type−cast>

For example, when we employ Pattern (1) for the type
attribute of theMCSt ComponentInstance in Fig. 7b,we
obtain the following OCL expression for the corresponding
attribute of <<ComponentInstance>> in Fig. 10b:

if self.base_Property.type
−>one(isStereotypedBy(‘UP4TDL::ComponentType’))

then self.base_Property.type−>any(isStereotypedBy(
‘UP4TDL::ComponentType’)).oclAsType(UML::Class)

else null endif

As thetype attribute of the<<ComponentInstance>>

stereotype is only single-valued, we evaluate in the first
two lines of the generated OCL expression whether an
element with applied <<ComponentType>> stereotype
is assigned to the type attribute of the UML metaclass
Property. If so, we type-cast and return the determined
element.

4.6 Additional OCL constraints

Because the type properties of stereotype attributes are
recomputed, we introduce additional OCL constraints to pre-
serve the static semantics defined by MMDomain . Due to
Design Decisions 11 and 12, we distinguish between two
categories of OCL constraints. The first is introduced to
ensure the well-formedness of stereotype attributes that are

not ‘derived’ and ‘read-only’. The second ensures the well-
formedness of UML metaclass attributes that are relevant
for computing the defaultValues of ‘derived’ and ‘read-only’
stereotype attributes.

4.6.1 OCL constraints for stereotype attributes

As argued for Design Decision 11, a syntactically invalid
value can be assigned to a stereotype attribute that is not
defined as ‘derived’ and ’read-only’. Therefore, we introduce
OCL constraints to ensure that only UML elements having
applied particular stereotypes can be assigned to such stereo-
type attributes.

Assume an MCSt attribute att, where its type property
refers to an MCSt A. This attribute is mapped to a corre-
sponding attributeatt’, and a StereotypeA’ is derived from
A. In addition, this stereotype has an Extension to a UML
metaclass MCB. Furthermore, the type property of att’ is
recomputed so that it refers to MCB. Thus, any kind of MCB
instance can be assigned to att’. However, att’ is only
well formed if all elements assigned to it have A’ applied.
To ensure this, we create an OCL constraint that consists of
the following parts:

– Navigation to stereotype attribute att_st;
– Verification that all items of att_st have stereotype ST
applied.

Apart from the components above, the cardinality of the
stereotype attribute must also be respected because different
constraint kinds have to be used for single-valued and multi-
valued attributes:

(1) self.<att_st> <> null implies self.<att_st>.isStereotypedBy(<ST>)
(2) self.<att_st>−>forAll(isStereotypedBy(<ST>))

For instance, the type property of the component
attribute of the MCSt GateReference in Fig. 7b refers
to theMCSt ComponentInstance. As we recompute the
typeproperty of stereotype attributes, that of thecomponent
attribute of <<GateReference>> refers to the UML
metaclass Property. For this attribute, we introduce the
following OCL Constraint by applying Pattern (1) above:

self.component <> null implies
self.component.isStereotypedBy(‘UP4TDL::ComponentInstance’)

In Line 1, we evaluate whether a value is assigned to the
stereotype attribute. If so, we employ theisStereotyped
By() operation in Line 2 to test whether the element
assigned to the component attribute has applied the
<<ComponentInstance>> stereotype. Consequently,
only elementswith applied<<ComponentInstance>>

stereotype can be assigned to the component attribute.

123



On the automation-supported derivation... 67

4.6.2 OCL constraints for UMLmetaclass attributes

We introduce a second category ofOCLconstraints for ensur-
ing the well-formedness of UML metaclass attributes that
serve as value computation source for the defaultValue of
‘derived’ and ‘read-only’ stereotype attributes (Design Deci-
sion 12).

Suppose that the same excerpt of a metamodelMMDomain

(see Fig. 12) is given aswe have employed to explain the gen-
eration of OCL expressions. After applying our derivation
approach, we obtain a ‘derived’ and ‘read-only’ stereotype
attribute att_a’ that has an OCL expression as default-
Value. Moreover, an attribute att_mcb of a UMLmetaclass
MCB serves as basis for computing this OCL expression.
To preserve well-formedness, we have to ensure that only
permitted elements can be assigned to metaclass attribute
att_mcb. For the given example, only the assignment of
elements with an applied stereotype A’ is permitted. Hence,
we introduce an appropriate OCL Constraint that constrains
attribute att_mcb.

Apart from the given example, a UMLmetaclass attribute
can also be used to compute several stereotype attributes.
This is always the case if several MCSt attributes in the
source model MMDomain are subsetting or redefining the
same MCAC attribute. In such a scenario, we obtain a set of
valid stereotypes that can be applied to items of the attribute
att_mcb, and therefore, these also must be verified via a
generated OCL constraint, which consists of the following
parts:

– Navigation to attribute att_mcb of UML metaclass
MCB, which is extended by Stereotype ST;

– Verification that each item of att_mcb has one of the
permitted stereotypes applied.

We employ the following two patterns to generate an OCL
Constraint. As in the case of the previous constraint category,
we must obey the attribute cardinality here:

(1) self.base_<MCB>.<att_mcb> <> null implies
self.base_<MCB>.<att_mcb>.<verify_exp>

(2) self.base_<MCB>.<att_mcb>−>forAll(verify_exp)

For example, thetype attribute of theMCSt Component
Instance in Fig. 7b redefines an attribute of the MCAC

AC_TypedElement. As only one attribute of the MCSt

ComponentInstance redefines the type attribute of
the MCAC AC_TypedElement, only one attribute of the
<<ComponentInstance>> stereotype has an OCL
expression for a value computation based on the type
attribute ofUMLmetaclassTypedElement. Consequently,
according to Design Decision 12, only elements with applied
<<ComponentType>> stereotype shall be assignable to

this UML metaclass attribute. To ensure this, we create the
following OCL constraint by employing Pattern (1):

self.base_Property.type <> null implies self.base_Property
.type.isStereotypedBy(‘UP4TDL::ComponentType’)

Line 1 tests whether a value exists at all. If this is the case,
starting froman instanceof<<ComponentInstance>>,
we navigate in Line 2 to the type attribute and invoke the
isStereotypedBy() operation to evaluate whether the
element assigned to this attribute has the
<<ComponentType>> stereotype applied.

5 Update of existing OCL expressions

A metamodel includes OCL expressions for different pur-
poses. OCL expressions can be used to defineConstraints on
metaclasses, so that the static semantics of a computer lan-
guage or DSL is captured. They can also serve as the basis
for computing values of metaclass attributes and operations
at runtime.

The automatic transfer of the static semantics of a meta-
model MMDomain to a derived UML profile UPDomain is a
key feature of our approach. Because Stereotypes and their
extended UML metaclasses exist as separate instances in a
model, an automatic transfer of OCL expressions from a
metamodel to a UML profile is impossible without updat-
ing them at the same time. As argued in the Sec. 2.3, we do
not consider the OCL update as a separate process but as an
action of our UML profile derivation process.

First, we give an overview of the OCL metamodel as a
basis for specifying our design decisions for the OCL update.
Then, we discuss the details for updating OCL expressions,
and finally, we elaborate on the most important aspects of
our implementation.

5.1 The OCLmetamodel

We briefly introduce the relevant parts of OCL’s abstract syn-
tax, which is defined by a MOF-compliant metamodel [45].
The OCL metamodel is divided into several packages, and
the most important of them are:

– The ‘Expressions’ package, which specifies the different
OCL expression types;

– The ‘Types’ package defines OCL’s type system, which
includes concepts for using predefined types as well as
user-defined types introduced by a metamodel.

Because only the OCLmetaclasses that define the abstract
syntax of OCL expressions are of interest for our OCL
update, we just treat some metaclasses of the ‘Expressions’
package. The basic structure of the abstract syntax of OCL

123



68 A. Kraas

Fig. 13 Basic structure of OCL’s abstract syntax

expressions is shown in Fig. 13. OCL is a ‘typed language’.
Therefore, themost generalmetaclassOCLExpression inher-
its from the TypedElement, so that all OCL expressions own
the type property. Typically, an abstract syntax tree (AST)
of an analysed OCL expression consists of any number of
nested OCL expression instances. Each of these instances
has a static type specified, which is determined by a recur-
sive analysis of all nested expressions. The result value of an
expression is determined by performing an evaluation, and
the obtained value must conform to the static type of the
expression.

The objectives of the metaclasses shown in Fig. 13 are
explained below. Only themetaclassesMsgExp and StateExp
are excluded, because they cannot be used for OCL expres-
sions contained in metamodels.

CallExp is used to obtain the evaluation result
of an operation or attribute of a clas-
sifier or the result of a collection type
iterator. The purpose of a CallExp is
defined by its concrete subtypes.

FeatureCallExp is employed to determine the evalua-
tion result of an attribute or operation
of a classifier. This abstract OCL
metaclass is more precisely defined
by further subtypes, see below.

LiteralExp represents a literal of a primitive type
such as Integer or String.

TypeExp refers to a classifier in a model or
a predefined type. Typically, a Type-

Exp is passed as argument to invoke
oneof the predefinedOCLoperations
oclAsType(),oclIsTypeOf(),
or oclIsKindOf().

VariableDeclaration is a super-typeofVariable andParam-
eter.Variable represents user-defined
variables, and Parameter specifies
operation parameters.

VariableExp is a reference to an explicitly declared
variable, an operation parameter, or
the implicitly introduced variables
‘self’ and ‘result’.

LoopExp iterates over all items of a collection
type. The invocation of a predefined
collection iterator is represented by
IteratorExp, which is a concrete sub-
type of LoopExp.

IfExp always consists of two mandatory
alternative expressions and aBoolean
condition. Depending on the con-
dition’s result, one of the alterna-
tive expressions is evaluated and the
obtained result is returned.

The subtypes of the abstract OCL metaclass Feature-
CallExp are shown in Fig. 14. Depending on the subtype,
a NavigationCallExp represents a reference to a classifier
attribute or an association class. Because the latter element
type is not applicable to OCL expressions of metamodels,
we do not consider the metaclass AssociationClassCallExp

123



On the automation-supported derivation... 69

Fig. 14 Abstract syntax of OCL’s FeatureCallExp

further. The PropertyCallExp is used to evaluate the value of
a classifier attribute, and the referredProperty property is the
reference to this attribute.

Another subtype of the FeatureCallExp metaclass is the
OperationCallExp that is employed to evaluate the result of
an operation invocation. The referredOperation property of
this metaclass identifies the operation to be invoked, and the
items of the ownedArguments property define the values that
are passed to the operation’s parameters.

5.2 Design decisions for updating OCL expressions

Based on our design decisions for deriving UML profiles
specified in Sec. 4.1, we map MCSt metaclasses of the
metamodel MMDomain to corresponding Stereotypes of the
UML profile UPDomain , and MCSt attributes to stereotype
attributes. Furthermore, we mapOperations and Constraints
ofMCSt metaclasses to corresponding counterparts inStereo-
types. As the result of the mappings, all elements of anMCSt

are owned by Stereotypes. The ‘self’ variable of an OCL
expression contained in a Stereotype always refer to this
Stereotype instead of a metaclass. If a feature of the extended
UML metaclass is accessed based on the ‘self’ variable, the
‘base_<metaclass>’ attribute must be accessed first when
navigating to that metaclass feature.

Hence, we must update all OCL expressions that access
an MCAC attribute or MCAC Operation based on a ‘self’
variable that refers to an MCSt . During this update, we
introduce a PropertyCallExp that accesses the attribute
‘base_<metaclass>’.

Design Decision 13 A PropertyCallExp that accesses the
‘base_<metaclass>’ attribute shall be introduced for OCL
expressions that access an MCAC attribute or MCAC Oper-
ation via a ‘self’ variable that refers to an MCSt .

The type properties of attributes are recomputed during the
mapping, so that only Classifiers (Classes or DataTypes) of
the MMUML or MMAdd metamodel are referenced (Design
Decision 9). Moreover, the same recomputation is applied
to the type property of an operation Parameter. Thus, nei-
ther the type properties of stereotype attributes nor those of
operation parameters refer to Stereotypes. This situation also
applies to attributes and operation parameters of ‘additional’
metaclasses of MMAdd . Thus, accessing mapped stereotype
attributes or operation parameters always returns a metaclass
instance.

If aProperty orOperationof aStereotype shall be accessed
based on the result returned by an OCL expression, then
the ‘extension_<stereotype>’ attribute has to be employed
for navigating to the stereotype feature. For this reason, we
update all OCL expressions that contain a navigation from
one MCSt feature to another MCSt feature, and during this
update we introduce a PropertyCallExp that accesses the
‘extension_<stereotype>’ attribute.

Design Decision 14 A PropertyCallExp that accesses the
‘extension_<stereotype>’ attribute shall be introduced for
OCL expressions that contain a navigation from one MCSt

feature to another.

The predefined OCL operations oclIsTypeOf() and
oclIsKindOf() are used to verify whether the evalu-
ation result of an OCL expression is an instance of the
Classifier defined as argument. The oclIsTypeOf()
operation returns only value ‘true’, if the evaluation result
exactly matches the type specified as argument, while the
oclIsKindOf() operation returns ‘true’ also for sub-
types.

Because the type property of stereotype attributes and
operation parameters is recomputed during the mapping,
OCL expressions that access these elements can never return
a stereotype instance as result. Thus, we cannot utilize the
aforementioned operations to verify whether a particular
stereotype is applied. Instead, we employ the operations
isStrictStereotypedBy() and isStereotyped
By(). We update an OperationCallExp that invokes the
oclIsTypeOf() or oclIsKindOf() operation, pass-
ing an MCSt metaclass as argument. During this update,
we introduce a new OperationCallExp that invokes the
operation isStrictStereotypedBy() or isStereo
typedBy().

Design Decision 15 An OperationCallExp that invokes the
oclIsTypeOf() or oclIsKindOf() operation, pass-
ing an MCSt as argument, shall be replaced by an Opera-
tionCallExp that invokes the operation isStrictStereo
typedBy() or isStereotypedBy().

The elements of MMDomain are located in UPDomain ,
MMAdd , and MMUML after the mapping. Because a Type-

123



70 A. Kraas

Exp refers to a particular Classifier of a metamodel, we have
to update all OCL expressions of that type, so that they
refer to elements in MMAdd or MMUML . The Stereotypes
of UPDomain are not considered for this update, because the
type properties of stereotype attributes and parameters are
recomputed during the mapping so that Stereotypes are not
referenced.

Design Decision 16 All TypeExp shall be updated so that they
refer to Classifiers of MMUML or MMAdd .

5.3 The OCL update in detail

We now detail our approach for updating OCL expressions
contained in the metamodel MMDomain . We assume that a
textually specified OCL expression is parsed and the result-
ing abstract syntax tree (AST) is present. This AST is an
instantiation of OCL’s metamodel.
FeatureCallExp. By Design Decisions 13 and 14, an addi-
tionalPropertyCallExp that refers to the ‘base_<metaclass>’
or ‘extension_<stereotype>’ attribute must be introduced
for an existing FeatureCallExp in certain situations. How-
ever, this applies only to instances of PropertyCallExp and
OperationCallExp, because only these subtypes of Feature-
CallExp are applicable in the context of metamodels.

Following Design Decision 13, we create an additional
PropertyCallExp to access an ‘extension_<stereotype>’
attribute if all criteria below are met:

1. The type of the ownendSource expression of a Feature-
CallExp refers to an MCSt metaclass;

2. The referredProperty of a PropertyCallExp is an MCSt

attribute, or in case of an OperationCallExp, the referre-
dOperation is an MCSt operation.

Assume that the PropertyCallExp shown below is used as
input for the OCL update, and that the above criteria are
met. After applying the update, we obtain the result shown
in the second line, where the<stereotype> placeholder
represents the name of the Stereotype that owns the referred-
Property:

input: source.referredProperty
result: source.extension_<stereotype>.referredProperty

For example, the update defined by Design Decision 13 is
applied to the constraint of the MCSt StructuredData
Type inFig. 7a.ThemembersAreDistinguishable()
operation that is invoked by this constraint is inherited from
MCAC AC_Namespace. In UPT DL , this operation is not
inherited by the derived StructuredDataType stereo-
type, but we can invoke it via the extended UML metaclass.
For this purpose, we introduce an PropertyCallExp for the
attribute base_DataType based on Design Decision 13:

input: self.membersAreDistinguishable()
result: self.base_DataType.membersAreDistinguishable()

Due to Design Decision 14, another kind of update of an
existingFeatureCallExp is required in order to access aUML
metaclass feature based on a ‘self’ variable that refers to a
Stereotype instance. We create an additional PropertyCall-
Exp that refers to the ‘base_<metaclass>’ attribute, so we
can access the UMLmetaclass feature. We only conduct this
update if all following criteria are met:

1. The ownendSource expression of a FeatureCallExp is a
VariableExp that refers to the ‘self’ variable, and the type
of this VariableExp expression refers to an MCSt meta-
class;

2. The referredProperty of a PropertyCallExp is an MCAC

attribute, or in case of an OperationCallExp, the referre-
dOperation is an MCAC operation.

Assume that the PropertyCallExp shown below is used
as input for the OCL update, and the above criteria are met.
The result of this update is shown in the second line. The
<metaclass> placeholder corresponds to the name of
the UML metaclass that owns the referredProperty:

input: self.referredProperty
result: self.base_<metaclass>.referredProperty

For example, the MCSt StructuredDataInstance
in Fig. 7a has defined the constraint below, which includes
two sub-expressions that meet the discussed criteria of
Design Decision 14. Hence, we introduce a PropertyCall-
Exp for both attributes extension_StaticDataUse
and extension_Parameter.

input: self.memberSpec.determinedType = self.member.dataType
result: self.memberSpec.extension_StaticDataUse.determinedType =
self.member.extension_Parameter.dataType

OperationCallExp. The predefined OCL operations ocl
IsTypeOf() and oclIsKindOf() can be employed to
determine whether the result type of an expression matches
the expected type. By Design Decision 15, an update of
an OperationCallExp is required if one of the operations is
applied to an MCSt metaclass. We conduct this update as
follows:

– The referred operation oclIsTypeOf() of an Oper-
ationCallExp is replaced by the isStrictStereo
typedBy() operation, if the passed argument is an
MCSt metaclass.

– The operation oclIsKindOf() that is referred by an
OperationCallExp is replaced by the isStereotyped
By() operation, if the passed argument is anMCSt meta-
class.

123



On the automation-supported derivation... 71

For instance, suppose the two OCL expressions below
are used as input for the update, and both expressions
meet the above criteria. In Case (A), we introduce the
operation isStrictStereotypedBy(), whereas the
operationisStereotypedBy() is employed in Case (B).
The placeholder<stereotype> represents the stereotype
name that is derived from theMCSt shown in the input expres-
sions:

input:
(A) source.oclIsTypeOf(MCSt)
(B) source.oclIsKindOf(MCSt)
result:
(A) source.isStrictStereotypedBy(<stereotype>)
(B) source.isStereotypedBy(<stereotype>)

Below, for example, we apply the OCL update accord-
ing to Design Decision 15 to a constraint of the MCSt

SimpleDataInstance in Fig. 7a. As shown, the call of
the operation oclIsKindOf() is replaced by an invoca-
tion of the operation oclIsStereotypedBy(). In addi-
tion, the MCSt SimpleDataType specified as argument
is substituted with the qualified name of the corresponding
Stereotype:

input: self.dataType.oclIsKindOf(SimpleDataType)
result: self.dataType.isStereotypedBy(‘UP4TDL::SimpleDataType’)

TypeExp. According to Design Decision 16, we have to
update all occurrences of TypeExp that refer to an MCAC

or an MCSt metaclass. A TypeExp that refers to an MCAC

metaclass is updated so that the ‘matching’ UML counter-
part of theMCAC is referenced. Furthermore, a TypeExp that
refers to an MCAMC metaclass is updated so that it refers to
an ‘additional’ metaclass.

We explain the application of the update based on
the getTestDescription() operation of the MCSt

AtomicBehaviour. Line 3 of this operation invokes the
operation oclAsType(T), where a TypeExp is passed as
argument T that refers to the MCSt TestDescription.
After conducting our update, the UML metaclass
BehavioredClassifier is passed as argument, as
required by Design Decision 16.

input:
if self.allNamespaces()−>one(oclIsTypeOf(TestDescription))
then self.allNamespaces()−>any(oclIsTypeOf(TestDescription))
.oclAsType(TestDescription)

else null endif

result:
if self.base_InteractionFragment.allNamespaces()−>one(
isStrictStereotypedBy(‘UP4TDL::TestDescription’) )

then self.base_InteractionFragment.allNamespaces()−>any(
isStrictStereotypedBy(‘UP4TDL::TestDescription’)

).oclAsType(UML::BehavioredClassifier)
else null endif

6 Case study-based evaluation

We employ the Test Description Language (TDL) as a run-
ning example to explain the details of deriving a UML profile
from a metamodel. Below, we detail our case study on TDL,
where we fully automatically derive a UML profile from
TDL’s metamodel using our derivation approach. First, we
investigate whether all elements of the UML profile UPT DL

are created as expected. Then, we compare our UPT DL with
the UML profile [6] standardized for TDL. In this way, we
assess the quality ofUMLprofiles generated via our approach
against manually created ones.

6.1 Evaluation of the generated UML profile UPTDL

In Table 2, we compare the metaclasses of MMTDL with
the stereotypes that we have derived for the UML profile
UPT DL . BecauseofDesignDecision1,wedonotmapMCAC

metaclasses to model elements of UPT DL . Accordingly, the
13MCAC metaclasses have no counterparts in UPT DL .

The<<ToStereotype>> stereotype is applied to 59
of the 80 MCSt metaclasses in MMTDL , mainly to define
the UML metaclasses to be extended by generated Stereo-
types (Design Decision 9). Based on the number of MCSt

metaclasses inMMTDL , one could assume that UPT DL con-
tains a total of 80 Stereotypes. As shown in Table 2, only
79 Stereotypes are created for UPT DL . This corresponds
to the desired result, because we have defined the MCSt

MappableDataElement inMMTDL (see Fig. 7a) as not
to be mapped.
Stereotype extensions and generalizations. To explain
more clearly for which kinds of MCSt metaclasses Stereo-
types are introduced either with Extensions or Generaliza-
tions, we distinguish twoMCSt groups in Table 2:

For MCSt metaclasses that inherit directly from MCAC

metaclasses, we introduce Extensions between generated
Stereotypes and UML metaclasses identified based on the
MCAC metaclasses (Design Decision 4). Because one of
the 33 MCSt metaclasses that inherit directly from MCAC

metaclasses is specified as not mappable, we derive only 32
Stereotypes with an Extension to a UML metaclass. 29 of
these MCSt metaclasses have the <<ToStereotype>>

stereotype applied, so that the UML metaclasses to be
extended are explicitly specified (Design Decision 9) and
not determined based on MCAC metaclasses.

The second MCSt group summarizes all MCSt meta-
classes that inherit from other MCSt metaclasses by means
of Generalization. This group comprises 47 MCSt meta-
classes of which 30 have the <<ToStereotype>>

stereotype applied. For all Stereotypes that are created from
these 47 MCSt metaclasses, we introduce Generalizations
to other Stereotypes (Design Decision 5). In addition, we
create 30 Extension relationships from Stereotypes to UML

123



72 A. Kraas

Table 2 Metaclasses in MMTDL vs. stereotypes in UPT DL

MMTDL UPTDL

MCAC metaclasses 13 –

MCSt metaclasses in total 80 79 Stereotypes in total

MCSt inheriting from MCAC (29 MCSt with applied
<<ToStereotype>> stereotype)

33 32 Stereotypes with Extensions to UML metaclasses

MCSt inheriting from other MCSt 47 17 Stereotypes inheriting from other Stereotypes

(30 MCSt with applied <<ToStereotype>>

stereotype)
30 Stereotypes inheriting from other Stereotypes and

Extensions to UML metaclasses

metaclasses, because the source MCSt metaclasses have
applied the <<ToStereotype>> stereotype (Design
Decision 9).
Stereotype attributes.Due to the higher number of relevant
design decisions, the mapping of attributes is more complex
than the one of Stereotypes. Accordingly, several types of
attribute mappings are considered in Table 3:

‘Derived’ stereotype attributes: This group summarizes
all mapped stereotype
attributes that are defined
as ‘derived’ and ‘read-
only’.

‘Non-derived’ stereotype attributes: This group captures all
stereotype attributes that
do not belong to the first
group.

As shown inTable 3,MMTDL contains a total of 126meta-
class attributes, ofwhich 99 are considered asMCSt attributes
that map to 52 ‘non-derived’ and 47 ‘derived’ stereotype
attributes. The remaining 27 attributes are owned by MCAC

metaclasses and, therefore, are not considered when deriving
UPT DL .

To discuss the mapping ofMCSt attributes to ‘derived’ or
‘non-derived’ stereotype attributes, we group them accord-
ing to their type in Table 3. In addition, we specify
how many of the MCSt attributes of a group have the
<<ToTaggedValue>> stereotype applied.This is because
the application of this stereotype overrides the default map-
ping forMCSt attributes, so that these attributes are mapped
to ‘derived’ stereotype attributes.

The first group of MCSt attributes subsumes all MCSt

attributes that are already defined as ‘derived’ and ‘read-only’
in MMTDL . By default, these MCSt attributes are mapped
to stereotype attributes also defined as ‘derived’ and ‘read-
only’. During the mapping, we copy an OCL expression
available as defaultValue and subject it to our OCL update.
However, if anMCSt attribute has the<<ToTaggedValue>>

stereotype applied, we use the OCL expression defined by
this Stereotype instead of the existing one in MMTDL .

Overall, MMTDL contains three MCSt attributes defined
as ‘derived’ and ‘read-only’, of which one has applied the
<<ToTaggedValue>> stereotype. Accordingly, exist-
ing OCL expressions are transferred to UPT DL for only two
MCSt attributes. In the case of theMCSt attributewith applied
<<ToTaggedValue>> stereotype, the OCL expression
defined by this Stereotype was copied to UPT DL .

The second MCSt attribute group contains nine MCSt

attributes that redefine other metaclass attributes. Eight of
these MCSt attributes are mapped to ‘derived’ and ‘read-
only’ stereotype attributes, where six attributes are mapped
based on Design Decision 7 and two others based on the
applied <<ToTaggedValue>> stereotype, as required
byDesignDecision 10.One furtherMCSt attribute ismapped
to a ‘non-derived’ stereotype because it redefines an MCSt

attribute and is thus not captured by Design Decision 7.
All attributes that subset other metaclass attributes are

captured by the third MCSt attribute group. In total, this
group comprises 43 MCSt attributes, of which 29 have
the <<ToTaggedValue>> stereotype applied. Based
on Design Decision 7, these 29 attributes are mapped to
‘derived’ and ‘read-only’ stereotype attributes. In addition,
we introduce OCL expressions as defaultValues, which are
used to compute the values of stereotype attributes at runtime.

One could now expect that all 14 remaining MCSt

attributes would also be mapped to ‘derived’ and ‘read-
only’ stereotype attributes according to the rules defined by
Design Decision 7. However, this is not the case as we have
supplemented these rules during the implementation of our
derivation approach, as argued in Sec. 4.4. Therefore, only
thoseMCSt attributes that redefine or subsetMCAC attributes
not declared as ‘derivedUnion’ or ‘read-only’, are mapped
according to Design Decision 7. Because the 14 remaining
MCSt attributes do not meet this condition, they are mapped
to ‘non-derived’ stereotype attributes.

The last MCSt attribute group comprises all attributes
that are not captured by one of the three other groups. This
applies to 44MCSt attributes, ofwhich seven have applied the
<<ToTaggedValue>> stereotype, so they are mapped
to seven stereotype attributes that are defined as ‘derived’
and ‘read-only’ (Design Decision 10). The 37 remaining

123



On the automation-supported derivation... 73

Table 3 Metaclass attributes in
MMTDL vs. stereotype
attributes in UPT DL

Stereotype attributes
Metaclass attributes 126 ‘non-derived’ ‘derived’

MCAC attributes 27 — —

MCSt attributes in total 99 52 47

MCSt attributes defined as ‘derived’ and ‘read-only’ 3 — 2

Attributes with <<ToTaggedValue>> stereotype (1) — 1

RedefiningMCSt attributes 9 1 6

Attributes with <<ToTaggedValue>> stereotype (2) — 2

SubsettingMCSt attributes 43 14 —

Attributes with <<ToTaggedValue>> stereotype (29) — 29

Other kind of MCSt attributes 44 37 —

Attributes with <<ToTaggedValue>> stereotype (7) — 7

Table 4 OCL artefacts of MMTDL vs. the ones of UPT DL

MMTDL UPTDL

OCL Constraints 67 113 OCL Constraints

67 Copied and updated from MMTDL

40 Introduced for stereotype attributes
that refer to UML metaclasses
with applied stereotypes

6 Created for redefining MCSt
attributes

OCL Operations 10 10 OCL Operations

metaclass attributes of this group are mapped one-to-one to
‘non-derived’ stereotype attributes (Design Decision 6).
OCL-defined elements. The metamodel MMTDL contains
67 Constraints and ten Operations defined via OCL, which
we map to corresponding elements in UPT DL . When com-
paringMMTDL and UPT DL , we find that UPT DL comprises
113 OCLConstraints instead of 67. This is because we intro-
duce additional OCL Constraints for Stereotypes of UPT DL

(Design Decisions 11 and 12).
To ensure that only UML elements with certain Stereo-

types can be assigned to ‘non-derived’ stereotype attributes,
we create appropriate OCL Constraints. Table 4 shows that
UPT DL contains 52 ‘non-derived’ stereotype attributes, but
only 40 OCL Constraints are created for these. This is
because only 40 of the 52 ‘non-derived’ stereotype attributes
are derived fromMCSt attributes whose type property refers
to an MCSt (Design Decision 11).

In addition, further OCLConstraints are provided accord-
ing to Design Decision 12 for ‘derived’ and ‘read-only’
stereotype attributes derived from subsetting or redefining
MCSt attributes. These OCL Constraints ensure that only
UML elements with matching Stereotypes can be assigned
toUMLmetaclass attributes that serve as computation source
for the values of the stereotype attributes in question. As six
stereotype attributes in UPT DL are derived from redefining

Table 5 Comparison of the UML profiles UPstd and UPT DL

UPstd UPTDL

Mappings for UML elements
without stereotypes

23 —

Stereotypes 56 79

Stereotype attributes 52 99

OCL Constraints 2 113

OCL Operations 0 10

MCSt attributes, an equal number ofOCL constraints is intro-
duced based on Design Decision 12.

6.2 The standardized versus the derived UML profile

In the following, we investigate whether an automatic gener-
ated UML profile is comparable to a manually created one.
Therefore, we compare our derived UML profile UPT DL

with the one standardized for TDL [6]. We refer to the
latter UML profile via the acronym UPstd . First, we anal-
yse the number of model elements contained in UPstd and
UPT DL , so that we can draw initial conclusions. Afterwards,
we review some Stereotypes of both UML profiles to obtain
a detailed view on the quality of the UML profile UPT DL .
Quantitative comparison. To compare the various elements
in UPstd and UPT DL , we summarize their quantities in
Table 5. A particularity of UPstd is shown in the first table
row. UPstd defines a mapping to TDL metaclasses for 23
UML element types without defining Stereotypes, i.e. the
relevant UML model elements are mapped without TDL-
specific Stereotypes applied to them. The disadvantage of
this approach is that no OCL Constraints are defined for the
affected UML element types due to the missing Stereotypes;
thus, the static semantics of the relevant language concepts
of TDL is not captured.

123



74 A. Kraas

UPstd embraces a lower number of Stereotypes than
UPT DL , which is due to the above reason. In contrast
and except of the MappableDataElement metaclass,
UPT DL provides a specific Stereotype for each MCSt meta-
class of MMTDL . In addition, the Stereotypes of UPT DL

have a larger number of attributes. One might assume that
this is due to the larger number of Stereotypes in UPT DL .
However, the question arises whether the different numbers
of Stereotypes is the only reason, because UPT DL contains
with 99 stereotype attributes almost twice as many asUPstd .
Another reasonmight be that not eachmetaclass attribute has
a corresponding Stereotype attribute in UPT DL . This aspect
is analysed in more detail below.

The compliance of UML elements with TDL’s static
semantics can only be evaluated if Stereotypes with appro-
priate OCL Constraints exist. Because UPstd has only two
OCL Constraints, this statement also applies to those TDL
language concepts for which corresponding Stereotypes are
present. In contrast, UPT DL provides 113 Constraints and
10 Operations that are defined via OCL. These include not
only theConstraints transferred fromMMTDL , but also those
introduced during the derivation of UPT DL . Therefore, we
conclude that UPstd cannot be used to ensure TDL’s static
semantics, whereas this drawback does not exist forUPT DL .
Comparison of the syntactic structure. After we deter-
mined that UPstd has some limitations over UPT DL , we
now compare the structure of the Stereotypes in both UML
profiles. For this purpose, we examine the Stereotypes that
define the abstract syntax for TDL test descriptions. The rel-
evant Stereotypes of UPstd are shown in Fig. 15a, and those
defined for UPT DL can be found in Fig. 15b.

Considering the Stereotypes and the UML metaclasses
extended by them in Figs. 15a and 15b, we can identify two
significant differences.The<<ComponentInstance>>

stereotype in UPstd extends the UML metaclasses
EncapsulatedClassifier and Property, whereas
the one in UPT DL extends only the latter. Both UML
metaclasses extended by the stereotype of UPstd are funda-
mentally different language concepts. The UML metaclass
Property represents a specialization of Structural
Feature, whereas EncapsulatedClassifier is a
specialization of Classifier that can provide various
Features, such as StructuralFeature.

If we consider the TDL metaclasses shown in Fig. 7b,
we see that the componentInstance attribute of the
TestConfigurationmetaclass is a composition.Hence,
instances of ComponentInstance are parts of Test
Configuration instances. In addition, Component
Instance provides a type attribute that is employed
to refer to a ComponentType. Thus, from a seman-
tic point of view, a TDL ComponentInstance can be
compared with a UML Property rather than a UML
EncapsulatedClassifier. For this reason, we con-

sider an extension of this UML metaclass by the
<<ComponentInstance>> stereotype in UPstd as
semantically incorrect, and therefore, this Stereotype should
only extend the UML metaclass Property, as is the case
in UPT DL .

Comparing Figs. 15a and 15b, we find that the stereo-
types ofUPT DL have six and those ofUPstd have only three
attributes defined by Association ends. Because stereotypes
of UPT DL are derived from MCSt metaclasses in MMTDL ,
they have the same number of attributes as the corresponding
metaclasses. In contrast, stereotypes in UPstd have a lower
number of attributes than TDL metaclasses.

Instead of the non-existent stereotype attributes, a map-
ping of UML metaclass attributes to certain TDL metaclass
attributes is defined inUPstd . This is a viable way, but due to
the absence of OCL Constraints in UPstd , the values per-
mitted for UML metaclass attributes are not constrained.
Therefore, UPstd allows the specification of models that are
invalid in relation to the static semantics of TDL. Because
UPstd does not specify a corresponding stereotype attribute
for each metaclass attribute, this also explains the difference
in the number of attributes between UPstd and UPT DL .

All stereotype attributes introduced by Association ends
in UPT DL refer to UML metaclasses extended by Stereo-
types. In contrast, the stereotype attributes in UPstd (e.g. see
Fig. 15a) always refer to Stereotypes. Because navigation
from a Stereotype instance to the extended UML element or
vice versa is possible, referencing Stereotypes or extended
UML metaclasses is comparable from a syntactical point of
view. However, the latter option requires the use of appropri-
ate OCL Constraints to ensure that only UML elements with
a specific applied Stereotype can be assigned to a stereotype
attribute. As discussed above, exactly such OCL Constraints
are automatically introduced by our derivation approach.

Another difference between the stereotype attributes of
UPT DL and UPstd shown in Fig. 15 is their cardinality. If
we compare the stereotype attributes in Fig. 15b with the
corresponding metaclass attributes in Fig. 7b, we find that
their cardinalitiesmatch. In contrast, the stereotype attributes
shown in Fig. 15a have different cardinalities than their corre-
spondingmetaclass attributes ofMMTDL . Thus, a syntactical
difference between UPstd and the TDL metamodel exists.
The TDL standard [6] does not indicate that the deviating
attribute cardinalities are an explicit design decision for the
creation of UPstd . We therefore assume that these are issues
that result from the manual creation of UPstd .

6.3 Discussion of the evaluation results

We investigated the applicability of our approach to derive
a UML profile and used the Test Description Language
(TDL) [6] to evaluate the applicability of our derivation
approach to new DSLs. In contrast, the Specification and

123



On the automation-supported derivation... 75

(a)

(b)

Fig. 15 Stereotypes in UPstd and UPT DL used to define the syntax of TDL test descriptions

DescriptionLanguage (SDL) [21]was subject of another case
study [27,28] to evaluate the applicability of our approach for
existing DSLs with available production rules.

In Sects. 4 and 5, we already employed TDL as running
example to detail our approach for deriving a UML profile
and updating the associated OCL-defined static semantics;
therefore, here we only quantitatively investigated whether
UPT DL was derived from MMTDL according to our Design
Decisions 1–12. The comparison of UPT DL with MMTDL

showed that exactly the number of model elements we
expected, such as stereotypes, was generated for UPT DL .
Hence,we conclude that our derivation approach conforms to
ourDesignDecisions.However, this does not answerwhether
aUMLprofile automatically derived by our approach is com-
parable to a manually created one.

Thus, we compared TDL’s standardized UML profile
UPstd with our automatically derived UML profile UPT DL

quantitatively andqualitatively. This comparison showed that
some of TDL’s language concepts in UPstd are not rep-
resented as Stereotypes but as UML elements, for which
mapping rules but no OCL constraints exist. Furthermore,
we also noticed that the Stereotypes in UPstd have fewer
attributes than the respective TDL metaclasses. Moreover,
the cardinalities of some stereotype attributes did not match
those of the corresponding metaclass attributes.

When compared to UPstd , our automatically derived
UPT DL showed a certain correlation regarding the Stereo-
types and extended UMLmetaclasses. Due to the one-to-one
derivation of Stereotypes from TDL metaclasses, the high-
lighted syntactic drawbacks of UPstd are not present in the
automatically derived UPT DL . Furthermore and because of
our automatic OCL update,UPT DL enables an evaluation of
the static semantics of TDL, which is infeasible with UPstd

due to the absence of OCL Constraints.
Asmentionedbefore,we conducted another case study [27,

29] where the Specification and Description Language
(SDL) [21] served us to evaluate our derivation approach for
grammar-based DSLs. The focus of our investigation was on
the semi-automatic creation of an SDL metamodel based on
production rules and on the automatic derivation of a UML
profile and ‘additional’ metaclasses. In the following, we
briefly summarize the results of our SDL case study.

By comparing our generatedUMLprofileUPSDL with the
one standardized for SDL [20], we observed that the Stereo-
types in the latter have a much smaller number of attributes.
Furthermore, we noticed that many Stereotypes of the stan-
dardized UML profile represent not just one but several SDL
language concepts. Both identified differences result in more
complex mapping rules and OCL constraints in the standard-
ized variant. In contrast, the Stereotypes of our UPSDL have

123



76 A. Kraas

a one-to-one relationship to SDL’s language concepts they
represent. Consequently, we could decrease the complexity
of mapping rules and OCL constraints.

Furthermore, we found that some of SDL’s well-formed
rules were not captured by OCL constraints in the stan-
dardized UML profile, while in our UPSDL all rules are
considered. Furthermore, we identified differences regard-
ing OCL constraints that ensure the syntactic structure:
OCL constraints of the standardized UML profile capture
less syntactic aspects than those of our UPSDL . This is
because our derivation approach automatically introduces
OCL constraints in order to ensure syntactic aspects, e.g.
the application of specific Stereotypes to attribute items.
In contrast, this kind of OCL constraints may be ignored
when manually creating a UML profile, because they are
often the result of implicit requirements imposed by struc-
tural aspects. Hence, we consider the automated derivation
of UML profiles to be less error-prone when compared to
manual creation.

The above comparison clearly shows that a UML profile
generated with our derivation approach captures all lan-
guage concepts of a DSL as dedicated Stereotypes. This is
the essential prerequisite for an automatic transfer of the
OCL-defined static semantics from a metamodel to a UML
profile and enables the evaluation of the static semantics
for UML models with applied UML profile. For manually
created UML profiles, an OCL-defined static semantics is
either not available or not all well-formedness rules are
captured. Furthermore, our automatic derivation prevents
manualmodelling errors such as falsemultiplicities of stereo-
type attributes.

7 Related work

Apart from manual approaches (e.g. [30,50]) for creat-
ing UML profiles, the most closely related works to ours
are [13,14,48,56], which also automatically deriveUMLpro-
files from existing DSL metamodels. Their commonality is
that, in addition to the metamodel, mapping rules must be
provided as input for the profile derivation. Depending on
the approach, this is realized in terms of so called ‘Inte-
gration Metamodels’ or ‘Mapping Models’. In contrast, our
approach expects CMOF-based metamodels as input for the
derivation of UML profiles, which reuse ‘Abstract Concepts’
as proposed in [10,49].

Giachetti et al. propose an approach [13,14] that can be
applied to generate UML profiles and mapping rules for
model transformations. Toderive these artefacts, they employ
a certain type of EMOF-basedmetamodel called ‘Integration
Metamodels’ [15]. Such a metamodel is initially created as
a copy of a metamodel for the DSL of interest. In the next
step, the copy must be altered manually by adding additional

metaclasses, until all rules defined for ‘IntegrationMetamod-
els’ are met. In addition, the structure and semantics of the
UML metaclasses that are defined as a mapping target and
the ones of the DSL metamodel have to be considered dur-
ing the rework. Because of the creation of newmetaclasses, a
revision of the OCL constraints contained in the ‘Integration
Metamodel’ is required. Furthermore, the mappings to UML
metaclasses also have to be specified in the ‘IntegrationMeta-
model’. Finally, a UML profile and the mapping rules can be
generated based on the revised ‘IntegrationMetamodel’.Gia-
chetti et al. state in [12,13] that theOCLconstraints contained
in an ‘Integration Metamodel’ must be included in a derived
UML profile. Therefore, all references in OCL constraints
to elements of the ’Integration Metamodel’ are modified so
that corresponding UML metaclasses or stereotypes are ref-
erenced after UML profile generation.

In contrast, our approach for deriving UML profiles can
be applied to CMOF-based metamodels that are created by
reusing ‘Abstract Concepts’. Due to the correlation between
‘Abstract Concepts’ and UML metaclasses, we do not have
to modify a metamodel so that its structure matches that
of the UML metamodel, as is required for an ‘Integration
Metamodel’. In most cases, we can use these correlations to
automatically determine the information required for deriv-
ing the different elements of a UML profile. The explicit
definition of mapping information is only necessary if ‘addi-
tional’metaclasses shall be derived, or if a derived Stereotype
shall extend a UMLmetaclass that does not have a matching
‘Abstract Concept’ counterpart.

Another advantage of our approach is the possibility to
define ‘alternative’ OCL expressions so that the values of
stereotype attributes are computed at runtimewithoutmanual
assignment. This is also useful if the value of an attribute can
only be determined based on UML model elements that do
not have stereotypes applied, or if several model elements
must be accessed to obtain the required values.

Equally important and in contrast to our work, the
approach of Giachetti et al. [13,14] does not consider the
generation of OCL expressions and constraints for subset-
ting and redefining stereotype attributes. While they discuss
a transfer of OCL constraints of an ‘Integration Metamodel’
towards generated stereotypes by adapting the referenced ele-
ment types, this is insufficient to obtain validOCLconstraints
for generated UML profiles. Because stereotypes and UML
metaclasses are instantiated separately, additional attribute
navigations must be inserted in OCL expressions, as sup-
ported by our approach.

Another category of related works covers the derivation
of metamodels based on existing UML profiles, as proposed
in [33,35], which is exactly the inverse of our approach. The
creation of a UML profile from scratch may be an option for
a new DSL with low complexity, but for an existing DSL
with higher complexity this can be difficult. This is because

123



On the automation-supported derivation... 77

not only the static semantics of the DSL but also UML’s
static semantics must be taken into account. Therefore, the
manual creation of a metamodel followed by an automatic
derivation of a UML profile should be preferred for more
complex DSLs such as SDL [21]. This variant should also be
chosen if the production rules for a DSL are given, because
then existing tools [16] (e.g. EMFText [17] or xText [1,5])
can be employed for automatically deriving metamodels.

8 Summary and Conclusions

In addition to our overview on all aspects of our derivation
approach given in [28] and our SDL case study [27], which
evaluates the applicability of our approach to grammar-based
DSLs, the present article details the fully automated deriva-
tion of UMLprofiles and the transfer of static semantics from
metamodels to these profiles. In addition, we present another
case study on TDL, where we evaluate the applicability of
our approach for DSLs to be created from scratch. Our DSL-
MeDeTo tool chain, which implements our approach, and the
case studies on TDL and SDL are available via our home-
page [58].

While only syntactic constructs for UML profiles can be
automatically derived from EMOF-based metamodels using
existing works [13,14,48,56], our approach also supports
CMOF-based metamodels. Particularly noteworthy is the
mapping of redefining or subsetting metaclass attributes to
‘derived’ and ‘read-only’ stereotype attributes, whose values
are computed at runtime via automatically generated OCL
expressions. The advantage of such stereotype attributes is
that a manual value assignment at runtime is not required,
which also reduces the modelling effort.

The automated update and transfer of OCL-defined
attributes, Operations and Constraints to a UML profile is a
further contribution of our approachwhen compared to exist-
ing works. This enables us to automatically transfer the static
semantics of a DSL metamodel to a derived UML profile.
Consequently, we make it possible to automatically evalu-
ate the static semantics for UML models that have applied a
UML profile for a particular DSL.

As highlighted in Introduction to this article, a manual
creation of UML profiles is often error-prone and, if present,
well-formedness rules of UML profiles are usually speci-
fied in natural language, which can lead to ambiguities. We
confirmed these statements with our TDL case study, where
we identified several shortcomings regarding the syntax and
static semantics of TDL’s standardized UML profile [6]. On
the one hand, we found that no corresponding stereotypes
exist for some TDL metaclasses, not all metaclass attributes
are captured by stereotype attributes, and the cardinalities of
metaclass and stereotype attributes donotmatch.On the other
hand, the standardized UML profile for TDL has only two

OCL constraints, while themetamodel has 62. Consequently,
TDL’s static semantics is not captured by the UML profile.
In contrast, the aforementioned shortcomings are fixed in the
UML profile for TDL that we derived via our DSL-MeDeTo
toolchain. In particular, a stereotype is present for each TDL
metaclass, and all metaclass attributes are captured by stereo-
type attributes. Furthermore, all OCL constraints of TDL’s
metamodel are updated and transferred to the derived UML
profile. Therefore, TDL’s static semantics can be automati-
cally validated for UMLmodels that have the profile applied.

Because our work has overcome essential shortcomings
of existing approaches for the derivation of UML profiles,
especially the support of CMOF language concepts and
the automatic transfer of static semantics, we anticipate
that there is no demand for substantial future work in this
area. However, some limitations regarding the derivation of
CMOF-based metamodels and transformations for model
interoperability exist, because we only create these artefact
types semi-automatically based on a single metamodel. As
the main goal of our work is the derivation of UML profiles,
a semi-automatic generation of the other artefact types is
sufficient for us. The consideration of certain approaches pre-
sented in the literature, e.g. in [9,31,56]), could be of interest
for the fully automatic generation of model transformations.

Acknowledgements We thank Gerald Lüttgen of the Software Tech-
nologies Research Group at the University of Bamberg, Germany, for
his many valuable remarks on this article. Furthermore, we also thank
Richard Paige of the Department of Computing and Software at the
McMaster University, Canada, for several discussions on the article’s
topic.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bergmayr, A., Wimmer, M.: Generating metamodels from gram-
mars by chaining translational and by-example techniques. In:
Model-driven Engineering by Example, CEUR Workshop Pro-
ceedings, vol. 1104, pp. 22–31. CEUR-WS.org (2013)

2. Boulet, P., Amyot, D., Stepien, B.: Towards the generation of tests
in the test description language from use case map models. In:

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


78 A. Kraas

SDL 2015: Model-Driven Engineering for Smart Cities, LNCS,
vol. 9369, pp. 193–201. Springer (2015)

3. Clark, T., Sammut, P., Willans, J.S.: Applied metamodelling: A
foundation for language driven development (3rd ed.). Computing
Research Repository (CoRR) abs/1505.00149 (2015)

4. D’Souza, D., Sane, A., Birchenough, A.: First-class extensibility
for UML - packaging of profiles, stereotypes, patterns. The Unified
Modeling Language: Beyond the Standard. LNCS, vol. 1723, pp.
265–277. Springer, Berlin (1999)

5. Efftinge, S.,Völter,M.:OAWxText:A framework for textualDSLs.
In: Modeling Symposium at Eclipse Summit, vol. 32, pp. 118–121.
eclipsecon.org (2006)

6. ETSI: ES 203 119-1: The Test Description Language (TDL); Part
1: Abstract Syntax and Associated Semantics, V1.3.1. European
Telecommunications Standards Institute (2016)

7. ETSI: ES 203 119-2: The Test Description Language (TDL); Part
2: Graphical Syntax, V1.2.1. European Telecommunications Stan-
dards Institute (2016)

8. ETSI: ETSI ES 201 873-1: The Testing and Test Control Nota-
tion version 3; Part 1: TTCN-3 Core Language, V4.10.1. European
Telecommunications Standards Institute (2018)

9. Falleri, J.R., Huchard, M., Lafourcade, M., Nebut, C.: Meta-
model matching for automatic model transformation generation.
In: Model Driven Engineering Languages and Systems, LNCS,
vol. 5301, pp. 326–340. Springer (2008)

10. Fischer, J., Piefel, M., Scheidgen, M.: A metamodel for SDL-2000
in the context of metamodelling ULF. In: System Analysis and
Modeling, LNCS, vol. 3319, pp. 208–223. Springer (2004)

11. Fuentes-Fernández, L., Vallecillo-Moreno, A.: An introduction to
UML profiles. Europ. J. Inform. Prof. 5(2), 6–13 (2004)

12. Giachetti, G., Albert, M., Marín, B., Pastor, O.: Linking UML and
MDD through UML profiles: a practical approach based on the
UML association. J. Univ. Comput. Sci. 16(17), 2353–2373 (2010)

13. Giachetti, G., Marín, B., Pastor, O.: Integration of domain-specific
modelling languages and UML through UML profile extension
mechanism. J. Comput. Appl. 6(5), 145–174 (2009)

14. Giachetti, G., Marín, B., Pastor, O.: Using UML as a domain-
specific modeling language: A proposal for automatic generation
of UML profiles. In: Advanced Information Systems Engineering,
LNCS, vol. 5565, pp. 110–124. Springer (2009)

15. Giachetti, G., Valverde, F., Pastor, O.: Improving automatic UML2
profile generation for MDA industrial development. In: Advances
in Conceptual Modeling – Challenges and Opportunities, LNCS,
vol. 5232, pp. 113–122. Springer (2008)

16. Goldschmidt, T., Becker, S., Uhl, A.: Classification of concrete
textual syntaxmapping approaches. In:Model Driven Architecture
– Foundations and Applications, LNCS, vol. 5095, pp. 169–184.
Springer (2008)

17. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.:
Model-based language engineering with EMFtext. In: Genera-
tive and Transformational Techniques in Software Engineering IV,
LNCS, vol. 7680, pp. 322–345. Springer (2013)

18. ITU-T: Rec. Z.109: Specification and Description Language –
SDL-2000 combinedwithUML. International Telecommunication
Union (2007)

19. ITU-T: Rec. Z.120: Message Sequence Chart (MSC). International
Telecommunication Union (2011)

20. ITU-T: Rec. Z.109: Specification and Description Language –
Unified Modeling Language profile for SDL-2010. International
Telecommunication Union (2013)

21. ITU-T: Rec. Z.100: Specification and Description Language –
Overview of SDL-2010. International Telecommunication Union
(2016)

22. Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M.,
Völkel, S.: Design guidelines for domain specific languages. In:
Domain-Specific Modeling. arxiv.org (2009)

23. Kobryn, C.: UML 2001: A standardization odyssey. ACM 42(10),
29–37 (1999)

24. Kraas, A.: Open issues of the SDL-UML profile. Tech. Rep. N-
106519, Fraunhofer ESK, Munich, Germany (2009)

25. Kraas, A.: The SDL-UML profile revisited. In: System Analysis
and Modeling: About Models, LNCS, vol. 6598, pp. 108–123.
Springer (2011)

26. Kraas, A.: Towards an extensible modeling and validation frame-
work for SDL-UML. In: System Analysis and Modeling: Models
and Reusability, LNCS, vol. 8769, pp. 255–270. Springer (2014)

27. Kraas, A.: Automated tooling for the evolving SDL standard: From
metamodels to UML profiles. In: SDL 2017: Model-Driven Engi-
neering for Future Internet, LNCS, vol. 10567, pp. 1–21. Springer
(2017)

28. Kraas, A.: On the automated derivation of domain-specific UML
profiles. In: Modelling Foundations and Applications, LNCS, vol.
10376, pp. 3–19. Springer (2017)

29. Kraas, A.: On the automated derivation of domain-specific UML
profiles. Ph.D. thesis, Department of Information Systems and
Applied Computer Sciences, University of Bamberg, Germany
(2019). https://fis.uni-bamberg.de/handle/uniba/45648

30. Lagarde, F., Espinoza, H., Terrier, F., Gérard, S.: Improving UML
profile design practices by leveraging conceptual domain models.
In: Automated Software Engineering, pp. 445–448. ACM (2007)

31. Langer, P., Wimmer, M., Kappel, G.: Model-to-model transfor-
mations by demonstration. In: Theory and Practice of Model
Transformations, LNCS, vol. 6142, pp. 153–167. Springer (2010)

32. Makedonski, P., Adamis, G., Käärik,M., Kristoffersen, F., Zeitoun,
X.: Evolving the ETSI test description language. In: SystemAnaly-
sis andModeling: Technology-Specific Aspects ofModels, LNCS,
vol. 9959, pp. 116–131. Springer (2016)

33. Malavolta, I., Muccini, H., Sebastiani, M.: Automatically bridging
UML profiles to MOF metamodels. In: Software Engineering and
Advanced Applications, pp. 259–266. IEEE (2015)

34. Marroquin, A., Gonzalez, D., Maag, S.: A novel distributed test-
ing approach based on test cases dependencies for communication
protocols. In: Research in Adaptive and Convergent Systems, pp.
497–504. ACM (2015)

35. Noyrit, F., Gérard, S., Selic, B.: FacadeMetamodel:MaskingUML.
In:ModelDrivenEngineeringLanguages and Systems, LNCS, vol.
7590, pp. 20–35. Springer (2012)

36. OMG: MOF Model to Text Transformation Language – Version
1.0. Object Management Group (2008)

37. OMG: Software Systems Process EngineeringMetamodel (SPEM)
– Version 2.0. Object Management Group (2008)

38. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transforma-
tion Specification –Version 1.1. ObjectManagement Group (2011)

39. OMG: OMG Unified Modeling Language (OMG UML), Infras-
tructure, Version 2.4.1. Object Management Group (2011)

40. OMG: OMG Unified Modeling Language (OMG UML), Super-
structure, Version 2.4.1. Object Management Group (2011)

41. OMG: OMG Unified Modeling Language (OMG UML), Version
2.5. Object Management Group (2011)

42. OMG: UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems, Version 1.1. Object Management Group
(2011)

43. OMG: Service oriented architecture Modeling Language (SoaML)
– Version 1.0.1. Object Management Group (2012)

44. OMG: Business Process Model and Notation (BPMN) – Version
2.0.2. Object Management Group (2013)

45. OMG: Object Constraint Language – Version 2.4. Object Manage-
ment Group (2014)

46. OMG: UML Profile for BPMN Processes – Version 1.0. Object
Management Group (2014)

47. OMG: OMG Meta Object Facility (MOF) Core Specification –
Version 2.5. Object Management Group (2015)

123

http://arxiv.org/abs/org
https://fis.uni-bamberg.de/handle/uniba/45648


On the automation-supported derivation... 79

48. Pastor, O., Giachetti, G., Marín, B., Valverde, F.: Automating
the interoperability of conceptual models in specific development
domains. In: Domain Engineering: Product Lines, Languages, and
Conceptual Models, pp. 349–373. Springer (2013)

49. Scheidgen, M.: Description of languages based on object-oriented
meta-modelling. Ph.D. thesis, Humboldt-Univ., Berlin, Germany
(2009)

50. Selic, B.: A systematic approach to domain-specific language
design usingUML. In:Object andComponent-OrientedReal-Time
Distributed Computing, pp. 2–9. IEEE (2007)

51. da Silva, A.R.: Model-driven engineering: A survey supported by
the unified conceptual model. Computer Languages, Systems &
Structures 43(C), 139–155 (2015)

52. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF:
Eclipse Modeling Framework. Pearson Education (2008)

53. Strembeck, M., Zdun, U.: An approach for the systematic devel-
opment of domain-specific languages. Software: Practice and
Experience 39(15), 1253–1292 (2009)

54. Tenbergen, B., Bohn, P., Weyer, T.: Ein strukturierter Ansatz zur
Ableitungmethodenspezifischer UML/SysML-Profile amBeispiel
des SPES 2020 Requirements Viewpoints. In: Software Engineer-
ing 2013, Lecture Notes in Informatics, vol. 215, pp. 235–244. GI
(2013)

55. Ulrich, A., Jell, S., Votintseva, A., Kull, A.: The ETSI Test
Description Language TDL and its application. In: Model-Driven
Engineering and Software Development (MODELSWARD 2014),
pp. 601–608. SCITEPRESS (2014)

56. Wimmer, M.: A semi-automatic approach for bridging DSMLs
with UML. J. Web Inform. Syst. 5(3), 372–404 (2009)

57. EMFText concrete syntax mapper homepage. https://marketplace.
eclipse.org/content/emftext (Accessed: 04.02.2020)

58. Homepage of the SU-MoVal and DSL-MeDeTo toolchains. http://
www.su-moval.org (Accessed: 04.02.2020)

59. xText homepage. http://www.eclipse.org/Xtext/ (Accessed:
04.02.2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://marketplace.eclipse.org/content/emftext
https://marketplace.eclipse.org/content/emftext
http://www.su-moval.org
http://www.su-moval.org
http://www.eclipse.org/Xtext/

	On the automation-supported derivation of domain-specific UML profiles considering static semantics
	Abstract
	1 Introduction
	2 Overview
	2.1 Our overall approach
	2.2 The `Abstract Concepts'
	2.3 The DSL metamodelling and derivation toolchain

	3 Running example
	4 The derivation of UML profiles
	4.1 Design decisions for the profile derivation
	4.2 Enriching the source metamodel
	4.3 TDL Example: Input Metamodel
	4.4 Our derivation approach
	4.4.1 Mapping to `Stereotypes'
	4.4.2 Mapping of DataTypes
	4.4.3 Mapping to stereotype attributes
	4.4.4 Recomputing the type property
	4.4.5 Mapping to stereotype operations

	4.5 OCL expressions for stereotype attributes
	4.6 Additional OCL constraints
	4.6.1 OCL constraints for stereotype attributes
	4.6.2 OCL constraints for UML metaclass attributes


	5 Update of existing OCL expressions
	5.1 The OCL metamodel
	5.2 Design decisions for updating OCL expressions
	5.3 The OCL update in detail

	6 Case study-based evaluation
	6.1 Evaluation of the generated UML profile UPTDL
	6.2 The standardized versus the derived UML profile
	6.3 Discussion of the evaluation results

	7 Related work
	8 Summary and Conclusions
	Acknowledgements
	References




