
Diese Arbeit stellt eine realistische Infrastruktur für die autonome Ver-

waltung von komponentenbasierten Geschäftsanwendungen vor. Der

Anwendungsbereich solcher Systeme stellt spezielle Anforderungen an

verwaltete Systeme und ist besonders von der Komplexitätsproblema-

tik betroffen. Um die praktische Relevanz der verfolgten Konzepte und

Verfahren zu gewährleisten, wurde ein etablierten Komponentenstan-

dards als Grundlage des Ansatzes gewählt. Bei diesem handelt es sich

um Enterprise JavaBeans, Version 3.0. Die vorgestellte Infrastruktur ist

generisch konzipiert und umgesetzt. Sie stellt sie eine Plattform bereit,

auf deren Basis Lösungen für verschiedene Anwendungsfelder des

Autonomic Computing realisiert werden können. Zur Unterstützung

autonomer Verwaltungseinheiten wird eine Programmierschnittstelle

bereitgestellt, welche ein System auf drei Ebenen abbildet und dessen

Steuerung ermöglicht: Auf oberster Ebene erfolgt die Betrachtung der

einem System zugrunde liegenden Software. Auf mittlerer Ebene wird

die Architektur eines verwalteten Systems adressiert. Interaktionen

innerhalb eines Systems werden auf der untersten Ebene dargestellt.

Auf dieser Grundlage kann ein System ganzheitlich und modellbasiert

verwaltet werden. Zur Unterstützung der Laufzeitverwaltung eines

Systems dient eine spezielle Komponente, welche in ein betroffenes

System integriert werden muss. Sie ist konform zum verwendeten

Standard und erfordert keine Anpassung der zugrunde liegenden Kom-

ponentenplattform. Für die Herstellung der Verwaltbarkeit von Kom-

ponenten wird ein Werkzeug bereitgestellt, welches automatisiert alle

nötigen Anpassungen vornimmt. Darüber hinaus ist die Verwaltung

eines Systems für dessen Elemente zur Laufzeit transparent. Zusam-

mengenommen bleibt die Entwicklung von Geschäftsanwendungen




   














 



 

 









 


 

































































 










 




 
 




 












von Jens Bruhn

A realistic Approach for the autonomic
Management of component-based
Enterprise Systems

3

UNIVERSITY OF
BAMBERG
PRESS

Schriften aus der Fakultät Wirtschaftsinformatik und
Angewandte Informatik der Otto-Friedrich-Universität Bamberg

Schriften aus der Fakultät

Wirtschaftsinformatik und Angewandte Informatik

der Otto-Friedrich-Universität Bamberg

Schriften aus der Fakultät

Wirtschaftsinformatik und Angewandte Informatik

der Otto-Friedrich-Universität Bamberg

Band 3

University of Bamberg Press 2009

A realistic Approach for the autonomic

Management of component-based

Enterprise Systems

von Jens Bruhn

University of Bamberg Press 2009

Bibliographische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der

Deutschen Nationalbibliographie; detaillierte bibliographische

Informationen sind im Internet über http://dnb.ddb.de/ abrufbar

Diese Arbeit hat der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-

Friedrich-Universität als Dissertation vorgelegen

1. Gutachter: Prof. Dr. Guido Wirtz

2. Gutachter: Prof. Dr. Andreas Henrich

Tag der mündlichen Prüfung: 5. Juni 2009

Dieses Werk ist als freie Onlineversion über den Hochschulschriften-Server (OPUS;

http://www.opus-bayern.de/uni-bamberg/) der Universitätsbibliothek Bamberg erreichbar.

Kopien und Ausdrucke dürfen nur zum privaten und sonstigen eigenen Gebrauch angefer-

tigt werden.

Herstellung und Druck: Digital Print Group, Erlangen

Umschlaggestaltung: Dezernat Kommunikation und Alumni

c© University of Bamberg Press Bamberg 2009

http://www.uni-bamberg.de/ubp/

ISSN: 1867-7401

ISBN: 978-3-923507-49-8

URN: urn:nbn:de:bvb:473-opus-1986 (Online-Ausgabe)

To my beloved wife Barbara.

Acknowledgments

First of all, I thank my doctoral adviser, Prof. Dr. Guido Wirtz, for sup-

porting my thesis through all the years. The provision of a working en-

vironment allowed me to develop my ideas in the first place. Moreover,

the opportunities to present my work on international conferences were

valuable and helpful contributions to this thesis. I also thank Prof. Dr.

Andreas Henrich and Prof. Michael Mendler, PhD, for their support as

member of my thesis committee.

Special thanks go to my colleagues and friends Sven Kaffille and Karsten

Loesing. Their constructive criticism and their different views on the topic

of this thesis during the countless discussions were of tremendous value

for me. I am additionally very grateful for their motivational and helpful

encouragement during the hard time of writing this thesis.

I thank the participants of the practicals and projects at the university

of Bamberg who worked with the presented infrastructure. Their exten-

sive usage of the AC-infrastructure and the corresponding feedback con-

tributed to the refinement of mKernel. I specially thank Thomas Vogel for

his high interest and his contribution to my thesis in different projects.

I thank my mother and my brother for proofreading the final manuscript

of my thesis and for their constructive and motivational feedback. I owe

my loving thanks to my wife Barbara. Without her encouragement and

understanding it would have been impossible for me to finish this work.

Last, but not least, I want to thank Cornelia Schecher for her kind and

helpful support regarding the administrative matters of my thesis. Addi-

tionally, Cornelia ensured that I never ran out of fuel through hectoliters

of coffee.

Zusammenfassung

Seit einigen Jahrzehnten ist ein stetiges Ansteigen der Leistungsfähig-

keit verfügbarer Hardwareressourcen festzustellen. Dieses ermöglicht die

Zuweisung immer umfangreicherer Aufgaben an Softwaresysteme, was

gleichzeitig ein massives Ansteigen der inhärenten Komplexität der ver-

wendeten Systeme zur Folge hat. Ein für die Zukunft zu erwartender

weiterer Komplexitätsanstieg erfordert eine explizite Adressierung. Das

Konzept der Komponentenorientierung stellt einen Ansatz zur Komplexi-

tätsreduktion für die Entwicklung und Konfiguration von Software durch

funktionale Dekomposition dar. Mit der Vision des Autonomic Compu-

ting existiert ein Ansatz zur Komplexitätsbewältigung für Betrieb und

Wartung von Softwaresystemen. In diesem Zusammenhang wird der An-

satz verfolgt, Aufgaben zur Feinsteuerung eines verwalteten Systems auf

das System selbst zu übertragen. Da die Komponentenorientierung zu

klar voneinander abgrenzbaren Elementen innerhalb von Systemarchi-

tekturen führt, erscheint sie als viel versprechende Grundlage zur Rea-

lisierung der Vision des Autonomic Computing.

Diese Arbeit stellt eine realistische Infrastruktur für die autonome Ver-

waltung von komponentenbasierten Geschäftsanwendungen vor. Der An-

wendungsbereich solcher Systeme stellt spezielle Anforderungen an ver-

waltete Systeme und ist besonders von der Komplexitätsproblematik be-

troffen. Um die praktische Relevanz der verfolgten Konzepte und Ver-

fahren zu gewährleisten, wurde ein etablierten Komponentenstandards

als Grundlage des Ansatzes gewählt. Bei diesem handelt es sich um En-

terprise JavaBeans, Version 3.0. Die vorgestellte Infrastruktur ist gene-

risch konzipiert und umgesetzt. Sie stellt sie eine Plattform bereit, auf

deren Basis Lösungen für verschiedene Anwendungsfelder des Autono-

mic Computing realisiert werden können. Zur Unterstützung autonomer

Verwaltungseinheiten wird eine Programmierschnittstelle bereitgestellt,

welche ein System auf drei Ebenen abbildet und dessen Steuerung er-

möglicht: Auf oberster Ebene erfolgt die Betrachtung der einem System

zugrunde liegenden Software. Auf mittlerer Ebene wird die Architektur

eines verwalteten Systems adressiert. Interaktionen innerhalb eines Sys-

tems werden auf der untersten Ebene dargestellt. Auf dieser Grundlage

kann ein System ganzheitlich und modellbasiert verwaltet werden. Zur

Unterstützung der Laufzeitverwaltung eines Systems dient eine spezielle

Komponente, welche in ein betroffenes System integriert werden muss.

Sie ist konform zum verwendeten Standard und erfordert keine Anpas-

sung der zugrunde liegenden Komponentenplattform. Für die Herstel-

lung der Verwaltbarkeit von Komponenten wird ein Werkzeug bereitge-

stellt, welches automatisiert alle nötigen Anpassungen vornimmt. Dar-

über hinaus ist die Verwaltung eines Systems für dessen Elemente zur

Laufzeit transparent. Zusammengenommen bleibt die Entwicklung von

Geschäftsanwendungen von einer Verwendung der Infrastruktur unbe-

einflusst.

Contents

1. Introduction 1

1.1. Enterprise Systems . 2

1.2. Life Cycles . 8

1.2.1. The Software Life Cycle 9

1.2.2. The System Life Cycle 13

1.3. Towards an Autonomic Computing Infrastructure 19

1.4. Thesis Overview . 27

2. Background 29

2.1. Autonomic Computing 29

2.1.1. Self-Management 31

2.1.2. Autonomy Realization 38

2.1.3. Summary . 44

2.2. Component Orientation 45

2.2.1. Components . 46

2.2.2. System Establishment 49

2.2.3. Component Standards 51

2.2.4. Summary . 54

3. Enterprise JavaBeans, Version 3.0 57

3.1. The EJB Component Model 59

3.1.1. Building Blocks of Components 59

3.1.2. Component Systems 64

3.1.3. Bean Instance Life Cycles 69

3.1.4. Interceptors . 72

3.2. Container Facilities . 74

3.2.1. Transaction Support 75

3.2.2. Security . 79

3.2.3. Timer Service . 81

3.3. Role Model . 82

3.4. Related Management Standards 85

3.4.1. The Java Enterprise Edition 5 Deployment API Spec-

ification . 86

3.4.2. Java 2 Platform, Enterprise Edition Management

Specification . 87

3.5. Summary . 89

4. Introduction to the AC-Infrastructure 93

4.1. The underlying Case Study 93

4.1.1. Abstraction from the EIS-Tier 97

4.1.2. Realization of the Business-Tier 99

4.1.3. Web-Tier and Client-Tier 105

4.2. Overview of the AC-Infrastructure 106

5. The mKernel Meta Model 111

5.1. Layering of Software and System Architectures 113

5.2. The Type Level . 118

5.2.1. Structural Representation of ejb-jar files 118

5.2.2. Representation of Interfaces 121

5.2.3. Representation of Parameterization Options . . . 123

5.2.4. Type Level Access Points 126

5.2.5. Application Example 127

5.3. The Deployment Level . 139

5.3.1. The Life Cycle of EJB Modules 140

5.3.2. Compositional Adaptation 142

5.3.3. Parameter Adaptation 151

5.3.4. Deployment Level Access Points 156

5.3.5. Application Example 156

5.4. The Instance Level . 166

5.4.1. Representation of Interactions 167

5.4.2. Invocation Information 170

5.4.3. Information Logging 172

5.4.4. Support for embedded Inspection and Manipulation 173

5.4.5. Application Example 176

5.5. Notification Facility . 182

5.5.1. Notification Representation 183

5.5.2. Application Example 185

5.6. Support for seamless Reconfiguration 188

5.6.1. Background . 189

5.6.2. The Quiescence Region 193

5.6.3. State Transfer . 197

5.6.4. Limitations . 199

5.6.5. Application Example 201

5.7. Summary . 210

6. The mKernel Realization 215

6.1. System Management . 215

6.1.1. Container Plugin 216

6.1.2. Managed Modules 225

6.1.3. Application Programming Interface 247

6.2. The mKernel Preprocessing Tool 252

6.2.1. Tool Architecture 252

6.2.2. Preprocessing Tasks 255

6.2.3. Access Point Distribution 262

6.3. Applied Tools . 263

6.4. Summary . 266

7. Application 269

7.1. Support for Self-Configuration 270

7.1.1. Motivation . 270

7.1.2. Overview . 272

7.2. Self-Protection and Self-Healing based on Contracts . . . 281

7.2.1. Motivation . 282

7.2.2. Overview . 283

7.3. Evaluation . 295

8. Related Work 299

8.1. Architecture-centric Approaches 299

8.2. Infrastructure-centric Approaches 303

8.3. EJB-specific Approaches 313

8.4. Related Work of mKernel Applications 316

9. Conclusion 319

9.1. Evaluation . 321

9.2. Outlook . 328

9.2.1. Extension Opportunities 328

9.2.2. Enterprise JavaBeans, Version 3.1 331

A. Type Level Planning 335

B. Deployment Level Planning 345

C. Seamless Reconfiguration 351

List of Tables

5.1. Access Points to Elements of the Type Level 126

5.2. Compilation of related Type Level and Deployment Level El-

ements . 140

5.3. Access Points to Elements of the Deployment Level 156

5.4. Inspection Results . 176

7.1. Relationships between Projects and mKernel 296

9.1. Evaluation Characteristics 321

9.2. Evaluation of mKernel against Requirements 322

List of Figures

2.1. The Control Loop Concept – Schematic Overview 39

3.1. Java EE – Schematic Overview (cf. [91], figure 1-1 and 1-5) 57

3.2. Basic bean instance life cycle (cf. [58], p. 84 and p. 115). . 69

3.3. Stateful SB instance life cycle (cf. [58], p. 74). 71

3.4. Schematic view on EJB Interception. 73

3.5. The EJB security model 80

3.6. Life cycle of deployed components according to JSR 88. . . 86

4.1. Case Study – Blueprint . 96

4.2. Case Study – Abstraction from the EIS-Tier 97

4.3. Case Study – The Foundation Component 100

4.4. Case Study – The Endpoint Component 102

4.5. Case Study – The Transfer Component 103

4.6. Case Study – Intended Connection Structure 105

4.7. Overview of the AC-infrastructure 107

5.1. Exemplary layered System Architecture 116

5.2. Type Level View on an ejb-jar file 118

5.3. Type Level Representation of Interfaces 122

5.4. Type Level Representation of Parameterization Options . . 124

5.5. Type Level Plan Proposal 138

5.6. EJB Module Deployment States 141

5.7. System Architecture Representation 143

5.8. Deployment Level View on Parameter Adaptation 151

5.9. Deployment Level States Example 165

5.10. Instance Level Overview 168

5.11. Exemplary Inheritance Hierarchy 175

5.12. Standing Order Execution 181

5.13. Notification Types . 184

5.14. Quiescence Region States 194

6.1. Management Architecture 216

6.2. Container Plugin Overview 217

6.3. Internals of a managed Module 225

6.4. Connection Structure for MDBs 236

6.5. Scenario of permanent Blocking without Synchronization 240

6.6. Overview of API Implementation 247

6.7. Architecture of the Preprocessing Tool 253

7.1. Reconfiguration Framework Concepts 272

7.2. Reconfiguration Framework Realization Overview 277

7.3. Central Concepts of the Contract API 289

7.4. Reconfiguration Framework Concepts 292

List of Listings

5.1. Integration of Java Interface Type into Type Level Plan . . 131

5.2. Recursive Provision of EjbInterfaceTypes for an EjbRe-

ferenceType . 134

5.3. Recursive Removal of EjbReferenceTypes from Type Level

Plan . 136

5.4. Creation of EJB Modules and Connection Establishment . 159

5.5. Access Layer Module Configuration for Case Study 161

5.6. Managed Layer Module Configuration for Case Study . . . 162

5.7. Module Deployment . 163

5.8. Activation of Logging on System Level 177

5.9. Class for representing Incidents 178

5.10. Incident Analysis . 179

5.11. Search for preceding Incident 180

5.12. Application of Notifications 187

5.13. Definition of a QuiescenceRegion and Transfer to the TRACKING

state . 204

5.14. Reaching Quiescence . 205

5.15. State Transfer between stateful SB Instances 206

5.16. Transfer of Timers . 208

5.17. Reconfiguration of System Architecture 209

5.18. Module Removal and Region Release 209

7.1. Contract Example (cf. [35].) 287

A.1. Implementation of Type Level Plan 335

B.1. Implementation of Deployment Level Plan 345

C.1. Implementation of Seamless Reconfiguration 351

1. Introduction

During the last decades information technology (IT) is characterized by

constantly increasing performance of available hardware resources. The

so-called Moore’s Law [118] is a synonym for this development. Stated in

1965 by Moore it forecasts that the number of components per inch on an

integrated circuit would double approximately each two years for at least

the following ten years. With small deviations this prediction is fulfilled

nearly up to now. This development led to the opportunity to assign more

and more complex tasks to information systems. Additionally, the rapid

increase of network bandwidth in combination with decreasing latency

times supported the shift from monolithic applications, operating in iso-

lation, to distributed, collaborating systems (cf. [20]). This evolution of IT

led to an increasing infiltration of nearly all aspects of our everyday life.

The diversity of applied devices reaches from high performance servers

and clusters over desktop computers and notebooks down to mobile de-

vices. In order to address the manifold application areas of IT, a broad

range of software systems is applied. At the same time the complexity of

software systems increased and still increases.

The term Software Crisis, first mentioned by Dijkstra in 1972 [63], stands

for the problem of programming complexity to make use of the more and

more powerful hardware resources. The applied concepts, tools, and pro-

gramming languages up to that time were supposed of not being able to

keep up with this development. As one reaction the discipline of Software

Engineering was founded to support the development of software. While

first intended to facilitate the tasks of programmers, it evolved to

2 Introduction

”[a]n engineering discipline which is concerned with all aspects

of software production from the early stage of system specifica-

tion through to maintaining the system after it is gone into use.”

(cf. [142], p. 6)

In 2001 Horn stated that addressing the complexity of computer system

administration would be the ”next grand challenge” (cf. [80], p. 1) of IT. He

argued that the further development of IT would exceed the human ability

to manage the future computer systems if no new concepts for manage-

ment automation would be developed. In contrast to the software crisis,

Horn did not address the software development, but its original usage in a

concrete environment. In this context, he established the term Autonomic

Computing (AC) and suggested that the administrative tasks should be as-

signed to the managed system itself to disburden human administrators.

In combination, the underlying ideas of software engineering and auto-

nomic computing provide the foundations for addressing software com-

plexity as a whole. There do exist different touch points between these

two approaches which might influence the success of each of them mu-

tually. Consequently, an inspection of the aspects influencing complexity

and concepts for addressing it are of fundamental interest.

1.1. Enterprise Systems

According to the IEEE Standard Glossary of Software Engineering Terminol-

ogy [87], the term Software is defined as

”[c]omputer [p]rograms, procedures, and possibly associated doc-

umentation and data pertaining to the operation of a computer

system.” (cf. [87], p. 66)

Consequently, software does not only consist of one or many programs,

but also includes other elements, enabling or supporting its operation.

Summarizing, software covers all aspects of making a computer system

Enterprise Systems 3

usable. The definition does not include the actual usage of software itself,

but concentrates on the needed artifacts. It subsumes all types of software

such as operating systems, word processors, or custom software. All of

them might have special characteristics and demands. The further discus-

sion in this section concentrates on a special family of software, namely

Application Software which is, according to [87],

”[s]oftware designed to fulfill specific needs of a user; for example

software for navigation, payroll, or process control.” (cf. [87], p.

10)

The definition commits application software to specific needs of a user.

These needs relate to real world problems for which application software

should provide a solution or at least assist its users during problem solv-

ing. The definition confines the range of considered software in that it ex-

cludes system software such as firmware or operating systems, providing

an abstraction from hardware and an infrastructure for higher-level soft-

ware. Moreover, multi-purpose software such as middleware or database

systems is also excluded from this definition, because it does not relate

directly to a specific problem of its users. Instead of that, it can be used as

building block for the development of other software, for example, appli-

cation software. In the following, the term Software is used as synonym

for application software.

The above definitions focus on the constituting artifacts of software

while excluding its original application. To keep this separation software

in use is called a Software System, or System for short, in this thesis.

Nearly each software exhibits an internal structure which is called Soft-

ware Architecture in literature. There does exist a broad consensus regard-

ing the core aspects of such an architecture. Nevertheless, there do exist

manifold definitions which extend these aspects for concrete application

contexts. A comprehensive set of definitions can be found at [141]. One

generic definition is provided by Garlan and Perry [70] who define software

4 Introduction

architecture as

”[t]he structure of the components of a program/system, their inter-

relationships, and principles and guidelines governing their design

and evolution over time.” (cf. [70], p. 269)

This definition concentrates on structural aspects of software which are re-

flected by the constituting components and the relationships among them.

Consequently, not all parts of a software are addressed, but only those

which directly contribute to its functionality. The second part of the def-

inition addresses software engineering aspects of an architecture. The

term Component suggests an abstraction from fine-grained details like

data structures and concrete algorithms while focusing on coarse-grained

elements of an architecture. What these fundamental elements are de-

pends on the concrete architecture. Principles and guidelines relate to the

application of methods which are manifested in a concrete architecture,

as well as rules for the further development. The evolution of software,

as mentioned in the definition, indicates that a software might be subject

to changes due to various reasons. The definition states nothing directly

about the level of granularity of a software architecture. While the defini-

tion in general is considered appropriate, the terms Component and Sys-

tem are mistakable, because they are used with different meanings in this

thesis.Therefore, they are replaced with the terms functional elements and

software, resulting in a working definition of Software Architecture as

the structure of the functional elements of a software, their

interrelationships, and principles and guidelines governing

their design and evolution over time.

Analog to the distinction between software and system, the term System

Architecture is used in this thesis if the overall structure of an applied sys-

tem is referred to. It can be interpreted as instantiation of a software

architecture, covering all concrete configuration aspects in a concrete en-

vironment, for example, physical distribution and relations to the system

Enterprise Systems 5

environment. It is conceivable that only a subset of the elements of the

corresponding software architecture is manifested in a system architec-

ture, for example, if a software architecture contains optional elements or

alternatives for certain facilities.

Enterprise systems are a family of software systems especially devel-

oped for enterprise environments. The specific needs fulfilled by enter-

prise systems relate to the provision of business logic. In this context, the

IT-centric view of Swarz and DeRosa [150] on enterprises provides an ap-

propriate foundation for the further discussion. Swarz and DeRosa define

an enterprise as

”[. . .] a collection of [enterprise] systems whose operational capa-

bilities are inextricably intertwined with considerations of people,

processes, and technology, whose boundaries are often imprecise,

and which can often be characterized by a set of special, additional

properties, such as emergent behavior, non-determinism, and en-

vironmental dependencies.” (cf. [150], p. 3)

According to the definition enterprise systems are the constituent ele-

ments of an enterprise. These elements, the relationships among them,

and technological and organizational dependencies establish the corre-

sponding enterprise architecture. Moreover, there might also exist rela-

tionships between enterprise systems and the environment of the enter-

prise, for example, if an enterprise system provides an access point for

customers or suppliers. Therefore, integration is a major aspect of an

enterprise architecture (cf. [102]). Emergence might result from the in-

terplay of different enterprise systems and might comprise the potential

for new capabilities. At the same time the behavior of an enterprise as a

whole might become non-deterministic, that is, there might arise interac-

tion situations with potentially harmful effects. Swarz and DeRosa state

that

6 Introduction

”[t]he architecture of the enterprise and both its explicit require-

ments and implicit potential capabilities will evolve and emerge

as trends in technology, scope of the enterprise, the aggregate user

base, and other factors evolve over time” (cf. [150], p. 3)

Due to the fact that an enterprise is embedded in the real world, it is sub-

ject to new or changing influences and requirements on different levels

over time. On technology level there might, for example, arise the need to

provide Web Services for interaction with new suppliers. On organization

level the demand for supporting new business areas might also emerge. If

these influences and requirements cannot be addressed by the enterprise

directly, a need for adjustment of its architecture is given. This might

also include the addition, removal, or change of constituting enterprise

systems, as well as relationships among them. Fowler [67] characterizes

enterprise systems as data intensive, potentially large systems which are

accessed by a potentially large number of users with different intentions

and needs (cf. [67], p. 6 - 8). Therefore, the demand arises to support mul-

tiple views while keeping the underlying data consistent. Additionally, an

enterprise system might interact with other systems in a heterogeneous

environment. Thus, an enterprise system should itself support integra-

tion, for example, through the provision of standardized access points.

One major source of complexity are organizational changes which must

be reflected by changes of the provided business logic. Therefore, en-

terprise software must be constructed to support changes over time. As

enterprise systems are intended to support the operating company doing

its business, they are more or less critical success factors. For that rea-

son the corresponding software must be of high quality. Hasselbring and

Reussner [77] define seven quality attributes in the context of Trustworthy

Computing which are also of high relevance for enterprise systems:

Enterprise Systems 7

1. Correctness: Correctness relates to the accordance of enterprise soft-

ware with its specification. Due to the application area of enterprise

systems this aspect is of very high importance, especially if an en-

terprise system has direct legal impacts such as the conclusion of

the contracts in an online store.

2. Safety: The application of a safe system does not harm its environ-

ment. This attribute mainly relates to systems directly or indirectly

affecting their physical environment like in automated warehouses.

3. Availability: Availability is the degree of reachability for service of

a system over time. The more an enterprise system contributes to

business activities, the more its availability is critical for the operat-

ing company. If, for example, an online store for customers has a

low availability, the loss of business opportunities, trust, and repu-

tation could have serious consequences.

4. Reliability: A reliable system has a low fraction of incorrect behavior

in its overall processing. This aspect directly relates to correctness.

While correctness focuses on the general absence of deviations from

a specification, reliability relates to the actual occurrence of incorrect

behavior.

5. Performance: A performance system is characterized by low re-

sponse times and high throughput. This aspect is of special interest

for efficient application of a system inside a company and for satis-

factory usage experiences of external users. Moreover, an enterprise

system should not only be performance for a given situation or state,

but should also be scalable to support company growth.

6. Security: A secure system only provides its service to authorized

users.

8 Introduction

7. Privacy: Privacy demands that information is only submitted to those

users which have the permission to access it. This is of special im-

portance if the system deals with personal data or information sen-

sible for the operating company.

Hasselbring and Reussner subsume the attributes 3 to 5 under the topic of

Quality of Service (QoS), because they directly relate to the concrete usage

experience of a system.

1.2. Life Cycles

From the initial planning of a successful enterprise software project to

the phaseout of support software passes through different phases. These

phases in combination are called Software Life Cycle. On system level the

term System Life Cycle comprises all phases from the installation prepara-

tion to the deinstallation of a single system. Both of them influence each

other mutually, resulting from the relationship between software and sys-

tem. The outcomes of the software life cycle phases directly affect the cor-

responding systems. The other way round, observations during system

life cycles might directly affect the corresponding software life cycle, for

example, through change requests or bug reports. Although the two life

cycles are often considered in combination in literature, in the following

two sections a clear distinction is kept to reach a separation of concerns for

later discussions. Additionally, it is assumed that distinct groups of people

are responsible for the different life cycles. This assumption might even

hold for subsequent phases of a single life cycle (cf. [21, 127]). It is also

conceivable that the life cycles collapse, for example, if an enterprise soft-

ware is constructed and the corresponding system is administrated by the

IT-department of a single company. Nevertheless, the different tasks, as

discussed in the following, are considered of being also present for such

scenarios. The following sections focus solely on architectural aspects.

Life Cycles 9

1.2.1. The Software Life Cycle

The life cycle of successful software can broadly be divided into the three

main phases Planning, Development and Maintenance. Successful in this

context means that the software passes all phases of the life cycle, and that

the process is not aborted. It neither relates to the software quality nor to

its adaptation and acceptance.

The Planning is the preliminary phase laying the foundation for the

original construction of a software. During this phase decisions are made

whether and how the software project should be realized. Furthermore,

the fundamental requirements on the envisioned software are defined.

Beyond the establishment of a general frame, planning has no direct influ-

ence on the artifacts of the software itself. Depending on the concrete sit-

uation, the decision whether a software project should be started might be

based on different aspects such as realizability, alternatives, risks, or eco-

nomic aspects. A successful planning should result in a feasibility study,

containing at least a first definition of the software to construct and a plan

for its realization (cf. Balzert [15], p. 58 - 61). The planning phase can be

estimated of being the shortest phase during the software life cycle.

During the Development Phase functional and non-functional require-

ments for the envisioned software are collected and realized. The goal

of the development phase is the construction of artifacts for the initial

software releases and for supporting the subsequent maintenance phase.

There might exist different releases of a software, potentially assembled

from different sets of artifacts. Supporting artifacts of the maintenance

phase are those artifacts which are not directly incorporated in any re-

lease, but intended for internal use such as development documentations.

The complexity of development results from the requirements stated for

the software to develop. Ideally, they are addressed on top level through

the establishment of an appropriate software architecture and are realized

by programmers in form of high quality source code. Depending on the

10 Introduction

observer’s viewpoint different aspect might influence the perception of

software quality. For developers the source code complexity might be the

most important aspect. In relation to the architecture the complexity of

a software can arise on intra- and inter-element level (cf. [14]). The intra-

element complexity relates to the internal realization of architecture ele-

ments. The inter-element complexity emerges directly from the coupling

among them. It has been investigated that too small or too large elements

result in increasing complexity of software. Nevertheless, there does not

exist a general recommendation for number and size of elements in a

software architecture (cf. [16]). Moreover, not only the software architec-

ture and the mere size of source code influence software complexity, but

also additional artifacts like the corresponding documentation. These arti-

facts play an important role for enhancing understandability and reducing

perceived complexity (cf. [125]). The foundations of the subsequent main-

tenance phase are also laid during development regarding changes of the

software (cf. [40]). If, for example, requirements for changes are foreseen

during development they might be considered in a way that facilitates the

later change integration. Additionally, a software might be designed open

for extensions. Nevertheless, not all potential demands for adjustments or

extensions might be foreseen during development. A software also highly

influences the complexity of system administration, for example, through

the provision of user interfaces for information discovery and reconfigu-

ration (cf. [18]). Additionally, a high degree of automation regarding the

execution of reconfigurations might facilitate administrative tasks. More-

over, openness for extensions would allow administrators to integrate en-

terprise specific enhancements (cf. [40]). For users the observable proper-

ties of a software system might be the most important aspects. Besides the

core experiences of ease of use, trustworthiness plays an important role, as

discussed in section 1.1. In addition to development, software complexity

also has major influence on the subsequent maintenance phase. Thus, the

development phase lays the foundation for later adjustments of software

Life Cycles 11

during maintenance. There are different software development processes

proposed in literature, for example, the Waterfall Model [130], the Spiral

Model [25], or the Rational Unified Process [88]. These processes subdi-

vide development into phases with different tasks, leading to a structured

execution of the development phase. A detailed discussion of concrete

software engineering methods and processes is out of scope of this the-

sis. Mens et al. [115] state that the effects on the subsequent maintenance

phase and on system life cycles are undervalued in the different software

development processes. They demand that post-development changes of

software, as well as the integration of those changes during system life

cycles must be explicitly addressed during development. In the end of

development the software is assembled and packed. Afterwards, it is re-

leased and can be transferred to its users. The original transfer is not part

of the software life cycle, but belongs to the system life cycle.

The Maintenance phase addresses adjustments of a software after the

end of its development. According to Lehman [103, 104] software used

for solving real world problems must continually evolve. He argues that

this type of software – E-type programs according to his classification – is

subject to changing requirements which could not all be foreseen during

development. If solutions for these requirements are not integrated into

a software during maintenance, it would become progressively less satis-

factory and its quality would appear to be declining. Types of adjustments

were categorized by Swanson [149] into corrective, adaptive, and perfective.

Corrective adjustments address the correction of errors in the software

source code. Besides functional and non-functional errors Swanson also

summarizes implementation adjustments under corrective adjustments,

for example, to correct inconsistencies between design and implementa-

tion. Changes in the execution environment are the reasons for adaptive

adjustments. These might, for example, become necessary when a new

operating system version should be supported. Finally, perfective adjust-

ments address the optimization of software, for example, through the ap-

12 Introduction

plication of better algorithms. Additionally, changes for enhancing main-

tainability are also covered under this category. The categorization was

also adopted by the Institute of Electrical and Electronics Engineers (IEEE)

for defining maintenance as the

”modification of a software product after delivery to correct faults,

to improve performance or other attributes, or to adapt the product

to a modified environment.” (cf. [108], p. 74)

The categorization of Swanson focuses on but is not limited to the source

code of software. Although widely used in literature, the categories are

subject to different interpretations. Moreover, there do exist different ex-

tensions to the core set of categories. Chapin et al. [43] provide a more

fine-grained categorization, based on the work of Swanson. In this con-

text, they, amongst others, extend the original categories with respect to a

more fine-grained consideration about changes of the functionality pro-

vided by the software. They distinguish between situations where the

users of the software are supported with additional functionalities (enhan-

sive), and situations where deprecated functionalities are removed (reduc-

tive). Over time maintenance results in more and more adjustments of

the original software leading to increasing inherent complexity. Addition-

ally, the underlying software architecture itself might be changed in a way

that might hinder future modifications (cf. [126]). Therefore, software be-

comes less maintainable over time unless maintainability is explicitly ad-

dressed through perfective adjustments (cf. [104]). Generally, the effects

of ongoing maintenance are discussed in literature under the term Soft-

ware Aging (cf. [125]). Taking these considerations as foundation Bennett

and Rajlich [21,127] subdivide the maintenance phase into the four stages

Evolution, Servicing, Phaseout, and Closedown. During the evolution stage

all types of adjustments might be performed. In the end of this stage

software becomes legacy due to aging effects, and a subsequent servicing

stage is entered. During this stage only minor adjustments are possible,

Life Cycles 13

mainly addressing corrective aspects. The phaseout stage is characterized

by the absence of any further adjustments. Finally, in the closedown stage

support for the software itself is discontinued. Users are only supported

during migration to a replacing software, if any. Although this staged

model does not need to be observable for any given enterprise software,

and the concrete designs of the stages might vary, it delivers an appropri-

ate blueprint describing the effects of software aging during maintenance.

Moreover, it highlights why the maintenance phase should not be equated

with continued development. While development addresses the construc-

tion of new software for fulfilling known requirements, maintenance is

concerned with the integration of new aspects into an existing architec-

ture.

1.2.2. The System Life Cycle

As discussed in section 1.1, enterprise systems are the constituent parts

of an enterprise. As the enterprise itself is embedded in the real world,

there do exist manifold technological and organization aspects influenc-

ing the constituent enterprise systems. The other way round, enterprise

systems and relationships among them might affect the overall enterprise

behavior. Correctness of a single system might depend on the correct

behavior of other systems. Therefore, incorrect behavior might be ob-

served which does not result from the affected system itself, but from

an interaction with another, faulty system. Quality of service might de-

grade, for example, due to crashes, performance bottlenecks, or changing

workloads. Security and privacy might not only depend on a system it-

self, but also on the underlying infrastructure, for example, a web server

into which a web shop is installed. If such a server is vulnerable to SQL

Injection (cf. [72]), the web shop might be attacked based on that threat.

Thus, the fundamental complexity of enterprise management arises from

the administrated systems and relationships among them, from the un-

14 Introduction

derlying infrastructure, from organizational aspects, and from environ-

mental relationships (cf. [18]). Halprin [73] differentiates between reactive

and proactive administrative workflows. While reactive workflows mainly

address the resolution of problems and failures, proactive workflows are

concerned with improvements of the enterprise such as the integration

of new enterprise systems or the optimization of processes. As one con-

sequence an enterprise system cannot be administrated in isolation, but

is influenced by its environment to a high degree. Nevertheless, the fol-

lowing discussion focuses on the system life cycle of a single enterprise

system, because the management of an enterprise as a whole is out of

scope of this thesis. Additionally, the life cycle presented here addresses

only activities directly related to the system itself. Accompanying activ-

ities such as the training of users are not covered. The life cycle of an

enterprise system consists of the four main phases Planning, Deployment,

Management, and Undeployment.

Analog to the software life cycle the Planning phase can be interpreted

as a preparation for the subsequent deployment phase. It mainly ad-

dresses aspects of the identification of necessary tasks, resource alloca-

tion, and time scheduling. While the subsequent phases depend directly

on the corresponding software, this phase might start even before the soft-

ware is finished, that is, its development phase ended, because the system

itself is not subject to any actions of this phase directly. Nevertheless, this

might imply several uncertainties, for example, regarding the time when

the software will be available, the set of configuration options, or the final

environmental requirements.

The establishment of a system is performed during the Deployment

phase. It covers all activities from obtaining the corresponding software

up to the final activation of all parts of the affected system (cf. [57]). Cou-

paye and Estublier [50] also assign the packing and transfer on the soft-

ware producer side to the deployment phase. This might be meaning-

ful if the software is specially customized to the user needs on producer

Life Cycles 15

side. As preparation for the actual installation the target execution envi-

ronment must be analyzed with respect to all aspects affecting the instal-

lation. Such aspects might, for example, be available hardware resources

and software systems. If the new system should replace an existing one,

the migration of data sources must also be considered, if necessary. Af-

terwards, the concrete installation process might be prepared. This is es-

pecially important if it leads to temporal shutdowns of parts of the en-

terprise, for example, when an upgrade is performed. Moreover, individ-

ual tasks must be coordinated if a distributed installation affects different

sites. Besides time schedules and staff allocation, installation prepara-

tion also covers configuration aspects and the assembling of installation

packages. These might, besides the software to install, also include addi-

tional programs on which the target software depends such as libraries or

site-specific drivers. Moreover, necessary hardware enhancements must

also be considered if a target environment does not fulfill the needs of the

software to install. Following the installation plan, the system can be in-

stalled, tested, and finally activated (cf. [50]). During deployment the inter-

nal system architecture is determined, laying the foundations for later ad-

justments. Moreover, relationships to other systems might be established

which implies a manipulation of the enterprise architecture. In litera-

ture the importance of deployment support from producers of software is

pointed out, both for effectiveness and efficiency reason (cf. [89, 119]). Es-

pecially for large software systems the provision of installation tools, doc-

umentations, and support systems is highly recommended. Although the

deployment phase of a system life cycle only represents a preparation for

system application it might be a very complex and time consuming task.

The SAP Deutschland AG, for example, highlights in a success story that

the upgrade of an Electronic Resource Planning system (ERP) with 11,000

users took only four month (cf. [135]).

During the Management phase the system is productively used. The

main objective of administrators during this phase is to reach a high de-

16 Introduction

gree of experienced system quality regarding the characteristics of trust-

worthy computing systems presented in section 1.1. In this context, there

do exist many different sources of information which must be evaluated

to identify needs for adjustment. Examples of those are log files, user

feedbacks, or notifications of software producers regarding newly avail-

able updates. Furthermore, administrators must be supported with facil-

ities to inspect the system state. Due to the different aspects to address

there might exist a broad range of tasks to fulfill, for example, user ac-

count management, reactions to workload shifts, security management,

repair of failures, or the integration of updates (cf. [18, 128]). Not all of

these tasks have direct impacts on the actual system behavior. They are

more related to system usage than to its management as considered in

this section. These tasks are not discussed any further. The tasks ad-

dressed in the following demand for system reconfiguration with respect

to structural and behavioral manipulation. In this context, no distinction

is made regarding the reasons for applying concrete changes. McKinley et

al. [111] distinguish between parameter adaptation and compositional adap-

tation. Parameter adaptation addresses reconfigurations which can be per-

formed based on changes of system variables. In contrast, compositional

adaptation refers to changes of the system architecture. In detail, this

covers the addition, removal, or exchange of elements, as well as manip-

ulations of connections among them (cf. [123]). Parameter adaptation is

limited to changes, foreseen during software development. In contrast,

compositional adaptation allows the integration of unforeseen changes

like new functionalities. The time a compositional adaptation might be

performed delivers a further distinctive feature. McKinley et al. [111] dis-

tinguish between development time, compile time, load time, and runtime

composition. If composition can only be performed during development

time or compile time the system behavior cannot be adjusted at all, but

is completely determined by the corresponding software. While develop-

ment time composition is limited to source code manipulations, compile

Life Cycles 17

time composition enables the customization for different target environ-

ments. Load time composition allows the configuration of systems, be-

cause it assigns the determination of the system structure and behavior

to the startup of a system and the loading of its constituent elements.

Nevertheless, the three previous composition types are summarized un-

der the term static composition, because after determination of the system

behavior it cannot be changed without halting and restarting the system.

In contrast, dynamic composition supports the integration of changes into

a system while it is running. McKinley et al. further subdivide systems

allowing dynamic composition into tunable and mutable systems. While

tunable systems prohibit manipulations of the provided business logic,

mutable systems do not comprise this restriction.

As stated in section 1.1, availability is of very high importance for enter-

prise systems. It relates to the time when a considered system should be

usable. There might exist systems which do not need to be available per-

manently, but, for example, only during the business hours of a certain

office. For these systems the opportunity to perform static composition

might be sufficient, because the execution of composition tasks might be

scheduled to those times the system does not need to be available and thus

allows a temporal shutdown. Nevertheless, there might also exist systems

which need to be available permanently such as a web shop and the con-

nected warehouse system. For that reason the opportunity to perform

mutable composition would be of very high value (cf. [40]).

Depending on the concrete mechanisms for the execution of dynamic

composition affected parts of a system might need to be isolated and be

brought to a quiescent state for ensuring consistencies during reconfigu-

ration. Ongoing interactions must be finished and newly initiated inter-

actions must be avoided or blocked (cf. [99, 117]). For those approaches

the disruption of user interactions should be minimized. Ideally, users

would only recognize short delays and would not be confronted with in-

teraction aborts. Brown et al. [29] address the complexity of system re-

18 Introduction

configuration as perceived by human administrators. In this context, a

reconfiguration subsumes all actions for transferring a system from an

operational state into another. According to their work reconfiguration

complexity is mainly determined by three factors: execution complexity,

parameter complexity, and memory complexity. Execution complexity sub-

sumes the number and complexity of actions to perform a certain recon-

figuration. Parameter complexity relates to the configuration parameters

for which values must be manually provided during the different actions

of reconfiguration. In this context, not only the mere number of param-

eters is considered, but also the complexity for determining the concrete

values. This might, for example, also cover the need to read documen-

tations for identifying potential values and the process of selecting an

appropriate one. Finally, memory complexity addresses the demand on

administrators to keep different configuration aspects in mind. For all

of these complexity factors Brown et al. also consider the complexity of

context switches during reconfiguration, for example, if different systems

must be reconfigured or the underlying infrastructure must be adjusted.

Brown et al. concentrate on the execution of a concrete reconfiguration

and do not cover other aspects such as planning, or the need for coordina-

tion among administrators and users. Nevertheless, their work provides

an appropriate insight into those factors which directly influence concrete

interactions with a system during reconfiguration. As one consequence

it can be stated that reconfiguration complexity is strongly influenced by

the applied tools and administrative interfaces, as well as by the degree of

reconfiguration automation (cf. [18, 40, 92]).

The final phase of the system life cycle is the Undeployment. During

this phase the system is removed from its execution environment. If un-

derlying data sources or parts of them should be kept or transferred to a

replacing system their export or migration must also be considered. The

removal of the system might also include other elements of the target en-

vironment which were exclusively used by the system to be removed.

Towards an Autonomic Computing Infrastructure 19

1.3. Towards an Autonomic Computing Infrastructure

As discussed in the previous sections, the life cycles of enterprise soft-

ware and systems cover various sources of complexity. Although software

and corresponding systems are closely related, a distinction between their

life cycles can be drawn. This results from the targets to address during

the particular life cycles, the types of tasks to fulfill, and the groups of

affected people. During the software life cycle the majority of tasks are

concerned with the development and maintenance of the software. In

contrast, the system life cycle mainly concentrates on the management of

a concrete system. During the software life cycle the foundation for the

corresponding systems is laid. Therefore, results of a software life cycle

have direct impacts on the life cycles of the corresponding systems, for

example, through the support for mutable compositional adaptation. The

other way round, relevant experiences during system usage and newly es-

tablished or changing requirements for systems might be used as inputs

for the maintenance phase of a software life cycle. Thus, a system life

cycle might also influence the life cycle of the corresponding software.

Solving the challenges of the software life cycle lies in the domain of

software engineering (cf. [142]). Regarding the system life cycle the vision

of Autonomic Computing [80] demands that low level administrative tasks

should be assigned to systems themselves to disburden human adminis-

trators. In this context, administrators are responsible to state high-level

objectives which are autonomically adapted by the managed system itself.

Consequently, the vision of autonomic computing is basically founded on

the idea of automating system management. This overarching goal of a

managed system is also called Self-Management in literature (cf. [105]).

McKinley et al. [111] postulate that the enabling technologies for self-

adaptive systems are Separation of Concerns, Computational Reflection, and

Component oriented Design. The term Separation of Concerns is often used

in combination with the paradigm of Aspect-Oriented Programming (AOP)

20 Introduction

[95]. It describes an approach for separating the development of the core

software application logic from so called Crosscutting Concerns like secu-

rity. Through this proceeding it is possible to address the different aspects

of a software in isolation which would otherwise be scattered across differ-

ent elements. A detailed discussion of AOP is left out here for brevity.

According to McKinley et al. separation of concerns also facilitates the

explicit manipulation of the different system aspects. The term Compu-

tational Reflection [106] describes the ability of a system to reason about

itself and potentially change its own behavior. In relation to the architec-

ture a reflective system might, for example, be able to analyze and manip-

ulate the structure of its elements. Moreover, it might be able to inspect

and intercept ongoing interactions. The concept of Component Orienta-

tion [151] represents an approach to establish a system in a modular way

through functional decomposition. The modules – called Components – a

system consists of, encapsulate different functionalities and provide them

to their environment through Interfaces. Components can make use of

other components through their interfaces. Consequently, the architec-

ture of a component oriented system consists of loosely coupled compo-

nents which collaborate among each other through their interfaces. The

concept of component orientation is not limited to software systems. It

also affects the software life cycle, because it demands for the develop-

ment of software in form of components.

The goal of this thesis is the design and realization of an infrastructure

for autonomic management of enterprise systems.

The provision of such an infrastructure should promote the vision of au-

tonomic computing in general. This should be reached through the pro-

vision of facilities and services for managing entities to inspect and ma-

nipulate the managed system. For the development of the infrastructure

a set of requirements is established. These requirements are organized in

four categories, namely Component Orientation Requirements, Software Re-

Towards an Autonomic Computing Infrastructure 21

quirements, Manageability Establishment Requirements, and System Require-

ments1. A following, detailed discussion of these requirements defines the

goals of this thesis and explain its relation to the topics discussed so far.

Component Orientation Requirements (COR) Component orientation re-

quirements address the demands on the infrastructure which are directly

related to the concept of component orientation, a corresponding stan-

dard, and its application by the infrastructure.

Realistic Application Scenario (COR-RAS) The infrastructure should be de-

signed and realized for a realistic environment. For that reason it

should address an existing and accepted component standard which

is used as foundation for enterprise systems in the real world.

Standard Compliance (COR-SC) The infrastructure itself should be based

on the component standard, that is, it should be integrated in an

execution environment (container) supporting the component stan-

dard. Therefore, the realization of the infrastructure should not vi-

olate the underlying component standard, but should be compliant

to it as far as possible. Moreover, it should not make use of op-

tional aspects of the supported component standard, if this can be

avoided. This requirement should facilitate the potential application

of the infrastructure within different environments.

Unchanged Container Implementation (COR-UCI) The infrastructure should

be executable in an unchanged container supporting the component

standard. It should especially not be necessary to adjust the imple-

mentation of a container to make it usable by the infrastructure.

Otherwise, the infrastructure would not solely rely on a component

1 A preliminary version of these requirements was presented in a paper for the 1st IC-

ST/ACM International Conference on Autonomic Computing and Communication Systems

(Autonomics 2007) [34] and discussed in the corresponding talk.

22 Introduction

standard, but also on a specific version or a set of versions of a con-

crete platform to which the necessary adjustments can be applied.

Consequently, the infrastructure should be designed and realized as a

layer between a broadly accepted component standard (COR-RAS) and

its implementation (COR-UCI). To avoid limitations of its application the

infrastructure should rely on as few aspects not required by the standard

as possible (COR-SC).

Software Requirements (SoftR) These requirements directly relate to en-

terprise software of which corresponding systems should be managed

with the help of the infrastructure. They mainly address aspects of the

development and maintenance phases of the software life cycle. The re-

quirements do not apply to the software life cycle of management soft-

ware which realizes the self-management goal of autonomic computing

or parts of it.

Full Standard Support (SoftR-FSS) For the development of enterprise soft-

ware the complete component standard should be applicable as de-

fined in the corresponding specification. For that reason, the infras-

tructure should neither forbid the usage of parts of the standard, nor

should it redefine or limit certain aspects of it. Otherwise, the de-

velopment of enterprise software would be restricted. Furthermore,

this would also limit compliance to the COR-RAS requirement.

Management Transparency (SoftR-MT) The later application of the infras-

tructure for enterprise system management should not impose any

additional requirements beyond those of the component standard

for the software life cycle. It should especially not be necessary to

provide an additional specification for the infrastructure or to use an

infrastructure-specific Application Programming Interface (API) for

component development.

Towards an Autonomic Computing Infrastructure 23

Self-managed Component Support (SoftR-SCS) The infrastructure should

provide the opportunity to construct self-managing components. Th-

erefore, management facilities provided by the infrastructure should

be accessible from inside component source code. This would sup-

port developers to realize autonomic components which are able to

manage themselves. Nevertheless, this should be an optional part

of the infrastructure which is not violating SoftR-MT.

Summarizing, the software life cycle should not be affected by the infras-

tructure with respect to the implementation of the core business logic to

avoid additional complexity (SoftR-FSS and SoftR-MT). Ideally, the infras-

tructure would only require standard-compliant components without any

infrastructure specific extensions as output of software life cycles. Other-

wise, the overall goal of complexity reduction would be thwarted at least

for the software life cycle. Nevertheless, it should also be possible to

consider management aspects as integral part of a component, if desired

(SoftR-SCS). This does not conflict with the other requirements, because

it should only be an opportunity.

Manageability Establishment Requirements (MER) In order to make com-

ponents manageable by the infrastructure, adjustments and extensions

are necessary. Restrictions regarding the proceeding for manageability

establishment are defined by these requirements.

Manageability Automation (MER-MA) The establishment of manageabil-

ity should be performed automatically, for example, through appli-

cation of a tool without any complex configuration demands. Espe-

cially, the need to manually create additional artifacts or to manually

adjust components would be a violation of this requirement.

Life Cycle Independence (MER-LCI) Manageability integration should nei-

ther be bound to the software life cycle nor to system life cycles. In-

stead of that, it should be possible to choose during which life cycle

24 Introduction

manageability is established. Furthermore, the integration should

be independent of the concrete execution environment, that is, a

prepared component should be usable in any container fulfilling

the necessary prerequisites, for example, a needed database or other

providers of required interfaces.

Software providers and system administrators should be supported with

alternative options for software distribution and obtainment respectively

(MER-LCI). On the one hand, providers should be enabled to establish

manageability as additional step during the development and maintenance

phase of the software life cycle. This allows them to distribute ready-

to-manage components. On the other hand, administrators could inte-

grate an additional step after the obtainment of components during the

deployment or management phase to easily enable their autonomic man-

agement in a system based on the infrastructure (MER-MA).

System Requirements (SysR) During the system life cycle managing en-

tities should be provided with appropriate facilities for supporting system

management. In this context, system requirements define the necessary

aspects to guarantee a comprehensive support for the vision of autonomic

computing.

Centralized Management Support (SysR-CMS) As an alternative to SoftR-

SCS the infrastructure should enable the development of manage-

ment entities independent from concrete component implementa-

tions. Consequently, it should be possible to realize a kind of man-

agement layer, if desired. Moreover, such a layer or parts of it should

not necessarily be bound to the same environment as the managed

components. This would allow an integrated management of differ-

ent systems which are not all based on the same component stan-

dard or container.

Towards an Autonomic Computing Infrastructure 25

Reflective Meta Model (SysR-RMM) The infrastructure should provide a

reflective meta model as foundation for inspection and manipula-

tion of enterprise systems covering all relevant structural and be-

havioral aspects. Consequently, model based system management

should be supported.

Life Cycle Coverage (SysR-LCC) The management support of the infras-

tructure should cover the whole life cycle of systems and their con-

stituent deployed components. For affected deployed components

– analog to the system life cycle – this covers all phases from their

deployment through their management to their undeployment.

Software Relation (SysR-SR) It should be possible to establish a relation

from elements of a managed system to the associated elements of

the corresponding software. This would allow manifold helpful anal-

yses such as the identification of the affected implementation when

a defect is identified in a managed system. Moreover, alternative

implementations for a certain functionality could be identified.

Genericity (SysR-G) The infrastructure should be designed to support dif-

ferent aspects of autonomic computing. In contrast, it should not

be limited to special objectives.

Extensibility (SysR-E) The infrastructure should provide a foundation for

different application areas of autonomic computing. Therefore, it

should be extensible with respect to the integration of additional

aspects relevant for those application areas.

Client Transparency (SysR-CT) Clients of a manged system should not be

affected by the application of the AC-infrastructure, that is, they

should not even notice any difference regarding the usage of system

elements. This also implies that, during the development of client

software, the infrastructure should not require to be considered.

26 Introduction

The system requirements should ensure that system management is based

on a comprehensive foundation. Moreover, it should be possible to sep-

arate management aspects from the core business logic of the system

(SysR-CMS) or alternatively realize an integrated solution (SoftR-SCS). Man-

agement should be performed through model based inspection and ma-

nipulation (SysR-RMM). This should cover all aspects of the system life

cycle (SysR-LCC), as well as relations to the corresponding software (SysR-

SR). To support the vision of autonomic computing in general the infras-

tructure should be designed independent from concrete application areas

(SysR-G) and should be open for extensions of specific application scenar-

ios (SysR-E). Finally, client software and systems should not be affected

by the AC-infrastructure at all (SysR-CT). Although this requirement also

covers software aspects, its integration into SysR implies stronger demands.

If only applied to client software the requirement would permit client soft-

ware adjustments after finishing development. SysR-CT suppresses this

opportunity.

The requirements stated above define the frame for the design and re-

alization of the infrastructure. They also imply restrictions which should

not be violated. The infrastructure should be developed on top of a broadly

accepted component standard and should be used on top of an existing

execution environment. Therefore, the thesis does not include the re-

alization of a component environment itself. Moreover, the realization

should concentrate on the establishment of manageability in a single en-

vironment. In contrast, aspects of interactions in a distributed component

environment consisting of independent containers are not addressed. Fi-

nally, the thesis concentrates on system elements and the covered busi-

ness logic. This implies the exclusion of aspects of graphical user interface

(GUI), data sources, and other resources such as legacy systems.

Thesis Overview 27

1.4. Thesis Overview

As discussed in section 1.3, this thesis pursues the goal to provide a generic

infrastructure for autonomic computing on top of an established and broad-

ly accepted component standard. To provide an overview of related re-

search areas chapter 2 presents the main contributing research topics,

namely Autonomic Computing and Component Orientation. Afterwards,

the chosen component standard Enterprise JavaBeans (EJB), version 3.0,

is presented in chapter 3. The chapters 4 to 6 discuss the infrastructure

proposed here in detail. This starts with a general overview in chapter 4

presenting the constituent elements of the approach and explains their

responsibilities and relationships among them. The subsequent chapter

deals with the external view on the infrastructure, namely the meta model

and the realizing API (chapter 5). A white-box-view of the infrastructure is

provided in chapter 6. Chapter 7 demonstrates the practical relevance of

the infrastructure for different application areas of autonomic computing

base on two projects which used the infrastructure as foundation. After

the discussion of the approach related work is addressed in chapter 8. Fi-

nally, chapter 9 ends this thesis with a conclusion. This also includes an

evaluation of the infrastructure against the requirements stated in section

1.3.

2. Background

The generic infrastructure proposed in this thesis is mainly related to two

research areas, namely Autonomic Computing and Component Orientation.

These are discussed in the following two sections.

2.1. Autonomic Computing

In 2001 Paul Horn, Senior Vice President of the International Business

Machines Corporation (IBM), stated that the major problem of IT will be

the constantly increasing complexity of system administration (cf. [80]).

He argued that the complexity of future computer systems would reach a

level that threatens to exceed the capabilities of human administrators if

no new concepts are developed to cope with it. To address this problem as

a whole he sketched the fundamental goal of a new computing paradigm,

called Autonomic Computing (AC). The vision of AC is based on the idea

to automate system administration through assigning management tasks

to the system itself (cf. [68, 80, 94]). In relation to the discussion in sec-

tion 1.2.2 an autonomic system would thus become responsible to self-

administrate its own life cycle.

The vision of AC is based on a simplified analogy to the human au-

tonomous nervous system. This system controls the human body and

adjusts its behavior in reaction to internal events and conditions, or ex-

ternal influences, for example, through adjusting breathing rate or heart

beat. The nervous system acts subconsciously, that is, the mind is nei-

ther involved in identifying relevant conditions nor in the selection and

realization of appropriate actions for reaching a new balance. Thus, the

30 Background

mind is freed from detailed steering of the human body. Nevertheless, it

is equipped with opportunities to control the behavior of the autonomous

nervous system and the body, for example, through instructing the ner-

vous system to stop breathing during diving. The autonomous nervous

system is not a centralized system, but consists of a collection of au-

tonomous entities with relationships among them. These entities interact

and influence each other (cf. [69, 76, 80]).

An autonomic computing system should disburden human adminis-

trators from fine-grained steering tasks and allow them to focus on high-

level, strategic aspects. In this context, they would become responsible

to define goals or policies for the system which it realizes autonomically

(cf. [1, 69]). Nevertheless, human administrators should keep control over

all management aspects. Thus, they should be placed into the position to

perform all necessary adjustments of a system in case of undesired behav-

ior or critical situations. Consequently, the tasks of human administrators

would shift from fine-grained steering to coarse-grained goal specifica-

tion and intervention in situations an autonomic system does not exhibit

the intended behavior (cf. [17, 86]). Additionally, an autonomic system

would ideally react faster to management demands than human admin-

istrators and perform the necessary actions more quickly. Moreover, an

idealized autonomic system would be free of human mistakes and real-

ize its objectives free of errors. Summarizing, the vision of AC has the

far-reaching goal to address autonomic system management in a holistic

way (cf. [124, 144]). It is expected to lead to significantly lower Total Costs

of Ownership (TCO) and better realization of trustworthy computing as-

pects with respect to system administration (cf. [110, 144]). Nevertheless,

AC is not assumed of being fully realized in the near future, but can be

interpreted as an inspiring idea for research and practice (cf. [93, 146]).

The following two sections give an overview of the most relevant aspects

of AC against the background of this thesis. Section 2.1.1 discusses the

fundamental characteristics a system should exhibit to support the vision

Autonomic Computing 31

of AC. Afterwards, section 2.1.2 presents high-level architectural consid-

erations for the realization of autonomic management. Finally, section

2.1.3 summarizes the discussion.

2.1.1. Self-Management

The overall objective of an autonomic system is to manage itself according

to goals stated by human administrators. This overarching ability is called

Self-Management in literature (cf. [144]). In his constitutive paper [80] Paul

Horn stated different characteristics an autonomic system must exhibit

to reach the goal of self-management. These are adopted broadly in the

literature on AC (cf. [105]). The set of characteristics can be divided into

Objectives an autonomic system has to address and Capabilities which it

needs to fulfill its objectives ([134, 145]). Thus, objectives can be seen

as externally observable characteristics of autonomic systems while capa-

bilities relate to internal characteristics enabling autonomic behavior. In

combination, the characteristics are intended to provide a comprehensive,

high-level set of aspects which must be addressed to realize the vision of

AC in general. The following two sections discuss objectives and capabil-

ities of AC.

2.1.1.1. Objectives

Objectives for autonomic systems are Self-Protection, Self-Healing, Self-Op-

timization, and Self-Configuration. The following discussion of these ob-

jectives shortly introduces the addressed aspects. Furthermore, relations

to trustworthy computing properties are highlighted.

Self-Protection An autonomic system might be affected by manifold th-

reats (cf. [145, 164]). External threats might arise from malicious interac-

tions, for example, to gain unauthorized access to information or func-

tionalities, to corrupt the system state, or to perform a Denial of Service at-

32 Background

tack (DoS-attack). Additionally, accidental or erroneous interactions might

have negative impacts on a system. Finally, internal failures, faults, or un-

intended behavior of single elements might also harm the system state or

behavior as a whole.

A self-protecting system should be able to detect, identify, and defend

against the various types of threats (cf. [80]). If a harmful interaction was

”successful”, the effects on the system should be confined, for example,

through isolation of affected system elements. Due to changes in the en-

vironment or in its architecture new types of threats might arise which

should ideally be anticipated by a self-protecting system in a way that

makes it less vulnerable in the future (cf. [1, 94]). Besides reactions to

relevant situations and events this might also include proactive counter-

measures.

In relation to aspects of trustworthy computing self-protection should

address safety in that it avoids or handles unintended behavior through ap-

propriate countermeasures. Defensive measures should, amongst others,

increase availability, for example, through reacting to or the avoidance of

DoS-attacks. The handling of internal threats directly contributes to relia-

bility, because it should prevent or confine the effects of incorrect system

behavior. Finally, security and privacy are also addressed, because pro-

tection against unauthorized access to a system is directly covered in the

considerations of self-protection.

Self-Healing Inconsistencies, malfunctions, and failures of a system mi-

ght result from different reasons, for example, defects, failures of ele-

ments, or crashes of resources (cf. [110, 164]). Additionally, harmful in-

teractions might have negative impacts on a system, as discussed in the

context of self-protection. Moreover, as one result of self-protection cer-

tain elements of a system might be isolated and are not usable by other

elements or external clients anymore.

A self-healing system should be able to detect, diagnose, and recover

Autonomic Computing 33

from those situations in a way that keeps or reestablishes its integrity and

availability. In order to realize self-healing, a system should be able to

identify the affected elements. These must be fixed if possible or other-

wise removed or replaced. This might lead to the need for complex system

adjustments (cf. [68, 134]). Additionally, inconsistent or corrupted states

of underlying data sources should also be corrected, for example, through

transaction rollbacks or the import of a backup. To reach a high level of

availability system disruption as result of recovery should be minimized.

The major tasks of self-healing can be assumed of being reactive, because

they are performed in response to relevant situations. Nevertheless, self-

healing might also cover proactive or preparatory actions, for example, the

creation of backups or the establishment of fallback systems (cf. [68]). This

thesis aims to provide a clear distinction between the targets of the differ-

ent objectives. Therefore, recovery actions resulting from self-protection

are subsumed under the self-healing objective. Nevertheless, some au-

thors assign these actions to self-protection (cf., e.g., [68, 134]).

Self-healing mainly addresses the availability of autonomic systems th-

rough recovery from disruptions. Additionally, reliability is enhanced th-

rough the fixing, replacement, or removal of defect elements, and the cor-

rection of faulty data sources respectively.

Self-Optimization Over time, workloads a system has to cope with might

increase or shift. This might lead to a performance degradation of a

system and to breaches of Service Level Agreements (SLA). Additionally,

QoS-requirements of users might increase, resulting in higher demands

on performance which cannot be met by the given system configuration

(cf. [1, 80]). It might also be possible that the set of assigned resources

is changed, for example, when new hardware is integrated into the envi-

ronment. Finally, software updates with different QoS-attributes might

become available.

A self-optimizing system is responsible for autonomically react to those

34 Background

scenarios in that it optimizes itself, as well as the allocation and utiliza-

tion of resources to better meet end-user expectations (cf. [1, 134]). As

preparation a system must know or identify opportunities for optimiza-

tion. These must be quantified to enable considerations about alternatives

(cf. [94]). Self-optimization might, for example, be performed through

system adaptation, resource adjustments, or changes of resource alloca-

tion. Parameter adaptation might lead to different performance properties

which better fulfill user-requirements. Compositional adaptation might

be applied to integrate updates or alternative implementations of system

elements (cf. [94]). This might also include the integration or reconfig-

uration of workload managers (cf. [68]). If possible, resources might be

reconfigured to obtain different performance properties better matching

the new requirements. Finally, resources might be reallocated, for exam-

ple, through the migration of system elements to new hardware resources

(cf. [1, 68]). The above discussion might suggest a reactive nature of self-

optimization. Nevertheless, it might also include proactive aspects, for

example, workload forecasts and measures to address expected scenarios.

Self-optimization addresses the performance attribute of trustworthy com-

puting.

Self-Configuration A system might be affected by changes in its envi-

ronment which demand for the integration, adjustment, removal, or re-

placement of architectural elements, for example, to remove deprecated

functionalities or to provide new ones. These demands were already dis-

cussed in the context of the system life cycle in section 1.2.2. They can be

addressed through parameter or compositional adaptation. Nevertheless,

adaptation might be a highly complex, error-prone, and time consuming

task. Moreover, it might lead to undesired system disruptions.

To facilitate manipulations of a system architecture and its elements a

self-configuring system should be able to perform goal-based adaptations.

Such a goal might, for instance, consist of the demand for the integration

Autonomic Computing 35

of a new element or the need for a certain functionality. Subsequently,

the system should ideally deduce all necessary actions from this goal and

perform them autonomically. Thus, it would be sufficient to specify what

should be done while leaving the realization details (how) to the system

(cf. [94]). In literature there do exist two different proposals for address-

ing self-configuration. Some authors demand that autonomic elements

should be able to act in a plug and play fashion, that is, they should be able

to install themselves into an environment, identify providers of needed

functionalities, establish connections to them, and finally publish their

availability for allowing other elements to establish connections to them

(cf. [68, 110]). This might also imply the initiation of self-configurations

of other elements in case no provider for a needed functionality could

be found. Moreover, self-configuring elements should monitor their en-

vironment and adapt to changes of the set of system elements if they are

affected (cf. [94]). Consequently, the architecture of such a system consists

of autonomic elements being responsible for their integration and for the

establishment of connections. Alternatively, a system should be able to re-

act to new or changing user demands through the centralized initiation of

parameter or compositional adaptation (cf. [134]). For such a system the

constituent elements are the targets of configuration performed by cen-

tral management instances which instruct them to establish or remove

connections, or perform parameter adaptation. The elements themselves

would not perform any (re)configuration on their own.

Self-configuration does not address a specific aspect of trustworthy com-

puting. Instead of that, it can be assumed of generally addressing de-

mands for system adjustments during deployment and management.

Although the objectives are intended to address different aspects of

self-management there might exist relationships, dependencies, and con-

flicts among them. When a system has, for example, protected itself

against an attack its state might be left inconsistent. Therefore, the system

36 Background

should subsequently self-heal to correct the impacts of the attack. Self-

configuration might support the other objectives with generic facilities

for system adaptation (cf. [80, 145]). Moreover, there might exist conflict-

ing goals for different objectives. While a self-optimization facility might,

for instance, recommend the most efficient implementation of a certain

functionality, a self-protection facility might prefer the integration of a dif-

ferent implementation providing a higher level of security. Therefore, the

different objectives should not be considered in isolation at long sight. In-

stead of that, self-management of a system should be addressed in an inte-

grated, holistic way (cf. [164]). A self-managing system should also report

relevant incidents to human administrators. Moreover, it should provide

facilities for gaining insight into the system architecture, configuration,

and behavior to facilitate analyses in case human interventions become

necessary (cf. [68]). This might also include histories and explanations of

decisions during self-management. Nevertheless, this does not imply that

human administrators would have to perform fine-grained tasks in any

situation. Instead of that, this aspect represents an opportunity for special

situations.

2.1.1.2. Capabilities

While the objectives of autonomic systems are widely adopted in litera-

ture, the capabilities stated by Paul Horn are not that much widespread.

They can be interpreted as first considerations regarding a minimum

set of capabilities a system must exhibit for being able to perform self-

management. In particular, these capabilities are Self-Awareness, Context-

Awareness and Anticipatory (cf. [80]). Additionally, Sterritt and Bustard also

demand that a system must exhibit a Self-Adjustment capability (cf. [145]).

The author of this thesis agrees with this requirement.

Autonomic Computing 37

Self-Awareness A self-managing system must be able to perform analy-

ses regarding its internal structure and behavior, as well as connections to

and collaborations with other systems. If a system would not exhibit this

capability it would not be able to reason about its current state and could

not initiate any kind of reactive reconfiguration in response to relevant sit-

uations. Sterritt and Bustard [144, 145] also demand that a system should

be able to monitor itself in order to identify situations demanding for ad-

justment. Therefore, they propose an additional capability, called Self-

Monitoring, to distinguish pull-oriented inspection (self-awareness) from

push-oriented information provision (self-monitoring). Nevertheless, this

thesis subsumes both aspects under the term Self-Awareness.

Context-Awareness As stated in the context of the different objectives,

a self-managing system must react to its environment and changes in it.

To identify relevant aspects and situations a system must be aware of its

deployment context. Analog to self-awareness, this might cover aspects of

structural and behavioral inspection, as well as information provision, for

example, through event facilities.

Self-Adjustment To realize the different demands for adjustments an

autonomic system must be able to perform reconfiguration operations.

Therefore, it must be able to manipulate its internal structure and be-

havior, that is, it must be enabled to perform parameter and composi-

tional adaptation. Self-adjustment should not be equated with the self-

configuration objective. While self-adjustment considers the set of fine-

grained adaptation operations enabling the realization of objectives, self-

configuration addresses complex procedures for transferring a system from

one consistent state into another. Thus, self-configuration is established

on top of self-adjustment.

38 Background

Anticipatory To facilitate its administration a self-managing system should

hide its realization details. It should be able to anticipate high-level goals

and translate them into corresponding actions transparently. This capa-

bility does not subsume the objectives discussed in the previous section.

It demands for the provision of an access point for human administrators

which they can use to interact with an autonomic system.

Summarizing, capabilities address different interfaces a self-managing

system needs to realize its objectives, as well as the need to provide ap-

propriate access points for human administrators (anticipatory). Self-

awareness and context-awareness are needed by a system for information

collection. Thus, they establish the foundation to identify situations de-

manding for adjustment. Moreover, they might support the process of

finding appropriate solutions in case additional information is needed.

Finally, self-adjustment is needed to realize these solutions through the

support with interfaces for adaptation. Beyond objectives and capabili-

ties Horn demands that a self-managing system should be built on top

of open standards to support the integration of different systems into an

overall solution for autonomic management (Openness). Although this is

a desirable characteristic it does not directly contribute to the realization

of AC.

2.1.2. Autonomy Realization

The discussion of the previous section is related to the external view on a

single self-managing entity or system respectively. It pointed out the de-

sired behavior through objectives, as well as the necessary, underlying ca-

pabilities. This section will provide a conceptual insight regarding the re-

alization of autonomic management. Therefore, section 2.1.2.1 discusses

the Control Loop concept which represents the fundamental idea for real-

izing autonomy. Afterwards, section 2.1.2.2 provides a short overview of

Autonomic Computing 39

architectural considerations regarding the organization of multiple self-

managing entities.

2.1.2.1. The Control Loop Concept

In order to realize self-management, an autonomic entity must be able

to reactively or proactively address the different goals and policies stated

by human administrators. This section concentrates on the identifica-

tion of adjustment demands and on reactions to them performed by a

single self-managed entity. A conceptual proposal for implementing self-

management is provided by the so-called Control Loop concept (cf. [1, 62,

94]). Figure 2.1 depicts a schematic overview of this concept.

Analysis Planning

Know-

ledge

Sensors Effectors

Autonomic Manager

Environment

Monitoring

Managed Resource

Autonomic Element

Execution

Figure 2.1.: The Control Loop Concept – Schematic Overview

The control loop concept supports separation of concerns regarding

functionality and management aspects, as well as the surrounding en-

vironment. In this context, the Environment consists of all aspects which

might influence an element and which might be influenced by the ele-

40 Background

ment (cf. [124]). These aspects might, for example, be related to other

autonomic elements, other systems, or the underlying infrastructure. An

Autonomic Element itself consists of two major parts, namely the Managed

Resource and the Autonomic Manager.

A Managed Resource is that part of an autonomic element which covers

the encapsulated functionality. This functionality might be accessed by

the environment, and a managed resource might itself make use of func-

tionalities from the environment. This is depicted in the figure through

incoming and outgoing arrows. No restrictions are stated regarding the

granularity level of managed resources. Therefore, a managed resource

might be a building block of a system, a whole system, or even a collection

of systems (cf. [62]). Moreover, managed resources are not limited to ap-

plication systems. Operating systems, database management systems, or

hardware resources might also be part of autonomic elements. In order to

enable its management, a managed resource must provide access points

for inspection and manipulation which are summarized under the term

Manageability Interfaces in literature (cf. [1, 69]). These are represented in

figure 2.1 on page 39 through Sensors and Effectors. Sensors represent ac-

cess points for information discovery regarding structural and behavioral

aspects. They might support push- and pull-oriented information discov-

ery (cf. [143]). Consequently, sensors realize the self-awareness capability

of autonomic elements. Effectors enable self-adjustment through the pro-

vision of manipulation facilities.

An Autonomic Manager is responsible for administrating one or many

managed resources (cf. [94]). A manager realizes its objectives through ap-

plication of a Control Loop consisting of the four stages Monitoring, Anal-

ysis, Planning, and Execution (cf. [1, 62, 94]). These stages are regarded as

conceptual aspects which do not necessarily need to be realized through

separate functions (cf. [1]) or components (cf. [62]). Therefore, this thesis

considers the different aspects to address during a control loop cycle as

stages while leaving their concrete realization open. The concrete tasks of

Autonomic Computing 41

the different stages are as follows (cf. [1, 159]):

1. Monitoring: During monitoring information about managed re-

sources is collected and preprocessed. Information from the envi-

ronment might also be included. After preprocessing the informa-

tion is forwarded to the analysis stage. The execution of the moni-

toring stage might, for example, be triggered in regular intervals or

as a reaction to sensor events.

2. Analysis: The analysis stage is responsible for the identification of

situations or states which rise demands for adjustment. Examples

of those might be crashed resources, connection losses, or unin-

tended behavior of elements. Moreover, relevant future situations

might be estimated, for example, through workload forecasts. When

a relevant situation is discovered, the planning stage is addressed.

3. Planning: In reaction to a relevant situation or state the planning

stage constructs reconfiguration plans. These are intended to trans-

fer the autonomic element from the current state into a state better

fulfilling its stated goals. This includes the identification, evalua-

tion, and selection of reconfiguration alternatives. Thus, the plan-

ning stage is responsible to support self-management through trans-

forming goals into adaptation actions.

4. Execution: The generated reconfiguration plans are realized during

the execution stage. In order to execute the different actions of the

reconfiguration plans, this stage makes use of the effectors of the

managed resource.

During execution of a control loop cycle internal Knowledge might be used,

for example, covering information about symptoms of malicious behavior,

goals and options for reconfiguration (cf. [1]). A control loop cycle does not

necessarily need be a one-way process. It is, for instance, also conceivable

that – during planning – additional information is needed which must be

obtained from the managed resource or its environment. This would lead

42 Background

to a selective execution of the monitoring and maybe the analysis stage.

Moreover, it might be necessary to observe the progress of the execution

stage. This would lead to the demand for additional monitoring. More-

over, the different stages do not need to run to completion. If, for example,

certain reconfiguration actions fail during execution it might become nec-

essary to stop further execution and to go back to the planning stage to

generate new plans.

2.1.2.2. Architectural Considerations

The discussion up to now focused on one single autonomic element which

is responsible to fulfill the objectives of AC. The IT-infrastructure of an

organization might consist of multiple autonomic elements which inter-

act among each other to realize different goals. Some of them might be

common to a set of elements while others are individual for a particular el-

ement. Due to direct or indirect interrelationships between the elements

there might exist different kinds of touch points and influences among

them. Moreover, different elements might compete among each other,

for example, regarding shared resources. Finally, the goals of different

elements might also conflict to a certain degree.

In literature different architectural approaches have been proposed for

realizing autonomic management of complex IT-infrastructures in a holis-

tic manner. This thesis does neither favor a specific style nor does it aim

to propose its own new architectural style for AC. In contrast, the realized

infrastructure should not limit or hinder different architectural styles. The

architecture for autonomic management does not necessarily need to cor-

respond with the architecture of the underlying managed resources. This

would only be given if each resource of a system is assigned to a single

autonomic manager. On the opposite side it is also possible that all re-

sources of a system are managed by one single autonomic manager. If

there does exist more than one autonomic manager collaborations among

Autonomic Computing 43

managers might be of different nature.

First of all, there does not necessarily need to exist any kind of collab-

oration at all. For such a scenario each manager might follow its goals

in isolation and manage its resources accordingly. This might include

the risk of suboptimal results, because managers might influence each

other only indirectly through the effects of their actions. Cooperative ap-

proaches are not possible in this setting. Hence, human administrators

would be responsible to synchronize the individual management goals.

Another approach would organize managers in a hierarchy. In this

context, there are two different types of autonomic managers considered.

Instances of the first type directly administrate one or many managed

resources through their manageability interfaces. These managers are

called Touchpoint Autonomic Managers (TAM) (cf. [1, 69]). To reach an

overall coordination among different autonomic managers so-called Or-

chestrating Autonomic Managers (OAM) are applied. These do not directly

interact with managed resources, but obtain information and requests

from subordinate managers which are used as input for a higher-level

control loop cycle to construct orchestrated plans. Although not explic-

itly considered in literature hierarchies of OAMs are also conceivable. In

order to realize this architectural style, autonomic managers themselves

must provide sensors which allow higher-level OAMs to inspect the cor-

responding autonomic element and to be provided with relevant infor-

mation in a push-oriented way. Furthermore, effectors must be available

to allow OAMs the manipulation of underlying managers and the corre-

sponding autonomic elements.

In contrast to the hierarchical approach, it is also conceivable that auto-

nomic elements are responsible to administrate their assigned resources

completely autonomically. In this context, they are free to commit rela-

tionships with other elements and to negotiate the different aspects of

these relationships. In such a scenario autonomic elements behave in an

agent-like fashion (cf. [94, 110, 124]). To support this type of architectural

44 Background

style autonomic managers must exhibit access points for interaction and

negotiation with other managers.

Hybrid architectures are also conceivable in which certain parts behave

in an agent-like fashion while others are organized hierarchically. More-

over, layered approaches are also possible. It would, for instance, be pos-

sible that TAMs are managed by OAMs in a hierarchical manner. Each of

these OAMs might perform autonomic management regarding a specific

objective (cf. [1,94]). If potential effects on the goals of other OAMs or con-

flicts arise affected OAMs must negotiate about the execution of system

adjustments.

Summarizing, autonomic managers do not only need to be able to ac-

cept goals from human administrators and provide inspection and ma-

nipulation access points for them. They should also be able to interact

with other managers to cooperate with them and coordinate system adap-

tations, if necessary. The concrete nature of these access points depends

on the applied architectural style. For a hierarchical approach managers

should at least provide inspection facilities and should be able to accept

instructions from higher-level managers. In an agent-like architecture ac-

cess points should support at least negotiations among autonomic man-

agers.

2.1.3. Summary

The vision of autonomic computing addresses the increasing adminis-

tration complexity of todays and future systems through the automation

of administrative tasks. Consequently, autonomic elements become re-

sponsible for managing themselves in accordance with high-level goals

which relate to different objectives, namely self-protection, self-healing,

self-optimization, and self-configuration. An autonomic element must

exhibit certain capabilities to realize the overall goal of self-management.

It must be able to inspect and monitor itself (self-awareness), observe

Component Orientation 45

its environment (context-awareness) and adjust itself, if necessary (self-

adjustment). Finally, goals of human administrators must be anticipated

(anticipatory).

In order to realize self-management, there does exist a schematic ap-

proach, called control loop, which is implemented by an autonomic man-

ager being part of an autonomic element. A control loop consists of the

four stages monitoring, analysis, planning, and execution. A manager in-

teracts with a managed resource during the first and the last stage of a

control cycle through manageability interfaces consisting of sensors and

effectors.

On enterprise-level different self-managing elements might influence,

compete, or even conflict with each other. Therefore, self-management

should not be treated by each system in isolation at long sight, but should

be addressed on enterprise level through an appropriate architecture. Al-

ternative architectures might reach from a purely centralized approach

within which one single manager is responsible for administrating the

whole enterprise over a hierarchical organization of managers to an agent-

like organization of autonomic elements.

2.2. Component Orientation

The concept of component orientation addresses complexity through mod-

ular design and functional decomposition. In this thesis the term Com-

ponent Orientation is used in the context of software and systems, as dis-

cussed in section 1.1, because the thesis aims to provide an infrastructure

for the autonomic management of component oriented enterprise sys-

tems. Therefore, the term Component is limited to software components

in the following while excluding other areas where the term might be used

with different meanings, for example, in the context of computer hard-

ware. In this context, the term Component is used as synonym for Soft-

ware Component. The term Component itself is discussed in section 2.2.1.

46 Background

Afterwards, the establishment of a component-based system is treated in

section 2.2.2. The role of standards for the concept of component orien-

tation is discussed in section 2.2.3. Finally, section 2.2.4 concludes the

discussion of component orientation with a summary of the relevant as-

pects. The thesis mainly addresses component oriented systems and only

considers the outcomes of component based software development. The

specifics of component oriented software development are not considered

any further. Please refer to the corresponding literature for further details

(cf., e.g., [28], [52] and [152]).

2.2.1. Components

The basic concept of component orientation is the so-called Component.

Although there does exist great interest in the concept of component ori-

entation in research and practice, there does not exist consensus about

how to define the term Component (cf. [30]). A widely cited definition is

provided by Szyperski et al. [151]:

”A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A soft-

ware component can be deployed independently and is subject to

composition by third parties.” ([151], p. 41)

The definition states that components are subject to deployment. Conse-

quently, components are related to software life cycles, that is, they are the

outcomes of the development or maintenance phase. To keep the separa-

tion between software and system, as presented in section 1.1, the term

deployed component is used in the following if an element of a component

system is meant. The definition of Szyperski et al. does not include such

a clear separation. Nevertheless, the following discussion will highlight

which parts relate to components and deployed components. The defini-

tion concentrates on the externally observable aspects of components. In

contrast, it does not state anything about the realization of a components.

Component Orientation 47

Thus, components are treated as black box units of software with exter-

nally observable characteristics. These characteristics must cover all as-

pects necessary to deploy a component into a component system (cf. [78]).

Interfaces According to the definition of Szyperski et al. the externally

observable characteristics of a component consist of the associated con-

tractually specified interfaces and the explicit context dependencies. Because

of being software units components realize certain functionalities which

are exposed through interfaces. Such a functionality specification can be

interpreted as a contract between providers and users of a functionality in

a system context defining the behavior of an implementation and the re-

sponsibilities of the interaction partners (cf. [28]). Therefore, an interface

must at least contain syntactic information for accessing the functionality

properly such as method signatures. Moreover, semantic aspects should

also be covered, for instance, including restrictions regarding the range

of values for method parameters and return values, or valid sequences of

method invocations in an object oriented context. In combination, they

define obligations for providers and users which, if adhered to, should

guarantee correct interactions (cf. [116]). Obligations of users relate to all

conditions which must be fulfilled before interacting with a provider while

obligations of providers relate to the outcomes and effects of interactions.

Obligations of one party are benefits of the corresponding counterparty.

In this context, a functionality does only need to be provided correctly if

a user meets its obligations. The other way round, a user can rely on the

fulfillment of the provider’s obligations if accessing the functionality cor-

rectly. Besides syntactic and semantic functional aspects, non-functional

aspects might also be considered as part of an interface, for example, up-

per bounds for response times. For this thesis the aforementioned char-

acteristics of interfaces are regarded as most relevant for component in-

terfaces. Nevertheless, there might also exist other aspects which might

be considered meaningful to be integrated into an interface. Examples

48 Background

of these are human readable documentations or different kinds of meta-

data (cf. [51]). These aspects are not explicitly covered by the definition of

Szyperski et al.

Summarizing, interfaces specify the encapsulated functionalities of com-

ponents and determine opportunities for the establishment of component

systems (cf. [78]).

Dependencies In order to provide its encapsulated functionalities in ac-

cordance with the corresponding interface specifications, a deployed com-

ponent might demand that different requirements are fulfilled in its de-

ployment environment. These requirements are revealed through the ex-

plicit context dependencies on component level. They might address all envi-

ronmental aspects such as (explicitly) usable main memory, the operating

system, the concrete execution environment, or the availability of certain

facilities. Moreover, there might also exist the need for access to providers

of certain interfaces (cf. [152]). To allow a differentiation the implemen-

tation of an interface by a component is called provided interface while the

dependency on an arbitrary implementation of a certain interface is called

required interface in the following (cf. [100]). In this context, an interface

itself is neither part of its providers nor of its requestors, but an indepen-

dent functionality specification (cf. [28, 51]). Consequently, interface de-

pendencies of components are independent from implementations, that

is, from concrete components. They define the relation between arbitrary

users and providers of a certain functionality.

Additional Information To allow the identification and selection of com-

ponents to apply in a concrete scenario additional information might also

be needful, for example, parameterization options, a human readable doc-

umentation, or automatically processable metadata. In contrast to the

above mentioned information potentially attached to an interface, the in-

formation considered here does not directly relate to a concrete interface

Component Orientation 49

or dependency. It belongs to the component as a whole and can thus not

be covered as part of an interface or dependency. Therefore, it should be

treated as an independent aspect of a component.

2.2.2. System Establishment

In section 1.2.2 two types of adaptation were discussed for the life cycle

of systems, namely parameter and compositional adaptation. Component

systems are special types of systems to which these two adaptation types

might also be applied.

Parameter Adaptation The definition of Szyperski et al. does not cover op-

tions for parameter adaptation. Although this opportunity does not need

to be provided for all conceivable component systems it must be regarded

as optional characteristic. Parameter adaptation does not relate to a com-

ponent system as a whole, but to the constituent deployed components in

particular. This is the case because of the stated independent deployment.

It is conceivable that a comprehensive interface for parameter adaptation

might be provided for a component system as a whole. Nevertheless, sys-

tem parameters would be mapped to parameters of deployed component.

For a concrete component system parameter adaptation might be limited

to certain phases of the system life cycle. The discussion of component

orientation within this thesis is kept general and subsumes all conceiv-

able types of component systems. Therefore, no restrictions are stated

regarding parameter adaptation during system life cycles.

Compositional Adaptation Although not explicitly excluded and theoret-

ically possible deployed components are not intended to cover complete

systems, but to be used as their basic building blocks. To integrate a de-

ployed component into a component system, it is necessary to fulfill the

explicit context dependencies, as stated for the corresponding component.

As these are abstractly defined, a deployed component should be able to

50 Background

cooperate successfully with all conceivable realizations of a particular de-

pendency specification. Focusing on component functionalities the ar-

chitecture of a component system consists of the constituent deployed

components and connections among their required and provided inter-

faces. In this context, compositional adaptation of a component system

is related to the establishment, manipulation, and removal of connections

among the constituent deployed components. The stated independence of

deployment highlights that a deployed component is self-contained with

respect to deployment operations. Thus, independence is limited to ma-

nipulations of the system architecture and does not imply that deployed

components must be stand-alone units although this might be possible.

In combination the abstract nature of required and provided interfaces,

and the opportunity to deploy components independently lead to a loosely

coupling of deployed components. Thus, the architecture of a component

system consists of loosely coupled deployed components which interact

among each other in accordance with contractually specified interfaces to

provide the overall functionality of the system (cf. [137]). From an exter-

nal point of view certain functionalities of deployed components might be

provided to external system users. Thus, provided interfaces of deployed

components are not intended to be exclusively used by other deployed

components inside a system. Moreover, context dependencies of deployed

components do not need to be solely fulfilled inside the system. Instead of

that, they might be connected to provided functionalities of other systems.

The definition of Szyperski et al. implicitly denotes the potential reuse of

components in different systems through mentioning their composition

by third parties. In this context, Crnkovic [51] states that

”a component must be well specified, easy to understand, suffi-

ciently general, easy to adapt, easy to deliver and deploy and easy

to replace” (cf. [51]).

The first aspect directly relates to the black-box-view of components with

Component Orientation 51

respect to their required and provided interfaces, other context dependen-

cies, and configuration parameters. Secondly (understand), the potential

application of a component in a system must be exposed to administra-

tors in a way that enables them to decide whether the application of a

given component is meaningful. Furthermore, administrators should be

enabled to compare different components providing the same or similar

functionalities. Reuse of components is only possible if they are sufficiently

general to be applied in different contexts. Additionally, it is desirable that

a component can be easily adapted to different user needs. This flexibility

widens the range of application scenarios of a certain component. The

delivery and deployment aspect addresses the relation between providers

and users of components. Only if it is possible to distribute and obtain

components, and subsequently integrate them into systems easily, it is

possible to reuse components efficiently. Finally, an easy replacement of a

component facilitates administrative tasks during the management phase

of the component system life cycle. This might also include the support

of runtime adaptation, as discussed in section 1.2.2.

The above discussion focused on the composition of deployed compo-

nents, because this thesis addresses the automation of component system

management. Nevertheless, it is also conceivable that a component ori-

ented software might be constructed on the basis of existing components.

This proceeding and potential effects on the software life cycle is not in-

vestigated any further. Please refer to the corresponding literature (cf.,

e.g., [28] and [52]).

2.2.3. Component Standards

Up to now the discussion focused on the black-box-view on components

and deployed components. Moreover, the addressed aspects were only

considered with respect to component orientation in general. For a con-

crete component system there must at least exist a common model accord-

52 Background

ing to which components can be specified and deployed components can

be composed. According to Lau and Wang, a Software Component Model is

”[. . .] a definition of

• the semantics of components, that is, what components are

meant to be,

• the syntax of components, that is, how they are defined, con-

structed, and represented, and

• the composition of components, that is, how they are com-

posed or assembled.” (cf. [100], p. 710)

Semantics addresses the external aspects of components, that is, their pro-

vided and required interfaces. Therefore, the semantics of a model relates

to the black-box-view of components. This view is intended to provide an

insight into required and provided functionalities, as well as relationships

among them. The syntax of a component model specifies the concrete

representation of the semantics. In this context, Lau and Wang distin-

guish between component implementation languages and component defini-

tion languages. The former language type supports the concrete realization

of components based on a concrete platform such as the Java program-

ming language. The latter type allows a separate definition of compo-

nents potentially independent from a concrete implementation language.

For such a case, a mapping between definition language and implemen-

tation languages is needed. Nevertheless, it is also possible that the two

languages coincide. This would lead to a binding of the component model

to a concrete implementation language or platform. Finally, the compo-

sition of components should be addressed through appropriate facilities.

This should also cover supported types of compositional adaptation. Thus,

the definition addresses all aspects of components, as discussed in the

sections 2.2.1 and 2.2.2. An additional aspect relates to the potential bind-

ing of a component model to a concrete realization platform or language.

Component Orientation 53

Summarizing, a component model must – according to Lau and Wang –

address at least all black box aspects of components. A component model

does not necessarily need to cover the internals of components or state

any requirements for the infrastructure of component systems.

Szyperski et al. present and compare established component standards

(cf. [151], p. 205ff). From their discussion the relevant aspects of these

standards can be deduced. In general, a component standard subsumes

at least a component model. It might also address additional aspects from

concrete programming languages and APIs for component development

over formats for component transfer to different phases of the life cycle

of deployed components and parts of their internal realization. More-

over, a component standard might prescribe concrete interaction proto-

cols, formats for information interchange, and facilities provided to de-

ployed components. Nevertheless, the designs of concrete component

standards might diverge broadly regarding the covered aspects.

Summarizing, the term Component Standard is used in this thesis to

refer to a specification of requirements and recommendations for the life

cycle of components and deployed components. It covers at least a com-

ponent model addressing the black-box-view of components and the com-

position of deployed components. It might also address the internals of

components, that is, their structure, needed and optional artifacts, as well

as guidelines and requirements for their realization. Moreover, a com-

ponent standard might address the execution environments of deployed

components. For those it might require or recommend the existence of

certain facilities, as well as mechanisms and proceedings for deployed

components to interact with it. Component standards might be bound to

other standards such as programming languages or interaction protocols

for remote access to deployed components. Standards which are bound

to concrete programming languages might also include specific APIs. Fi-

nally, a component standard might be dedicated to one or many applica-

tion areas, for instance, enterprise systems. For a discussion of different

54 Background

component standards please refer to Szyperski et al. (cf. [151],p. 205ff) or

Lau and Wang (cf. [100]). According to Lau and Wang [100], containers

”[. . .] are considered to be implementations of component models

in that they provide an execution environment for components and

their assemblies.” (cf. [100], p. 712)

The thesis follows this definition in that it refers to a container as a con-

crete execution environment for deployed components of which the corre-

sponding components follow a certain component standard. In this con-

text, the corresponding software is called Container Implementation.

2.2.4. Summary

The concept of Component Orientation was developed to address the com-

plexity of software and systems. Its major subjects of consideration are

the so-called Components. These are units of software encapsulating cer-

tain functionalities. Functionalities are specified through Interfaces which

include at least syntactic aspects. Moreover, they might cover semantic

and non-functional elements, as well as metadata and documentations.

Interfaces represent contracts between providers and users of functional-

ities. In this context, they are independent specifications which might be

referred to by an arbitrary number of providers and users. In order to pro-

vide encapsulated functionalities in a deployment context, a component

might state different dependencies. These might relate to all conceivable

aspects of an execution environment. One special type of dependencies,

called Required Interface, is the need for access to providers of a certain in-

terface. In addition to Provided Interfaces and dependencies a component

specification might also include metadata and documentations. More-

over, access points for parameter and compositional adaptation might be

covered by a component.

A component could theoretically be deployed independently into each

execution environment fulfilling the stated dependencies. Thus, com-

Component Orientation 55

ponents can be treated as self-contained black box units which could be

reused in different contexts. The architecture of a component oriented

system consists of the constituent deployed components and Connections

between their required and provided interfaces. The functionality of a

system might be exposed through provided interfaces of the constituent

elements while the system itself might be connected to other systems

through environmental dependencies of its deployed components. Com-

ponents are usually developed with respect to a certain Component Stan-

dard. Such a standard is a specification of requirements and recommen-

dations for the life cycles of components and deployed components. De-

pending on the concrete standard components might be bound to a spe-

cific programming language or platform. The realization of a component

standard through an execution environment for deployed components

is called Container Implementation while the concrete execution environ-

ment is referred to as Container.

In the context of this thesis, component standards and containers pro-

vide the basis for realizing AC for enterprise systems according to the

requirements stated in section 1.3.

3. Enterprise JavaBeans, Version 3.0

Enterprise JavaBeans, Version 3.0 (EJB) is a standard for the development

and deployment of component-oriented enterprise software on top of the

Java platform. It was specified under the leadership of Sun Microsystems

(Sun) and was released in May 2006 as Java Specification Request (JSR) 220

[58–60]. It is supported by application servers of well-known companies

like IBM [4], Red Hat [6], Oracle [8], and Sun [9]. The standard is part of

the Java Platform, Enterprise Edition, v5 (Java EE 5) [140] and addresses the

business tier of enterprise systems as depicted in figure 3.1.

Figure 3.1.: Java EE – Schematic Overview (cf. [91], figure 1-1 and 1-5)

Consequently, EJB 3.0 concentrates on components implementing the

business logic of enterprise software. Components are intended to be de-

ployed into an EJB Container which is part of a Java EE Server. Thus, Enter-

58 Enterprise JavaBeans, Version 3.0

prise JavaBeans is a server-side approach. Access to deployed components

is mediated by the EJB container and is intended to be performed directly

from inside Client Applications or indirectly from Web Browsers through

web applications residing in a Web Container. In this context, Web-Tier

and Client-Tier are, amongst others, responsible for presentation aspects

which are not addressed by the EJB standard. The actual management of

underlying data sources is also not directly covered by the EJB standard,

but is intended to be part of the Enterprise Information System-Tier (EIS-

tier).

The standard consists of three documents, namely the EJB Core Con-

tracts and Requirements [58], the Java Persistence API [59], and the EJB 3.0

Simplified API [60]. The first document includes all aspects of the standard

regarding the realization of components. Thus, this document builds the

foundation for the further discussion in this chapter and for the thesis in

general. The second document covers the specification of an object/rela-

tional mapping facility. This facility allows EJB developers to interact with

relational databases in an object-oriented fashion and therefore provides

an abstraction from the EIS-tier. The Java Persistence API is not discussed

any further, because this thesis concentrates on the business-tier. Finally,

the EJB 3.0 Simplified API does provide an overview of the APIs of the EJB

standard. It does not cover any additional, relevant aspects beyond those

of the other two documents. Therefore, it is not addressed any further.

The remainder of this chapter is structured as follows: First, an overview

of the EJB component model is provided in section 3.1. The section cov-

ers aspects of EJB-based software and systems regarding the design of

components, as well as fundamental concepts and techniques defined for

their runtime environments. Additional facilities defined in the standard

are discussed in section 3.2. The EJB standard considers seven distinct

roles which relate to the life cycles of software and systems. These roles

are presented in section 3.3. Java EE contains two standards for server

and container management, as well as enterprise systems deployed into

The EJB Component Model 59

them. They address, amongst others, the execution environment of de-

ployed EJB components. These standards are presented in section 3.4,

because they are of high relevance for the life cycles of EJB-based systems.

Finally, section 3.5 summarizes this chapter. This thesis does not aim to

provide a detailed insight into the EJB standard. Therefore, the following

discussion concentrates on a conceptual overview regarding those aspects

which are relevant for the infrastructure proposed in this thesis.

3.1. The EJB Component Model

This section provides an overview of the component model defined in the

EJB standard. Section 3.1.1 presents the basic building blocks of EJB-

based components addressing the software level of the EJB standard. Af-

terwards, the deployment and management of component systems is dis-

cussed in section 3.1.2. Section 3.1.3 discusses the life cycles of the basic

building blocks of deployed EJB components. Finally, the interceptor con-

cept, as specified in the EJB standard, is presented in section 3.1.4.

3.1.1. Building Blocks of Components

EJB-based components are provided in form of Java Archives [147] (JAR)

which are called ejb-jar files in the standard (cf. [58], p. 539ff). As ele-

ments of an ejb-jar file the standard mainly addresses class-files which

are needed at runtime and a Deployment Descriptor (DD). Such a DD is

based on the Extensible Markup Language (XML) [27] and might be used to

specify different aspects of the corresponding component. Components

are considered of following the Write Once, Run Anywhere (WORA) phi-

losophy which states that they can be developed once and afterwards be

deployed into different environments without the need for source code

manipulation and recompilation (cf. [58], p. 29).

The main building blocks of EJB components are the so-called Enter-

prise Beans or Beans for short, which are realized as Java classes. Instances

60 Enterprise JavaBeans, Version 3.0

of these classes can be accessed internally or by external clients of a de-

ployed component. The standard mainly considers two types of beans,

namely Message-Driven Beans (MDB) and Session Beans (SB), which are

discussed in the following two sections. Afterwards, section 3.1.1.3 fo-

cuses on specification aspects of components.

3.1.1.1. Message-Driven Beans

Message-driven beans are intended to be used as targets of asynchronous

interactions. They are bound to message destinations during deployment

of the corresponding component. The EJB standard explicitly considers

the Java Message Service, version 1.1 (JMS) [75], as foundation for these

destinations. The JMS standard is not discussed in detail in this thesis.

Please refer to the corresponding document for further details (cf. [75]).

During binding a Message Selector can be attached to an MDB. Such a

selector contains the definition of certain criteria which must be fulfilled

by arriving messages. Messages which do not match a selector of an MDB

are not forwarded to an instance of that MDB (cf. [75], p. 41ff).

The JMS standard distinguishes between two types of message destina-

tions, namely Queues and Topics (cf. [75], p. 75ff). Queues are used for

Point-to-Point (PTP) interaction. An arbitrary number of Receivers might

be registered at a single queue. On arrival of a message it is forwarded

to at most one receiver, even if multiple receivers with matching selectors

are bound to the queue. For such a situation the JMS standard does not

prescribe which receiver should be chosen as target for message delivery,

but leaves this open to the queue implementation. Moreover, the EJB

standard does not address this aspect either. Consequently, not all mes-

sages matching the selector of a certain MDB are necessarily processed

by instances of that MDB. Topics are intended to be used for a Publish-

and-Subscribe (Pub/Sub) model. An arbitrary number of Subscribers might

register for a particular topic. When a message arrives at the topic, it is

The EJB Component Model 61

forwarded to all registered subscribers with matching selectors.

The EJB standard does not define the conditions under which an MDB

is instantiated. It only states that a container can construct MDB instances

on demand, can hold a pool of instances of a certain MDB, and can de-

stroy instances when they are not needed anymore. MDB instances are

non-reentrant by definition. Therefore, a container must ensure that an

MDB instance is processing at most one message at any given time. Fur-

thermore, instances must not perform any kind of thread handling such

as starting new threads or performing thread synchronization. When a

message is received by a destination the container forwards it – depend-

ing on the destination type – to one or many instances of different MDBs

with matching selectors, if any. Regarding a concrete MDB the container

is free to choose which idle instance is selected for message processing.

Consequently, not all messages chosen for delivery to an instance of a

certain MDB are necessarily handled by the same instance of that MDB.

Furthermore, a client cannot rely on interacting with the same instance

when sending multiple messages. Therefore, the EJB standard demands

that an MDB is implemented in a way that ensures equivalence of all of its

instances for potential clients. MDB instances do not hold a client-specific

conversational state. Nevertheless, they might keep a client-neutral state

covering, for example, open data source connections for performance rea-

sons.

3.1.1.2. Session Beans

Session bean instances are targets of synchronous interactions through

method invocations. Analog to MDBs, instances of SBs are non-reentrant

and are not allowed to perform thread handling. The EJB standard de-

fines two types of SBs, namely Stateful Session Beans and Stateless Session

Beans. The main difference between these two types lies within the pro-

vision of a client-specific state. Instances of stateful session beans are

62 Enterprise JavaBeans, Version 3.0

exclusively used by a single client and retain a client-specific conversa-

tional state across multiple invocations. Additionally, a client can rely on

interacting with the same instance in case it uses the same reference for

multiple invocations. Nevertheless, a client might submit a copy of such

a reference to other clients which might also interact with the correspond-

ing SB instance. Stateless SB instances can be used by a container for

handling method invocations originating from different clients. In this

context, a container might construct an arbitrary number of stateless SB

instances and keep them in a pool. From this pool the container might

choose arbitrary instances for processing client interactions or for destruc-

tion. Furthermore, it is not guaranteed that a client, performing more

than one method invocation on the same reference, is always interacting

with the same session bean instance. A stateless SB instance might keep

a client-neutral state during its lifetime which might, for instance, be the

source of performance benefits in the same way as MDB instances.

Access to session bean instances is based on Java interfaces. These are

divided into six different types, namely home, remote, business, local home,

local, and local business interface. The former three types might be used to

access session beans and their instances from inside a container as well

as across its boundary. The latter three types can only be used as founda-

tion for method invocations inside the same Java Virtual Machine (JVM).

The standard does not prescribe that bean instances of all deployed EJB

components inside a container are executed within the same JVM. Thus,

access through local-* interfaces does not necessarily need to be provided

across the boundaries of a deployed component. They are intended to be

used inside deployed components. For the remainder of this thesis the

local-* interfaces are summarized under the term Internal Interfaces while

the other ones are subsumed under the term External Interfaces. Local

home and local interfaces, as well as their corresponding remote counter-

parts are provided for downward compatibility with version 2.1 of the EJB

standard. They are used in combination in each case. Local home and

The EJB Component Model 63

home interfaces address client accessible management aspects of session

beans and their instances. These interfaces might, for instance, be used to

create a reference to a corresponding SB instance in accordance with the

particular local and remote interface which cannot be obtained directly

from the container. Local and remote interfaces themselves provide ac-

cess to SB instances for making use of the encapsulated application logic.

Business and local business interfaces represent one of the new concepts

of EJB 3.0. They solely provide access to the encapsulated application logic

of a session bean and are considered as preferable choice for provided in-

terfaces of SBs. References to SB instances based on local business or

business interfaces can be requested directly from the container.

3.1.1.3. Component Specification

During implementation developers can integrate Metadata Annotations

into the source code of beans for specification purposes. Alternatively

or in combination it is also possible to provide a component specification

in form of a DD. Such a DD can address the same aspects as annotations.

Additionally, it can cover specifications on component-level. In case cer-

tain annotations refer to the same aspects as parts of the DD, the content

of the DD is privileged. Hence, it is possible to adjust the specification of

a component and its constituting beans without the need to manipulate

their source code. The EJB standard also allows the integration of arbitrary

artifacts into an ejb-jar file. Nevertheless, these artifacts are not explicitly

supported by the EJB standard. Consequently, container implementations

do not need to support custom enhancements.

In relation to the concept of component orientation the EJB standard

considers Java interfaces as types of access points to SB instances. Thus,

the EJB standard concentrates on syntactic aspects while not explicitly ad-

dressing semantic or non-functional ones. As it is possible to integrate

arbitrary artifacts into ejb-jar files, it might be meaningful to enrich in-

64 Enterprise JavaBeans, Version 3.0

terface specifications and components with semantic and non-functional

aspects, as well as with human readable documentations such as an API

specification. Nevertheless, these would not be considered or supported

by a container.

The EJB standard supports the specification of environment dependen-

cies such as required SB interfaces, Web Service references, or references

to the EIS-tier. As this thesis concentrates on the internals of the busi-

ness tier, only required interfaces are considered in the remainder of this

thesis. Please refer to chapter 16 of the EJB standard for further details

regarding other dependencies (cf. [58], p. 401ff).

In addition to provided interfaces and environment dependencies the

EJB standard allows the parameterization of enterprise beans through so-

called Simple Environment Entries (SEE). Such an entry can be defined

based on the Java types String, Character, Integer, Boolean, Double,

Byte, Short, Long, and Float. Additionally, beans can be configured

through parameterization with respect to different facilities defined in the

standard (see section 3.2).

3.1.2. Component Systems

In this section the foundations of EJB-based systems and the mechanisms

for their establishment are presented. Section 3.1.2.1 covers a discus-

sion of the naming facility which builds the foundation for publication

of and connection establishment between deployed components inside a

container. Subsequently, an overview of the opportunities for the adapta-

tion of components during deployment are addressed in section 3.1.2.2.

Finally, the concept of Dependency Injection is presented in section 3.1.2.3.

3.1.2.1. Component Publication and Connection Establishment

In the EJB standard, a naming facility based on the Java Naming and Direc-

tory Interface (JNDI) [148] is considered as foundation for the publication

The EJB Component Model 65

of component access points, as well as for the establishment of connec-

tions to instances of the corresponding beans. JNDI provides an abstract

Java API for the interaction with naming and directory services. In the

context of EJB, JNDI is used for name-to-object resolution. Therefore, a

container must provide an implementation of JNDI to deployed compo-

nents and instances of the constituent enterprise beans which only covers

the corresponding parts of the JNDI standard. In contrast, a manipulation

of entries at runtime should not be supported. The corresponding naming

schema is intended to also contain references to resources which are ac-

cessible from inside a container such as JMS-based message destinations.

Nevertheless, the creation and binding of resources itself is not addressed

by the EJB standard, but is left open to container implementations. Dur-

ing deployment enterprise beans are bound to so-called Mapped Names

inside the name schema. Regarding session beans these names can be

used by clients to request references based on home and business inter-

faces. A reference based on a home interface is not directly connected to

an SB instance, but might be used to request references to instances based

on the corresponding remote interface. References based on business in-

terfaces might be resolved also and might be used for interactions directly.

References based on local home and local business interfaces are not pub-

lished inside the naming facility. In contrast, a connection establishment

based on these interfaces is only supported through component adapta-

tion, as discussed in the following section. For message-driven beans the

submitted mapped names must be bound to access points of existing mes-

sage destinations for which the MDBs should be registered as listeners.

These mapped names can be used by clients to establish connections to

the corresponding message destinations at runtime.

The deployment of EJB modules should be supported by container ven-

dors through appropriate tools. Their concrete realization is not addressed

within the standard. After the deployment of an EJB component a manip-

ulation of bindings of constituent beans is not supported. Consequently,

66 Enterprise JavaBeans, Version 3.0

the publication of beans at a mapped name is limited to the deployment

of components.

The naming facility can be accessed from inside or outside an EJB con-

tainer. The EJB standard demands that an implementation must only sup-

port the usage of the naming facility to look up objects through submit-

ting their mapped names, while not allowing the manipulation of entries.

Thus, users should not be able to add, remove or change name-to-object

bindings. The usage of the naming facility from inside component source

code enables, amongst others, a pull-oriented connection establishment

to SB instances and message destinations served by MDB instances. If a

name is resolved the container must behave in accordance with the dis-

cussion of section 3.1. Therefore, it must ensure that each request for

a stateful SB yields a reference to a new instance. For stateless SBs it

might realize references through a kind of proxies allowing it to sched-

ule method invocations to idle instances. Regarding MDBs the container

must provide access to the corresponding message destination. The EJB

standard does not restrict the usage of the naming facility to previously de-

fined references, that is, bean instances might obtain references through

direct lookups. Therefore, a component specification does not necessarily

need to be complete with respect to the declaration of environment de-

pendencies. Consequently, bean instances might establish connections

to their execution environment which are not reflected in the correspond-

ing component specification through environment dependencies.

For external clients the EJB standard demands that an EJB container

must at least allow interactions with its naming facility in accordance with

the CosNaming specification [122]. Furthermore, the interaction with SB

instances should at least be possible through CORBA/IIOP [121]. This

should enable the interaction among containers from different vendors.

Furthermore, the usage of EJB-based enterprise systems should be possi-

ble for clients not being implemented on top of the Java platform as long

as they are able to interact through the above stated specifications. Never-

The EJB Component Model 67

theless, the standard only demands interoperability for accessing session

beans through home and remote interfaces (cf. [58], p. 382 - 386 and p.

391f).

3.1.2.2. Component Adaptation

The naming facility discussed in the previous section is called global names-

pace, because it is accessible from inside the source code of components,

as well as from clients outside the EJB container. In addition to this

namespace an individual local namespace is established for each deployed

bean containing, amongst others, entries for all of its declared dependen-

cies and simple environment entries. During development, assembling,

or deployment of an EJB component, entries of local namespaces might be

manipulated. For environment dependencies local names are mapped to

global names. The specification of links from local names to global names

during development or assembling does not include the actual link estab-

lishment, but represents a proposal for later deployment. If the global

namespace is manipulated in a deployment context, for example, through

changes of the set of deployed components, this has direct impact on af-

fected mappings inside local namespaces. References to local home and

local business interfaces are directly bound to the local namespace of en-

terprise beans. This is only possible for interfaces which are provided by

beans inside the same EJB component. Values for SEEs are also directly

integrated into the local namespace of a bean and do not have correspond-

ing elements in a global namespace. Both, entries for dependencies and

SEEs cannot be manipulated after deployment. Locally bound names of a

bean can be looked up through a reference to the global namespace in that

they are accessible through a special prefix2. Nevertheless, these entries

are only accessible from inside the execution context of corresponding

bean instances. For all other execution contexts they are neither visible

2 java:comp/env

68 Enterprise JavaBeans, Version 3.0

nor accessible.

Summarizing, parameter and compositional adaptation of EJB compo-

nents can be performed through manipulation of the local namespace of

the constituent beans during development, assembling, or deployment.

In relation to the discussion in section 1.2.2 the EJB standard supports

static composition only. Therefore, it does not consider opportunities

for seamless reconfiguration of EJB-based enterprise systems at runtime.

Nevertheless, it is possible to exchange deployed components without the

need to access other referencing deployed components. This can be per-

formed through a combination of undeploying the original deployed com-

ponent and subsequently deploying the replacing component while bind-

ing the replacing beans to the mapped names of the original ones. Such

a proceeding might lead to system disruptions and connection losses, be-

cause the affected names of the global namespace would not be bound

during the timespan between undeployment and deployment. Conse-

quently, resolutions for these names could not be fulfilled. Additionally,

existing connections to bean instances belonging to the undeployed com-

ponent would get lost.

3.1.2.3. Dependency Injection

In addition to the usage of the global and local namespaces for pull-oriented

obtainment of SEE values and connection establishment it is possible to

specify that values and references should be injected into bean instances

during construction. These injections are summarized under the term

Dependency Injection (DI) which is one of the new concepts of EJB 3.0. It

facilitates the tasks of component developers, because they do not have to

consider the actual resolution of references or SEE values inside source

code, but can rely on their availability after instance construction.

After instantiation of an enterprise bean a container must inject val-

ues for SEEs and references for dependencies, if specified through an-

The EJB Component Model 69

notations or the corresponding DD. The injection itself might either be

performed through setting field values or through invocation of special

set-methods following the naming conventions of JavaBeans properties

(cf. [74], p. 55).

3.1.3. Bean Instance Life Cycles

Each bean instance passes through a type-specific life cycle. For instances

of stateless SBs and MDBs the particular life cycles are almost equal. They

mainly consist of three states and transitions initiated by a container as

depicted in figure 3.2.

Method Invocation
AroundInvoke

Method Invocation
AroundInvoke

PreDestroy

does not

exist
readyconfiguring

InjectDependency

PostConstruct

Timeout

Constructor

Figure 3.2.: Basic bean instance life cycle (cf. [58], p. 84 and p. 115).

The italic messages in the figure indicate that the corresponding methods

are invoked by the container. The life cycle of an instance starts within

the state does not exist indicating that the considered bean instance does

not exist within the runtime environment. Through the invocation of a

default Constructor the container creates the instance which subsequently

is transferred to the state configuring. In this state the container must

perform Dependency Injection, if corresponding targets are defined. After-

wards, it informs the new instance about the end of container initiated

configuration through invocation of a PostConstruct method, if present.

Such a method can be defined either through annotations or in the DD,

and must exhibit a special signature. It allows instances to perform their

own configuration actions while relying on being properly configured by

70 Enterprise JavaBeans, Version 3.0

the container. During execution of PostConstruct a bean instance might

interact with its environment which is not allowed during the configuring

state. The bean instance is afterwards transferred to the ready state. If

no PostConstruct method is defined for a bean, a container can directly

transfer the new instance from configuring to ready after finishing its con-

figuration demands, if any. This alternative is not covered in the figure.

Within the ready state the container might forward Method Invocations of

clients to SB instances or received messages to MDB instances. Further-

more, Timeout methods, relating to the timer service, can be invoked by

the container (see section 3.2.3). When a container does not need an in-

stance anymore it can destroy the instance, as described in section 3.1.1.

Before doing so it must invoke a PreDestroy method allowing the instance

to perform cleanup actions, if specified. The definition of such a method

is analog to that of a PostConstruct method. If no PreDestroy method is

defined for a bean the container can directly destroy the corresponding

instance which is not depicted in the figure.

An enterprise bean can additionally define an AroundInvoke method,

analog to PostConstruct and PreDestroy methods. If defined, the container

must forward the control flow of client initiated Method Invocations or

messages to the AroundInvoke method before the original processing of

the method or message. During execution of an AroundInvoke method

the instance might access and manipulate the parameters of the origi-

nal invocation and gain reflective insight into the target method, for in-

stance, to discover its signature. The same holds for a received message

analogously. After performing all desired actions the invocation might be

forwarded for execution of the original method. After completion the con-

trol flow is returned to the AroundInvoke method, allowing inspection and

manipulation of the return value, if any. During execution of an Around-

Invoke method it is also possible to prevent the target method from being

executed.

The life cycle of stateful SB instances can be interpreted as an extension

The EJB Component Model 71

of the life cycle discussed above. Figure 3.3 depicts the corresponding

states and transitions. The upper states in the figure (does not exist, config-

uring and ready), as well as the corresponding transitions are equivalent

for all bean life cycles.

Figure 3.3.: Stateful SB instance life cycle (cf. [58], p. 74).

As for MDBs and stateless SBs a container can choose ready instances

of stateful session beans for removal from main memory. Nevertheless, it

might be meaningful not to remove them completely, but to keep them for

later reactivation due to their client-specific conversational state. There-

fore, the EJB standard defines a fourth state called passive. In this state a

stateful SB instance does not exist inside the main memory of a container

anymore, but is persisted to secondary storage. Before a container persists

an instance, it must invoke a PrePassivate method on the corresponding

instance, if defined. Such a method can be declared through annotation

or inside the DD and must have a specific signature. It is mainly intended

to allow instances to prepare their serialization, for example, by closing

open resource connections. When a client tries to interact with a pas-

sive instance, the container deserializes the instance and subsequently in-

vokes a PostActivate method on it, if defined. This method represents the

counterpart for a PrePassivate method and allows the instance to perform

72 Enterprise JavaBeans, Version 3.0

preparation actions for being ready to serve client-based method invoca-

tions again. A container might also choose passive instances for removal

from secondary storage. This is shown in figure 3.3 on page 71 through

the transition from the passive to the does not exist state. This transition is

not observable by affected bean instances.

3.1.4. Interceptors

Bean instances might supervise their life cycle and the corresponding

transitions through method invocations performed by the container, as

discussed in the previous section. Additionally, the EJB standard allows

the definition of interceptor methods on distinct classes which can be used

as interceptors. For their application they must be attached to enterprise

beans either through annotations inside the bean source code or through

the DD. An arbitrary number of interceptors might be attached to an en-

terprise bean on different levels, for example, for a single method, a bean

as a whole, or all beans of the corresponding module. They are organized

in a bean-specific interceptor chain defining the order in which they ac-

cess an incoming method invocation. At runtime an interceptor instance

is bound to a single bean instance, that is, it has the same life cycle regard-

ing all state transitions. An interceptor instance intercepts the affected

method invocations on the associated bean instance only. Furthermore,

an interceptor shares the local namespace of the associated bean.

Figure 3.4 on page 73 shows the interactions between a container, an

interceptor instance, and an SB instance during processing a method in-

vocation of a client, as defined by the EJB standard. For the figure it is

assumed that one interceptor (MyInterceptor) is attached to an SB (My-

SessionBean) and that there is no AroundInvoke method defined on the

bean itself. The figure does only represent a schematic view on the dif-

ferent interactions. They do not necessarily need to be realized exactly

the same way by a container implementation. Nevertheless, the incoming

The EJB Component Model 73

and outgoing method invocations at the interceptor instance and the bean

instance are defined in the standard as shown in the figure.

Figure 3.4.: Schematic view on EJB Interception.

The interactions start with a method invocation of a client arriving at the

access point (cap) on container side (1:m). After identification of the target

SB instance the container must provide an instance of a so-called Invoca-

tionContext (iCtx) which is passed as a parameter to interception methods.

This context provides, amongst others, access to different aspects of the

corresponding call for inspection and manipulation purposes such as its

parameters. Furthermore, it enables interceptor instances to gain direct

access to the target bean instance. Afterwards, the aroundInvoke method

is invoked (1.1.1:aroundInvoke) on the interceptor instance (i) allowing it

to perform the desired actions. After all desired actions before the exe-

cution of the target method were performed, the interceptor must invoke

the proceed-method (1.1.1.1:proceed) on the invocation context instance to

forward the invocation. On receiving the invocation iCtx interacts with

the next interceptor of the corresponding interceptor chain in the same

way as discussed before (1.1.1 and 1.1.1.1). When the last interceptor in-

stance is passed the container invokes the aroundInvoke method on the

target bean instance (target), if defined. These steps are not addressed in

the figure due to the underlying assumptions and for clarity reason. Fi-

nally, the original method invocation is performed on target (1.1.1.1.1:m).

74 Enterprise JavaBeans, Version 3.0

After its completion (1.1.1.1.2:m) the aroundInvoke invocation on the bean

instance and the interceptor chain are passed in reverse order through

returning from the proceed invocations on iCtx (1.1.1.2:return). This al-

lows target and interceptor instances to perform actions after execution of

the target method, for example, to react to the return value or an excep-

tion. After finishing execution i returns from the aroundInvoke invocation

(1.1.2:return). When the last interceptor instance has returned the (poten-

tially adjusted) result of the invocation is returned to the cap (1.2:return)

and finally handed back to aClient (2:m). During an invocation on an inter-

ceptor instance the instance might throw an exception or return without

invoking proceed on iCtx. If the exception is thrown before invoking the

proceed method or the invocation of proceed is omitted the method m is not

invoked on target.

Summarizing, interceptor instances gain full control over the control

flow before and after method invocations. This allows them to perform

any desired inspection and manipulation actions regarding parameter val-

ues or the return value. In this context, they might also throw exceptions

or prevent the original call from being executed on the target bean in-

stance. Finally, they are able to interact with the target instance directly

and are provided with the same opportunities for interaction with the con-

tainer as the target bean instance. An analog proceeding is applied to in-

vocations during life cycle transitions, that is, PostConstruct, PreDestroy,

PrePassivate, and PostActivate.

3.2. Container Facilities

Beyond the core component model the EJB standard includes the defini-

tion of different facilities supporting the development of components and

providing a common ground for execution environments of deployed EJB

components. The following sections provide an overview of those facili-

ties which are relevant for this thesis. First, the transaction support, as

Container Facilities 75

provided by the standard, is presented in section 3.2.1. Afterwards, secu-

rity aspects are discussed in section 3.2.2. Finally, the timer service which

must be provided by containers is presented in section 3.2.3. The sections

do not aim to provide a comprehensive introduction into the considered

facilities, but only give a short overview. Please refer to the corresponding

sections of the EJB standard for further details.

3.2.1. Transaction Support

According to the EJB standard transactions are intended to

”[. . .] free the application programmer from dealing with the com-

plex issues of failure recovery and multi-user programming. If

the application programmer uses transactions, the programmer di-

vides the application’s work into units called transactions. The

transactional system ensures that a unit of work either fully com-

pletes, or the work is fully rolled back. Furthermore, transactions

make it possible for the programmer to design the application as

if it ran in an environment that executes units of work serially.”

(cf. [58], p. 315)

The standard considers transactions to disburden component developers

through addressing situations potentially demanding for the cancellation

of effects of previous actions. This might become necessary if failures

are identified during execution or if certain required conditions are not

fulfilled. In this context, transactions are seen as work units which must

be fulfilled in an atomic fashion, that is, they must be either completed

successfully as a whole (commit) or their effects must be undone (roll-

back). Transactions are considered in the EJB standard with respect to

resources accessed by bean instances. The underlying transaction model

is a flat model which does not support nested transactions. Transaction

support allows developers to design and realize components without the

76 Enterprise JavaBeans, Version 3.0

need to consider concurrent access to commonly used resources like data

bases, because transactions are isolated from each other. Nevertheless,

the concrete support for different isolation levels is left open to resource

providers. Bean instances are responsible to configure appropriate iso-

lation levels through the corresponding resource API. In combination

with the non-reentrancy property of enterprise beans concurrency does

not need to be explicitly considered during component development be-

yond the specification of transaction properties and the configuration of

resource specific isolation levels.

The EJB standard defines two types of transaction demarcation, namely

bean-managed transaction demarcation and container-managed transaction

demarcation. The applied demarcation type is defined for an enterprise

bean as a whole.

Bean-managed transaction demarcation (BMTD): This type of transaction

demarcation allows a fine-grained control over transactions from inside

the source code of enterprise beans. This might be performed through

application of the Java Transaction API (JTA) [47]. This API supports the

beginning and committing of transactions, as well as the initiation of roll-

backs. Furthermore, the current state of a transaction can be supervised.

Through this type of transaction demarcation it is possible to span a trans-

action across multiple invocations on a stateful SB instance. Moreover, it

also allows to split the source code of a method into different transac-

tion units being executed in the context of separate transactions. It is not

possible to join transactions started by clients of a bean instance. Such

transactions are suspended before execution of an original invocation and

is resumed afterwards.

Container-managed transaction demarcation (CMTD): This type is the de-

fault if no demarcation specification is provided for an enterprise bean. In

contrast to the previous type, it allows a declarative specification of trans-

action support for interactions with bean instances trough annotations or

through the DD. For each method of a bean, which is used for interac-

Container Facilities 77

tion with clients, a transaction attribute might be specified. This attribute

determines the transaction semantics for an invocation of the particular

method. The supported values for the transaction attribute are:

• Never: The corresponding method is executed without any trans-

action support. Furthermore, a client must invoke such a method

without submitting a transaction context.

• Mandatory: A client must invoke such a method submitting an ex-

isting transaction context. The method itself is executed in the con-

text of the client transaction.

• Required: The method demands for a transaction context for its

execution. If a client transaction is submitted this transaction is

joined. Otherwise, the container must start a new transaction for

method execution. If no transaction attribute is specified for a cer-

tain method, the standard defines Required as default transaction

semantics in case CMTD is applied.

• RequiresNew: A corresponding method must be executed within a

new transaction context. An existing client transaction is suspended

and resumed after method execution, if any.

• NotSupported: The invocation of a corresponding method is exe-

cuted in an unspecified transaction context. Client transactions are

suspended before starting execution and resumed after finishing, if

any.

• Supports: If a client invokes a method supporting transactions, the

container must execute the method in the transaction context of the

client. Otherwise, the method must be executed in an unspecified

transaction context.

For mandatory, required, and requiresNew the container must forward the

corresponding transaction context to accessed resources during execu-

tion if they support transactions. Never and notSupported demand that

no transaction context is forwarded. The forwarding semantics of supports

78 Enterprise JavaBeans, Version 3.0

depends on the transaction context of the client invocation. If a trans-

action context exists, it is submitted during resource usage, if possible.

Otherwise, no transaction context is forwarded. Inside the source code of

a method it is possible to request the current state of an active transaction,

if any. Furthermore, it can be declared that a transaction should be rolled

back. Stateful SBs might implement the javax.ejb.SessionSynchro-

nization interface for being notified about transaction synchronizations,

for example, that a transaction is about to be started or stopped3, or that

the startup or stop of a transaction has been finished.

For both demarcation types the EJB standard does not demand that the

state of an affected bean instance itself is subject to automated transaction

management. Therefore, in case of a rollback the instance state itself is

not reset. In this context, the bean developer is responsible to implement

appropriate mechanisms if a rollback of an instance state is necessary.

Instances realizing BMTD are controlling transactions. Therefore, they

can supervise changes in a transaction state and can react appropriately.

For CMTD the javax.ejb.SessionSynchronization interface enables

stateful SB instances to also supervise state transitions and perform a roll-

back of their state, if necessary. As stateless SBs and MDBs must be im-

plemented in a way that ensures equivalence of instances, a rollback of

their state is not necessary.

Summarizing, the EJB standard supports transactions through auto-

mated management of transaction execution. In this context, it can be

defined how transactions should be supported for a certain bean. The

concrete realization at runtime lies within the responsibility of the con-

tainer. BMTD allows fine-grained control of transactions from inside

source code. CMTD might free developers completely from addressing

transactions. Nevertheless, bean instances based on CMTD might also

supervise and influence transaction execution, if desired. If the state of a

3 Commit or rollback

Container Facilities 79

bean instance itself should be subject of transaction rollbacks this must

be implemented by bean developers.

3.2.2. Security

The EJB standard provides a security model which allows to address secu-

rity policies in an abstract manner. In this context, component develop-

ers do not need to consider the original authentication and authorization

process inside the source code of beans. These aspects lay within the re-

sponsibility of containers and are transparent to deployed components at

runtime. Moreover, component developers can abstract from potential

execution environments of their components during development with

respect to the concrete security configuration such as different security

realms, or existing users and groups.

Figure 3.5 on page 80 presents the security model as described in the

standard which is based on so-called Roles and Permissions. A role repre-

sents a logical group of entities defined on component level. A permis-

sion is the right to interact with instances of a certain bean either through

method invocations (SBs) or through sending messages (MDBs). A per-

mission is related to at least one method of an enterprise bean and is

assigned to at least one role. Roles might be associated with multiple

permissions and vice versa. Roles and permissions are defined for com-

ponents and beans either through metadata annotations or inside a DD.

In this context, single entities associated with a certain role are not con-

sidered. In combination roles and permissions define a logical view on

security aspects which is independent from a concrete execution environ-

ment. Moreover, fine-grained access control policies might be specified

on method level.

During deployment roles must be mapped to the security settings of the

target execution environment. A container security model based on Do-

mains, Realms, Groups, and Accounts is considered in the standard. Never-

80 Enterprise JavaBeans, Version 3.0

Deployed Component Domain

Bean Method

Principal
Bean

Instance

Method

Invocation

Permission

Role

Runtime Level

Deployment Level

Realm

Group

Account

EJB Container

Figure 3.5.: The EJB security model

theless, this model does not necessarily need to be realized by container

implementations, but represents a blueprint for container providers. A

security domain is considered as the topmost concept in a hosting sce-

nario. Inside a domain there might exist multiple realms, for instance, to

distinguish different categories of users such as customers or suppliers. A

realm might internally be organized in groups of accounts for administra-

tion purposes. In this context, an account represents a single logical user

which can be authenticated individually at runtime. The standard pro-

poses that roles are mapped to groups, but also mentions the opportunity

to assign a role to a single user. These two alternatives are represented in

the figure through the dashed associations.

At runtime a container must guarantee that the security requirements

of deployed components are fulfilled. It must ensure that users are cor-

rectly authenticated against their accounts. In this context, an authenti-

cated user is called Principal. Furthermore, the container must guarantee

that principals are only allowed to interact with bean instances in a way

that is compliant with the roles defined inside the corresponding compo-

nent and the mapping to the container security settings.

During method execution a container must provide bean instances with

Container Facilities 81

information about the interacting principal. Therefore, the container en-

ables bean instances to request the account name of the principal, as well

as to determine if the principal is (indirectly) associated with a certain role.

According to the standard principal information must be forwarded

along nested method invocations inside a container. Nevertheless, there

are situations conceivable where a change of roles might become neces-

sary4. For such a scenario it is possible to define that instances of a bean

should act in a specific role at runtime. Therefore, the standard provides

the opportunity to define that a bean instance requires certain roles for

incoming method invocations while acting in a different role when per-

forming method calls itself. This is not depicted in figure 3.5.

3.2.3. Timer Service

As part of the EJB standard a timer service is defined. This service is

intended to support stateless SB and MDB instances with the opportu-

nity to start timers for later execution of callback methods. These can

be scheduled after an elapsed duration, at a certain time, or at recurring

intervals. For management purposes bean instances can locate timers

which are currently associated with the corresponding bean. These can

be inspected or canceled individually. A reference to the service can be

obtained by instances through dependency injection or can be requested

from the container.

Callbacks are not necessarily executed on that bean instance which initi-

ated the scheduling. Instead of that, the container can choose an arbitrary

instance of the corresponding bean for execution. In this context, a bean

instance can provide a serializable object during timer scheduling. This

4 Such a situation might, for example, be given if a bean should be accessible for principals

which are in the role of a customer. Internally, instances of that bean should interact

with a warehousing system. Nevertheless, the warehousing system itself should not be

accessible for customers directly. Therefore, the bean must interact with the warehousing

system in a different role.

82 Enterprise JavaBeans, Version 3.0

object is handed to the instance which executes a callback and is intended

to contain context information.

The timer service is not intended to provide real-time properties, that

is, it does not guarantee that a timeout callback is started at exactly the

specified time. In contrast, it is intended to support long-lived business

processes. The EJB standard demands that timers survive crashes and

shutdowns of Java EE servers.

Timer-method invocations represent the fourth relevant situation dur-

ing which bean instances can interact with their environment. The other

three situations are the invocation of life cycle calls, the receipt of a JMS

message by an MDB instance, and the execution of an invocation upon an

SB instance. Within all of these situations bean instances might interact

with their environment and other bean instances. Therefore, the Timer

Service must be considered by an AC infrastructure at least for controlling

interactions in a managed system. This is especially relevant during the

realization of dynamic adaptation (cf. section 5.6). The construction of

bean instances itself does not belong to the group of relevant situations,

because during constructor execution bean instances must not interact

with their environment (cf. [58], p. 79, p. 88 and p. 117).

3.3. Role Model

As part of the EJB standard seven different roles are specified. For each

of these roles the standard defines responsibilities regarding the different

aspects to address during software and system life cycles. In combination

these roles give an impression of how the development and application

of EJB-based enterprise software and systems are envisioned within the

EJB standard. Although the standard does not prescribe these roles, their

definition and the corresponding task assignments provide a meaningful

foundation regarding development and execution aspects to consider for

an AC infrastructure. The different roles are shortly introduced in the

Role Model 83

remainder of this section.

EJB Container Provider: The responsibilities of container providers lay

within the provision of container implementations and tools for support-

ing deployment preparation and installation of EJB components. For bean

instances a container provider must ensure that a container implementa-

tion provides all required APIs, services, and facilities. Moreover, a con-

tainer must show a standard compliant behavior at runtime, for example,

regarding the life cycle management of bean instances.

EJB Server Provider: An EJB server provider is responsible for the im-

plementation of a low-level infrastructure of EJB containers such as dis-

tributed transaction management. The standard does not define any re-

lationships between servers and containers, because it assumes them of

being deeply integrated and being provided by the same vendor.

Persistence Provider: An implementation of the object/relational map-

ping, as defined in the Java Persistence API [59], is provided by a persis-

tence provider. This also covers the realization of a scalable and transaction-

enabled execution environment for persistence management. Addition-

ally, a persistence provider supports deployers with tools for preprocess-

ing persistence entities if this is necessary for their mapping to an under-

lying data source.

Enterprise Bean Provider: The role of an enterprise bean provider, or Bean

Provider for short, is taken on by software developers. They implement the

source code of single enterprise beans and define their external specifica-

tion through annotations or a DD. Such a specification might cover all as-

pects discussed in the context of EJB component specifications in section

3.1.1.3 and aspects of container facilities. Nevertheless, bean providers do

not configure beans for concrete execution environments.

Application Assembler: An application assembler combines the results

of development performed by bean providers. He or she integrates dif-

ferent beans into a component and configures it internally. This might,

for instance, include the declaration of connections between provided and

84 Enterprise JavaBeans, Version 3.0

required interfaces of constituent enterprise beans. Consequently, the

outcomes of assembling are EJB-based components (ejb-jar files). An ap-

plication assembler considers beans from an external view. Therefore, he

or she does not need to know their concrete realization, but only their ex-

ternally observable properties. An application assembler is considered in

a broader context with respect to other parts of Java EE 5. These aspects

are not relevant in this thesis.

Deployer: A deployer adjusts an ejb-jar file for its integration into a con-

tainer. Therefore, he or she must configure the component to be deployed

in order to fulfill the external requirements of the constituent beans, for

instance, through specifying connections for required interfaces or through

mapping security roles to the underlying security system of the target con-

tainer. Furthermore, he or she might set or change values for simple en-

vironment entries. Subsequently, a deployer prepares the component to

deploy for its target environment, for example, through the execution of

preprocessing tools, if required. Finally, he or she deploys the component

into the target container in accordance with instructions stated by applica-

tion assemblers, if such exist.

System Administrator According to the EJB standard a system adminis-

trator is responsible for the management of the IT-infrastructure covering

all aspects of computing systems and underlying resources. Nevertheless,

the standard concentrates on those aspects which directly relate to the su-

pervision and adjustment of EJB-based systems and the corresponding

resources.

The first three roles in combination are responsible for the provision

of the software infrastructure of runtime environments of EJB-based sys-

tems. EJB server providers and EJB container providers directly address

the execution of bean instances and interactions inside the business-tier,

as well as interactions with the web-tier. This also covers supported APIs,

services, and facilities. Moreover, access points for external clients must

also be provided. A persistence provider provides an implementation of

Related Management Standards 85

an abstraction from the EIS-tier. Bean provider and application assembler

concentrate on the development of EJB-based enterprise software. While

a bean provider is responsible for the development of component build-

ing blocks, an application assembler constructs components out of them.

Finally, deployers and system administrators address the management of

EJB-based component systems. In relation to section 1.2.2 a deployer is

directly concerned with adaptation of component systems, because he or

she manipulates the architecture of a component system through the ad-

justment of bean dependencies during deployment, and through the de-

ployment of components and the undeployment of deployed components.

Furthermore, he or she performs parameter adaptation by setting simple

environment entries during deployment. System administrators are re-

sponsible for the management of the underlying infrastructure such as

containers, Java EE servers, or database management systems.

3.4. Related Management Standards

The EJB standard does not address the original deployment of EJB compo-

nents. Instead of that, the standard is limited to the configuration of com-

ponents through annotations and DDs as preparation for deployment.

Furthermore, execution environments for deployed EJB components are

also not addressed with respect to their inspection and manipulation. The

standard defines the behavior of containers regarding the interaction with

bean instances only, for instance, the provision of facilities or the need for

guaranteeing non-reentrancy of bean instances. Consequently, the EJB

standard does not support deployers and system administrators with spe-

cific requirements for fulfilling their tasks regarding the interaction with

a container.

In the context of Java EE 5, there do exist two standards addressing the

above stated areas of manipulation and inspection. These standards are

not limited to Enterprise JavaBeans 3.0, but address all aspects of Java EE

86 Enterprise JavaBeans, Version 3.0

5 also covering, for instance, web-tier components. The two standards

are introduced briefly in the following, because they might provide links

for the (autonomic) management of execution environments of EJB-based

component systems.

3.4.1. The Java Enterprise Edition 5 Deployment API Specification

The Java Enterprise Edition 5 Deployment API Specification, Version 1.2 is

a standard which is intended to unify the inspection and deployment of

Java EE-based software also covering EJB components. The standard was

first released in July 2002 as JSR 88 [64]. It does not necessarily need to be

supported by all Java EE platforms (cf. [140], p. 115). In order to reach the

goal of unification, the standard defines two APIs.

The first API should be realized by so-called Java EE Product Provider.

These are the vendors of Java EE products like Java EE servers. The API

should support deployers through opportunities for inspection and ma-

nipulation of the set of deployed components of a Java EE server. In this

context, there are different actions considered for manipulating the life

cycle of deployed components, as depicted in figure 3.6.

Figure 3.6.: Life cycle of deployed components according to JSR 88.

The life cycle of a deployed component starts with its distribution. Dur-

ing the distribute transition the component is validated, preprocessed if

necessary, and finally transferred to its target execution environment. A

deployed component in the DISTRIBUTED state does exist inside a con-

tainer, but cannot be accessed by clients. In order to allow client access,

Related Management Standards 87

it must be transferred (start) into the state STARTED. When a deployed

component is not needed anymore it might be transferred (stop) to the

state DISTRIBUTED again and finally be undeployed. During the unde-

ploy transition a deployed component is removed from the container and

does not exist anymore after completion of the transition. During the

whole life cycle of deployed components there is no configuration consid-

ered in the JSR 88 standard.

The second API should be realized by so-called Tool Providers. These

represent the vendors of tools for supporting configuration and deploy-

ment of Java EE-based components. In the context of JSR 88, the providers

are responsible to support a unified API for inspection of components

which is independent from concrete requirements of different execution

environments. The API is rather generic and orientates itself at the XML

structure of DDs. In this context, nodes are represented through so-called

DDBeans which might be used for inspection and navigation. Neverthe-

less, a manipulation of components or applications through the API is not

considered.

3.4.2. Java 2 Platform, Enterprise Edition Management Specification

To support system administrators performing their tasks the Java 2 Plat-

form, Enterprise Edition Management Specification [81] defines a unified

model for managing and monitoring Java EE servers, their deployed com-

ponents, and managed resources. It was released as JSR 77 [81] in July

2002. The standard represents a required part of Java EE 5 and must

therefore be supported by all Java EE platforms (cf. [140], p. 115). JSR

77 defines different interfaces for interacting with a Java EE server, also

including an EJB-based access point.

The standard specifies a meta model which is intended to represent the

basic concepts of the Java EE 5 domain. This meta model is rather rudi-

mental, because it only defines classes for the different concepts discussed

88 Enterprise JavaBeans, Version 3.0

below including basic attributes and operations. It is intended to be ex-

tended by vendors with product-specific aspects. As a central concept of

the standard so-called Managed Objects are considered. A managed object

is intended to represent a server itself or included objects which might be

subject to management. Management can be performed through inspec-

tion and manipulation of attributes of managed objects. Nevertheless, the

standard does not require any of the attributes to be mutable. JSR 77 ad-

dresses four main areas, namely Discovery, State Management, Events, and

Performance Monitoring.

Discovery relates to the identification and navigation along managed ob-

jects. In this context, deployed EJB components are considered as EJBMo-

dules containing at least one EJB. EJBs are further specialized according

to the different enterprise bean types. There are no special attributes de-

fined for components and beans. Therefore, JSR 77 only covers navigation

regarding the structure of EJB components.

For some managed objects State Management can be performed regard-

ing their life cycle, for example, for a Java EE server as a whole or for single

deployed components. The standard includes a very basic model which al-

lows to start or stop those objects from inside source code and to observe

the process of state transition, as well as its success or failure. State man-

agement of deployed EJB components does not need to be supported.

The Events part of JSR 77 addresses the provision of notifications about

the occurrence of different events within a management environment. A

notification contains different attributes such as an identifier of the man-

aged object at which the event occurred or the corresponding event type.

The standard defines a basic set of event types which mainly relate to state

transitions of managed objects or changes of their attributes. Event sup-

port for EJB components is not required.

Under the term Performance Monitoring JSR 77 subsumes different types

of fundamental statistic measures for managed objects. Regarding man-

aged EJBs, the standard supports different statistics which mainly cover

Summary 89

the number of bean instances in different life cycle states.

In combination the four areas addressed by JSR 77 provide a funda-

mental set of inspection facilities for Java EE servers. In this context, noti-

fications about relevant events might be obtained. Furthermore, opportu-

nities for setting attributes of managed objects allow their manipulation.

Finally, it is possible to start and stop managed objects if this is supported

by the corresponding Java EE server. Therefore, system administrators are

equipped with a unified management meta model. Nevertheless, the stan-

dard is rather general and can be seen as foundation for vendor-specific

extensions.

3.5. Summary

The EJB standard provides a specification for component based enterprise

software and systems on top of the Java platform.

The software life cycle of EJB components is addressed through the def-

inition of detailed requirements and guidelines regarding the internals of

components. Bean providers can rely on different assertions for the later

runtime of deployed components such as guaranteed non-reentrancy, or

life cycle management and observation of bean instances. Additionally,

the facilities required by the standard allow bean providers to concentrate

on the core business logic. The concept of interceptors further supports

separation-of-concerns. Finally, the use of deployment descriptors or an-

notations for configuration purposes frees application assemblers from

the need to inspect the source code of components.

The externally observable aspects of components are specified through

environmental dependencies of the constituent enterprise beans. Further-

more, simple environment entries represent opportunities for parameter-

ization. These might be inspected and configured by deployers during

the deployment phase of the system life cycle. The management phase

is not addressed for deployed components, that is, the standard does not

90 Enterprise JavaBeans, Version 3.0

support inspection and adaptation of deployed components. The two ad-

ditional standards discussed in the previous section address the manage-

ment phase of Java EE-based enterprise systems. While JSR 88 provides

effectors for the management of deployed components of a Java EE server,

JSR 77 delivers sensors for inspection of servers and deployed compo-

nents. In combination the standards provide a rudimentary foundation

for system management. Nevertheless, they do not cover any opportuni-

ties for structural and behavioral inspection of a managed system itself.

Furthermore, they do not support dynamic adaptation at runtime. JSR

88 and JSR 77 are not part of the EJB standard, but are integrated in the

broader context of Java EE 5.

Regarding the concept of component orientation the EJB standard pro-

vides a sound foundation for the software life cycle of component-based

enterprise software. Moreover, the underlying component model allows

a clear identification of component boundaries, and opportunities for pa-

rameter and compositional adaptation. In this context, components are

clearly distinguishable from each other. Their constituent enterprise beans

provide an appropriate foundation for addressing the internals of compo-

nents with respect to adaptation and for controlling the runtime behavior

of deployed components. Therefore, this component model is considered

as promising foundation for the realization of an AC infrastructure al-

though it does not cover any semantic or non-functional aspects as part of

component specifications.

The EJB standard does not define any management aspects beyond the

deployment phase of system life cycles. Especially these aspects are of

vital interest to apply the vision of autonomic computing to EJB-based en-

terprise systems. For this purpose especially the JSR 88 is considered as

meaningful foundation for the realization of the necessary facilities. It is

an integral part of Java EE 5 and can therefore be assumed of being spe-

cially designed for the management of deployed enterprise components.

Summary 91

Finally, the practical relevance of the realization of an AC infrastruc-

ture for the EJB standard can be estimated of being very high. This is

the case because of the broad support by well-known companies and its

widespread application. Furthermore, the standard can be regarded of

having reached a high level of maturity due to the ongoing development

since the final release of Enterprise JavaBeans Specification, v1.1 in 1999 (cf.

[109]) and the practical experiences gained in the meantime. Hence there

do exist a couple of conceptual, as well as practical reasons to choose this

standard as foundation for the realization of a realistic AC-infrastructure.

4. Introduction to the AC-Infrastructure

The infrastructure presented in this thesis aims to provide a generic foun-

dation for autonomic computing in the context of component oriented

enterprise systems. Enterprise JavaBeans, version 3.0, is a broadly ac-

cepted and widely used standard for the development of enterprise soft-

ware based on the Java programming language. Therefore, this standard

was chosen as technological foundation for designing and realizing the

AC-infrastructure. In section 1.3 different groups of requirements were

stated which a generic infrastructure has to fulfill for reaching the goal

of providing a comprehensive and generic basis for AC. Against these re-

quirements the presented infrastructure will be evaluated in the end of

this thesis (see section 9.1).

The AC-infrastructure consists of three main parts for addressing the

different aspects of autonomic management of enterprise systems during

their system life cycles. These constituent parts are presented in the sub-

sequent chapters in detail. To illustrate the following discussions section

4.1 introduces a case study which is taken as underlying example for the

remainder of this thesis. Section 4.2 presents the top level blueprint of

the proposed infrastructure which gives an orientation for the discussion

in the following chapters. In this context, the constituent parts are shortly

introduced and the relationships among them are pointed out.

4.1. The underlying Case Study

The case study, which builds the foundation of the further discussion, is

based on the Java EE 5 Tutorial [91]. This tutorial is published by Sun Mi-

94 Introduction to the AC-Infrastructure

crosystems and is referred to as foundation for developers to learn about the

programming of enterprise applications based on Java EE 5. Therefore, it

contains introductions to the different parts of the Java EE platform also

covering EJB 3.0. The tutorial can be seen as one of the most comprehen-

sive and widely used introductions to Java EE 5.

Inside the Java EE 5 Tutorial the Duke’s Bank Application – or Duke’s

Bank for short – represents the final case study (cf. [91], p. 1233 - 1258).

This case study

”[. . .] demonstrates the way that many of the component tech-

nologies presented in this tutorial – enterprise beans, application

clients, and web components – are applied to provide a simple but

functional application.” (cf. [91], p. 1233)

Consequently, Duke’s Bank provides a representative example of how the

different parts of Java EE are intended to be used in combination to re-

alize enterprise software and systems. Nevertheless, it is not intended

to provide a business ready software which might be applied in a real

life context, but a simplified demonstration of the underlying technolo-

gies. For the discussion in this thesis it is considered appropriate with

respect to the integration of different aspects of Java EE as intended by the

specifying parties, and to illustrate and analyze the capabilities of the pre-

sented AC-infrastructure. The source code and other necessary artifacts

for Duke’s Bank are part of the Java EE 5 Tutorial download [91]. These

were taken as foundation for the case study of this thesis.

Duke’s Bank realizes an online banking software. A deployed system

allows bank customers to inspect their accounts and histories of trans-

actions through a web frontend. Furthermore, customers are enabled

to perform banking transactions among their accounts, that is, transfer

money between them. Finally, a bank customer might withdraw money

from or deposit money to his or her accounts. Bank customers and their

accounts are managed by human administrators through a standalone ap-

The underlying Case Study 95

plication client. In this context, information about existing customers

might be inspected and updated. Additionally, customers might be cre-

ated or removed. Account management covers the creation and deletion

of accounts, the inspection of account information, and the addition and

removal of customers to and from accounts.

As pointed out, Duke’s Bank mainly addresses the interplay of different

technologies. In this context, it does not aim to cover all aspects of EJB 3.0.

To include the missing parts, the functionality of the original case study

was extended for this thesis. First of all, bank customers are enabled to

transfer money from their accounts to other accounts of which they are

not stated as owners. This might also include accounts which are hosted

by remote banking systems. Furthermore, customers are allowed to de-

clare standing orders to be executed once a month. To establish connec-

tions to remote banking systems administrators are provided with man-

agement opportunities to add or remove access point information. Finally,

two interfaces were integrated into Duke’s Bank which might be used by

remote banking systems for transfer purposes. The extensions do not in-

duce any changes of the original enterprise beans or their corresponding

configurations as provided by the tutorial.

The original Duke’s Bank application was packed for deployment as

Enterprise Archive (EAR). An EAR is a special jar file which is intended

to cover a complete enterprise software and allows its deployment as a

whole. The original EAR of Duke’s Bank includes different archives of

the banking application also covering an ejb-jar file with enterprise beans.

All archives might be deployed independently which does not affect inter-

actions of system elements at runtime. Nevertheless, different configu-

ration aspects such as mappings of security settings must be performed

in each archive instead of globally inside the EAR. As this thesis solely

addresses EJB 3.0 and consequently focuses on ejb-jar files in isolation,

the EAR of Duke’s Bank was decomposed, and the included archives were

treated separately.

96 Introduction to the AC-Infrastructure

Figure 4.1 provides an overview of the different parts of Duke’s Bank.

The elements with dashed borders represent those parts of the case study

which were taken from the original case study of the Java EE 5 Tutorial.

The symbol in the upper right corner of each element highlights its ad-

justment demand for application as part of the case study of this thesis.

A ’0’ indicates that no adjustments were necessary, a ’*’ shows that the

corresponding element was extended and a ’+’ means that the element

was newly integrated. Usage relations between the different elements of

a concrete banking system are represented through arrows.

Web Container

EJB Container

Java EE Server

Management

Client

*

Endpoint

+

Endpoint

+

Transfer

+

Transfer

+

Customer

Frontend

*

Foundation

0

Database
*

Database
*

JMS

Queue
+

WS

Access
+

Web

Browser

Figure 4.1.: Case Study – Blueprint

The following discussion concentrates on the EJB-specific aspects of Du-

ke’s Bank while only sketching the role of the other elements, because

these do not lay within the focus of this thesis. For a detailed discussion of

the aspects left out here please refer to the Java EE 5 Tutorial [91]. Section

4.1.1 presents the abstraction from the underlying Database as provided

for the case study. Afterwards, section 4.1.2 contains a discussion of the

The underlying Case Study 97

business-tier regarding the three constituent EJB components Foundation,

Endpoint, and Transfer. Furthermore, the intended connection structure

in a deployed system is presented. Finally, section 4.1.3 addresses the

client frontends consisting of Management Client and Customer Frontend.

4.1.1. Abstraction from the EIS-Tier

As foundation of Duke’s Bank a Database is used to cover customer and

account information, as well as the performed banking transactions. This

database was extended with an additional table for storing access point

information of remote banking systems. This new table is completely

independent from the original ones. Therefore, no adjustments of those

tables were necessary. The concrete design of the database is not relevant

for the further discussion.

Figure 4.2 shows the abstraction from the underlying database as pro-

vided through entities following the Java Persistence API [59].

Figure 4.2.: Case Study – Abstraction from the EIS-Tier

The figure only includes the attributes of the different entities. All of them

98 Introduction to the AC-Infrastructure

are accessible through corresponding get and set methods.

The state of a Customer consists of personal information like his or her

name (firstName, middleInitial, and lastName), address (street,

city, state, and zip code) and contact information (phone and email).

Additionally, customers are connected to an arbitrary number of banking

accounts of which they are the owners. This also covers the case that a

customer does not possess any account at all. Finally, a unique identifier

(id) is needed for identification purposes.

An Account is identified by its unique identifier (id). It might have a

human readable description and covers its current balance. Addition-

ally, the state of an account contains information about the initial balance

(beginBalance) and a timestamp (beginBalanceTimeStamp) covering

the time at which the initial balance was set. Furthermore, a banking

system supports different types (type) of accounts. If the type of an ac-

count is equal to ’Credit’, the creditLine attribute covers that amount

of money, the account might be overdrawn. Each account might be owned

by an arbitrary number of customers. In this context, the Duke’s Bank

application theoretically allows that an account is not owned by any cus-

tomer at all.

Each banking transaction (Tx) must reference that account which is the

transaction target (account). In this context, each transfer results in two

transactions. The first one represents the withdrawal of money from the

transfer source, and the second one covers the deposit of money onto the

target account. These two transactions are not associated inside the data

structures of a banking system. Each banking transaction might contain

a human readable description. It also holds the corresponding amount

of money, as well as the time (timeStamp) when the transaction was per-

formed. Finally, the resulting balance of the target account is kept as part

of a banking transaction state.

While the previous entities already existed in the original case study,

the Bank entity represents an extension introduced for this thesis. A

The underlying Case Study 99

bank is intended to keep access point information for a remote bank-

ing system which might be identified by a unique name. The necessary

information for interacting with a remote bank through a Web Service

(wsEndpointAddress) or through a JMS queue (jmsFactoryAddress and

jmsQueueAddress) build the state of a Bank instance.

4.1.2. Realization of the Business-Tier

The business logic of Duke’s Bank is realized through three EJB com-

ponents, namely Foundation, Endpoint, and Transfer. For security rea-

sons two different roles were defined in the original case study, namely

bankCustomer and bankAdmin. The former role is intended to be mapped

to the group of customers of a concrete banking system. The bankAdmin

role represents the group of bank employees who are responsible to man-

age a banking system. Bank administrators are allowed to obtain gen-

eral information about customers and accounts, and to perform changes

upon them. They are prohibited to execute banking transactions. As ex-

tension for this thesis administrators are also responsible for managing

access point information of remote banking systems. Customers might

inspect accounts and might perform banking transactions. For the case

study in this thesis this also covers remote transfers, and the addition

and removal of standing orders. All other interactions are prohibited for

bankCustomers. Regarding transaction management the original case

study does not contain any specifications. According to the EJB standard

a banking system should be supported by a container through container-

managed transaction demarcation. Furthermore, each method invocation

on a bean instance should be performed in accordance with the Required

transaction semantics. These settings were realized for the new compo-

nents analogously .

The following sections first discusses the three EJB components Foun-

dation (section 4.1.2.1), Endpoint (section 4.1.2.2), and Transfer (section

100 Introduction to the AC-Infrastructure

4.1.2.3) separately. In this context, the required and provided interfaces

are presented. Nevertheless, this does not cover details about specified

methods, their signatures, and security settings for the particular inter-

faces and beans. Afterwards, section 4.1.2.4 provides an overview of the

intended connection structure of an online banking system based on the

components discussed in the previous sections.

4.1.2.1. The Foundation Component

The Foundation component was taken from the original case study. It

consists of three enterprise beans, namely CustomerControllerBean,

AccountControllerBean, and TxControllerBean. Each of these beans

is realized as stateful session bean and provides one, individual business

interface as depicted in figure 4.3. In a system context, instances of all

SBs access and manipulate the underlying database through those enti-

ties which were already present in the original case study. This is not

depicted in the figure. Furthermore, none of the beans does state any re-

quired interfaces for realizing its encapsulated functionality. Finally, no

simple environment entries are defined.

Figure 4.3.: Case Study – The Foundation Component

The interface CustomerController specifies methods for accessing

The underlying Case Study 101

the set of bank customers. For inspection purposes it defines methods to

obtain information about a single customer, the set of customers which

are the owners of a given bank account, or about all customers with a pro-

vided last name. Regarding the manipulation of customers, the interface

provides methods for creating, removing and changing customers. The

interface is implemented by the SB CustomerControllerBean.

In order to provide access to bank accounts, the AccountController-

Bean SB realizes the functionality specified by the interface Account-

Controller. This interface allows to obtain information about a single

account or about all accounts associated with a given customer. Further-

more, it defines a method for requesting identifiers of all customers which

are owners of a specific account. Finally, there are methods provided for

creating and removing bank accounts, as well as for adding or removing

customers to or from accounts.

The last SB in the Foundation component is the TxControllerBean

which implements the TxController interface. This interface specifies

methods for inspection and execution of banking transactions. Informa-

tion about a single transaction might be obtained based on its identifier.

Furthermore, all transactions belonging to a given account might be re-

quested. Additionally, there are methods provided to withdraw or deposit

money from or to an account. Finally, the interface provides a method to

execute a transfer from one account to another.

4.1.2.2. The Endpoint Component

The Endpoint component provides functionalities to accept and integrate

incoming bank transfers. The corresponding interfaces and the imple-

menting enterprise beans, as well as their required interfaces are depicted

in figure 4.4 on page 102. None of the included beans does specify any

SEEs. InterBankInterface might be used to verify if a bank account

with a certain identifier is hosted by a given banking system. Addition-

102 Introduction to the AC-Infrastructure

ally, a second method accepts transfer information and performs the cor-

responding banking transaction inside a banking system. The interface is

implemented by the stateless SB InterBankControllerBean. This bean

exposes the interface as Web Service and as business interface. Therefore,

it might be used by remote banking systems and by clients of the same

system. In order to provide the encapsulated functionality, the bean states

two required interfaces, namely AccountController and TxController.

The first one is needed to verify account existence while the second one

is used to execute banking transactions. Instances of the InterBankCon-

trollerBean do not interact with a database at all, because they solely

rely on the functionalities of the required interfaces.

Figure 4.4.: Case Study – The Endpoint Component

The second bean (InterBankQueueListener) implements the javax.-

jms.MessageListener interface, which is part of the JMS standard [75],

for being usable as message-driven bean. It is able to accept messages

which represent incoming bank transfers from a message queue and trans-

forms them into invocations on the InterBankInterface. Therefore,

the bean can be seen as adapter for that interface. Instances of the MDB

do not interact with the EIS-tier, but only convert and forward incoming

transfer messages.

4.1.2.3. The Transfer Component

The third component of the case study (Transfer) encapsulates functional-

ities for remotely transferring money, and for establishing and removing

The underlying Case Study 103

standing orders. In this context, it also includes a facility for managing

the set of known remote banking systems. The corresponding interfaces

and beans, as well as their required interfaces are presented in figure 4.5.

Figure 4.5.: Case Study – The Transfer Component

To manage the set of known access points to remote banking systems,

the Transfer component provides the BankController interface. This in-

terface specifies methods for setting and requesting JMS-based and Web

Service-based access point information of remote banking systems. Fur-

thermore, it enables users to request the names of all known banking

systems and to obtain access point information of a concrete banking sys-

tem. The interface is implemented by the BankControllerBean which

internally makes use of the database extension through Bank entities. The

bean is realized as stateless SB and does not specify any SEEs or required

interfaces.

The TransferController interface defines a method for performing

a banking transfer to an account hosted by the same or a remote banking

systems. The functionality is implemented by the stateless SB Trans-

ferControllerBean. To identify whether a submitted transfer demand

has to be performed locally or across banking system borders, the bean

defines an SEE called bankName. This String entry is intended to hold

the unique name of the banking system a deployed component belongs

104 Introduction to the AC-Infrastructure

to. Its value is compared to the target bank name of a submitted trans-

fer which allows to decide if a banking transfer should be performed

locally or not. In order to realize the encapsulated functionality, an in-

stance of the bean requires references to implementations of the inter-

faces BankController, AccountController, and TxController. In-

stances of the TransferControllerBean do not interact with the EIS-

tier. Web Service references and JMS-specific connection aspects are not

depicted in the figure, because they do not belong to the required inter-

faces. Instead of that, the corresponding settings are obtained through

the BankController interface and are used to establish connections on

demand.

The final bean of the Transfer component (StandingOrderControl-

lerBean) is responsible for managing standing orders. Therefore, it re-

alizes the StandingOrderController interface which provides methods

for inspecting existing standing orders of a certain account, and for adding

or removing standing orders. A standing order is internally realized through

a timer (cf. section 3.2.3). Therefore, the StandingOrderControllerBean

is implemented as stateless SB and provides a timeout callback method

which adheres to the requirements of the EJB Timer Service. A reference

to the timer service is obtained during the transition from the configuring

to the ready state of an instance life cycle. Therefore, the bean defines

a postConstruct life-cycle-callback-method (cf. section 3.1.3). In order

to execute a standing order, instances of the bean forward the request to

an implementation of the TransferController interface. Instances of

StandingOrderControllerBean do not require any SEEs and do not in-

teract with the EIS-tier for realizing the encapsulated functionality.

4.1.2.4. Intended Connection Structure in a System Context

The business-tier architecture of an online banking system might be es-

tablished through the deployment of the three components presented in

The underlying Case Study 105

the previous sections and through connecting their required and provided

interfaces. Figure 4.6 shows the resulting business-tier architecture.

Figure 4.6.: Case Study – Intended Connection Structure

All provided interfaces of the constituent deployed components are also

accessed by elements of the web-tier and the client-tier. For the remainder

of this thesis this architecture is assumed as being deployed if no other

configuration is highlighted.

4.1.3. Web-Tier and Client-Tier

In accordance with the security settings there are two groups of clients

considered in the case study, namely Bank Administrators and Bank Cus-

tomers. For each of those groups a specific client frontend is provided as

depicted in figure 4.1 on page 96.

Administrators interact with an online banking system through a Man-

agement Client. This standalone application client accesses bean instances

directly from outside a Java EE server. In order to provide the basic man-

agement functionality to administrators, the client interacts with the bus-

iness-tier of an online banking system through the interfaces Customer-

Controller and AccountController. Furthermore, the extensions im-

plemented for this thesis require access to a system through the BankCon-

troller interface to manage access points of remote banking systems.

106 Introduction to the AC-Infrastructure

Bank customers can interact with a banking system through a Customer

Frontend which is accessed through web browsers. The frontend makes

use of all interfaces provided by the Foundation and Transfer components.

Regarding the three interfaces also used by the Management Client, the

Customer Frontend only makes use of methods which are intended for in-

spection purposes.

4.2. Overview of the AC-Infrastructure

This section contains a short overview of the core elements of the AC-

infrastructure. It should improve the understandability of the following

chapters which discuss the different elements in detail.

The AC-infrastructure presented in this thesis aims to provide a com-

prehensive and generic basis for the autonomic management of enter-

prise systems based on EJB 3.0. Consequently, it can be interpreted as

foundation upon which solutions for different AC areas might be real-

ized. The infrastructure is named mKernel which is an abbreviation of

Manageable Kernel. This name should point out the addressed applica-

tion domain and was used in all publications about the infrastructure

(cf. [32, 34, 35, 157]).

To fulfill the requirements stated in section 1.3 mKernel consists of

three main parts, namely the Preprocessor, the Reflective Meta Model, and

the Container Plugin. These are represented in figure 4.7 on page 107

through gray shaded rectangles with dashed borders.

The Preprocessor is a command line tool which accepts a standard compli-

ant EJB component as input and preprocesses it for integration in an mK-

ernel-based system. This is denoted in figure 4.7 through the arrow from

the ejb-jar file in the upper left corner to the preprocessor. Beyond the

provision of an ejb-jar file the tool does not demand for additional config-

uration. Furthermore, the establishment of manageability does not need

to be considered inside processed components. Consequently, separation

Overview of the AC-Infrastructure 107

EJB Container

Managed Component System

ejb-jar file

EJBEJBEJBEJB DD

ejb-jar file

EJBEJBEJBEJB DD

ejb-jar file

EJBEJBEJBEJB DD

ejb-jar file

EJBEJBEJBEJB DD
Preprocessor

Container Plugin

Reflective Meta Model

Figure 4.7.: Overview of the AC-infrastructure

of concerns regarding business logic and management aspects is reached.

During its execution the tool extracts all necessary information from the

component under consideration and constructs a processable representa-

tion for later usage in a system context. Additionally, the Java-byte-code

of the component is manipulated for inspecting and controlling the later

runtime behavior of bean instances. Furthermore, interceptors are at-

tached to the included enterprise beans which are needed by mKernel. Fi-

nally, a preprocessed component is extended with additional beans which

provide access for managing entities from outside a deployed component.

In the end of preprocessing the tool emits new, standard-compliant ejb-

jar files which might be integrated into mKernel-based systems. This is

depicted in figure 4.7 through the outgoing arrow of the preprocessor.

The gray shading of the included enterprise beans and the DD of the gen-

erated ejb-jar file indicates that the corresponding artifacts were manipu-

lated during tool execution. Preprocessed components are not limited to a

concrete system, but might be integrated into any system which supports

mKernel.

108 Introduction to the AC-Infrastructure

In relation to the software life cycle of components the tool is able to

process results of the development and maintenance phase. In this con-

text, it would allow software vendors to ship components ready for integra-

tion into mKernel-managed systems. Alternatively, managers of a concrete

system might use the tool to preprocess standard-compliant components.

This would allow them to receive components from different sources or

vendors, and integrate management aspects after their obtainment. Nev-

ertheless, the tool is not intended to support the concrete configuration

before deployment, but solely focuses on software aspects regarding the

constituent elements of a component. Consequently, the execution of the

tool might be assigned to the Application Assembler role defined in the EJB

standard.

The Reflective Meta Model defines the access point for interaction with

an mKernel-based system. It is realized as Java API which allows model

based management of an enterprise system and provides a comprehensive

set of sensors and effectors. The meta model is characterized as reflective

with respect to the managed component system, because it represents the

managed system in a way that allows the inspection and manipulation of

its internals. Furthermore, the meta model is causally connected with the

managed system, because changes in the system lead to corresponding

changes of the model and vice versa (cf. [106]).

A managed system is considered on three different levels. The Type

Level addresses software aspects of a managed system, that is, artifacts

being the result of development and maintenance. The Deployment Level

concentrates on the concrete system architecture inside a container and

the configurations of the constituent elements. Finally, the Instance Level

addresses bean instances and their states, as well as interactions among

them. Relations between elements of the different levels can be identified

and inspected. For a given session bean instance (Instance Level) it is, for

example, possible to identify the deployed session bean (Deployment Level)

Overview of the AC-Infrastructure 109

it instantiates. For that session bean the corresponding implementation

can be requested (Type Level). With this multi-level view subtle manage-

ment operations become possible. As foundation for system management

ejb-jar files – preprocessed by the preprocessor – can be integrated into an

mKernel-managed system through API operations. This is represented in

figure 4.7 on page 107 through the arrow from the ejb-jar file in the upper

right corner to the reflective meta model.

The Java API realizing the meta model might be used inside or outside

of containers. It supports the Deployer and System Administrator roles of

the EJB standard which are assumed of being taken over by autonomic

entities.

The Container Plugin builds the foundation for the management inside

a container. It is realized through a set of enterprise beans. A deployed

plugin is responsible for the coordination between managing entities ac-

cessing the deployed plugin through the API and the managed system

itself. This is represented in figure 4.7 through the arrows between the

meta model and the plugin, and between the plugin and the Managed

Component System, respectively.

A deployed container plugin internally stores different types of informa-

tion and artifacts obtained through the API such as preprocessed ejb-jar

files or configurations for deployed components. Thus, it frees the meta

model implementation from the need to keep persistent information it-

self. If necessary, configurations are forwarded to deployed components

for reaching a causally connection between the managed system and its

representation kept by a deployed plugin. Regarding a managed system

the corresponding plugin collects and stores different types of informa-

tion, for instance, to track interactions taken place between instances of

enterprise beans. This information is provided to the API on demand.

A deployed container plugin is not intended to be used directly. It is de-

signed and realized as server side extension of the API and should there-

110 Introduction to the AC-Infrastructure

fore only be used through it.

mKernel was built and tested on top of the GlassFish Application Server

[11] which is a Java EE 5 server including, amongst others, an EJB con-

tainer. It has proven itself of being compliant to the EJB standard to a very

high degree. This especially includes the opportunity to integrate EJB

components without the need for container specific extensions as far as

the corresponding aspects were completely covered by the EJB standard.

Therefore, the different parts of the AC-infrastructure could almost be de-

signed and realized solely based on the EJB standard.

The following two chapters present the different parts of mKernel in

detail. Chapter 5 starts with the meta model, highlighting the different

opportunities provided by mKernel for the management of a component

system. Afterwards, chapter 6 discusses how these opportunities are re-

alized through the different parts of the infrastructure. The chapter also

describes the general aspects of component preprocessing.

5. The mKernel Meta Model

This chapter presents the reflective meta model which builds the founda-

tion for interaction with an mKernel-managed system5. It is realized as

Java API, providing sensors and effectors for autonomic management. In

this context, all elements of the API representing a managed system are

realized as Java interfaces, because the complete system representation

should be under control of the API. Therefore, no new elements should be

instantiated by managing entities. Furthermore, the abstraction through

interfaces would facilitate the realization of alternative implementations

of the API that, for example, rely on vendor specific extensions of the EJB

standard.

The meta model of mKernel considers managed systems on three differ-

ent levels. The Type Level is intended to provide an insight into software

aspects of a managed system. It can be interpreted as an interface to a

kind of component repository which, for example, enables investigations

for system reconfiguration. Furthermore, it allows to analyze relations be-

tween deployed components and their corresponding components. On

Deployment Level the architecture of a managed system is represented

through deployed EJB components and connections among them, as well

as their concrete configurations. It provides the foundation for param-

eter and compositional adaptation. Finally, the Instance Level addresses

instances of enterprise beans and interactions among them. It might, for

instance, be used to identify faults within a managed system and to ana-

5 An overview of the meta model was presented in a paper for the 6th IEEE/ACS Inter-

national Conference on Computer Systems and Applications (AICCSA-08) [32] and was dis-

cussed in a corresponding talk.

112 The mKernel Meta Model

lyze their context. The terminology used for the meta model is oriented

at the Java Platform, Enterprise Edition Specification, v5 [140]. In this con-

text, an EJB component is called EJB Module, because it is considered as

modular part of an enterprise software. The level of consideration can be

identified through the suffix of the corresponding meta model element for

Type Level and Instance Level while the elements of the Deployment Level do

not have suffixes. On Type Level an EnterpriseBeanType represents, for

example, an enterprise bean implementation inside an ejb-jar file while

on Deployment Level an EnterpriseBean is part of a deployed component.

Finally, on Instance Level an EnterpriseBeanInstance represents a con-

crete instantiation of an EnterpriseBean.

The following sections present the different aspects covered by the meta

model. In this context, only the relevant parts of the corresponding ele-

ments are considered in order to focus on the particular topic. Therefore,

not all aspects of the meta model elements are discussed completely at one

single point within the following sections, but only those that are relevant

in the particular context. This proceeding was chosen because of the var-

ious relationships between certain elements in different contexts which

might even span more than one level. Furthermore, this thesis concen-

trates on aspects which are relevant for describing the general concepts.

Those parts which do not contribute to the understanding of the concepts

are left out to keep the discussion focused.

As central access point to an mKernel-managed system the interface

Container is intended to be used. It provides methods for obtaining dif-

ferent access points to the three levels of a managed system. A Container-

based reference can be obtained through the static method getNewCon-

tainer from the class ContainerFactory as follows:

Container c = ContainerFactory.getNewContainer();

For the underlying implementations it is necessary that the execution

environment is properly configured for interactions with the target con-

Layering of Software and System Architectures 113

tainer6.

The following discussion starts with the presentation of the layering of

software and system architectures in section 5.1. This layering is specific

to mKernel and supports, amongst others, dynamic reconfiguration. Af-

terwards, the three different levels of the meta model are discussed in the

sections 5.2 to 5.4. To support managing entities with opportunities to

externally keep information about elements of a managed system and to

facilitate synchronization with the information base of an mKernel-based

system the meta model provides a Notification Facility. This facility is pre-

sented in section 5.5, because it is not limited to a specific level. The

Seamless Reconfiguration of a system affects the Deployment Level, as well

as the Instance Level. Therefore, this aspect is discussed separately in sec-

tion 5.6. Finally, section 5.7 draws a conclusion of the meta model.

5.1. Layering of Software and System Architectures

The mKernel infrastructure focuses on business-tier management of EJB-

based enterprise systems which are the targets of inspection and manip-

ulation. Those systems might interact with their clients through various

access points like web frontends, standalone clients, Web Service end-

points, or JMS queues as depicted in figure 4.1 on page 96. For mKernel

it is assumed that managing entities do not necessarily need to control

client systems. In fact, it does not even demand that they are managed au-

tonomically at all. Therefore, the infrastructure is designed and realized in

a way that allows its application in isolation, that is, it does not require any

management support facilities beyond those defined in the Java Platform,

Enterprise Edition (Java EE) Specification, v5 [140]. To realize the manage-

ment of an enterprise system components which provide business logic

are adjusted and extended during preprocessing. This includes, amongst

6 It is especially necessary that the default constructor of javax.naming.InitialCon-

text creates a reference to the naming context of the managed container.

114 The mKernel Meta Model

others, the manipulation of interfaces and method signatures for trans-

ferring management information. These changes must be hidden from

system clients, because clients should not even recognize mKernel-based

management of a system they interact with7. Furthermore, for support-

ing dynamic adaptation of managed systems, the AC-infrastructure must

be able to isolate the system partially or completely from client initiated

interactions8. To fulfill these requirements deployed components of a

managed system are organized in two separate layers, namely Managed

Layer and Access Layer. This distinction does not induce any additional de-

mands on component development, because the preprocessor tool is able

to generate the corresponding ejb-jar files automatically from the results

of development and maintenance9. Nevertheless, a generated ejb-jar file

can either be deployed as part of the Managed Layer or the Access Layer.

Therefore, the distinction between the two layers is not limited to the Type

Level, but also affects the other levels of the meta model.

The Managed Layer of an mKernel-based system contains the provided

business logic. Module types belonging to the Managed Layer on Type

Level are directly derived from the results of development or maintenance

during preprocessing. Therefore, the constituent enterprise bean types

and other elements of an original ejb-jar file are adopted, adjusted, and ex-

tended. Consequently, ejb-jar files belonging to the Managed Layer cover

the original business logic which might be integrated into a system archi-

tecture through deployment. On Deployment Level EJB modules belonging

to the Managed Layer and their enterprise beans are the constituent ele-

ments of the internal system architecture of an mKernel-managed system.

This part of the business-tier architecture is characterized as internal, be-

cause its elements are intended to be referenced only inside the business-

7 Besides small delays resulting from the management overhead.

8 For further details regarding seamless reconfiguration, please refer to section 5.6.

9 Please refer to section 6.2 for further detail regarding preprocessing.

Layering of Software and System Architectures 115

tier, that is, from the Managed Layer or the Access Layer on Deployment

Level. External clients are not allowed to reference elements of this layer.

Compositional adaptations performed on Deployment Level of the Managed

Layer have direct impacts on available functionality inside the business-

tier of a managed system. According to the restriction that only other

elements of a managed system are allowed to reference elements of the

Managed Layer on Deployment Level, interactions where instances of the

Managed Layer are the targets always originate from instances of other el-

ements controlled by mKernel. Based on this foundation full control over

interactions arriving at the Managed Layer is established on Instance Level.

In contrast to the Managed Layer, elements of the Access Layer on Type

Level do not cover any business logic. They represent opportunities for

the deployment of client access points into the business-tier of managed

systems. Access point realizations are derived from the results of devel-

opment and maintenance during their preprocessing. Beyond the ability

to forward client initiated interactions to elements of the Managed Layer

on Instance Level, they also include functionalities to block or hold client

invocations for supporting dynamic adaptation inside the Managed Layer.

Furthermore, they are realized as adapters, because their provided inter-

faces are those which were defined during development or maintenance.

Internally, they make use of extended interfaces which are provided by el-

ements of the Managed Layer to support, amongst others, the transfer of

administrative information during interactions.

On Deployment Level, the internal business-tier architecture is defined

through the establishment of connections between Managed Layer enter-

prise beans. Furthermore, client access points are created through the

deployment of module types belonging to the Access Layer. Afterwards,

those must be connected to Managed Layer beans for being able to for-

ward client interactions on Instance Level. Figure 5.1 on page 116 shows

a part of the case study covering the resulting system architecture in an

mKernel-managed system analog to the corresponding part of the system

116 The mKernel Meta Model

architecture presented in figure 4.6 on page 105.

Figure 5.1.: Exemplary layered System Architecture

Inside the figure, EJB modules have the same name as those of the case

study followed by the suffix _AccessLayer for modules belonging to the

Access Layer and the suffix _ManagedLayer for modules of the Managed

Layer. Access Layer modules provide the original interfaces of the case

study to external clients such as the provided interface TxController of

the module Foundation_AccessLayer. Those are mapped to providers

of extended interfaces belonging to the Managed Layer such as the pro-

vided interface TxController_Managed of the module Foundation_Ma-

nagedLayer. In this context, it is possible that more than one provider of

an interface on Access Layer is connected to the same provider on Managed

Layering of Software and System Architectures 117

Layer. Such a situation is not shown in the figure. Internal interfaces are

represented by interfaces with the same name as the original interfaces

followed by the suffix _Managed to indicate that they are derived from the

original ones. For interfaces required by Managed Layer modules direct

connections to session beans providing those interfaces might be estab-

lished inside the Managed Layer. For these connections the Access Layer

does not participate in corresponding interactions at runtime. An exam-

ple of such a constellation is given by the connection from the EJB mod-

ule Transfer_ManagedLayer to the module Foundation_ManagedLayer

through the adjusted interface TxController_Managed. Finally, an inter-

face provided inside the Managed Layer does not necessarily need to have

a corresponding provided interface inside the Access Layer. This is the case

if a certain interface is only provided inside the business-tier, but not to

external clients. Such a situation is also not depicted in the figure.

The integration of Access Layer modules allows the provision of cli-

ent access points at certain mapped names over a relatively long times-

pan. Client implementations might rely on the provision of those access

points, because the underlying beans do not cover any business logic on

their own, but only forward invocations to the original targets on Man-

aged Layer. If adjustments of the business-tier become necessary which

result in the need for compositional adaptation, these adaptations would

not affect the availability of access points themselves. The only reasons

to undeploy an Access Layer module would be, if one or many of the pro-

vided access points should not be supported anymore, if access points

should be provided under a different mapped name, or if the set of pro-

vided interfaces at a certain mapped name should be changed. In contrast,

adjustments of business logic result in the need for deployment opera-

tions inside the Managed Layer, as discussed in section 3.1.2.2. If clients

would interact with the Managed Layer directly, they might notice these

operations through temporal unavailability of access points.

118 The mKernel Meta Model

5.2. The Type Level

On Type Level the API represents all aspects of ejb-jar files which were

integrated into an mKernel-managed system. These archives are not nec-

essarily deployed inside a managed system, but can be interpreted as the

constituent elements of a kind of component repository for a given sys-

tem. For this repository the Type Level of the meta model provides sen-

sors for inspection and effectors for manipulating the set of repository

elements. All aspects and settings exposed by the meta model are trans-

ferred to corresponding modules on Deployment Level during their cre-

ation. Consequently, the Type Level view on ejb-jar files provides insight

into the default configuration of derived modules.

The discussion of the Type Level is structured as follows: Section 5.2.1

gives an overview of how the API addresses the general structure of ejb-jar

files. Afterwards, section 5.2.2 discusses the representation of interface

types inside the meta model. The following section 5.2.3 addresses pa-

rameterization options. Section 5.2.4 presents the access point to the Type

Level provided by the Container interface. Subsequently, section 5.2.5

explains the concrete usage of the Type Level API based on the case study.

5.2.1. Structural Representation of ejb-jar files

The meta model represents ejb-jar files on Type Level through the interface

EjbModuleType as depicted in figure 5.2.

Figure 5.2.: Type Level View on an ejb-jar file

The Type Level 119

A module type is characterized by a uniqueIdentifier which can be

used to identify the module type inside a managed system. This iden-

tifier is calculated during preprocessing of the corresponding ejb-jar file

through application of the US Secure Hash Algorithm 1 (SHA1) [66] over

the binary content of the extracted archive. During integration of a mod-

ule type the corresponding unique identifier enables an mKernel-based

system to identify whether the module type is already known. If this is the

case, the creation of a redundant representation is avoided. Consequently,

each ejb-jar file is represented exactly once, even if autonomic entities try

to integrate it multiple times. To identify whether a module type belongs

to the Managed Layer a corresponding method (isManagedLayer) can be

used. On invocation it returns a boolean value indicating whether a Man-

aged Layer module type is given (true) or not (false). mKernel stores the

original ejb-jar file of a module type and exposes it to autonomic entities

as byte arrays. The ejb-jar file might be used as extension point of the API

for managing entities, because it enables the inspection of EJB module

types with respect to aspects not covered by mKernel like vendor specific

extensions. Furthermore, it contains the constituent implementations of

a module type. These might be very helpful for in depth analyses when

errors are detected at runtime. Additionally, the EJB standard allows the

extension of ejb-jar files with additional artifacts, as discussed in section

3.1.1.3. Therefore, managing entities might enrich the original ejb-jar file

with custom artifacts before integrating them into an mKernel-managed

system. The included artifacts might afterwards be requested indirectly

from mKernel through the original ejb-jar file. Nevertheless – depending

on the size of the particular archive – this proceeding might be costly,

because in order to gain access to entries the complete archive must be

transferred. Finally, managing entities can remove a module type from

an mKernel-managed system. This might be meaningful, for example,

when a module type becomes deprecated and should not be kept within a

system anymore. Nevertheless, a removal is only valid if there do not ex-

120 The mKernel Meta Model

ist any corresponding modules on Deployment Level of that module type.

mKernel would react with an exception to an invalid attempt to remove a

module type, because otherwise the underlying data source would become

inconsistent.

Each module type contains at least one enterprise bean type (Enter-

priseBeanType). These types represent the constituent elements of the

module type and can be accessed through the association between Ejb-

ModuleType and EnterpriseBeanType. As an enterprise bean type is an

integral part of exactly one module type, it has a composition relationship

with the corresponding module type. Consequently, if a module type is

removed from an mKernel-managed system, the included enterprise bean

types are removed also. In contrast, EJB types might not be removed in-

dependently.

For each enterprise bean type a unique identifier is generated during its

integration into an mKernel-managed system (getUniqueIdentifier).

This identifier might be used for identification purposes, but is not di-

rectly bound to the underlying implementation of the EJB type. In con-

trast, it relates to the application of the bean type as part of a concrete

module type. Consequently, more than one enterprise bean type inside

a system might be based on the same implementation while all of them

have different unique identifiers. The fully qualified class name (FQN) of

its implementation might also be requested from a bean type. Neverthe-

less, this FQN is not sufficient to deduce if two distinct enterprise bean

types have exactly the same underlying implementation. It is, for instance,

conceivable that they are based on the same implementation, but on dif-

ferent revisions. For certain situations it might be of special interest to

find out which other enterprise bean types are based on exactly the same

implementation as a given one. This might, for example, be the case, if

an error is identified within the corresponding source code. Therefore,

EnterpriseBeanType provides a special method (isSameClass) which

permits to request whether two bean types have exactly the same underly-

The Type Level 121

ing implementation. Internally, the comparison of the implementations

is based on the identifiers of the class files of the particular bean types

which are calculated – analog to the unique identifiers of EJB module

types – through the SHA-1 hash function10. An invocation of the method

isSameClass is only meaningful in the context of two enterprise bean

types of the Managed Layer, because only those bean types contain busi-

ness logic.

Bean types themselves are specialized into message-driven bean types

(MessageDrivenBeanType) and session bean types (SessionBeanType).

Beyond the functionality specified in the EnterpriseBeanType interface,

MessageDrivenBeanType allows autonomic entities to request the mes-

sage selector of the MDB type. For a SessionBeanType it can be re-

quested whether it is a stateful session bean type.

5.2.2. Representation of Interfaces

The Type Level of the meta model provides a comprehensive representa-

tion of interface types being part of EJB types inside an integrated ejb-jar

file. In this context, the three meta model interfaces JavaInterface-

Type, EjbInterfaceType and EjbReferenceType build the foundation

as depicted in figure 5.3 on page 122.

The interface JavaInterfaceType is used to represent Java interfaces

which are types for the specification of provided and required interface

types. Each Java interface type has a unique identifier which is calculated

analog to those of EJB module types to ensure that exactly the same Java

interfaces being part of more than one module type might be identified

10 Equality of calculated identifiers is based in the assumption that the same class-file is

integrated into different archives, or that the results of independent compilations of the

same implementation are also equal. This needs not be the case. A counterexample

would be, if different compilers are used which emit different class-files for the same

source code. For this case mKernel would not be able to identify that equality of imple-

mentations is given.

122 The mKernel Meta Model

Figure 5.3.: Type Level Representation of Interfaces

correctly by the infrastructure. This is not possible based on FQNs, as

already discussed in the context of enterprise bean types in section 5.2.1.

mKernel recognizes whether a Java interface type is already known in a

system during integration of a module type. If this is the case, mKernel

prevents the creation of redundant representation of that interface type.

Consequently, each known Java interface is represented once inside an

mKernel-managed system. Each Java interface type contains a collection of

method specifications (MethodSpecification) which represent the spec-

ified functionality of the interface. As they are an integral part of the inter-

face, they are in a composition relation to it and are removed on deletion

of the JavaInterfaceType. Each method specification provides informa-

tion about its signature regarding its name, return type, parameter types,

and thrown exceptions. Finally, a Java interface type allows managing en-

tities to identify whether it might be exposed as Web Service interface on

Deployment Level.

An EjbReferenceType represents the specification of a required inter-

face for an enterprise bean type. It is an integral part of the EJB type and,

therefore, stands in a composition relationship to it. Beyond the associa-

tion to the EJB type and the Java interface type, a reference type exposes

its mapped name in the local namespace of the corresponding enterprise

bean type. This allows to distinguish reference types which are based on

the same Java interface type and belong to the same EJB type. Each Access

Layer SB type contains a reference type for each of its provided interfaces,

because at runtime its instances need a corresponding reference to for-

The Type Level 123

ward incoming method invocations to the Managed Layer.

Specifications of provided interface types of SB types are represented

through EjbInterfaceTypes. Analog to reference types they stand in a

composition association to the corresponding session bean type and are

associated with the corresponding Java interface type. Furthermore, EJB

interface types allow autonomic entities to request the type of provision,

that is, whether the interface might, for instance, be provided as business

interface on Deployment Level.

JavaInterfaceTypes considered on Type Level always relate to the orig-

inal Java interfaces. The extension of interfaces for the Managed Layer and

their application in a managed system are hidden from managing enti-

ties. Therefore, from the Type Level point of view EjbInterfaceTypes

and EjbReferenceTypes are always associated with representations of

the original Java interfaces.

5.2.3. Representation of Parameterization Options

According to the EJB standard EJB module types might contain config-

urations for different aspects either through annotations or inside their

DD. mKernel supports inspection of configuration opportunities on Type

Level through the meta model interfaces shown in figure 5.4 on page 124.

In this context, a concrete model reflects the configuration mKernel has

identified during preprocessing of the corresponding ejb-jar file.

Simple Environment Entries As discussed in section 3.1.1.3, simple envi-

ronment entries might be used for parameterization of enterprise beans.

On Type Level, mKernel represents those opportunities for parameteriza-

tion through SimpleEnvironmentEntryTypes. They are characterized

by a name which is unique for the particular EJB type and a type for its

values in a concrete configuration scenario. Furthermore, its default value

(defaultValue) might be requested in case mKernel was able to identify

124 The mKernel Meta Model

Figure 5.4.: Type Level Representation of Parameterization Options

it during preprocessing of the module type. SEE types are integral parts

of the corresponding EJB type. In this context, each enterprise bean type

might posses an arbitrary number of SEE types which provide an overview

of the options for configuration in case of deployment.

Transaction Settings To identify whether the implementation of an en-

terprise bean type performs bean managed transaction demarcation or re-

lies on container managed transaction demarcation, the method isCon-

tainerManagedTransactionDemarcation on EnterpriseBeanType m-

ight be used which returns true if CMTD is given.

For MDB types relying on CMTD the method getTransactionAttri-

bute returns an enum constant of javax.ejb.TransactionAttribute-

Type11 which applies to the method for receiving a message from a JMS

queue or topic.

For session bean types relying on CMTD each SB type might own an

arbitrary number of declaration types. Those types are characterized by a

javax.ejb.TransactionAttributeType and are related to at least one

MethodSpecification. It might be possible that the method signature,

the declaration type relates to, matches with more than one method spec-

11 This enum is used in the context of the EJB standard to define transaction attributes

through metadata annotations.

The Type Level 125

ification of different Java interfaces an SB type provides. Due to the un-

derlying mapping to the EJB standard it is, consequently, possible that a

declaration type applies to more than one method specification which is

reflected through the 1..*-cardinality at the corresponding association.

In this context, each method specification a transaction declaration type

refers to is provided by the session bean type through its EjbInterface-

Types and the corresponding JavaInterfaceType.

Security Settings Each ejb-jar file might contain an arbitrary number of

security role definitions. Those are represented on Type Level through

SecurityRoleTypes. Each security role type has a unique name within

the module type and might itself be the owner of an arbitrary number

of SecurityPermissionTypes. Each permission type refers to an enter-

prise bean type to which the corresponding permission specification ap-

plies. If the EJB type is an SB type, the security permission type refers

to at least one method specification for which the represented permission

specification was defined. Those method specifications are deduced the

same way as described for transaction declaration types. For MDB types

no method specifications are referred to. For this case it can be assumed

that it relates to the method for receiving a message from a JMS queue

or topic. Additionally, each enterprise bean might refer to a security role

which should be used in a system context when instances of the bean

type perform method invocations themselves. This might, for instance,

be necessary if different roles are required by referenced bean instances

or to define the security role which should be used during the execution

of timer callbacks.

Message Selectors of Message-Driven Bean Types MDB types might cover

a message selector for their binding to a JMS message destination during

deployment. This selector is used to identify messages which are relevant

for that MDB at runtime, as discussed in section 3.1.1.1. The selector

126 The mKernel Meta Model

might be requested from a MessageDrivenBeanType and is represented

as java.lang.String. This is not depicted in figure 5.4 on page 124, be-

cause message selectors are not represented through special meta model

elements.

5.2.4. Type Level Access Points

As mentioned in the introduction of chapter 5, the Container interface

provides the central access point to an mKernel-managed system. Regard-

ing the Type Level of a concrete model direct access to module types, EJB

types, or Java interface types can be obtained. For each of those two meth-

ods are provided, one for requesting a representation of a specific type and

one for obtaining a collection of all representations of the particular type.

The methods for gaining access to a single representation expect the cor-

responding unique identifier as a parameter. Table 5.1 summarizes the

methods provided by the Container interface.

Type Specific Representation All Representations

EjbModuleType getEjbModuleType getEjbModuleTypes

EnterpriseBeanType getEjbType getEjbTypes

JavaInterfaceType getJavaInterfaceType getJavaInterfaceTypes

Table 5.1.: Access Points to Elements of the Type Level

Additionally, Container provides two variations of the overloaded method

createModuleType to integrate new module types into a managed sys-

tem. The first one expects two byte arrays as parameters. The first one

of those must contain the original ejb-jar file while the second one must

cover the preprocessed file. The second variant of createModuleType is

provided for convenience reasons within environments granting access to

file systems. It accepts the FQNs of the two ejb-jar files which prevents

users from the need to serialize them into byte arrays for integration.

Finally, the method getJavaInterfaceTypesByName might be used to

The Type Level 127

obtain a collection of representations for all Java interface types with a

certain name from an mKernel system.

5.2.5. Application Example

After the discussion of the different meta model elements on Type Level

this section explains how the corresponding API might be used based on

the case study presented in section 4.1. As foundation for the managed

system it is assumed that the container plugin is integrated into the man-

aged system successfully. The ejb-jar files of the case study must have

been processed with the preprocessor tool (section 6.2)12. Finally, it is as-

sumed that the example source code is executed in an environment that

grants access to a file system the original and processed ejb-jar files can

be read from.

The remainder of this section presents a straight forward approach of

how the Type Level of the API might be used for planning the deploy-

ment of EjbModuleTypes based on a set of Java interface types to pro-

vide. It is not intended to provide a comprehensive solution for self-

configuration based on Java interface demands, but should give a first

impression of how the Type Level of the meta model might be used. Nev-

ertheless, it is kept generic and is not limited to the case study. During

planning, EjbModuleTypes to deploy and SessionBeanTypes to config-

ure are identified. Furthermore, connections to establish are proposed

based on EjbInterfaceTypes and EjbReferenceTypes. As result of al-

gorithm execution a plan is constructed which contains alternative options

for connections to establish. These must be resolved by the client of the

plan before realization. The plan does not consider parameterization of

the affected module types and SB types. Nevertheless, a plan observer

might inspect parameterization options with the help of the API.

12 This tool emits two ejb-jar files, one for the Access Layer and one for the Managed Layer.

128 The mKernel Meta Model

Plans are realized by instances of the class TypeLevelPlan which en-

sures plan feasibility during execution. Furthermore, it supports its cli-

ents through automated adjustments during selection of alternatives. In

the following the internal representation of a plan through data structures

is discussed, followed by inspection opportunities. Afterwards, the pro-

cessing of client requests for the provision of Java interface types is ex-

plained. Finally, the proceeding for reaching unambiguity of a plan is

discussed.

While in this section only the relevant parts of the example are pre-

sented, appendix A contains the complete, source code.

5.2.5.1. Internal Representation of Plans

The implementation of TypeLevelPlan internally uses two maps for rep-

resenting providers for desired Java interface types and for alternative

connections in a deployment context based on EjbReferenceTypes and

EjbInterfaceTypes:

• Java interface type providers p: The keys of this java.util.Map are

the JavaInterfaceTypes which should be provided as goals of the

plan. As values sets of EjbInterfaceTypes are referred to which

might be used as alternative providers of the corresponding Java

interface type on Type Level.

• Connection alternatives a: This java.util.Map contains required

interface types identified during plan construction as keys. The val-

ues are provided interface types which might be used as alternative

connection targets during further planning.

These data structures are sufficient for representing alternatives of pos-

sible system architectures fulfilling the planner demands based on Type

Level elements. The first map is needed to cover the goals of the planner

through required Java interface types and their alternative provider types.

The Type Level 129

The second map contains the current alternatives for fulfilling the goals

with respect to proposed connections inside the managed system.

5.2.5.2. Inspection Opportunities

The following list contains a compilation of those methods provided by

the class TypeLevelPlan which allow the inspection of a concrete plan.

1. getProvidedJavaInterfaces: This method delivers all JavaIn-

terfaceTypes which should be provided as goals of the plan, that

is, the key set of p.

2. getJavaInterfaceTypeProviders: As result the potential provider

types of a concrete Java interface type are returned by this method.

They are given by the corresponding entry in p.

3. getRequiredReferences: This method returns the key set of a,

representing the required interface types which must be fulfilled

for realizing the current state of the plan. If the return value con-

tains more than one element, these represent alternative options for

connection establishment.

4. getConnectionAlternatives: For a concrete reference type the

corresponding value in a can be requested through this method.

The result might again contain a set of alternative options for fulfill-

ing the interface demand.

5. getSessionBeanTypes: The set of session bean types of which

corresponding elements might be configured in a deployment con-

text is delivered by this method. The result set consists of those

SessionBeanTypes which are connected to at least one EjbInter-

faceType in the value sets of p or a.

6. getModuleTypesToDeploy: The method provides the set of all af-

fected modules types. It is derived from all module types associated

with at least one of the SB types returned by the previous method.

130 The mKernel Meta Model

7. isUnambiguous: This method returns true if the plan is unam-

biguous. This is given if all values in p and a contain exactly one

element. For this case the plan does not require any decisions on

Type Level for choosing between alternatives for the provision of

JavaInterfaceTypes (p) or alternatives for connections (a).

Through the methods 1 and 3 an overview of the required Java interface

types and reference types might be obtained. The corresponding methods

2 and 4 allow an in depth inspection regarding connection alternatives

for a concrete Java interface type and reference type respectively. These

might, for example, be used for navigation purposes, because the returned

EjbInterfaceTypes provide access to the corresponding SB types which

might be associated with EjbReferenceTypes themselves. These refer-

ence types can be submitted to method 4 in a subsequent invocation.

Method 5 can be used to obtain additional configuration options on the

level of SB types such as SEE types or default transaction settings. The

same is possible on the level of EjbModuleTypes through method 6. Fi-

nally, method 7 can be used to identify whether a plan has reached a state

which might be realized without the need for any further decisions on

Type Level regarding connections to establish.

5.2.5.3. Plan Construction

In order to construct a plan, a planner must define whether the plan is in-

tended to provide Java interface types on Access Layer or on Managed Layer

during construction. Afterwards, the planner can provide instances of

JavaInterfaceTypes as parameter to the method addJavaInterface-

TypeProvider which should be provided as goals of the plan. After fin-

ishing execution, the method returns a boolean value indicating whether

the interface might be provided (true) or not (false). If the provision of

the interface was possible, the corresponding entries in p and a are inte-

grated. Otherwise, the plan state is not changed. The method is realized

The Type Level 131

as depicted in listing 5.1.

1 p u b l i c boolean a d d J a v a I n t e r f a c e T y p e (
2 J a v a I n t e r f a c e T y p e j) {
3 i f (t h i s . p . con ta insKey (j)) r e t u r n t r u e ;
4 Set < E j b I n t e r f a c e T y p e > r =
5 new HashSet < E j b I n t e r f a c e T y p e > () ;
6 f o r (E j b I n t e r f a c e T y p e e i : j . g e t E j b I n t e r f a c e T y p e s ()) {
7 SessionBeanType s = e i . ge tSess ionBeanType () ;
8 i f (s . getEjbModuleType () . isManagedLayer () == t h i s .m)
9 {

10 Map< EjbReferenceType , Set < E j b I n t e r f a c e T y p e >> tmpA =
11 new HashMap< EjbReferenceType ,
12 Set < E j b I n t e r f a c e T y p e > >() ;
13 tmpA . p u t A l l (t h i s . a) ;
14 f o r (E jbReferenceType er : s . g e t E j b R e f e r e n c e T y p e s ()) {
15 tmpA = t h i s . p r o v i d e E j b R e f e r e n c e T y p e (er , tmpA) ;
16 i f (tmpA == n u l l) break ;
17 }
18 i f (tmpA ! = n u l l) {
19 t h i s . a = tmpA ;
20 r . add (e i) ;
21 }
22 }
23 }
24 i f (r . s i z e () > 0) {
25 t h i s . p . put (j , r) ;
26 }
27 r e t u r n r . s i z e () > 0 ;
28 }

Listing 5.1: Integration of Java Interface Type into Type Level Plan

First of all, it is analyzed whether the desired Java interface type (j) is

already provided as part of the plan. If this is the case, the method di-

rectly returns, indicating that provision was successful (line 3). The set

constructed in lines 4 to 5 is used to hold all EjbInterfaceTypes which

might be used to provide j. Afterwards, all possible providers of the de-

sired Java interface type are analyzed in an iteration whether they can be

integrated into the plan (lines 6 to 23). This is the case if all of the re-

quired interface types of the corresponding SB type might be connected

132 The mKernel Meta Model

to provided interface types of other session bean types recursively. There-

fore, the corresponding SB type (s) is identified in the first step of the

iteration (line 7). If s is associated with a module type belonging to the

target provision level, (m) the proceeding for the current SB type is contin-

ued (lines 8 to 22). Otherwise, the surrounding iteration would continue

with the next provided interface type, if such exist. If the desired layer

is given, a copy of a is created (tmpA) in the lines 10 to 13. In this con-

text, no deep copy is necessary, because only on top level new mappings

might be integrated during further planning. The copy is used in the

following lines to represent the current progress regarding the mapping

from required interface types to alternatives of provided interface types.

Therefore, the creation of a copy of a ensures that planning for the partic-

ular EjbInterfaceType is started based on the current state of the plan.

Afterwards, it is tried to find a provided interface type for each of the re-

quired reference types of s (lines 14 to 17). This is done with the help

of the method provideEjbReferenceType which is discussed separately

below. From an external point of view, this method expects the required

reference type and the current mappings from EjbReferenceTypes to

sets of EjbInterfaceTypes as parameters. As return value it provides a

new mapping from required to provided interface types also covering the

submitted ones. If it was not possible to find at least one provider type for

the required interface type, null is returned. Furthermore, it is ensured

that the method does not change the original mapping a or its content. In

line 15 the progress of planning is updated through assigning the return

value of method execution to tmpA. If the method returns null, the iter-

ation over the EjbReferenceTypes of s must be aborted, because for at

least one required interface type no provider could be found (line 16). If

the iteration led to a new mapping or no EjbReferenceTypes are required

by s, a is replaced with tmpA (line 19), and the set of potential providers

is enhanced with the new EjbInterfaceType (line 22). In combination,

these two steps represent the extension of the plan. After all possible

The Type Level 133

EjbInterfaceTypes for j have been analyzed it is analyzed whether at

least one EjbInterfaceType could be provided in a deployment context

(lines 24 to 26). If this is the case, p is updated. This represents the end

of planning regarding j. Finally, true is returned as result of method

execution if at least one provider could be found for j (line 27).

Internally (line 15), the method provideEjbReference is used. This

method contains the source code of listing 5.2 on page 134. The method

requires an EjbReferenceType (r) for which provided interface types

should be found and a map of connection alternatives representing the

current state of planning (tmpA) as parameter values. In line 4 the Java

interface type (j) associated with the required interface type is identified.

The boolean value success indicates whether at least on provided inter-

face type could be found which could be integrated into the plan, that is,

for all required interface types of the corresponding SB type EjbInter-

faceTypes belonging to the Managed Layer could be found recursively. It

is initialized with false in line 5, because at the beginning of execution

no EjbInterfaceTypes are identified. Afterwards, all provided interface

types for j are analyzed (lines 6 to 34). First of all, the corresponding ses-

sion bean type (s) and EJB module type (m) of the provided interface type

(i) are identified in the lines 7 and 8. Afterwards, it is analyzed whether

further investigations regarding i are meaningful (lines 9 to 11). This is

the case if m belongs to the Managed Layer, because only Managed Layer

EjbInterfaceTypes might be used as connection targets inside a man-

aged system. Furthermore, if i provides j locally13, it must be part of the

same module type as r for being potentially usable as target of a connec-

tion in a deployment context. If i does not provide j locally, the module

types of i and r are not relevant.

13 Either as local home or local business interface.

134 The mKernel Meta Model

1 p r i v a t e Map< EjbReferenceType , Set < E j b I n t e r f a c e T y p e >>
2 p r o v i d e E j b R e f e r e n c e T y p e (E jbReferenceType r ,
3 Map< EjbReferenceType , Set < E j b I n t e r f a c e T y p e >> tmpA) {
4 J a v a I n t e r f a c e T y p e j = r . g e t J a v a I n t e r f a c e T y p e () ;
5 boolean s u c c e s s = f a l s e ;
6 f o r (E j b I n t e r f a c e T y p e i : j . g e t E j b I n t e r f a c e T y p e s ()) {
7 SessionBeanType s = i . ge tSess ionBeanType () ;
8 EjbModuleType m = s . getEjbModuleType () ;
9 i f (m. isManagedLayer () &&((i . i s L o c a l () &&

10 r . ge tE jbType () . getEjbModuleType () . e q u a l s (m)) | |
11 ! i . i s L o c a l ())) {
12 i f (t h i s . getSBTypesFrom (tmpA . v a l u e s ()) . c o n t a i n s (s))
13 {
14 t h i s . a d d E j b I n t e r f a c e P r o v i d e r (r , i , tmpA) ;
15 s u c c e s s = t r u e ;
16 } e l s e {
17 Map< EjbReferenceType , Set < E j b I n t e r f a c e T y p e >>
18 subTempA = new HashMap< EjbReferenceType ,
19 Set < E j b I n t e r f a c e T y p e > >() ;
20 subTempA . p u t A l l (tmpA) ;
21 t h i s . a d d E j b I n t e r f a c e P r o v i d e r (r , i , subTempA) ;
22 f o r (E jbReferenceType s r : s . g e t E j b R e f e r e n c e T y p e s ())
23 {
24 subTempA =
25 t h i s . p r o v i d e E j b R e f e r e n c e T y p e (sr , subTempA) ;
26 i f (subTempA == n u l l) break ;
27 }
28 i f (subTempA ! = n u l l) {
29 tmpA = subTempA ;
30 s u c c e s s = t r u e ;
31 }
32 }
33 }
34 }
35 i f (s u c c e s s) r e t u r n tmpA ;
36 r e t u r n n u l l ;
37 }

Listing 5.2: Recursive Provision of EjbInterfaceTypes for an EjbRe-
ferenceType

The Type Level 135

If further considerations regarding i are meaningful, it is investigated

whether s is already integrated into the plan in line 1214. If this is the

case, only the new proposed connection must be integrated into tmpA (line

14)15, and it must be indicated that a provider was found (line 15). If

s is not yet integrated into the plan, the proceeding in the lines 17 to

33 is analog to that in the lines 8 to 22 of listing 5.1 on page 131 except

that the submitted set must be extended with the currently investigated

EjbInterfaceType (line 21). This is necessary, because scenarios with

circular connection proposals would otherwise lead to endless loops. If the

execution of the method led at least to one possible provider type for r, the

resulting data structure is returned (line 35), null is returned otherwise

(line 36).

5.2.5.4. Plan Adjustment

A plan might contain alternatives for connections to establish or for the

provision of desired Java interface types within a or p, that is, at least one

of the particular value sets might contain more than one element. In such

a situation a plan would not be unambiguous. To reach unambiguity,

planners must remove EjbInterfaceTypes from a and p until each of the

value sets of both maps contains exactly one element. The plan supports

this through the two methods removeJavaInterfaceTypeProvider and

removeReferenceTypeProvider. The first method only expects the Ejb-

InterfaceType which should be removed as parameter while the second

one additionally requires the EjbReferenceType from which the provider

14 The method getSBTypesFrom constructs a set of all SB types from a set of

EjbInterfaceTypes through iterating over them and requesting their SB type. It is

not discussed here any further.

15 The integration into tempA is straight forward: The method

addEjbInterfaceProvider requests the entry of r in tempA. If none exists, a

new entry set is created and integrated. Afterwards, i is integrated into the set.

addEjbInterfaceProvider is not discussed here any further.

136 The mKernel Meta Model

should be removed as parameter. Both methods first analyze whether

the set of EjbInterfaceTypes from which the submitted interface type

should be removed contains only one element. If this is the case, the

removal cannot be performed, because this might lead to an infeasible

plan. Otherwise, the corresponding entry is removed. Additionally, the

SessionBeanType belonging to the removed interface provider type is re-

quested and submitted to the method recalculateReferences as pa-

rameter s. This method is responsible for internally removing the cor-

responding EjbReferenceTypes from a recursively. The source code of

recalculateReferences is shown in listing 5.3.

1 p r i v a t e v o i d r e c a l c u l a t e R e f e r e n c e s (
2 SessionBeanType s) {
3 i f (t h i s . ge tSess ionBeanTypes () . c o n t a i n s (s)) r e t u r n ;
4 Set < E j b I n t e r f a c e T y p e > i s =
5 new HashSet < E j b I n t e r f a c e T y p e > () ;
6 f o r (E jbReferenceType r : s . g e t E j b R e f e r e n c e T y p e s ()) {
7 Set < E j b I n t e r f a c e T y p e > r s = t h i s . a . remove (r) ;
8 i f (r s ! = n u l l) {
9 i s . addAl l (r s) ;

10 }
11 }
12 f o r (E j b I n t e r f a c e T y p e i : i s) {
13 t h i s . r e c a l c u l a t e R e f e r e n c e s (i . ge tSess ionBeanType ()) ;
14 }
15 }

Listing 5.3: Recursive Removal of EjbReferenceTypes from Type Level
Plan

If at least one EjbReferenceType of the SessionBeanType is still in use,

no further adjustments are necessary. This is verified through analyzing

the result of getSessionBeanTypes, because the result set only contains

those SB types which are potential providers of at least one EjbInter-

faceType (line 3). Otherwise, all entries for the EjbReferenceTypes of

the considered SB type are removed from a (lines 6 to 11). The affected

EjbInterfaceTypes are stored in a temporary data structure (is). For

The Type Level 137

each of the corresponding session bean types the method recalculate-

References is invoked recursively in the lines 12 to 14. Consequently,

after returning from all invocations of the method, the data structures of

the plan only contain EjbInterfaceTypes which are still needed for the

configuration alternatives the plan represents.

5.2.5.5. Application to Case Study

As preparation for the approach at least the Access Layer and Managed

Layer ejb-jar files of the Transfer component and the Managed Layer ejb-

jar file of the Foundation component must be integrated into the target

system. Figure 5.5 on page 138 shows the proposed connection struc-

ture on execution of addJavaInterfaceType for the Java interface type

TransferController, BankController, and StandingOrderControl-

ler on a plan intended for the Access Layer.

The result is based on the assumption that for each of the required inter-

face types only one possible provider type is known within the system, that

is, beyond the required ejb-jar files, no other EJB module type contains

EjbInterfaceTypes associated with the affected JavaInterfaceTypes.

In the figure provided interface types are depicted through circles while

required interface types are shown as semicircles. All of them are anno-

tated with the names of the corresponding Java interface types. Proposed

connections are shown as arrows from the required interface type to the

provided interface type. SB types are represented through rectangles with

rounded corners, and EJB module type are the rectangles surrounding the

including elements. The gray shaded SB type CustomerControllerBean

is not affected by the plan, because it was not part of any connection pro-

posal during plan construction. Consequently, it would not be reachable,

and its configuration could therefore be neglected. The plan would not

need any adjustments after submitting the desired JavaInterfaceTypes,

because its construction would directly lead to unambiguity. It is compli-

138 The mKernel Meta Model

Managed Layer

Transfer

Foundation

Transfer

BankController

BankControllerBean

BankController

BankControllerBean

TransferController

TransferControllerBean

TransferController

TransferController

TransferControllerBean

TransferController

TxController

TxControllerBean

TxController

TxControllerBean

AccountController

AccountControllerBean

AccountController

AccountControllerBean

CustomerController

CustomerControllerBean

CustomerController

CustomerControllerBean

BankController

BankControllerBean

BankController

BankController

BankControllerBean

BankController

StandingOrderController

StandingOrderControllerBean

StandingOrderController

StandingOrderController

StandingOrderControllerBean

StandingOrderController

StandingOrderController

StandingOrderControllerBean

TransferController

StandingOrderController

StandingOrderControllerBean

TransferController

TransferControllerBean

TransferController

AccountControllerBankController TxController

TransferControllerBean

TransferController

AccountControllerBankController TxController

Access Layer

Figure 5.5.: Type Level Plan Proposal

ant with the intended structure, as presented in section 4.1.2.

In order to plan the provision of an MDB type on Access Layer, a match-

ing MDB type must be found on Managed Layer. Afterwards, a Managed

Layer plan with all JavaInterfaceTypes of its EjbReferenceTypes must

be constructed according the proceeding in the previous sections. A de-

tailed discussion is not provided in this thesis.

The Deployment Level 139

5.3. The Deployment Level

On Deployment Level, the meta model addresses the architecture of a con-

crete system. Therefore, the corresponding elements of the meta model

are intended to provide sound sensors for inspection of the current con-

figuration of a system with respect to the established connections, as well

as the concrete parameter settings of the constituent modules and beans.

Furthermore, the API provides comprehensive effectors for compositional

and parameter adaptation. Those go partially beyond the opportunities

and facilities provided by the EJB standard. This section focuses on the

discussion of what is enabled by the infrastructure on Deployment Level

while abstracting from the underlying conceptual and technological real-

ization.

EJB modules are considered as the constituent elements of a system ar-

chitecture on Deployment Level. They are derived from EJB module types

being part of the Type Level. Therefore, each EJB module belongs to a cor-

responding EJB module type. The same holds for each included element

of a module such as enterprise beans which are derived from EJB types.

Table 5.2 on page 140 contains a compilation of the Type Level elements

and the related Deployment Level elements.

Consequently, most16 elements on Deployment Level can be interpreted as

instantiations of Type Level elements. In this context, nearly each element

of the Type Level might be instantiated an arbitrary number of time, be-

cause a module type might be deployed more than once within a system.

This also includes the case that a module type is not instantiated at all.

Each of the related elements of the two levels are associated in the meta

model. Therefore, navigation from Type Level elements to the correspond-

ing Deployment Level elements and vice versa is possible17.

16 Only JavaInterfaceType and MethodSpecification have no corresponding ele-

ments on Deployment Level.

17 Navigation from Type Level to Deployment Level is only possible if corresponding elements

140 The mKernel Meta Model

Type Level Element Deployment Level Element

EjbModuleType EjbModule

EnterpriseBeanType EnterpriseBean

MessageDrivenBeanType MessageDrivenBean

SessionBeanType SessionBean

EjbReferenceType EjbReference

EjbInterfaceType EjbInterface

SimpleEnvironmentEntryType SimpleEnvironmentEntry

TransactionDeclarationType TransactionDeclaration

SecurityRoleType SecurityRole

SecurityPermissionType SecurityPermission

Table 5.2.: Compilation of related Type Level and Deployment Level Ele-

ments

The remainder of this section is structured as follows: Section 5.3.1

discusses the life cycle of EJB modules. Compositional and parameter

adaptation as supported by the meta model are addressed in section 5.3.2

and section 5.3.3. Afterwards, the provided access points to the Deploy-

ment Level are presented in section 5.3.4. Finally, section 5.3.5 explains

the application of the Deployment Level API through an example.

5.3.1. The Life Cycle of EJB Modules

A deployed EJB component is represented through an EjbModule. The in-

cluded enterprise beans are derived from the EJB types of the correspond-

ing module type. Enterprise beans stand in a composition association

to their corresponding module, because they are created and destroyed

with this module. The same holds for required interfaces of beans and

exist.

The Deployment Level 141

provided interfaces of session beans, as well as for their associated param-

eterization settings.

The creation of an EJB module from an EJB module type is supported

by the Container interface. Therefore, the module type, of which a de-

ployable module should be created, must be submitted to the method

createEjbModule as single parameter which delivers an EjbModule as

return value.

During its life cycle an EjbModule might pass through different deploy-

ment states. These states are relevant in the context of configuration

and adaptation, as discussed in the following sections. Therefore, EJB

modules expose their current state to managing entities. The set of pos-

sible states represents an extension of those states considered by the Java

Enterprise Edition 5 Deployment API Specification, Version 1.2 discussed in

section 3.4.1. The corresponding state diagram is depicted in figure 5.6.

Figure 5.6.: EJB Module Deployment States

The life cycle of an EJB module starts within the state EXISTS which is

reached after its creation through the Container interface. In this state

the module is not deployed within its target container, but only exists as

representation inside mKernel. Consequently, this state is specific to mK-

ernel and is not covered by the states considered by the JSR 88.

Through a successful invocation of the distribute method upon a

module in the state EXISTS the module is deployed into the target EJB

container and subsequently reaches the state DISTRIBUTED. Within this

142 The mKernel Meta Model

state the module does exist inside the container, but its constituent en-

terprise beans are not accessible for clients. This state is directly adopted

from JSR 88.

In order to make the beans of a module available to clients, its start

method must be invoked in the state DISTRIBUTED. After successful exe-

cution, the module is in the state STARTED which is also adopted from JSR

88.

In case a module should not be reachable for clients anymore, an in-

vocation of the stop method in the state STARTED transfers the module

back into the state DISTRIBUTED. Through a subsequent invocation of the

undeploy method, the module can be removed from the container and

transferred back into the state EXISTS.

If a module is not needed anymore and should be removed from the

system completely, autonomic entities can invoke the destroy method

upon that module in the state EXISTS. This leads to a removal of the rep-

resentation from the mKernel-managed system and to a transition into the

state DESTROYED which is specific to the meta model. Within this state no

interactions with the mKernel-managed system are possible through the

affected EjbModule reference anymore. Nevertheless, autonomic entities

might still hold corresponding references. To allow those entities to re-

quest the correct state of the module the DESTROYED state was integrated

into the meta model. Therefore, no further interactions are necessary to

reach the final state of the state machine. It is reached automatically when

the last reference to the module representation is destroyed.

5.3.2. Compositional Adaptation

The architecture of a managed system is given through the constituent en-

terprise beans of its EJB modules and connections between those beans.

Figure 5.7 on page 143 shows the corresponding elements of the meta

model and their associations on Deployment Level.

The Deployment Level 143

Figure 5.7.: System Architecture Representation

Each EJB module contains at least one enterprise bean (EnterpriseBean).

Each bean itself is either a message-driven bean (MessageDrivenBean) or

a session bean (SessionBean). Enterprise beans are integral elements of

their associated module. Therefore, they stand in a composition associa-

tion to it. Required interfaces of beans are represented through EjbRe-

ferences, and provided interfaces of session beans are exposed through

EjbInterfaces. A composition association is given, because references

and interfaces are integral parts of their beans. Associations between

EjbInterfaces and EjbReferences are used to illustrate connections be-

tween required and provided interfaces. The circular association of Mes-

sageDrivenBean represents the connection between MDBs of the Access

Layer and MDBs of the Managed Layer. All of the depicted associations are

bidirectional, meaning that the meta model supports navigation in both

directions.

mKernel allows the establishment, rerouting, and removal of connec-

tions in the architecture of a given system without the need for deploy-

ment operations. Consequently, mKernel supports dynamic adaptation

which goes beyond adaption opportunities, as envisioned by the EJB stan-

dard, which assign the determination of connections to the deployment

phase. Furthermore, the meta model provides facilities to analyze a sys-

tem architecture with respect to missing or insufficiently configured con-

nections also considering the deployment state of modules. In this con-

text, mKernel treats connections between required and provided interfaces

fundamentally different from connections to message-driven beans throu-

144 The mKernel Meta Model

gh message destinations. Therefore, these two kinds of connections are

discussed separately within the following two sections.

5.3.2.1. Connections to provided Interfaces

As targets of connections provided interfaces of session beans belonging

to the Managed Layer might be used. In contrast, provided interfaces of

the Access Layer are only intended to be used by external clients. In order

to declare and establish connections inside a managed system, mKernel

provides two opportunities, namely the establishment of connections be-

tween required and provided interfaces, and global reroutings.

On Deployment Level, a required interface might only be connected to

a provided interface if the corresponding EjbReferenceType and Ejb-

InterfaceType are associated with the same JavaInterfaceType on

Type Level. Otherwise, the attempt to establish a connection would be re-

sponded with an exception by the API. Consequently, mKernel enforces

type safeness regarding established connections between required and

provided interfaces within a system architecture. This goes beyond the re-

quirements of the EJB standard which does not treat this aspect explicitly.

In contrast, the standard solely relies on mapped names for the establish-

ment of connections and thus would theoretically allow the specification

of invalid connections.

Beyond the specification of EJB references, the EJB standard allows en-

terprise beans to use the global namespace to establish connections to ses-

sion bean instances. mKernel supports dynamic adaptation of this names-

pace through global reroutings. These allow the binding of a provided

interface to mapped names inside the global namespace of a container

as seen by the subjects of rerouting. In this context, subject of rerouting

denotes that entity for which the rerouting is declared. If a global rerout-

ing is, for example, defined for an enterprise bean, each lookup in the

global namespace with the affected mapped name would result in the ob-

The Deployment Level 145

tainment of a reference to an instance of the session bean to which the

bound provided interface belongs18. Global reroutings might be declared

for a single bean, a module as a whole, or a complete system. In this

context, more specific settings take precedence over more general ones.

If, for instance, the same mapped name is bound to a different target

on system level than on bean level, the rerouting on bean level would be

used when an instance of that bean performs a lookup with the affected

mapped name.

Establishment and Rerouting of Connections mKernel supports two vari-

ants for the establishment and rerouting of connections, as well as for the

declaration of global reroutings. The first variant (default) does not only

affect the creation of new references on Instance Level, but also reroutes ex-

isting references to instances of the new target. The second variant (lazy)

does not consider existing references, but only takes effect for newly cre-

ated references.

Consequently, both variants are equivalent for the establishment of new

connections and reroutings, because in such a situation no references can

exist. Furthermore, they are also equivalent if no references exist on In-

stance Level based on the connection or rerouting to change, that is, no

enterprise bean instance holds a reference in accordance with the origi-

nally established connection or rerouting. Nevertheless, the application of

the default variant to existing references to stateful SB instances leads to a

loss of state for the targets of those references, because mKernel does not

support the transfer of state from the original to the new target of such an

existing reference automatically. This is, because no generic proceeding

does exist for mapping the state of the original target to state elements

of the new target. The state realizations of the original and the new target

18 This only holds if the module of the session bean is in state STARTED and the bean is

properly configured.

146 The mKernel Meta Model

might be completely different. Therefore, a context specific proceeding for

state transfer would be necessary. Section 5.6, amongst others, addresses

this aspect in the context of seamless reconfiguration. As a result of the

default variant, exceptions or other undesired effects might occur. This

would not be the case if the lazy variant is applied, because existing ref-

erences are kept as long as they are needed. Nevertheless, the application

of the lazy variant might not always be meaningful, because some situ-

ations might demand for a complete transfer of connections, including

existing references. This might, for instance, be the case if the original

target on Deployment Level is erroneous or corrupted, or the underlying

database must not be used by instances of the original and the new target

SB concurrently. The application of the default variant to stateless targets

would not lead to the problems mentioned for the stateful case, because

instances of stateless session beans do not keep any conversational state.

Consequently, holders of references would not notice any difference af-

ter application, because their references would still provide access to an

arbitrary instance of a target interface implementation19.

Summarizing, none of the two variants provides a solution for seam-

less rerouting in all possible situations. Moreover, there are constella-

tions conceivable where none of them might be applied as single solu-

tion successfully, for instance, if multiple connections should be rerouted

atomically or if references to stateful targets on Instance Level should be

rerouted transparently. Nevertheless, the two variants presented here are

easy to use opportunities for realizing dynamic reconfiguration of a sys-

tem architecture. A more comprehensive foundation for seamless rerout-

ing provided by the meta model is discussed in section 5.6. Additionally,

19 This statement only holds if the new target of connection replaces the original target in

a completely consistent way. A counterexample would be if the new target of connection

uses a transformed data source with different identifiers for its elements. In this case ex-

ceptions or undesired behavior might be the result of ongoing interactions if the original

identifiers are used by clients.

The Deployment Level 147

section 7.1 presents an extension of mKernel for addressing autonomic

self-configuration.

Beyond the opportunity to establish or change connections and rerout-

ings autonomic entities are enabled to disconnect established connections

or remove global reroutings.

Reference State Each EjbReference exposes a corresponding reference

state in order to indicate its usability. Such a reference state provides

information about the connection structure regarding the provision of the

required functionality.

• DISCONNECTED: A disconnected reference is not associated with an

EjbInterface.

• CONNECTED: This state is given if the reference is associated with an

EjbInterface, but the corresponding session bean cannot be used

properly. This might, for instance, be the case if it is itself missing

connections for its EJB references.

• ACTIVATABLE: An activatable reference is associated with an Ejb-

Interface, and the EjbModule, the reference belongs to, is in state

DISTRIBUTED or STARTED. Additionally, all EjbReferences of the

session bean belonging to the associated interface are either in state

ACTIVATABLE or ACCESSIBLE recursively, if such exist. Finally, at

least one module being part of the transitive closure given through

the reference-interface-connections is in state DISTRIBUTED. Con-

sequently, the usability of the corresponding reference can be estab-

lished solely through starting a set of modules.

• ACCESSIBLE: For this state the same conditions hold as for ACTIVA-

TABLE, but all affected modules are in state STARTED. Consequently,

the reference can be used directly without any further demands for

compositional adaptation or deployment actions.

Each enterprise bean provides an aggregated reference state which is de-

rived from the states of all of its required references. According to the

148 The mKernel Meta Model

order of reference states from above, each state is analyzed whether at

least one reference is in it. If this is the case, the corresponding state is

given. Consequently, the aggregated state indicates the most evident need

for action for making the corresponding bean usable.

Interface State Analog to EjbReferences each EjbInterface has a cor-

responding interface state which covers information of how the interface

is integrated in a system architecture. It might be used to identify whether

a particular EjbInterface is used as target of connections and to esti-

mate the impact of manipulations regarding the associated session bean

and module, respectively.

• NOT_REFERENCED: No EjbReference or global rerouting is connec-

ted to the interface. Regarding the interface changing the state of

the corresponding module would not have any effects on other mod-

ules.

• PASSIVELY_REFERENCED: Only references are connected to the in-

terface of which the corresponding modules are in the states EXISTS

or DISTRIBUTED. The same holds for global reroutings of which the

interface is the target. Changing the state of the module the in-

terface belongs to would only have indirect effects, for instance, at

least one EjbReference would become DISCONNECTED in case of

removal. As the corresponding modules are not in state STARTED,

this would not have any direct effects on available beans.

• REFERENCED: At least one reference or rerouting is connected to the

interface of which the corresponding module is in state STARTED.

Therefore, a state transition of the module, the considered interface

belongs to, would have direct impact on beans accessible by internal

or external clients.

A session bean grants access to an aggregated interface state derived from

the states of all of its provided interfaces. The calculation is performed

The Deployment Level 149

analog to the way the reference state of a bean is derived. The aggregated

interface state supports the identification of the most evident impact of

changes affecting the session bean either through state transition of the

corresponding module or through changes of required interface connec-

tions. The interface state does not cover any information about the ac-

tual usability of a provided interface. This information could be obtained

through requesting the reference state of the corresponding session bean.

5.3.2.2. Connections to Message-Driven Beans

Message-driven beans are envisioned by the EJB standard as targets of

asynchronous interactions. In this context, they are bound to JMS-based

message destinations during deployment and are treated as message re-

ceivers by their execution environment. The JMS standard does only de-

fine different types of transferred messages such as messages for object

transfer (javax.jms.ObjectMessage) or text transfer (javax.jms.Text-

Message). It does not contain any opportunity which allows to restrict

the usage of message destinations such as type, structure, or content of

sent messages. Therefore, the standard does not support the definition

of any kind of interfaces for message destinations. This aspect is also not

addressed by the EJB standard. Consequently, mKernel cannot support

type safeness for MDB-based connections as it was possible for required

and provided interfaces based on Java interfaces. Furthermore, the EJB

standard does not define that a message destination to which an MDB is

bound must be exclusively reserved for that bean. Consequently, it is pos-

sible that a message destination is jointly used by multiple MDBs or even

by MDBs and other message receivers directly using JMS.

mKernel supports the binding to message destinations only for Access

Layer MDBs. This might be performed in accordance with the EJB stan-

dard through setting the mapped name of an MDB to the same name as

that of the message destination from which messages should be received.

150 The mKernel Meta Model

MDBs of the Managed Layer might be dynamically bound to and unbound

from Access Layer MDBs. In this context, an arbitrary number of Managed

Layer MDBs might be bound to each Access Layer MDB. As MDB instances

do not hold client-specific conversational states and must be equivalent to

potential clients, mKernel only supports default rerouting for MDBs. An

Access Layer MDB acts as an adapter for messages arriving at the message

destination it is bound to, that is, it enriches the messages with informa-

tion needed by mKernel and forwards them to their targets on Managed

Layer.

From the point of view of an Access Layer MDB the connected Man-

aged Layer MDBs represent references to which messages might be trans-

ferred. Therefore, the aggregated reference state of an Access Layer MDB

is derived from the reference states of all of its connected MDBs. If no

Managed Layer MDB is bound to an Access Layer MDB, the corresponding

state would be DISCONNECTED. For all other situations the state is calcu-

lated in accordance with the discussion in the previous section.

Inside the source code of enterprise beans of the Managed Layer connec-

tions to message destinations might be established, and messages might

be sent to them. These messages might be intended for MDBs of the

Managed Layer, but also for direct users of JMS20. In this context, the inter-

action schema differs from that of interactions with session beans in two

major aspects. First of all, direct connections between EJBs through mes-

sage destinations are not considered by the meta model. Secondly, con-

nections to MDBs through message destinations are mediated through

MDBs of the Access Layer, because only those are bound to message desti-

nations directly. Consequently, a rerouting of connections through mes-

sage destinations is not as flexible as for Java interface based connections:

If a Managed Layer MDB is unbound from or a new MDB is bound to

20 This might also include bean instances which register at a destination as message re-

ceiver from inside their source code.

The Deployment Level 151

an Access Layer MDB, this might affect all senders of the corresponding

destination. In contrast, the rerouting of messages of a single sender or a

group of senders is not supported.

5.3.3. Parameter Adaptation

Section 5.2.3 presented parameterization options considered on Type Level.

The corresponding elements of a concrete model represent settings de-

rived from an ejb-jar file which was integrated into an mKernel-managed

system. All of those settings are adopted during the creation of an EJB

module. Figure 5.8 depicts parameterization opportunities provided on

Deployment Level of the meta model. The rectangle in the upper right cor-

ner of the figure covers elements which belong to the Type Level of the

meta model. Those are referred to in the context of transaction and secu-

rity settings.

Figure 5.8.: Deployment Level View on Parameter Adaptation

mKernel internally makes use of the DD of a module for parameteriza-

tion which can only be manipulated before the integration of the module

into its target container, that is, if it is in state EXISTS. In this context,

the EJB standard does not cover any opportunities for parameter adapta-

tion of deployed modules. Therefore, the meta model supports parameter

152 The mKernel Meta Model

adaptation of modules which are in the state EXISTS except for simple

environment entries. Those might be manipulated independent from the

state of the corresponding module which represents an extension of the

configuration opportunities of the standard. The remainder of this section

discusses the different opportunities for parameter adaptation provided by

the API on Deployment Level.

Mapped Names Section 3.1.2.1 mentioned the global namespace as part

of the EJB standard. This namespace builds the foundation for the pub-

lication of enterprise beans at a certain mapped name and the establish-

ment of connections to instances of them. The inspection and manipula-

tion of mapped names are supported by mKernel only for enterprise beans

belonging to the Access Layer, because only instances of those should be

accessible to external clients. In contrast, connections to beans of the

Managed Layer should only be permitted inside an mKernel-managed sys-

tem. The corresponding opportunities for compositional adaptation were

presented in section 5.3.2 and do not directly rely on the global namespace

of the container. In contrast, connections between required and provided

interfaces are established directly based on the corresponding elements.

For global reroutings mapped names are not set for the targets of rerout-

ings, but in the context of a rerouting subject. Therefore, an inspection or

manipulation of mapped names of Managed Layer beans is obsolete.

Simple Environment Entries SEEs (SimpleEnvironmentEntry) might be

inspected and set for enterprise beans during the whole life cycle of the

corresponding module, except the DESTROYED state. When an SEE should

be changed the new value of the entry must be of the same type as the one

defined for the corresponding SEE type on Type Level. Otherwise, the API

would react with an exception.

Analog to the creation, manipulation, and removal of connections and

reroutings, the manipulation of SEEs is supported by mKernel through

The Deployment Level 153

two variants. For the lazy variant value changes take effect only for new in-

stances of the affected enterprise bean. Thus, lookups in the local names-

pace performed by instances which were created before changing the SEE

value would return the original value. For new instances lookups or de-

pendency injection would lead to the obtainment of the new value. For

the default variant the new value of an SEE is directly integrated into the

local namespace of the affected bean, overwriting the original one. There-

fore, each result of a lookup in the local namespace and each dependency

injection would be based on the new value. The lazy variant might, for

example, be applied meaningfully if stateful session bean instances per-

form different actions across multiple invocations based on the value of

an SEE. If the source code of the bean demands that all of these actions

must performed based on the same value for keeping consistency, a new

value for the SEE should be set based on the lazy variant. On the other

hand, the default variant should be chosen if a new value should take ef-

fect as soon as possible and no consistency problems could arise. The

two variants provide a certain level of freedom to autonomic entities to

react to context specific aspects. Nevertheless, they do not cover solutions

for all conceivable situations. It is, for example, not possible to change

more than one SEE value atomically. These more complex situations are

addressed in section 5.6 in the context of seamless reconfiguration.

Transaction Settings Transaction settings are represented for message-

driven beans and session beans differently.

For MDBs a javax.ejb.TransactionAttributeType might be re-

quested or set directly through corresponding methods. This enum is

also used by the EJB standard for specifying transaction settings through

annotations. An MDB type must contain exactly one method for receiving

messages through JMS. To this method, a submitted or returned transac-

tion attribute value applies.

For each session bean a set of transaction declarations (Transaction-

154 The mKernel Meta Model

Declaration) might be requested to inspect the current transaction set-

tings. Such a declaration exposes a TransactionAttributeType value

and refers to a set of Type Level MethodSpecifications. Analog to the

Type Level representations of transaction settings a transaction declara-

tion is referring to more than one method specification if their signatures

are equal, that is, they have the same name, return type, and parameter

types. For that case a transaction declaration cannot be assigned indi-

vidually, because mKernel relies on the EJB standard for realizing decla-

rations in a system context which does not support transaction settings

based on Java interfaces. In order to specify a transaction setting, the

interface SessionBean provides a corresponding method which accepts

a TransactionAttributeType and a MethodSpecification as param-

eters. The method specification must be connected to the session bean

through the connections between MethodSpecification, JavaInter-

faceType, EjbInterfaceType, EjbInterface, and SessionBean, that

is, the corresponding method must be provided by the session bean in

a system context. In case of signature equivalence, the specification of

a transaction setting might implicitly also affect method specifications of

other Java interfaces, as discussed above.

Security Settings EJB modules might define an arbitrary number of se-

curity roles (SecurityRole) which can be identified based on their name

which is unique on module level. To each of these roles an arbitrary num-

ber of security permissions (SecurityPermission) can be assigned. A

permission relates to an enterprise bean which must be part of the mod-

ule. For SBs a method specification must additionally be referenced which

indicates the method to which the permission should be applied. This

method must be provided by the SB through its EjbInterfaces the same

way, as discussed for transaction settings in the previous paragraph. If

more than one MethodSpecification is associated with a permission

this is because of the same reason as for transaction settings. For MDBs

The Deployment Level 155

no method specification is referenced. It can be assumed that the permis-

sion relates to the method for receiving messages from JMS message des-

tinations. Security roles can be created or removed through correspond-

ing methods provided by the interface EjbModule. Security roles them-

selves allow the declaration of permissions based on a method specifica-

tion. This might implicitly induce the application to other method specifi-

cation in case of signature equivalence. Furthermore, permissions might

be removed from security roles. Finally, each enterprise bean might refer

to a single security role which should be used as foundation for method in-

vocations performed by instances of that bean in a system context, that is,

these invocations should be treated as if they were invoked by a principal

belonging to that role. This might, for example, be necessary if instances

perform invocations on other bean instances which demand this role for

execution.

MDB Message Selector For their binding to JMS-based message desti-

nations message-driven beans might define a message selector. Analog to

the Type Level the selector of an MDB is represented as java.lang.String

and can be requested through a corresponding method. Furthermore, a

new selector can be set and an existing one can be changed.

Vendor specific Extensions All parameterization options discussed up to

now directly relate to the EJB standard. Nevertheless, it might be possi-

ble that certain aspects require for vendor specific artifacts such as a file

containing the mapping of security roles to the security domain of the tar-

get container, as discussed in section 3.2.2. Therefore, mKernel allows the

integration, inspection, and removal of vendor specific artifacts which are

integrated into the ejb-jar file used for module deployment. An artifact can

be submitted to the module representation as byte array. Alternatively, the

FQN of the artifact file might also be submitted if the API is used in an

environment which allows file access.

156 The mKernel Meta Model

5.3.4. Deployment Level Access Points

Analog to the Type Level the Container interface can be used to request

references to EJB modules and enterprise beans as access points to the De-

ployment Level. For both of them a collection of all known representations

can be requested through a corresponding method, or a specific represen-

tation can be selected based on its unique identifier. The corresponding

methods are depicted in table 5.3.

Interface Specific Representation All Representations

EjbModule getEjbModule getEjbModules

EnterpriseBean getEnterpriseBean getEnterpriseBeans

Table 5.3.: Access Points to Elements of the Deployment Level

As discussed in section 5.3.2.1, global reroutings can be, amongst oth-

ers, defined on system level. A mapping from all globally rerouted mapped

names to EjbInterfaces can be requested from the Container interface.

Furthermore, new global reroutings can be declared and existing ones can

be changed or removed.

5.3.5. Application Example

The Deployment Level part of the meta model might, amongst others, be

used to realize Type Level plans, as discussed in section 5.2.5. This is pre-

sented in the remainder of this section. As for the Type Level example, the

example presented in this section does not aim to be a holistic solution for

autonomic deployment, but should illustrate the opportunities provided

by the Deployment Level of the API. As it is able to realize plans based on

instances of TypeLevelPlan, it provides a generic approach which is not

limited to the case study. Only the relevant parts of the corresponding

source code are shown in this section. The complete source code can be

found in appendix B.

The Deployment Level 157

As foundation of the example the class DeploymentLevelPlan is used.

During construction an instance of TypeLevelPlan must be submitted

which represents an unambiguous Type Level plan. An instance of De-

ploymentLevelPlan is able to realize the structure proposed by the sub-

mitted TypeLevelPlan through the creation, deployment, and activation

of the necessary modules, and the establishment of the required connec-

tions among the affected session beans. It implements a stepwise pro-

ceeding allowing clients to perform additional configurations, if neces-

sary. Internally, it holds a reference to the type level plan (tp), a reference

to a Container (c), and a set of EjbModules which are created during

plan realization (ms).

It is assumed that for none of the EjbModuleTypes being considered

by tp, corresponding EJB modules do exist within the target system. Oth-

erwise, it might become necessary to take the existing system architecture

into account during plan realization. Although this would be possible it is

excluded from the example, because it would complicate the source code

disproportionately.

5.3.5.1. Inspection Opportunities

For the inspection of a concrete plan DeploymentLevelPlan provides the

methods depicted in the following list.

1. getSessionBeans: A set of all session beans which correspond to

SB types affected by tp is provided by this method. Internally, all

session beans of all affected modules are analyzed whether the cor-

responding SB type is contained in the set of the SB types being part

of the type level plan.

2. getSessionBeanForSessionBeanType: The method returns a rep-

resentation of the session bean which is a Deployment Level instance

of the submitted SB type. The method is realized based on an iter-

ation over the result set of getSessionBeans. If the corresponding

158 The mKernel Meta Model

type of the current session bean is equal to the submitted one, the

desired SB is found.

3. getEjbModules: This method returns all modules which were cre-

ated during plan execution, that is, the entries of ms.

4. getEjbModuleForEjbModuleType: As result of this method the

EjbModule is returned which was created from the submitted mod-

ule type during plan realization. The method is implemented ana-

log to getSessionBeanForSessionBeanType.

5. getEjbInterfaceForJavaInterfaceType: This method can be u-

sed to obtain the provider of one of the TypeLevelPlan goals in a

system architecture. Internally, the corresponding EjbInterface-

Type (eit) is requested from the Type Level plan. Afterwards, all

session beans of all modules are analyzed whether the associated

type of one of their provided EjbInterfaces is equal to eit. If this

is the case, the requested EjbInterface is found and returned.

Through these methods all necessary information about a Deployment-

LevelPlan are provided. Method 1 and 3 provide all SBs and modules

which might demand for configuration. In order to obtain the Deployment

Level pendant for a module type or an SB type of tp, the methods 2 and 4

can be used. Method 5 can be used to obtain those EjbInterfaces which

were the ultimate goals of the plan execution. The connections between

EjbReferences and EjbInterfaces do not need to be exposed by a plan,

because they can be requested from the API directly.

5.3.5.2. Module Creation and Compositional Adaptation

The execution of a deployment plan is oriented at the life cycle of EJB mod-

ules as presented in section 5.3.1. Therefore, DeploymentLevelPlan pro-

vides the three methods create, deploy, and start to its clients. Each

of them leads to the corresponding state transitions of all EJB modules

which are affected by the plan, that is, the entries of ms.

The Deployment Level 159

The method create is responsible for the creation of EjbModules and

for the establishment of connections between the constituent session beans

where necessary. It is implemented as depicted in listing 5.4.

1 p u b l i c v o i d c r e a t e () {
2 f o r (EjbModuleType m:
3 t h i s . tp . getModuleTypesToDeploy ()) {
4 t h i s . ms . add (t h i s . c . c rea teE jbModule (m)) ;
5 }
6 f o r (SessionBean s : t h i s . ge tSess ionBeans ()) {
7 f o r (E jbRefe rence r : s . g e t E j b R e f e r e n c e s ()) {
8 E j b I n t e r f a c e T y p e i =
9 t h i s . tp . g e t C o n n e c t i o n A l t e r n a t i v e s (

10 r . ge tE jbRe fe renceTy pe ()) . i t e r a t o r () . nex t () ;
11 boolean s u c c e s s = f a l s e ;
12 f o r (SessionBean sp : t h i s . ge tSess ionBeans ()) {
13 f o r (E j b I n t e r f a c e i p : sp . g e t E j b I n t e r f a c e s ()) {
14 i f (i p . g e t E j b I n t e r f a c e T y p e () . e q u a l s (i)) {
15 r . connectTo (i p) ;
16 s u c c e s s = t r u e ;
17 break ;
18 }
19 }
20 i f (s u c c e s s) break ;
21 }
22 }
23 }
24 }

Listing 5.4: Creation of EJB Modules and Connection Establishment

As first step during creation for all module types of the Type Level plan

corresponding modules are created and integrated into ms (lines 2 to 4),

because their constituent session beans are needed in the subsequent

steps for connection establishment. Afterwards, all required interfaces

(r) of all affected session beans (s) are connected to provided interfaces

(lines 5 to 21). Therefore, at first the EjbInterfaceType (i) to which the

EjbReferenceType of the current EjbReference should be connected

according to tp is identified in the lines 7 and 8. The boolean variable

success, which is created in line 9, is used to identify whether the par-

160 The mKernel Meta Model

ticular reference was connected successfully. Initially, this is not given

(false). Afterwards, all provided interfaces (ip) of all session beans of

the plan (sp) are analyzed whether they are the target of connections for

r. This is the case if their corresponding EjbInterfaceType is equal to

i (line 12). If this is given, the connection is established (line 13), and the

establishment is kept in success (line 14). Because of the successful con-

nection establishment no further EjbInterfaces and providing session

beans need to be analyzed (lines 15 and 18). After finishing execution of

create all required modules are in state EXISTS and all connections pro-

posed by tp are established. Before this method is executed, the methods

for inspection would not return any results, because none of the requested

elements would exist. Because of the modules being in state EXISTS all

kinds of parameter and composition adaptation opportunities of mKernel

might be used, if desired.

5.3.5.3. Parameter Adaptation

As foundation for the example in this section the resulting TypeLevel-

Plan from section 5.2.5.5 is taken. This must be submitted to the new

DeploymentLevelPlan (d) during construction. Afterwards, the method

create presented in the previous section must be invoked on d to initiate

the creation of the Deployment Level elements. Listing 5.5 on page 161

identifies all Access Layer modules of the plan and configures them.

The presented configuration takes into account that Access Layer mod-

ules are intended to be provided over a long timespan while the EjbRe-

ferences of their constituent session beans might be reconnected during

their life cycle. In this context, a redeployment of Access Layer modules

to match with changed requirements from the Managed Layer, for exam-

ple, regarding security or transaction settings, is undesired because of the

loss of availability even for a short timespan. Therefore, the Access Layer

configuration is kept as generic as possible. This part of the overall config-

The Deployment Level 161

uration is not specific to the case study, but represents a generic proposal.

1 f o r (EjbModule m: d . getEjbModules ()) {
2 i f (!m. getEjbModuleType () . isManagedLayer ()) {
3 f o r (S e c u r i t y R o l e r :m. g e t S e c u r i t y R o l e s ()) {
4 m. removeSecur i t yRo le (r) ;
5 }
6 f o r (E n t e r p r i s e B e a n b :m. g e t E n t e r p r i s e B e a n s ()) {
7 i f (d . ge tSess ionBeans () . c o n t a i n s (b)) {
8 SessionBean s = (SessionBean) b ;
9 s . setMappedName (s . g e t E j b I n t e r f a c e s () . i t e r a t o r () .

10 nex t () . g e t E j b I n t e r f a c e T y p e () .
11 g e t J a v a I n t e r f a c e T y p e () .
12 g e t F u l l y Q u a l i f i e d C l a s s N a m e ()) ;
13 f o r (E j b I n t e r f a c e i : s . g e t E j b I n t e r f a c e s ()) {
14 J a v a I n t e r f a c e T y p e j = i . g e t E j b I n t e r f a c e T y p e () .
15 g e t J a v a I n t e r f a c e T y p e () ;
16 f o r (M e t h o d S p e c i f i c a t i o n ms : j .
17 ge tA l lProv idedMethods ()) {
18 s . s e t T r a n s a c t i o n D e c l a r a t i o n (ms ,
19 T r a n s a c t i o n A t t r i b u t e T y p e . SUPPORTS) ;
20 }
21 }
22 }
23 }
24 }
25 }

Listing 5.5: Access Layer Module Configuration for Case Study

As first configuration step all security roles r of each module are removed

in the lines 3 to 5. Implicitly all associated permissions of session beans

are also deleted, if any exist. As Access Layer modules do not cover any

business logic, but only forward invocations, this configuration would

not imply any security risks. Consequently, the affected Access Layer SBs

would not induce any additional security requirements beyond those of

the connected Managed Layer SBs. The advantage of this proceeding lies

within the freedom to neglect security aspects in case of reconnection. Af-

terwards, only those beans of the considered module are configured which

are part of d (lines 6 and 7). If a bean is affected by the plan, it must be a

162 The mKernel Meta Model

session bean (s), because DeploymentLevelPlans do not consider MDBs.

In the lines 9 to 12 the mapped name of each s is set to the FQN of the

first JavaInterfaceType which it provides through an EjbInterface.

Afterwards, the transaction attributes of all externally provided methods

are set to SUPPORTS in the lines 13 to 20. This is done, because this

setting provides the highest level of freedom regarding meditated inter-

actions between external clients and instances of Managed Layer session

beans, that is, the transaction settings of clients are forwarded. In combi-

nation, the settings performed in the above listing lead to a configuration

which reaches a degree of freedom for reconnection as high as possible.

Only the mapped names of the affected SBs represent a decision which

might lead to the need for deployment operations when another interface

– maybe a different revision of the same interface or other interfaces –

should be provided at that name in the global namespace of the managed

container.

For the configuration of the Managed Layer modules the default con-

figuration is kept. Only the simple environment entry bankName of the

TransactionControllerBean must be set as depicted in listing 5.6.

1 f o r (SessionBean s : d . ge tSess ionBeans ()) {
2 i f (s . ge tSess ionBeanType () . getEjbName () .
3 e q u a l s (" T r a n s f e r C o n t r o l l e r B e a n ") &&
4 s . getEjbModule () . ge tType () . isManagedLayer ()) {
5 SimpleEnvironmentEntry see =
6 s . getSimpleEnvironmentEntry ("bankName") ;
7 see . s e t V a l u e ("Duke ’ s Managed Bank ") ;
8 break ;
9 }

10 }

Listing 5.6: Managed Layer Module Configuration for Case Study

Here, all session beans which are affected by d are analyzed in the lines

1 to 10. If the name of the corresponding SB type is ”TransactionCon-

trollerBean” and the corresponding module is a Managed Layer module,

The Deployment Level 163

the desired session bean is found (lines 2 to 4). After identification the

SEE with the name ”bankName” is requested from the SB (lines 5 and 6)

and its value is set to ”Duke’s Managed Bank” (line 7). Afterwards, the

configuration of the Managed Layer is finished (line 8).

5.3.5.4. Plan Activation

After finishing parameter adaptation the results of the plan must be de-

ployed and started. This can be performed through execution of the two

methods deploy and start on d subsequently. Internally, both meth-

ods iterate over the set of affected modules and execute the corresponding

methods upon them. Listing 5.7 shows the source code of the deploy

method. The method start is implemented analog.

1 p u b l i c v o i d dep loy () {
2 f o r (EjbModule m: t h i s . ms) {
3 m. dep loy () ;
4 }
5 }

Listing 5.7: Module Deployment

After finishing the execution of both methods, the internal architecture

of the managed system is configured properly, and the Access Layer mod-

ules are accessible to clients. Persistence management was not considered

during planning. It was assumed that the underlying data sources do ex-

ist at least before the deploy method was invoked. Furthermore, it was

assumed that all necessary configuration settings were performed outside

mKernel, for instance, as integral part during uploading the module types

into the system or through invocations of the method setMetaInfArti-

fact21 on the affected modules before deployment.

21 This method allows the integration of arbitrary, file-based metadata into modules. It is

intended to allow the customization of modules through vendor-specific artifacts before

deployment.

164 The mKernel Meta Model

5.3.5.5. Element States

Within the sections 5.3.1 and 5.3.2 different types of element states were

introduced. These are explained in combination through a summarizing

example in this section. Figure 5.9 on page 165 shows the three mod-

ules which were considered in the previous sections. The figure is an

adjusted version of figure 5.5 on page 138. Each of the elements is anno-

tated with those states which might be requested from its mKernel repre-

sentation. Module names are annotated with their deployment state, their

references state and their interfaces state in brackets. Names of session

beans are followed by the corresponding interfaces state and references

state in brackets. Finally, interfaces and references are annotated with

their corresponding state in brackets. In the remainder of this section not

all of the states in figure 5.9 are discussed, but only representative ones.

The reference state of Access Layer EjbInterfaces is always REFE-

RENCED. As mKernel concentrates on the business tier, it cannot identify

whether clients are connected to interfaces provided on Access Layer. Nev-

ertheless, those interfaces are exposed to external clients and thus have

great influence on the availability of a managed system. Therefore, they

are treated as if they are referenced by default. According to the discussion

in section 5.3.2.1 the resulting states of the corresponding session beans

and modules are also REFERENCED.

On Managed Layer, the provided interface of BankControllerBean (Ba-

nkController) is referenced by two EjbInterfaces. Both of them be-

long to session beans which are themselves part of modules in state STAR-

TED. Therefore, the interface is in state REFERENCED which results in the

same state for the corresponding SB. As BankControllerBean does not

demand for any EjbReference and the corresponding module is in state

STARTED, the interface state of the SB is ACCESSIBLE, that is, instances of

the bean might be used properly by clients22. Finally, the state of the con-

22 This statement is based on the assumption that the bean is configured appropriately.

The Deployment Level 165

Managed Layer

Transfer (ST,R,D)

Foundation (DI,R,AC)

Transfer (ST,R,C)

BankController (R)

BankControllerBean
(R,A)

BankController (R)

BankControllerBean
(R,A)

TransferController (R)

TransferControllerBean
(R,AC)

TransferController (AC)

TxController (R)

TxControllerBean
(R,AC)

TxController (R)

TxControllerBean
(R,AC)

AccountController (R)

AccountControllerBean
(R,AC)

AccountController (R)

AccountControllerBean
(R,AC)

CustomerController (N)

CustomerControllerBean
(N,AC)

CustomerController (N)

CustomerControllerBean
(N,AC)

BankController (R)

BankControllerBean
(R,A)

BankController (A)

StandingOrderController (R)

StandingOrderControllerBean
(R,C)

StandingOrderController (C)

StandingOrderController (R)

StandingOrderControllerBean
(R,C)

StandingOrderController (C)

StandingOrderController (R)

StandingOrderControllerBean
(R,D)

TransferController (D)

StandingOrderController (R)

StandingOrderControllerBean
(R,D)

TransferController (D)

TransferControllerBean
(R,AC)

TransferController (R)

AccountController (AC)BankController (A) TxController (AC)

TransferControllerBean
(R,AC)

TransferController (R)

AccountController (AC)BankController (A) TxController (AC)

Access Layer

D DISCONNECTED

C CONNECTED

N NOT_REFERENCEDAC ACTIVATABLEDI DISTRIBUTED

R REFERENCEDA ACCESSIBLEST STARTED

Interface StatesReference StatesDeployment States

State Abbreviations

D DISCONNECTED

C CONNECTED

N NOT_REFERENCEDAC ACTIVATABLEDI DISTRIBUTED

R REFERENCEDA ACCESSIBLEST STARTED

Interface StatesReference StatesDeployment States

State Abbreviations

Figure 5.9.: Deployment Level States Example

nected EjbReferences results from the state of the BankControllerBean

and is also ACCESSIBLE.

The provided interface of CustomerControllerBean is not referenced

by any EjbReference. Therefore, its state is NOT_REFERENCED. The SB

itself does not provide any other interfaces which results in its interface

166 The mKernel Meta Model

state being NOT_REFERENCED. Furthermore, it belongs to a module in state

DISTRIBUTED and does not demand for any references. Therefore, its ref-

erence state is ACTIVATABLE meaning that it might be brought to usability

solely through starting its module.

The reference state of TransferControllerBean (ACTIVATABLE) on

Access Layer results directly from the corresponding state of the connected

session bean on Managed Layer which itself derives its state from all of

its references. In this case, AccountController and TxController are

the relevant ones, because their states demand for adjustments of the ar-

chitecture in order to reach availability, for example, through starting the

Foundation module.

If the deployment state of the Transfer module on Access Layer would

be changed to DISTRIBUTED the interface states of the referenced SBs on

Managed Layer would become PASSIVELY_REFERENCED. Nevertheless, the

state of the corresponding module would still be REFERENCED, because

BankController would still be referenced by a session bean of a STARTED

module.

Finally, the reference state of StandingOrderControllerBean on Man-

aged Layer results from its single required interface which is in state CON-

NECTED. This state indicates that the reference is connected, but that con-

figurations beyond starting modules are necessary. In this case, the con-

nected SB StandingOrderControllerBean on Managed Layer is missing

a connection for its reference and is therefore in state DISCONNECTED.

5.4. The Instance Level

On the Instance Level of the meta model instances of enterprise beans and

interactions among them are considered in an ex post manner, that is,

the Instance Level does not provide any opportunities to engage in ongo-

ing interactions. In contrast, it supports model based analyses of logged

information. Analyses of invocations on Instance Level might address two

The Instance Level 167

aspects, as well as a combination of them. First of all, the interplay of

enterprise bean instances can be analyzed. Secondly, the concrete con-

text of a single invocation can be the target of investigation, for exam-

ple, regarding a thrown exception. The Instance Level considers enterprise

bean instances from an external point of view. It does not provide insight

into the internals of invocation execution with respect to interactions be-

tween the constituent elements of an instance itself such as invocations on

instances of helper classes. In contrast, only invocations are considered

which either reach bean instances from external clients or which are per-

formed from inside the context of an invocation upon an instance of an-

other bean. Consequently, mKernel represents interactions between bean

instances in a black box manner through the representation of their ex-

ternally observable behavior. Therefore, mKernel does not aim to provide

a level of investigation as low as possible, but is designed to keep a bal-

ance between the provided information and the efforts necessary for its

collection, storage, and provision.

The following two sections discuss the two analysis aspects separately.

Afterwards, section 5.4.3 provides an overview of how collection of infor-

mation on Instance Level might be controlled by autonomic entities. The

application of the Instance Level API is finally presented based on the case

study in section 5.4.5.

5.4.1. Representation of Interactions

The Instance Level mainly addresses enterprise bean instances and method

invocations, as well as specializations of them. In this context, interac-

tions among bean instances are exposed for analysis purposes. The corre-

sponding elements of the meta model are depicted in figure 5.10 on page

168. The three elements at the top – EnterpriseBeanInstance, Ses-

sionBeanInstance, and MessageDrivenBeanInstance – represent in-

stantiations of the corresponding Deployment Level elements within a run-

168 The mKernel Meta Model

ning system. Navigation from Deployment Level elements to Instance Level

elements and vice versa is supported by the API, for example, from an

instance of SessionBean to corresponding instances of SessionBeanIn-

stance. These associations are not depicted in the figure. Enterprise-

BeanInstances stand in a composition association with the correspond-

ing EnterpriseBeans on Deployment Level, that is, the destruction of an

EjbModule leads to the destruction of all constituent EnterpriseBeans

which itself leads to the destruction of all corresponding elements on In-

stance Level.

Figure 5.10.: Instance Level Overview

Each bean instance on Instance Level is associated at least one Call. These

calls represent method invocations of which the bean instance has been

the target and which were logged by mKernel. They are ordered in accor-

dance with the order they were executed by the bean instance. In this

context, the non-reentrancy property of enterprise beans allows a total or-

dering. The list of calls of a single bean instance is called Call History of

that instance in the following. Regarding a single call navigation in both

directions of the corresponding history is supported, that is, it is possi-

ble to identify the predecessor and successor calls within the same call

history, if these exist. This is not depicted in the figure.

There are different specializations of calls considered on Instance Level,

The Instance Level 169

namely LifecycleCalls, TimeoutCalls, and ApplicationCalls. Life

cycle calls are used to represent all invocations which were performed by

the container during life cycle transitions of a bean instance, as discussed

in section 3.1.3. They expose the corresponding invocation type based on

the enum LifecycleCallType such as LifecycleCallType.POST_CON-

STRUCT. Timeout calls depict invocations which were executed in the con-

text of the timer service on timer expirations, as discussed in section

3.2.3. Application calls are further specialized into MessageCalls and

BusinessCalls. A message call is used to represent the invocation on a

message-driven bean instance on receiving a message. Business calls de-

pict invocations on session bean instances which were performed through

provided interfaces for accessing the encapsulated business logic, that is,

local, local business, remote, and business interfaces. In this context, a

business call is associated with the corresponding method specification

from the Type Level through which the invocation was performed. The

rectangle in the lower right corner of the figure highlights that Method-

Specification does not belong to the Instance Level. In case an invoca-

tion resulted in an exception, this can be identified through the associa-

tion with a ThrownException. Each ThrownException is specific for the

associated call and comprises the corresponding information such as its

stack trace.

The execution of an invocation might have led to nested invocations on

other bean instances. This is depicted in figure 5.10 through the associa-

tion between Call and ApplicationCall which represents a hierarchy.

It results from the fact that each application call might be invoked from

inside of at most one other call. Furthermore, there are no cycles possible,

because no invocation could have led to itself directly or transitively. Such

a hierarchy is called Call Chain within this thesis. The API supports up-

ward and downward navigation within call chains, that is, it is possible to

obtain references to representations all invocations which were executed

during execution of concrete invocation, its Sub-Calls. Furthermore, for

170 The mKernel Meta Model

ApplicationCalls a representation of the invocation which has led to

the current invocation might be requested (Super-Call), if one exists.

EnterpriseBeanInstances and Calls do also cover unique identifiers

and expose them to clients through corresponding methods. Further-

more, an enterprise bean instance enables clients to request the represen-

tation of a single call through submitting its unique identifier. Therefore,

it is, for example, possible for managing entities to store the necessary

identifiers for resuming analyses at a given position or to exchange infor-

mation about situations efficiently without the need to transfer complex

object hierarchies.

5.4.2. Invocation Information

Beyond methods for navigation along associations the interface Call sup-

ports analyses of invocations with respect to security, transactions, and

performance. Nevertheless, the API is not intended to be used for com-

plex calculations based on huge numbers of invocations. In contrast, it

is designed for detail analyses. Therefore, it is possible to request indi-

vidual bean instances from EnterpriseBeans through submitting their

identifiers. These might be used as starting points for further investi-

gations. The same holds for the obtainment of individual Calls from

EnterpriseBeanInstances. Additionally, it is possible to select instances

and calls based on timespans. In this context, it is possible to request ref-

erences to all instances of a bean which were engaged in the processing of

calls during the submitted timespan. From each bean instance it is addi-

tionally possible to request all calls which started within a given timespan.

If, for instance, a problem was identified and it can be assigned to a con-

crete timespan, this timespan can be taken as foundation for selecting

instances and calls for further investigations. For complex calculations

based on great numbers of calls the API is assumed of not providing the

necessary performance because of the different layers between the un-

The Instance Level 171

derlying data source and the representation through the API. These are

in particular the database management system, the JPA abstraction layer,

the enterprise beans of the container plugin, and the mKernel API itself.

In contrast, data intensive calculations are recommended for being per-

formed on the underlying database directly. This was not a goal of the

design and realization of mKernel and is therefore neglected.

Regarding security it is possible to request the name of the principal un-

der which responsibility an invocation was performed. This information

might help to identify the concrete client which performed the invoca-

tion. Nevertheless, the invocation did not necessarily need to be initiated

by the client directly, because principal information is forwarded along

call chains if no other configuration is applied, for example, if instances

should act in a role different from that of their clients (cf. section 3.2.2).

In the context of transactions, each call allows to request the state of

the corresponding transaction after the invocation has finished and all

attached interceptor instances have been passed. The particular state is

returned as int. The value corresponds to one of the constant fields of

javax.transaction.Status which are used in the context of Java EE to

represent transaction status codes.

For performance analyses invocations support autonomic entities throu-

gh the provision of their start time as java.util.Calendar and their

duration in nanosecond precision. This timespan is calculated from the

arrival of the call at the instance up to the time when all connected in-

terceptors have been passed23. This value might, for example, be used

to identify performance degradation when execution times of a particular

method constantly increase. Furthermore, it might be useful in order to

identify sources of potential optimization within call chains, because, for

instance, the fraction of the overall processing time of each of the affected

23 Actually, the value is calculated by an mKernel-specific interceptor. Therefore, the times-

pan ranges from the arrival of the invocation at the interceptor instance to the time when

it passed the interceptor after returning form execution at the bean instance.

172 The mKernel Meta Model

invocations might be easily calculated.

ThrownExceptions grant access to the FQN of the exception class, the

corresponding message, and the stack trace of the exception. This in-

formation might, for instance, be used for failure analyses performed by

autonomic entities.

5.4.3. Information Logging

By default, information on Instance Level is not logged by mKernel due

to performance reasons. Otherwise, each invocation in a managed sys-

tem would lead to the transfer of the corresponding information to the

container plugin and to the creation of the corresponding data within the

underlying database. To reach a minimization of performance overhead,

mKernel supports autonomic entities with opportunities to control when

and which information is collected in a fine-grained manner. In this con-

text, information logging can be performed based on scope, type of col-

lected information, and time scheduling. Furthermore, clients of the API

can remove collected information from the system to clean up the under-

lying data base. The remainder of this section discusses the three different

aspects of logging, that is, scope, type, and scheduling.

Information collection might be activated for different targets of a man-

aged system. Targets are considered on Deployment Level, meaning that

architectural elements of a system might be selected for information col-

lection regarding the corresponding elements on Instance Level. A target of

supervision might either be the system as a whole, a certain EjbModule,

or a concrete EnterpriseBean. The activation of logging for a certain

target means that call chains, starting at corresponding elements of the

target on Instance Level, should be collected. In this context, logging re-

quests are propagated downward call chains, that is, each invocation for

which logging is directly activated automatically leads to the logging of

those invocations which are performed during its execution transitively.

The Instance Level 173

After completion, logged call chains can be inspected through the API.

Depending on the concrete objectives of analyses, different types of calls

might become relevant. For certain situations application calls might be

needed as foundation for investigations, for example, to analyze the con-

text of recurring failures. Therefore, the API allows to specify which types

of calls should be logged. These types correspond to the direct specializa-

tions of Call, that is, LifecycleCall, TimeoutCall, and Application-

Call. During activation of Instance Level information collection all types

for which corresponding invocations should be logged must be submit-

ted. It is, for instance, possible to specify that for all beans of a certain

module all TimeoutCalls and ApplicationCalls are of interest.

Scheduling of information collection might be controlled based on its

start time and the duration of collection. Furthermore, it is optionally pos-

sible to define a recurrence interval for renewed collection. Additionally,

it would, for instance, be possible to define that logging should start at a

certain time, be performed for a certain timespan, and that this should be

repeated in a certain interval.

5.4.4. Support for embedded Inspection and Manipulation

The API itself might be used inside and outside of a managed container.

Consequently, it might also be used by instances of self-managing enter-

prise beans which provide a certain business logic on the one hand while

being responsible for their own administration on the other hand. The

same holds for interceptors which might be applied to realize different

AC aspects. In this context, mKernel does not impose any restrictions re-

garding the usage of the API.

To allow autonomic entities to obtain context information during in-

vocation execution, the API provides the class CallContext. Its design

is oriented at interfaces provided by the EJB standard in order to allow in-

stances to gain contextual information and perform manipulations, for ex-

174 The mKernel Meta Model

ample, regarding the currently processed invocation through javax.in-

terceptor.InvocationContext. The class CallContext might be in-

stantiated within the execution context of invocations by interceptor in-

stances or a bean instance itself. It provides methods for requesting the

identifiers of the current invocation, the affected instance, and the cor-

responding enterprise bean. This information is sufficient to identify the

corresponding mKernel representations through the API. In this context, a

call identifier might only be used to store additional information, because

the corresponding representation could not be requested through the API

until the invocation itself has finished24. In order to obtain the corre-

sponding identifiers, the methods getCallIdentifier, getInstanceI-

dentifier, and getEnterpriseBeanIdentifier can be used.

Additionally, CallContext enables interceptor instances to inspect and

manipulate the state of the corresponding bean instance. For this purpose

CallContext provides the following methods:

• getFieldNames: This method delivers a set containing the names

of all fields defined for the bean class and its super-classes.

• getFieldType: Through this method, a client can request the FQN

of the field type for a submitted field name.

• getFieldValue: The value of the field with the submitted name is

returned.

• setFieldValue: This method can be used to set the value of the

field with the submitted name.

If there does exist more than one field for a given name within the inher-

itance hierarchy of the particular bean, the field of the class nearest to the

bottom of the hierarchy is taken. Additionally, the FQNs of the classes

within the inheritance hierarchy can be requested through the method

getEjbClassNames. To provide access to all fields belonging to a hier-

archy there does exist a corresponding method with the suffix ForClass

24 This is based on the assumption that logging is activated.

The Instance Level 175

for each of the above methods. Each of these methods expects an addi-

tional parameter covering the FQN of the target class. These methods are

realized in the same way as their counterparts presented above, but start

searching for fields at the class with the submitted name.

Figure 5.11 shows an exemplary inheritance hierarchy.

Figure 5.11.: Exemplary Inheritance Hierarchy

Table 5.4 on the page 176 is based on the assumption that class B is used

as a stateful session bean in a managed system. The upper part of the

table contains the values of the different fields before method invocations.

The lower part of the table depicts the invocation results of get-methods

invoked with different parameters. Invocations of the methods with the

suffix ForClass with the second parameter set to ”B” would lead to the

same result as the invocations of the corresponding methods without the

suffix. A presentation of the set-methods is left out here, because their

effects would be analog to those of the get-methods.

Through an instance of CallContext interceptor instances might con-

sequently gain full control over the state of the corresponding bean in-

stance. They can, for instance, inspect the state before and after invo-

cation execution to supervise relevant changes. Furthermore, interceptor

instances might take snapshots of bean instance states for later analyses or

rollbacks, for example, in case of exceptions. In this context, mKernel does

not perform any kind of cloning regarding exposed states. This lies within

the responsibility of the interceptor developers. In this context, snapshots

or clones seem only be meaningful for those state elements which are

under full control of the bean instance. In contrast, the clone of a ref-

erence to a session bean instance or to the EIS-tier might not be useful

for later investigations. Summarizing, the class CallContext does not

176 The mKernel Meta Model

support snapshots, but only provides the necessary foundation for their

realization.

Field Values

Class Field Name Value

A y 5

A z ”A.z”

B x ”B.x”

B y ”B.y”

Return Values of Inspection Methods

Method Name Parameters Return Value

getFieldNames – {”x”,”y”,”z”}

getFieldType ”x” ”java.lang.String”

getFieldType ”y” ”java.lang.String”

getFieldType ”z” ”java.lang.String”

getFieldValue ”x” ”B.x”

getFieldValue ”y” ”B.y”

getFieldValue ”z” ”A.z”

getFieldNamesForClass ”A” {”y”,”z”}

getFieldTypeForClass ”y”,”A” ”java.lang.Integer”

getFieldTypeForClass ”z”,”A” ”java.lang.String”

getFieldValueForClass ”y”,”A” 5

getFieldValueForClass ”z”,”A” ”A.z”

Table 5.4.: Inspection Results

5.4.5. Application Example

The observation of Instance Level aspects of a running system might help

to identify situations which demand for adjustments. Within this section

The Instance Level 177

the activation of logging and the subsequent analysis of collected informa-

tion are discussed. This is done based on the StandingOrderControl-

lerBean from the Managed Layer Transfer module. An example of using

the class CallContext is not presented here, because its application was

already presented abstractly in the previous section.

There might exist manifold reasons for activating logging for a man-

aged system or parts of it such as decreasing performance or user feed-

back regarding identified failures. Moreover, regular information collec-

tion might be performed to constantly observe system behavior. One op-

portunity might be to activate logging in regular intervals for a limited

timespan and subsequently analyze the collected information with respect

to occurred exceptions and transactions marked for rollback. Listing 5.8

covers source code which might be used to activate recurring scheduling

of logging on system level with respect to application calls and timeout

calls.

1 long d = 5∗60∗1000;
2 long i = 60∗60∗1000;
3 Calendar s = new Gregor ianCalendar () ;
4 Set < Cal lType > t = new HashSet < Cal lType > () ;
5 t . add (Ca l lType . APPLICATION_CALL) ;
6 t . add (Ca l lType . TIMEOUT_CALL) ;
7 Conta iner c = C o n t a i n e r F a c t o r y . getNewContainer () ;
8 L o g g i n g T i c k e t t i c k e t =
9 c . c r e a t e L o g g i n g T i c k e t (d , i , s , t) ;

Listing 5.8: Activation of Logging on System Level

The two long variables initialized in the lines 1 and 2 represent the dura-

tion of logging (d) and the interval (i) between the beginning of two log-

ging rounds in milliseconds. For this case logging should be performed

for five minutes and should be started each hour. The Calendar s rep-

resents that time at which information collection should be started for

the first time (line 3). The default constructor of java.util.Gregori-

anCalendar creates a representation of the current time. Therefore, it is

178 The mKernel Meta Model

intended that logging should be started immediately. In the lines 4 to 6

a set of all desired call types (t) is created for which logging should be

performed. Here, application calls and timeout calls are of special inter-

est. Finally, a connection to the system is established in line 7 which is

subsequently used to submit scheduling information in lines 8 to 9.

During logging or in the end of each interval the collected informa-

tion might be analyzed, for instance, regarding exceptions or invocations

for which transaction rollbacks were performed. Instances of the class

Incident shown in listing 5.9 might be used to store the results of analy-

ses regarding the corresponding call chain and history.

1 p u b l i c c l a s s I n c i d e n t {
2 p u b l i c C a l l c = n u l l ;
3 p u b l i c I n c i d e n t super I = n u l l ;
4 p u b l i c L i s t < I n c i d e n t > subIs =
5 new L i n k e d L i s t < I n c i d e n t > () ;
6 p u b l i c I n c i d e n t p r e c I = n u l l ;
7 }

Listing 5.9: Class for representing Incidents

In this context, c represents that invocation which led to the identification

of the incident. The nearest incident within the same call chain of c of

which the corresponding invocation has led to c directly or transitively is

intended to be stored in superI. On the other hand subIs is intended to

hold the nearest incidents downward the same call chain, that is, those

incidents which occurred during invocations resulting from the execu-

tion of c directly or indirectly. Finally, precI covers the nearest incident

which occurred earlier within the call history of the instance upon which

c was executed. For the three variables superI, subIs, and precI, nearest

means that the corresponding incident is reachable through navigation

along Call related associations of c without passing other incidents.

In order to identify whether a Call relates to an incident and to create

the corresponding representation, the static method analyze from the

The Instance Level 179

following listing 5.10 might be used.

1 p u b l i c s t a t i c I n c i d e n t a n a l y z e (
2 C a l l c , Map< Ca l l , I n c i d e n t > i s) {
3 I n c i d e n t i = n u l l ;
4 i f (i s . con ta insKey (c)) {
5 i = i s . g e t (c) ;
6 } e l s e i f (i s I n c i d e n t (c)) {
7 i = new I n c i d e n t () ;
8 i . c = c ;
9 i s . put (c , i) ;

10 i . p r e c I = a n a l y z e P r e c (c . g e t P r e c e d i n g C a l l () , i s) ;
11 i . subIs . addAl l (ana lyzeSubs (c . g e t S u b C a l l s () , i s)) ;
12 i f (c i n s t a n c e o f A p p l i c a t i o n C a l l) {
13 i . super I = ana lyzeSuper (
14 ((A p p l i c a t i o n C a l l) c) . g e t S u p e r C a l l () , i s) ;
15 }
16 }
17 r e t u r n i ;
18 }

Listing 5.10: Incident Analysis

The method expects a Call c which should be analyzed and a java.-

util.Map is covering mappings from Calls to Incidents as parame-

ters. As first step, a variable i for the return value is created in line 2.

Afterwards, it is analyzed whether there does already exist an incident for

the current call through requesting the value for c from is. If there does

already exist an incident for c it is taken as return value in line 4. Oth-

erwise, it is checked if c is an incident through invocation of the method

isIncident in line 5. This is the case if the transaction status of c is

either marked for rollback, or c has an attached exception. The imple-

mentation of isIncident is not presented here. If an incident is given

the corresponding representation is created and integrated into is in the

lines 6 to 8. This is necessary to avoid endless loops during the following

analysis. The following lines 9 to 14 are needed to identify values for the

fields of i.

180 The mKernel Meta Model

Listing 5.11 presents the method analyzePrec as representative exam-

ple.

1 p r i v a t e s t a t i c I n c i d e n t a n a l y z e P r e c (
2 C a l l c , Map< Ca l l , I n c i d e n t > i s) {
3 I n c i d e n t i = n u l l ;
4 i f (c ! = n u l l && i s I n c i d e n t (c)) {
5 i = a n a l y z e (c , i s) ;
6 } e l s e i f (c ! = n u l l) {
7 i = a n a l y z e P r e c (c . g e t P r e c e d i n g C a l l () , i s) ;
8 }
9 r e t u r n i ;

10 }

Listing 5.11: Search for preceding Incident

As parameters, a preceding call and the mapping of calls to known inci-

dents must be submitted. Again, as first step a variable i for the return

value is created in line 3. As an invocation of analyzePrec is performed

from inside analyze without any validations regarding the existence of a

preceding call, this must be performed inside this method (lines 4 and 6).

If c exists and an incident is given, again the method analyze is invoked

for c in line 5. If c exists but no incident is given, analyzePrec is invoked

recursively with the preceding call of c in line 7. This proceeding leads to

the identification of an incident upward the call hierarchy of c, if exists.

Finally, the resulting nearest preceding call is returned in line 9.

The other methods analyzeSubs and analyzeSuper are not discussed

here any further, because they are implemented similar to analyzePrec.

The sequence diagram 5.12 on page 181 represents the call chain of a

timeout execution on an instance of the Managed Layer SB Standing-

OrderControllerBean. For all the corresponding invocations incidents

might be identified. Nevertheless, this does not necessarily need to oc-

cur on each timeout, but only in special situations. Invocation 1 and 3

are represented through TimeoutCalls by the API while the other ones

are BusinessCalls. On timeout occurrence (1/3) the corresponding SB

The Instance Level 181

instance (soc) initiates the execution of the corresponding transfer on

an instance tc of TransferControllerBean through invocation of the

transfer method (1.1/3.1). Internally, tc delegates the transfer to the

instance txc of TxControllerBean through invoking transferFunds

(1.1.1/3.1.1). This proceeding indicates a local transfer where no other

banking system is affected, because no lookup of a bank access point takes

place.

Figure 5.12.: Standing Order Execution

On analyzing the corresponding Calls, it can be identified that all trans-

action status are set to STATUS_MARKED_ROLLBACK. Additionally, it can be

found out that txc threw an AccountNotFoundException with an in-

valid account number as target of the transfer. This information might

be a sound foundation for further investigations which would probably

show that instances of StandingOrderController allow the creation of

standing orders with invalid transfer targets, that is, for invalid accounts,

because they do not verify the existence of target accounts for accepting

order information. In fact, the StandingOrderControllerBean on Man-

aged Layer does not even require the interfaces AccountController. The

same holds for the interface BankController and the risk that a standing

order with an unknown target bank might be created. Nevertheless, this

case might not directly be deduced from the above discussed incidents,

but might be found out during further investigations. Another possible

182 The mKernel Meta Model

reason for such an incident might be that the target account of a standing

order was removed from the system after the declaration of the order, but

before its execution.

The second call chain starting at 3 does not necessarily need to belong

to the same overarching incident. Nevertheless, the same behavior and

exactly the same account number of the exception might lead to the con-

clusion that the second timeout invocation was a redelivery attempt of the

container. Nevertheless, this can only be assumed based on the incident

information.

5.5. Notification Facility

For the application of mKernel it is not required that there does exist a

centralized management approach. Instead of that, an arbitrary number

of autonomic entities might inspect and manipulate a managed system

concurrently. Additionally, it is not required that those entities coordi-

nate their actions amongst each other or even publish information about

performed manipulations. There might arise situations where one en-

tity performs a certain management action which might be of interest for

other entities. If managing entities do not exchange information about

their activities, interested entities might request system information in

regular intervals and analyze it regarding relevant changes. This might

affect the overall system performance more or less negatively depending

on the amount of information to analyze, the inspection frequency, and

the number of inspecting entities.

To disburden managing entities from the need to constantly poll the

system state if they need information about changes and to minimize the

performance overhead for information discovery, mKernel provides a no-

tification facility. This facility is coarsely oriented at the Events facility of

the JSR 77 [81] discussed in section 3.4.2. In case of state changes occur-

ring on Type Level or Deployment Level notifications are published through

Notification Facility 183

a well-known JMS topic at which all interested entities might register as

listeners. The published messages contain necessary information to iden-

tify the affected system elements. Therefore, the information might be

used to easily find a starting point for further investigations or to directly

perform response actions.

The remainder of this section is structured as follows: Section 5.5.1

discusses the realization of the notification facility with respect to the cor-

responding meta model elements. Afterwards, section 5.5.2 presents how

the facility might be used in the context of keeping externally stored infor-

mation consistent with the observed system.

5.5.1. Notification Representation

The notification facility addresses state changes of EJB module types on

Type Level, as well as EJB modules on Deployment Level. The corresponding

notifications are published through javax.jms.ObjectMessages which

contain a serializable object as content. In order to transmit notifications,

the API uses the three classes presented in figure 5.13 on page 184. The

figure does only depict the attributes of the classes, because the classes do

not contain any business logic and are intended to be used for information

transfer only. For all private variables corresponding get-methods are

provided. Furthermore, certain JMS properties of the published messages

are set to allow the application of message selectors by receivers to only

obtain those messages which are relevant for their particular application

context. To facilitate the definition of message selectors for receivers most

of the static variables of the different classes might be used.

The abstract class Notification is used as common super class of

Type Level and Deployment Level related notifications. It is characterized by

two static variables. The first variable TOPIC holds the name of the JMS

topic through which notification messages are published by mKernel. It

might, for instance, be used in annotations of message-driven beans to

184 The mKernel Meta Model

Figure 5.13.: Notification Types

specify their mapped name. The second variable IDENTIFIER_PROPERTY

holds the property name which is used in notification messages to cover

the identifier of the module type or module to which the messages relates

depending on the particular level to which the message belongs. It might

be used by receivers as part of their message selectors to specify that only

messages of a certain module type or a collection of module types are of

interest. The same holds for Deployment Level related messages and EJB

modules, respectively.

The two specializations of Notification are specific for a concrete

level. EjbModuleTypeNotifications are used for Type Level related no-

tifications while EjbModuleNotifications are used for the Deployment

Level. Both classes contain static variables which might directly be inte-

grated into message selectors inside annotations. The particular LEVEL_-

SELECTOR specifies that only messages of the corresponding level are of

interest. The other static variables define that only messages relating to a

specific state are relevant. For the Type Level these relate to the creation

(CREATED_SELECTOR) and removal (REMOVED_SELECTOR) of module types.

EjbModuleNotification provides selector elements through static vari-

ables which might be used to define that only notification about the arrival

Notification Facility 185

of modules in a certain state are of interest. The different selector ele-

ments might be used in combination to construct more complex message

selectors.

Each EjbModuleTypeNotifiation contains the unique identifier of

the affected EjbModuleType as value of the variable moduleTypeIden-

tifier. Additionally, the variable ejbTypeIdentifier covers a set of all

identifiers of the affected EJB types. Especially for the case of module type

removal this might be of special interest, because these identifiers and the

corresponding EJB types cannot be identified through the API anymore.

The same holds for all affected Java interface types of which the corre-

sponding identifiers are kept in the variable javaInterfaceTypeIden-

tifiers. In this set only identifiers of Java interface types are contained

which are newly integrated during module type creation or deleted from

the system during module removal. Finally, a Type Level notification cov-

ers a boolean variable created which is true in case of a module type

creation and false when a removal occurred.

Module related notifications cover the unique identifier of the affected

module (moduleIdentifier), identifiers for the corresponding enterprise

beans (ejbIdentifiers), and the resulting deployment state (state). Es-

pecially if a module has reached the DESTROYED state the bean identifiers

might be of special interest because of the same reason as for Type Level

notifications.

5.5.2. Application Example

As discussed in the sections 5.2 to 5.4, the API provides a rich set of op-

portunities for inspection and manipulation of a managed system. These

opportunities were designed comprehensive with respect to the EJB stan-

dard, that is, they are intended to focus on aspects of the standard while

not addressing concrete application areas of AC. For different application

contexts it might be necessary to store additional information regarding

186 The mKernel Meta Model

certain elements of a managed system. These might reach from rather

simple comments and remarks regarding, for instance, a single enter-

prise bean or module on Deployment Level up to complex data structures

which relate to multiple elements of a system on different levels. Stor-

ing and keeping these kinds of information is not directly supported by

the meta model. Nevertheless, the notification facility might be used to

update externally managed information for keeping them consistent with

the managed system.

As mentioned in section 5.4, Instance Level information might be used

to calculate statistical information regarding system performance. As one

rather simple example, it would be possible to record information about

the number of processed invocations, the average execution time, or the

minimal and maximal invocation execution times for each enterprise bean

in a managed system. These measures might be calculated based on sam-

ples from logged Instance Level information. After calculation the infor-

mation might be stored in a data base for later analyses, for example, re-

garding usage peeks or performance evolution over time. To allow the

later identification of a corresponding EnterpriseBean through the API,

its unique identifier might be stored as part of a statistics record during

collection.

If a module is removed from the managed system, the corresponding

statistics should also be removed to keep information consistency. For

this purpose the message-driven bean depicted in listing 5.12 on page 187

might be used.

The annotations in the lines 1 to 9 are used for configuration pur-

poses. As mentioned in the previous section, the static variable TOPIC of

Notification can be used to register the MDB at the notification topic

through its mapped name. The message selector defined in the lines 4 to

8 is based on a combination of the static variables LEVEL_SELECTOR and

DESTROYED_SELECTOR of EjbModuleNotification. It has the effect that

only Deployment Level notifications relating to the destruction of a module

Notification Facility 187

are received by instances of the MDB.

1 @MessageDriven (
2 mappedName = N o t i f i c a t i o n . TOPIC ,
3 a c t i v a t i o n C o n f i g = {
4 @ A c t i v a t i o n C o n f i g P r o p e r t y (
5 propertyName = " m e s s a g e S e l e c t o r " ,
6 p r o p e r t y V a l u e =
7 E j b M o d u l e N o t i f i c a t i o n . LEVEL_SELECTOR+
8 " AND "+
9 E j b M o d u l e N o t i f i c a t i o n . DESTROYED_SELECTOR)

10 }
11)
12 p u b l i c c l a s s SystemObserver implements
13 MessageL is tener {
14

15 @Pers is tenceContex t
16 p r i v a t e Ent i tyManager em ;
17

18 p u b l i c v o i d onMessage (Message m) {
19 ObjectMessage o =(ObjectMessage)m;
20 E j b M o d u l e N o t i f i c a t i o n n = n u l l ;
21 t r y {
22 n = (E j b M o d u l e N o t i f i c a t i o n) o . g e t O b j e c t () ;
23 } c a t c h (JMSException e) {
24 / / E x c e p t i o n h a n d l i n g
25 }
26 f o r (S t r i n g e j b I d : n . g e t E j b I d e n t i f i e r s ()) {
27 Query q = t h i s . em .
28 createNamedQuery (" d e l e t e U s a g e S t a t i s t i c s F o r E j b ") ;
29 q . s e t P a r a m e t e r (" e j b I d " , e j b I d) ;
30 q . executeUpdate () ;
31 }
32 }
33

34 }

Listing 5.12: Application of Notifications

The entity manager em is used for interactions with the EIS-tier and to

remove statistic information (lines 13 and 27 to 30). On arrival of a mes-

sage the included notification object is extracted for further processing

(lines 19 to 25). The handling of potential exceptions is not relevant for

188 The mKernel Meta Model

the example presented here (lines 23 to 25). Afterwards, the unique iden-

tifiers of the affected beans are used to remove the corresponding statis-

tics information from the underlying data source. In this context, the

NamedQuerydeleteUsageStatisticsForEjb is defined for the entity of

which instances are used to store statistical information for a single bean

in a single observation interval. The parameter ejbId is used to identify

which entries should be removed during update execution.

The original representation of statistics information is not relevant in

the context of this thesis. It is therefore omitted.

5.6. Support for seamless Reconfiguration

In section 1.2.2 it was highlighted that dynamic composition is a desirable

capability of a managed system. Nevertheless, the EJB standard does not

address this aspect, as discussed in section 3.1.2.2. In section 5.3.2 the

fundamental primitives for dynamic composition with respect to rerout-

ing of connections of a managed system were presented. These are lim-

ited to situations where no state transfer between bean instances is nec-

essary and no atomic rerouting of more than one connection is required.

The same holds for the parameter adaptation with respect to simple envi-

ronment entries. These might be changed through the API individually,

but not in combination atomically. Furthermore, the realization of the

API does not guarantee that new values affect existing instances.

Within this section the foundation for more complex scenarios is pre-

sented which does not adhere to the above stated restrictions. In con-

trast, dynamic compositional adaptation is supported for an arbitrary set

of managed components. This also includes the integration of new mod-

ules and the removal of those which are not needed anymore. Addition-

ally, atomic adaptation of multiple parameters can be realized through

API elements.

Seamless reconfiguration, as supported by mKernel, is based on the con-

Support for seamless Reconfiguration 189

cept of so-called Quiescence (cf. [99]). This concept was not newly devel-

oped for the mKernel system, but is well established in literature. The

fundamental idea and the corresponding concepts are discussed in sec-

tion 5.6.1. Afterwards, section 5.6.2 presents how these concepts are sup-

ported by mKernel through meta model elements. The proceeding of state

transfer from modules to be replaced to replacing ones is explained in

section 5.6.3 followed by a discussion of the implicit limitations of the ap-

proach realized by mKernel in section 5.6.4. Finally, section 5.6.5 contains

an example for seamless reconfiguration based on the case study.

5.6.1. Background

The basic goal of dynamic composition is to reconfigure the architecture

of a system while it is running. Beyond the core goal of reaching the de-

sired system architecture dynamic composition has two major objectives,

namely to keep consistency of the system state and to minimize system

disruption [71,99,117]. In this context, State does not relate to the architec-

ture of the system regarding its constituent components and connections

among them, but to the underlying data source and potentially ongoing

interactions.

The preservation of consistency can be seen as mandatory objective for

reconfiguration execution. Otherwise, a system might show unintended

or erroneous behavior, and the underlying data structures might become

corrupted. For enterprise systems this is highly critical because of the

potential legal consequences and the potential loss of trust and reputation

due to poor usage experiences of its users.

The minimization of system disruption can be considered on different

levels. First of all, there might occur situations which lead to disruption

of availability such as connection losses or transaction aborts due to re-

configuration execution. A weaker form of disruption might occur when

perceived performance degrades due to reconfiguration. This might, for

190 The mKernel Meta Model

instance, be the case if processing of interactions is blocked during certain

phases of reconfiguration and continued after their completion. Conse-

quently, algorithms for performing dynamic adaptation should first of all

avoid situations which harm availability, that is, they should work seam-

lessly. Secondly, they should minimize delays noticed by system clients.

A general and transparent approach for seamless reconfiguration is

necessary for mKernel, because it aims to provide a generic infrastructure

for AC. Furthermore, special restrictions or guidelines for component de-

velopment should be avoided (cf. objective SoftR-MT in section 1.3). The

approach realized as part of mKernel is based on the fundamental ideas of

Kramer and Magee [99]. They assume that at runtime a system or parts of

it pass through consistent states which are safe for reconfiguration. Dur-

ing interactions consistency might be violated, but is restored after finish-

ing them. Consequently, consistent reconfigurations can be performed at

least in situations where no interactions are active on the affected parts of

a system. Such a situation is called Quiescent State. Regarding composi-

tional adaptation, Kramer and Magee explicitly consider the addition and

removal of components, and the manipulation of connections. In partic-

ular, Kramer and Magee state four properties a quiescent element has to

fulfill:

1. it is not currently engaged in a transaction that it initiated,
2. it will not initiate new transactions,
3. it is not currently engaged in servicing a transaction, and
4. no transactions have been or will be initiated by other nodes

which require service from this node. (cf. [99], p. 1296)

The term Transaction relates to a single interaction and should not be con-

fused with transactions as considered in the EJB standard. The first two

properties are summarized under the term Passive Properties in the work

of Kramer and Magee. They demand that a quiescent node is neither cur-

rently executing a self-initiated interaction nor will initiate new ones dur-

ing reconfiguration. Consequently, its behavior is characterized by pas-

Support for seamless Reconfiguration 191

siveness. The other two properties demand that quiescent nodes are not

currently executing any interactions initiated by other nodes, and that it is

ensured that no new interactions are started upon a quiescent node during

reconfiguration. Summarizing, a quiescent node is not affected by any in-

teractions during reconfiguration execution. In this context, interactions

relate to the core application logic of the node. In contrast, the execution

of administrative interactions such as state extraction and transfer would

be valid.

In order to reach the properties 1 and 3, active transactions on elements

for which quiescence should be reached must be finished. This might

demand that consequent transactions are also finished. In this context, a

consequent transaction is a transaction which is started during the exe-

cution of another transaction. In order to finish the original transaction,

all consequent transactions must be finished. Consequently, it might be

necessary that new transactions must be allowed on an element for which

quiescence should be reached to finish other already active transactions.

The properties 2 and 4 demand that new, non-consequent transactions

are neither started by those elements for which quiescence is desired nor

by elements which possess outgoing connections to the former elements

transitively. Therefore, Kramer and Magee demand in their original ap-

proach that all elements which are connected to those elements which

should be subject to reconfiguration must also be transferred to a quies-

cent state. The design of the original approach envisions a programming

interface for a quiescence manager to instruct elements to behave pas-

sively. This would be used for all affected elements to instruct them not to

violate property 2. In combination, this would lead to a situation where no

new transactions are started on the affected part of a system, because no

incoming connections through which new transactions might reach the

affected system part would exist. This design comprises the important

implication that the complete system is under the control of a quiescence

manager, that is, it is possible to transfer all relevant parts of a system

192 The mKernel Meta Model

into a passive state to avoid the occurrence of new transactions completely

also including its clients. Furthermore, the need to transfer more ele-

ments into a passive state than only those which should be subject to

reconfiguration might induce situations where transactions are avoided

even if they would have been possible. This might, for example, be the

case if such a transaction is executed without the need for performing any

consequent transaction upon an element which is subject to quiescence.

Consequently, system disruption is not necessarily minimized.

As alternatives to the original approach which is characterized as static

in literature (cf. [79]) there do exist other approaches which take additional

information about ongoing transactions into account to minimize disrup-

tion (cf., e.g., [13, 44, 161]). These approaches are based on the idea to

identify whether a transaction was initiated by an element for which qui-

escence is desired or whether it is a consequent transaction which must

be finished. All other transactions are blocked until the reconfiguration

has finished. Consequently, these approaches do not require that no new

transactions are started by elements outside the affected part of a system.

In contrast, they rely on the opportunity to analyze call chains to iden-

tify those transactions which must be forwarded and those which must be

blocked before they reach their original target. As they reduce the set of

necessary nodes to transfer to quiescence and do only affect those transac-

tions which would actually affect quiescent nodes, they perform at least as

well as the original, static approach with respect to the minimizing system

disruption. These approaches are called dynamic in literature (cf. [79]).

Beyond consequent transactions there might also occur situations where

transactions depend on other transactions which do not belong to the

same call chain. This might, for example, be the case if a node is pro-

cessing an interaction during which it waits for a notification from a dis-

tinct transaction. These scenarios are considered by Warren and Som-

merville [160] under the term Constrained Requests. They are not considered

by the above mentioned reconfiguration approaches. Moreover, the exis-

Support for seamless Reconfiguration 193

tence of such constellations in a concrete reconfiguration situation can

not directly be deduced solely based on call chain information and con-

nections in a managed system. In contrast, they can be assumed of being

application specific.

During execution of a reconfiguration state transfers from replaced to

replacing elements might become necessary. Most of the proposed ap-

proaches do not try to automate the original transfer because of the wide

range of potential syntactic and semantic differences between the state

representations of two or more elements between which states should be

transferred. Although there do exist approaches which try to partially au-

tomate state transfers (cf. [155]), a complete automation for all conceivable

situations without any additional specifications does not seem to be feasi-

ble at the time this thesis is written.

5.6.2. The Quiescence Region

The API of mKernel provides the opportunity to define a set of system ele-

ments which should be brought to a quiescent state through a Container

reference. This set is called Quiescence Region and can consist of single

enterprise beans and complete EJB modules, as well as a combination of

both. It is represented through the interface QuiescenceRegion.

At any given time there might exist at most one quiescence region in-

side a managed system. This is not a restriction regarding the provided

functionality for seamless reconfiguration, because a quiescence region

might contain an arbitrary set of EJB modules and beans independent

from their corresponding deployment state. Consequently, elements in

use in the beginning of reconfiguration, as well as newly created ones in

an arbitrary state might be integrated into a region. On the other hand, a

support for the existence of multiple regions in parallel would cause ad-

ditional overhead regarding API usage such as the need to identify the

relevant region or additional configuration demands for defining relation-

194 The mKernel Meta Model

ships and priorities among regions. Summarizing, the decision to only

allow at most one region at any given time was made to keep the API

simple to use.

During its life cycle a QuiescenceRegion might pass through different

states which are depicted in figure 5.14.

Figure 5.14.: Quiescence Region States

The life cycle of a quiescent region starts in the state OFF. This state in-

dicates that the region does exist within the system, but does not have

any effects on the managed system. From the OFF state the TRACKING

and BLOCKING states can be reached through successful execution of the

corresponding operations track and block respectively.

An mKernel-based system does not hold references to active SB instances

due to memory reasons. Nevertheless, such references are needed if state

transfers of stateful SB instances are desired during reconfiguration, and

an exchange of references to replaced instances with references to replac-

ing ones should be performed. During the TRACKING state references to

instances are tracked in case they are used. Therefore, the TRACKING state

can be seen as optional state for collecting active references. During this

state no interactions are blocked. Consequently, tracking is recommended

to be activated a certain time before the actual reconfiguration should take

place to allow the system to determine all relevant references. From the

Support for seamless Reconfiguration 195

TRACKING state a quiescence region can be transferred to the BLOCKING

state through an invocation of the block method.

During the BLOCKING state all invocations and incoming messages di-

rected to an element of the quiescence region are analyzed whether their

call chains have already passed another element of the region. If this is

the case, they are forwarded to their original targets. Otherwise, their

execution is blocked at their source. This also holds for the creation of

new references to bean instances belonging to the region. Consequently,

there are no invocations or messages blocked inside elements which are

the targets of reconfiguration. On entering the BLOCKING state, timers

of stateless SBs and MDBs are suspended. Furthermore, newly created

timers are not actually activated, but added to the set of suspended timers.

Summarizing, no new interactions can enter the quiescence region dur-

ing the BLOCKING state, and no interactions can be started from inside

the region. Therefore, the properties 2 and 4 for quiescent elements,

as discussed in the previous section, are enforced during the BLOCKING

state regarding invocations related to the business logic of the affected

elements. The collection of references as in the TRACKING state is contin-

ued during BLOCKING. Through the release operation the region might

be transferred back to the OFF state. This implies the release of all blocked

invocations, the restart of all suspended timers and a reset of tracked ref-

erence information.

If there are no interactions active within the quiescent region anymore,

it is transferred to the QUIESCENT state automatically. The system behav-

ior is the same as for the BLOCKING state, but the properties 1 and 3 of

quiescent elements discussed in section 5.6.1 are also given. This also

covers life cycle calls on enterprise beans instances. Internally, mKernel

simulates passivation of stateful session bean instances. This would lead

to a state of all known instances which would allow their serialization.

Furthermore, underlying data sources would be left in a consistent state,

because this is one of the requirements a bean provider has to fulfill as

196 The mKernel Meta Model

preparation for passivation. If instances perform invocations on other in-

stances during simulated passivation, this is also covered by mKernel. For

the case that the passivation of the target instance was already simulated

its activation is simulated to service the new request. Afterwards, its pas-

sivation is simulated again. This proceeding might lead to an endless

loop if two or more instances require their mutual activation. Although

this is theoretically possible, it can be seen as design error, because this

situation might also occur without the application of mKernel. After fin-

ishing passivation life cycle invocations performed by the container are

avoided for all bean instances during the QUIESCENT state, that is, they are

hindered from reaching their original target. Therefore, no new interac-

tions could be started from inside the quiescence region. This proceeding

might lead to the omission of PreDestroy invocations on stateless SB in-

stances and instances of MDBs. Nevertheless, this should not lead to any

consistency problems, because the EJB standard does explicitly highlight

that bean implementations must not rely on the container always invok-

ing the corresponding method (cf. [58], p. 81 and p. 114). Summarizing,

the QUIESCENT state ensures that the required properties of quiescent el-

ements, as discussed in section 5.6.1, are fulfilled. Therefore, seamless

reconfiguration can be performed in this state. After finishing recon-

figuration, the state of a region can be transferred back to the OFF state

through an invocation of release. The results of execution are the same

as for the BLOCKING state. Additionally, life cycle invocations performed

by the container are again forwarded to their targets. This might imply a

synchronization of the instance life cycle with the simulated life cycle. If,

for example, a PreDestroy invocation arrives at an instance for which pas-

sivation was simulated, an activation is simulated before the destruction

call is forwarded.

Finally, the DESTROYED state can be directly reached from each other

state through execution of the destroy operation. Depending on the state

from which the operation is started, all corresponding effects of the quies-

Support for seamless Reconfiguration 197

cence region are canceled. Furthermore, no actions regarding the region

are possible if it reached this state. This state represents the final state of

a region. It is considered explicitly in the life cycle of a region, because

managing entities might hold references to representations of the region

after the execution of destroy and might try to use this reference. In order

to provide them with correct state information, the DESTROYED state was

integrated.

5.6.3. State Transfer

The API supports state transfer for stateful SB instances, as well as the

transfer and creation of timers for stateless SBs and MDBs. Furthermore,

all types of inspection and manipulation, as discussed in the previous sec-

tions, are also available during reconfiguration. States of underlying data

sources are not considered by mKernel. In case manipulations or trans-

fers are necessary, these must be treated outside of mKernel, for example,

through direct interactions with the corresponding database management

system.

References to stateful SB instances References to instances of stateful

SBs are represented through the interface HoldingReference. There are

two opportunities provided by the API to obtain such a reference. First

of all, a reference to an existing quiescence region provides access to all

blocked references. These might be used to access the corresponding in-

stances for state extraction. Secondly, new HoldingReferences might

be created for stateful SessionBeans which belong to modules in state

STARTED through invocation of the createReferenceTo on a Container

reference, submitting the corresponding bean representation. These ref-

erences are intended to be used for state injection.

The interface HoldingReference allows to request values of all fields of

the corresponding SB instance. All of these fields must either be null or

198 The mKernel Meta Model

contain values which are serializable for references obtained from a quies-

cent region, because the EJB standard stated this as requirement for state-

ful SBs in state passive25. Elements of an instance state are represented

through the interface StateElement. This interface allows to access the

type and name of a field, as well as its value. The type of a field might

either be obtained as class or as java.lang.String representing the cor-

responding FQN. Values of fields might be requested as instances of the

corresponding classes or as byte arrays. These alternatives were chosen

to allow the transfer of states even through managing entities which do

not have the classes for all fields in their classpath. Analog to the dis-

cussion in section 5.4.2, the state of a reference is divided according to

the inheritance hierarchy of the corresponding session bean. Therefore,

the state is represented through a map containing the fully qualified class

names as keys, and a set of the corresponding state elements as values.

The injection of the state for a new reference might be performed through

corresponding methods provided by HoldingReference. Therefore, the

FQNs of the target classes, the names of the affected fields, and the cor-

responding values to be set must be submitted. Finally, the replacement

of the original reference must be published within the system. This can

be performed through invocation of the method replaceWith upon the

original HoldingReference. The new reference must be submitted as pa-

rameter to this method. During transfer of instance states entities are also

supported. If they are attached to a persistence context within the original

instance, this attachment is reestablished inside the new reference. For

the default case the attachment is created to a persistence context with

the same name in the target instance. Alternatively, it is possible to de-

fine a mapping from persistence context names of the source instance

to names of the target instance. This does not necessarily cover all con-

25 The requirements discussed in the EJB standard are also supported by mKernel (cf. [58],

p. 64).

Support for seamless Reconfiguration 199

ceivable cases. The corresponding design and realization are intended

to provide a first proposal of how persistence aspects might be treated.

Nevertheless, addressing persistence aspects was not a goal for the devel-

opment of mKernel.

Timers Timers are represented through the class EnterpriseBeanTimer.

It provides access to the next activation time of the timer, as well as the

interval between two activations if a recurring timer is given. Further-

more, the encapsulated context data might be requested. As for instance

state elements context data might either be accessed through a byte ar-

ray or as object. All state elements of a timer might be inspected and

manipulated. To obtain representations of all timers of a stateless SB

or MDB, the method getTimers on the corresponding EnterpriseBean

might be invoked. A setTimers method is also provided by the inter-

face EnterpriseBean for setting timers. Furthermore, managing entities

might construct new instances of EnterpriseBeanTimer. In combina-

tion, entities are enabled to inspect existing timers and create a new set of

timers for stateless SBs or MDBs which might include existing timers, as

well as new ones. Furthermore, they might remove all timers or parts of

them from beans.

5.6.4. Limitations

The design of quiescence, as provided by mKernel, does imply certain lim-

itations which are discussed within this section.

Consequent Interaction According to the discussion in section 5.6.1, con-

sequent interactions must be permitted to pass a BLOCKING quiescence re-

gion to reach the QUIESCENT state. This is guaranteed for all consequent

interactions inside a managed system. Nevertheless, there are situations

conceivable where entities outside a managed system are accessed by a

bean instance of a managed system. If such an external entity would itself

200 The mKernel Meta Model

access at least one element of the quiescence region directly or transitively

during processing a request from inside the region, a deadlock might oc-

cur, because the external request would not be identified as consequent

invocation. This is the case, because on performing external interactions

all call chain information is lost. Hence, the foundation of the identifi-

cation of consequent interactions would not be available during deciding

whether an invocation should be blocked or not. Summarizing, the cor-

rect identification of consequent interactions is limited to those interac-

tions which occur inside a managed system.

Transactions The EJB standard does not require that any information is

provided to identify transactions in an EJB-based system such as unique

transaction identifiers. Therefore, it is not possible to determine whether

an externally initiated interaction belongs to a transaction which is already

active in a quiescence region. Those interactions would get blocked even if

they should be processed to finish an active transaction. Another scenario

would be if a stateful SB instance with BMTD started a transaction during

the processing of an invocation. This transaction should be subsequently

committed during a second invocation. If this invocation is blocked, the

transaction could not be finished. This scenario is similar to the first one.

Nevertheless, it could not even be handled if transaction identifiers would

be available, because for BMTD client transactions are not joined, but new

ones are started. Hence, it would be theoretically possible that two inde-

pendent client transactions lead to the starting and committing of a bean

instance transaction. Therefore, an identifier for the client transaction

would not help. These scenarios would not lead to deadlocks, but might

result in transaction rollbacks in case of the removal of bean instances.

Consequently, reconfiguration could not be performed seamlessly in case

external clients are affected by transaction rollbacks.

If transactions span multiple interactions and these interactions are

performed during the processing of a single interaction from inside an-

Support for seamless Reconfiguration 201

other bean instance directly or transitively, the occurrence of the above

scenarios might be avoided. For such a case the relevant beans must be

added to the quiescent region even if they are not subject of reconfigura-

tion with respect to their adjustment, replacement, or removal.

Constrained Interactions The EJB standard allows situations where con-

strained interactions might occur. An example of such a situation might

be the direct use of a message queue as message receiver from inside the

execution of an interaction. If the expected message would be sent during

the execution of another interaction, it might be possible that this interac-

tion is blocked which would result in a deadlock. Scenarios of constrained

interactions can be – according to Warren and Sommerville [160] – assumed

to be application specific and could not be identified without any further

information in general. This aspect was left open for mKernel.

Data Inconsistency A reconfiguration might only be performed seam-

lessly if data exchanged between system elements and their external cli-

ents do not become inconsistent. This might, for example, be the case if

certain identifiers are exchanged between SB instances and external cli-

ents. If these identifiers are converted during state transfer between in-

stances or the transfer of underlying data sources, this conversion cannot

be performed for the data held by external clients, because mKernel was

not designed to control their state.

5.6.5. Application Example

For the example presented in this section it is assumed that the oper-

ating bank wants to charge a fee for bank transfers performed by their

customers. Therefore, two enterprise bean implementations are adjusted,

namely the TxControllerBean from the Foundation component and the

TransferControllerBean from the Transfer component. For both of

202 The mKernel Meta Model

them a new simple environment entry type fee is integrated which cov-

ers the amount in cents which should be charged as fee for each transac-

tion. All other fields of the corresponding classes remain unchanged. The

same holds for the fully qualified class names. The implementations of

both bean types are adjusted to charge a fee for each transaction if fee is

set to a value greater zero and to track these as extra transaction in the par-

ticular account record26. All other bean implementations are adopted un-

changed. In general, it is assumed that none of the configuration aspects

are changed between the original and the replacing module types. Re-

garding the externally observable properties of the affected module types

all required and provided interfaces of the constituent bean types are not

affected by the adjustments stated above. This also implies that none of

the Java interfaces were changed. Furthermore, no changes of the under-

lying database and its representation were necessary. Consequently, only

the application logic of two enterprise bean types is changed and two new

fields are added.

To integrate the adjustments into a managed system, the two modules

Foundation and Transfer of the Managed Layer must be replaced with ad-

justed releases. Due to the absence of Java interface changes there are no

changes required regarding the Access Layer modules. Furthermore, the

underlying data source can be directly adopted.

The following discussion is kept generic, that is, it is not limited to the

concrete situation presented above, but might be applied to similar sce-

narios. For those the requirements regarding the absence of interface and

state changes must also be fulfilled. As preparation for the reconfiguration

it is assumed that the archives of the replacing Managed Layer modules are

integrated into the system according to the discussion in section 5.2. It is

26 In this context, the value of fee set for TxControllerBean is used for transactions exe-

cuted if the source and target account of a transaction are hosted by the considered bank

while the value of fee for TransferControllerBean is used for outgoing transactions

with a target account hosted by a different bank.

Support for seamless Reconfiguration 203

also assumed that – in accordance with the presentation in section 5.3 –

EjbModules are created from them, environment entries are set, and the

modules are connected internally, as well as to their environment, that

is, required interfaces of the replacing modules are connected to match-

ing provided interfaces of the system. In this context, no connections to

modules to replace are created, and incoming connections are only estab-

lished from beans belonging to replacing modules. Finally, it is assumed

that the replacing modules are transferred to the state DISTRIBUTED, but

not yet started. Consequently, all constituent beans of the replacing mod-

ules are in state ACTIVATABLE regarding their required references while

no bean outside the replacing modules does rely on their EjbInterfaces.

The source code, building the foundation of this section, can be found in

appendix C.

For the following discussion of the reconfiguration proceeding five data

structures are used as foundation:

• om: This java.util.Set holds representations of the original mod-

ules which should be replaced.

• rm: In this java.util.Set representations of the replacing mod-

ules are covered.

• os: The elements of this java.util.Set consist of SB representa-

tions belonging to the original modules.

• rs: To easily identify the session beans of the replacing modules,

this java.util.Map contains the SB names as keys and their rep-

resentations as values.

• ri: Analog to rs, this java.util.Map allows the identification of

the EjbInterfaces of the replacing SBs through submitting the

corresponding JavaInterfaceType. This unambiguous mapping

is possible, because each affected JavaInterfaceType is provided

by exactly one EjbInterface within the two modules.

The set os and the two maps rs and ri are used to facilitate the identifi-

cation of their values. They do not cover any information which could not

204 The mKernel Meta Model

be obtained through navigation along the associations of elements of om

and rm. As preparation for the reconfiguration the data structures are con-

structed and filled with the corresponding entries. In addition to the data

structures, a connection to the managed system is established through a

Container reference c. Finally, a reference to the QuiescenceRegion q

is used for inspection and manipulation purposes.

After finishing preparations, the original reconfiguration starts with the

definition of a quiescence region and its transfer to the state TRACKING.

This can be reached through execution of the following method define-

Region depicted in listing 5.13.

1 p u b l i c v o i d def ineReg ion () {
2 Set <EjbModule > qm = new HashSet <EjbModule > () ;
3 qm. addAl l (t h i s .om) ;
4 qm. addAl l (t h i s . rm) ;
5 t h i s . q = c . dec l a reQuiescenceReg ion (qm, n u l l) ;
6 t h i s . q . t r a c k () ;
7 }

Listing 5.13: Definition of a QuiescenceRegion and Transfer to the
TRACKING state

In the lines 2 to 4 the set of modules which should be considered by q

is created. It consists of all modules affected by the reconfiguration, that

is, the modules to replace and the replacing ones. The integration of the

set of replacing modules into the reconfiguration set is not necessary for

the case study. Nevertheless, it has the advantage that no life cycle calls

would be forwarded to bean instances of those modules during reconfig-

uration. Therefore, no connections would be established which leads to

performance savings. In general, the execution of invocations should be

avoided on replacing modules before reconfiguration is finished. Other-

wise, there might arise situations where these might cause inconsisten-

cies either through interactions with an underlying database which was

not adjusted or transferred, or through interactions with other bean in-

Support for seamless Reconfiguration 205

stances which directly or transitively affect the quiescence region. This

might even lead to deadlocks27. Such a case cannot occur in the current

scenario. The first parameter during the declaration of a quiescence re-

gion in line 5 requires a java.util.Set of EjbModules which should be

transferred to quiescence as a whole during a reconfiguration. As sec-

ond parameter a java.util.Set of EnterpriseBeans is expected which

should be brought to quiescence. For the example presented here no indi-

vidual beans are considered which should be treated independently from

their modules. Therefore, null is submitted for the second parameter.

The activation of tracking performed in line 6 should be performed an ad-

equate timespan before the following steps, as argued before, to collect in-

formation about references which do exist within a system. A delay which

conforms with the timeout period of connections as configured within a

container might be an appropriate choice, because if references are not

used within this timespan, clients might also be confronted with connec-

tion losses even if no reconfiguration is performed. This delay is assumed

of being given before the following steps are executed for this example.

After the tracking period quiescence must be reached for the region

to perform the original reconfiguration. This transition can be initiated

through execution of the method in listing 5.14.

1 p u b l i c boolean reachQuiescence () {
2 t h i s . q . b l o c k () ;
3 r e t u r n t h i s . q . wa i tForQuiescence () ;
4 }

Listing 5.14: Reaching Quiescence

27 An example of such a situation would be if an instance of a replacing bean performs

an interaction with an arbitrary instance of another bean during construction. If this

instance itself is connected to an instance belonging to a quiescence region in state

BLOCKING or QUIESCENT and tries to access this instance, this invocation would get

blocked.

206 The mKernel Meta Model

As first step q must be transferred to the BLOCKING state. Afterwards, in

line 3 the method waitForQuiescence is used to wait for the region to

be internally transferred to the QUIESCENCE state. The method returns a

boolean value indicating whether quiescence was reached (true) or an-

other state transition occurred which prevents the reaching of quiescence

(false). This might be the case if another autonomic entity destroys the

region before quiescence is reached. For the remainder of this section it

is assumed that quiescence has been reached.

In order to perform the seamless reconfiguration, three steps must be

executed before deactivating the replaced modules and releasing the re-

gion. These are the transfer of state for stateful SB instances, the transfer

of timers, and the manipulation of the architecture. These might be per-

formed in arbitrary order. For this example the execution is presented in

the aforementioned order.

Through the execution of listing 5.15 the state of original stateful SB in-

stances is transferred to replacing counterparts. Additionally, references

to the original instance within the system are replaced with references to

the replacing ones. In this context, mKernel blocks invocations on these

new references until the region is released.

1 p u b l i c v o i d t r a n s f e r S t a t e () {
2 f o r (HoldingReference ob : t h i s . q . g e t R e f e r e n c e s ()) {
3 SessionBean s = t h i s . r s . g e t (
4 ob . ge tSess ionBean () . ge tType () . getEjbName ()) ;
5 HoldingReference rb = t h i s . c . c r e a t e R e f e r e n c e T o (s) ;
6 rb . s e t S t a t e (ob . g e t S t a t e ()) ;
7 i f (s . ge tSess ionBeanType () . getEjbName () .
8 e q u a l s (" TxCont ro l l e rBean ")) {
9 rb . s e t F i e l d V a l u e (" f e e " , new Long (1 0)) ;

10 }
11 ob . r e p l a c e W i t h (rb) ;
12 }
13 }

Listing 5.15: State Transfer between stateful SB Instances

Support for seamless Reconfiguration 207

The method iterates over all holding references ob of the quiescence re-

gion (lines 2 to 12). In a first step the session bean s of which a replacing

instance should be created is selected from the map of replacing session

beans in lines 3 and 4. Afterwards, in line 5 an instance of s is con-

structed through invocation of the method createReferenceTo on the

Container reference which returns a reference rb to the representation

of the new instance. Afterwards, the original state transfer is performed

in line 6 through invoking setState on rb with the result returned from

the invocation of getState on ob. This is only possible, because all fields

of the SB type of ob are also present in the SB type of rb and the fully qual-

ified class names are the same. While the previous lines are generic and

could be applied to other scenarios, the following four lines 7 to 10 are spe-

cific for the case study. To avoid the execution of method invocations in

a QUIESCENT region, life cycle calls are blocked by mKernel. Furthermore,

dependency injection is not performed to avoid the need to construct new

instances of referenced session beans. Therefore, the new field fee must

be set explicitly on each instance of the replacing TxControllerBean.

Within this listing the transfer fee is set to ten cent. Finally, in line 11

the replacement of all references to the SB instance represented by ob

with the instance represented by rb is performed through the invocation

of the method replaceWith upon the original reference, submitting the

new reference which should be used instead of the original one after fin-

ishing the reconfiguration.

If no changes regarding the application logic for timers is given be-

tween the original beans and the replacing ones, timers can be directly

transferred without any needs for adjustments. In fact, for the scenario

presented here the affected bean (StandingOrderControllerBean) was

not even changed. The method transferTimer in listing 5.16 on page

208 performs this direct timer transfer on execution. The method iterates

over all original session beans os (lines 2 to 8). If a stateless session bean

o is given (lines 3 to 7), the name of the corresponding SB type is iden-

208 The mKernel Meta Model

tified in line 5. This name is used to find the replacing SB in the lines 4

and 5. Finally, the timers extracted from o are set on the replacing bean r

in line 6.

1 p u b l i c v o i d t r a n s f e r T i m e r s () {
2 f o r (SessionBean o : t h i s . os) {
3 i f (! o . ge tSess ionBeanType () . i s S t a t e f u l ()) {
4 SessionBean r = t h i s . r s . g e t (
5 o . getSess ionBeanType () . getEjbName ()) ;
6 r . se tT imers (o . getTimers ()) ;
7 }
8 }
9 }

Listing 5.16: Transfer of Timers

Internally, mKernel uses an instance of r to set the timers. For this in-

stance no dependency injection is simulated and no PostConstruct method

is invoked to prevent undesired side effects. Both of them are caught up

if necessary on arrival of the first client interaction after the end of re-

configuration. The same would hold for MDB instances which are not

considered in this example.

The manipulation of the system architecture might be performed ana-

log to the discussion in section 5.3.2. In this context, all incoming con-

nections of the elements of os must be reconnected to matching values of

ri, as depicted in listing 5.17 on page 209.

The method iterates over all original session beans s (lines 2 to 11). For

each of them the provided EjbInterfaces i are handled in a nested it-

eration in the lines 3 to 10. From each i the connected EjbReferences

r are addressed for reconnection in a third iteration in the lines 4 to 9.

Only if the corresponding EnterpriseBean is not part of the set of orig-

inal SBs, it must be reconnected (lines 4 to 8). Although it would not

cause any problems to also reconnect the EjbReferences of the original

session beans, this is not necessary, because the corresponding modules

are deactivated and removed from the system before the reconfiguration

Support for seamless Reconfiguration 209

is finished. The original reconnection is performed in the lines 5 to 7

through identifying the provider of the same JavaInterfaceType as pro-

vided by i inside ri. To this provider r is connected through invocation

of the method connectTo, as presented in section 5.3.2.1.

1 p u b l i c v o i d r e p l a c e C o n n e c t i o n s () {
2 f o r (SessionBean s : t h i s . os) {
3 f o r (E j b I n t e r f a c e i : s . g e t E j b I n t e r f a c e s ()) {
4 f o r (E jbRefe rence r : i . ge tConnec tedE jbRefe rences ()) {
5 i f (! t h i s . os . c o n t a i n s (r . g e t E n t e r p r i s e B e a n ())) {
6 r . connectTo (t h i s . r i . g e t (i . g e t E j b I n t e r f a c e T y p e () .
7 g e t J a v a I n t e r f a c e T y p e ())) ;
8 }
9 }

10 }
11 }
12 }

Listing 5.17: Reconfiguration of System Architecture

To finish the reconfiguration, the original modules must be stopped, and

the region must be released. Afterwards, the elements of om can be unde-

ployed and destroyed. Listing 5.18 covers the corresponding source code.

1 p u b l i c v o i d f i n i s h () {
2 f o r (EjbModule m: t h i s .om) {
3 m. s t o p () ;
4 }
5 t h i s . q . r e l e a s e () ;
6 f o r (EjbModule m: t h i s .om) {
7 m. undeploy () ;
8 m. d e s t r o y () ;
9 }

10 }

Listing 5.18: Module Removal and Region Release

The deactivation of the original modules (lines 2 to 4) must be performed

before releasing the region (line 5), because the release of q implies that

life cycle calls are not blocked anymore. Therefore, a release of q before

210 The mKernel Meta Model

module deactivation might result in attempts of bean instances belonging

to original modules to interact with the underlying database, for example,

during destruction. This in turn might lead to inconsistencies, because

the database might already be accessed by bean instances belonging to

the replacing modules through different persistence contexts which are

not kept consistent across module boundaries. The undeployment and de-

struction of the original modules (lines 6 to 9) might be performed before

releasing q. For this case clients would have to wait for those operations

which would result in avoidable delays for them.

Finally, the quiescence region must be destroyed. This can be per-

formed through invocation of the destroy method upon the region. The

reference exchange, as declared in the end of listing 5.15 on page 206, is

performed during usage. The destruction of the quiescence region also

implies the removal of these declarations. Therefore, it should be per-

formed with a sufficient delay to avoid broken connections, as already ar-

gued for the delay between the transfer from the TRACKING to the BLOCKING

state of the region in the beginning of reconfiguration.

5.7. Summary

Within the previous sections the different aspects of the mKernel meta

model and the corresponding API were discussed. In combination, they

establish a comprehensive foundation for the autonomic management of

EJB-based enterprise systems through the provision of a rich set of sen-

sors and effectors.

The Type Level of the meta model represents a repository of module

types available for deployment into a managed system. It supports the in-

spection of the different configuration aspects of EJB components such as

required and provided interface types and SEE types, as well as transaction

and security settings. Through the opportunity to request the original ejb-

jar file of each module type extensibility of the meta model on Type Level

Summary 211

is given. In order to manage the content of the repository, new module

types can be integrated and deprecated ones can be removed. Through the

explicit addressing of Java interface types, the deployment of components,

as well as the reconfiguration of an existing architecture might be planned

in a type safe way, as presented in section 5.2.5.

The Deployment Level of the meta model addresses the architecture of

concrete systems and the configuration of the constituent EJB modules.

In this context, all aspects of the EJB standard are addressed. The inspec-

tion of a system architecture is supported through various elements of the

meta model supporting detailed analyses and the identification of adjust-

ment demands such as the different types of states or the navigation along

representations of established connections. Additionally, the opportuni-

ties to inspect the configuration of modules and beans support further

investigations. The enforced type safeness of connections facilitates the

avoidance of configuration errors. Regarding compositional adaptation

mKernel reaches a level of configuration freedom which goes far beyond

that of the EJB standard. Through the opportunity to reconnect enterprise

beans at runtime dynamic adaptation becomes possible. For parameter

adaptation simple environment entries might be set at runtime which is

also not possible solely based on the EJB standard. Mapped names, and

security and transactions settings might also be manipulated based on

the API before module deployment. Additionally, the opportunity to in-

tegrate custom artifacts into ejb-jar files supports extensibility of mKernel.

Through associations between Type Level and Deployment Level elements

mKernel allows various analyses such as the identification of alternative

implementations in case parts of the system should be replaced.

The Instance Level supports investigations regarding interactions within

a managed system in an ex-post manner. Through the provided infor-

mation detailed analyses are enabled, for example, regarding exceptions,

transaction rollbacks, or performance aspects. Furthermore, relations to

other levels of the meta model are established such as the corresponding

212 The mKernel Meta Model

EnterpriseBean of an EnterpriseBeanInstance on Deployment Level

or the MethodSpecification belonging to a JavaInterfaceType for a

given BusinessCall. Call chains and call histories allow detailed analy-

ses regarding observed interaction scenarios. Call histories might provide

helpful insight into interactions of a single bean instance. In this context,

state transitions might, for instance, be observed through LifecycleCal-

ls while the other call types support analyses of interactions with clients

or the occurrence of timer callbacks. Call chains allow the analysis of a

concrete invocation context regarding those invocations which led to the

considered one, as well as invocations which resulted from it. Finally, the

establishment of opportunities to obtain context information supports the

development of self-managing entities.

The notification facility of mKernel allows autonomic entities to obtain

information about state changes on Type Level and Deployment Level of a

managed system in a push-oriented fashion. Therefore, they are disbur-

dened from regular inspection of a system and from potentially complex

comparisons of investigation results with former observations to identify

relevant changes. Regarding inspection aspects of autonomic entities,

their realization should be facilitated and performance demands should

be reduced. Finally, timeliness of propagation is enhanced, because noti-

fications are published directly after the corresponding change execution.

Dynamic adaptation is supported by mKernel through seamless recon-

figuration based on the concept of Quiescence. In this context, the API pro-

vides fine-grained opportunities to control the process of reconfiguration

in detail. This does not only cover controlling the life cycle of a quiescence

region, but also opportunities for state extraction, manipulation, and in-

jection for instances of stateful session beans. Furthermore, the transfer

of timers is supported for stateless SBs and MDBs. In combination with

the opportunities provided by the Deployment Level of the API, various op-

portunities for adaptation of a system at runtime are established. These

are not limited to the replacement of modules, as presented in the ex-

Summary 213

ample in section 5.6.5. Instead of that, they might, for instance, also be

used to perform consistent adjustments of SEEs or to change the state of

existing stateful SB instances. The limitations regarding seamless recon-

figuration mainly result from the absence of control over the interaction

partners of a managed system.

6. The mKernel Realization

In the previous chapter the mKernel meta model was discussed. The cor-

responding API represents the management interface for autonomic en-

tities consisting of various sensors and effectors. Consequently, the previ-

ous chapter presented the design of a black-box-view on managed systems.

In this chapter the underlying realization of this view is presented focus-

ing on general concepts and architectural aspects. In section 6.1 the inter-

acting parts for system management are presented. Afterwards, in section

6.2 the preprocessing of components is discussed regarding the general

tasks to perform. Subsequently, four tools which are used by different

parts of mKernel are shortly introduced in section 6.3. Finally, section 6.4

summarizes this chapter.

6.1. System Management

Basically three main elements participate in the administration of a man-

aged system. These are the mKernel API, the Container Plugin, and the

Managed Modules. The elements and their relationships are depicted in

figure 6.1 on page 216 including the interfaces which build the founda-

tion for interactions among them.

The following discussion addresses each of these elements separately

highlighting their particular tasks and the concepts for their realization.

Section 6.1.1 starts with a presentation of the Container Plugin, because

it is the central element of system management. Section 6.1.2 focuses on

the internals of Managed Modules. Finally, section 6.1.3 illustrates relevant

aspects of the mKernel API realization with respect to its internal architec-

216 The mKernel Realization

ture, information caching, and interactions with a managed system.

Figure 6.1.: Management Architecture

6.1.1. Container Plugin

The Container Plugin is realized as an EJB module consisting of a set of

enterprise beans. To fulfill its tasks for supporting system management,

its target container must be prepared and an underlying database must be

created. Besides the integration of the plugin module the preparation of a

container covers the creation of the JMS topic for publishing notifications,

as discusses in section 5.5, including a corresponding connection factory.

Additionally, one JMS queue and one JMS topic with corresponding fac-

tories are needed internally for the establishment of connections between

message-driven beans in a managed system. Finally, one JMS queue is

needed for transferring response messages from managed MDBs to man-

aging entities.

The installation of a Container Plugin and the creation of all necessary

System Management 217

resources can be automated through the execution of a command line

script. It internally makes use of the asadmin tool [3] being part of the

GlassFish Application Server. Although the script is limited to the execu-

tion in combination with a specific EJB container implementation, it does

not restrict the application of mKernel within other containers. For those

containers the creation of resources and the deployment of the plugin it-

self would have to be performed without script support.

Figure 6.2 depicts the internal structure of a deployed Container Plugin.

Figure 6.2.: Container Plugin Overview

The figure covers the constituent enterprise beans and their internally es-

tablished connections, as well as their externally required and provided

interfaces. Furthermore, connections to the Notification Topic are shown.

This JMS topic is used for publishing notifications of Type Level and De-

ployment Level state changes, as well as changes regarding the state of a

quiescence region (see section 5.5). The figure does not show the connec-

tion to the underlying database. Furthermore, the JMS queue and JMS

topic needed for message forwarding from Access Layer MDBs to Managed

Layer MDBs are not depicted in the figure, because they are not directly ac-

cessed by the container plugin. Finally, the JMS queue for reply messages

to management instructions submitted to Managed Layer MDBs is also

not covered in the figure, because the Container Plugin does not interact

218 The mKernel Realization

with this queue.

The set of beans can be divided into two groups. The first group con-

sist of the five beans at the top. They provide their functionalities to the

API and to managing entities. The two beans at the bottom belong to the

second group. They interact directly with the managed modules for in-

formation collection and configuration submission. All enterprise beans

shown in the figure are realized as stateless session beans.

Type Level Manager Bean The Type Level Manager Bean is responsible for

all Type Level aspects of a managed system. For this purpose it provides

the TypeLevelManager interface to the API. The bean exposes different

methods to request information about Type Level elements of the man-

aged system such as the set of managed module types. Furthermore, its

instances are responsible to accept new ejb-jar files and integrate them

into the repository, or to remove deprecated module types.

In order to integrate a new module type, the Type Level Manager Bean

receives two byte arrays which contain an original and a preprocessed

archive. The preprocessed ejb-jar file covers – besides adjusted class files

and extensions integrated during preprocessing – two deployment de-

scriptors. The first one is compliant with the EJB standard and includes

all information about the constituent enterprise bean types. It was con-

structed from the DD of the original ejb-jar file and the annotations in-

side the source code of the beans during preprocessing (see section 6.2).

Consequently, this descriptor contains all needed information directly re-

lated to EJB. The second DD is specific to mKernel and covers additional

information which can not directly be represented through elements of

the former DD such as meta model aspects of JavaInterfaceTypes. In

combination, the two descriptors provide the foundation for constructing

the representation of new module types in the underlying database which

might later on be used to provide Type Level information for the API, as

well as during module deployment.

System Management 219

After finishing the creation or removal of an ejb-jar file the Type Level

Manager Bean accesses the Notification Topic and publishes the corre-

sponding information.

Deployment Level Manager Bean The administration of a system archi-

tecture is addressed by the Deployment Level Manager Bean. This bean

covers aspects of managing the life cycle of modules including the publi-

cation of corresponding notifications on state transitions, the initiation of

adaptation actions, the management of quiescence regions, and the pro-

vision of inspection and manipulation opportunities for the API.

The life cycle of modules is managed in accordance with the states pre-

sented in section 5.3.1. After each state transition the transferring in-

stance establishes a connection to the Notification Topic and publishes a

corresponding message. During the creation of a module the default con-

figuration of the corresponding module type is adopted through the cre-

ation of entries in the underlying database. In the EXISTS state of the

life cycle no actions are performed upon an ejb-jar file. In the begin-

ning of module deployment the bean implementation creates a copy of

the preprocessed ejb-jar file, extracts the DD, and adjusts it according to

the settings performed by managing entities. This covers aspects of secu-

rity, transaction management, mapped names of Access Layer beans, and

MDB message selectors. Furthermore, the message selectors of Managed

Layer MDBs are extended to allow their compositional adaptation which

is discussed in section 6.1.2.2. Afterwards, mKernel specific settings are

integrated into the DD. These cover, amongst others, the specification of

the mapped names for the configuration endpoint and the integration of

SEEs for Deployment Level identifiers which are needed for management

purposes. Consequently, all aspects which must be specified during de-

ployment are integrated into the DD. In contrast, simple environment

entries and targets for required interfaces do not become part of the ad-

justed DD, because these are addressed by mKernel separately to allow dy-

220 The mKernel Realization

namic adaptation and parameter adaptation at runtime. Finally, the DD

is integrated into the archive copy which is itself deployed into the target

container. To perform the deployment of a module, the transfer to the

STARTED state, as well as its stopping and undeployment, the Deployment

Level Manager Bean internally makes use of the corresponding parts of

the JSR 88 API presented in section 3.4.1. Finally, during destruction of

a module all entries in the underlying database are removed. This also

covers the removal of all tracked information on Instance Level.

Parameter and compositional adaptation of managed components be-

comes necessary after manipulation instructions from the API are pro-

cessed by an instance of the Deployment Level Manager Bean. While in the

deployment state EXISTS all types of changes are allowed upon an affected

module, in the other states – except DESTROYED – only SEEs, connection

targets for required interfaces, and connections between MDBs can be

manipulated on Deployment Level. Valid changes are reflected through

corresponding entries in the underlying database. Additionally, informa-

tion about configuration changes must be transferred to all affected mod-

ules, if possible28. In order to transfer configuration settings, the interface

ConfigurationEndpoint is used. An implementation of this interface is

part of each managed module, because the corresponding session bean is

integrated during preprocessing. The particular mapped name is speci-

fied during deployment performed by the Deployment Level Manager Bean.

Therefore, the endpoint of each module can be identified based on infor-

mation kept by the container plugin, and a corresponding reference can

be looked up in the global namespace.

The management of a quiescence region is also performed by the De-

ployment Level Manager Bean. In this context, instances of the bean are

responsible to store and forward instructions of region state changes to

28 There might be more than one module affected by a configuration change, for example,

by the definition of a global rerouting. A configuration transfer is possible if an affected

module is in the STARTED state.

System Management 221

affected modules. All interactions regarding timer management of state-

less SB and MDBs, and state extraction and injection of stateful SB in-

stances are performed directly between the API and the affected bean in-

stances. To identify whether the QUIESCENT state is reached, instances of

the bean directly interact with the affected modules and their access points

through the ModuleConfigurator interface. In this context, quiescence

for a BLOCKING region is reached when for all of the affected modules

which are in the deployment state STARTED no interactions are currently

executed upon bean instances which are part of the region. This is suffi-

cient, because in such a situation no new interaction can enter the region

until it is released or destroyed. This also holds in case the deployment

state of one or many affected modules is changed during reconfiguration.

When modules are transferred to the STARTED state, the quiescence region

definition with the corresponding state immediately takes effect which re-

sults in the blocking of interactions with elements of the newly started

module as target. During other deployment states no interactions with

the constituent beans are possible at all. On each state change of a re-

gion the Quiescence Region State Publisher Bean is informed through the

corresponding interface.

For the API the session bean exposes its functionality through the De-

ploymentLevelManager interface. This interface allows the inspection

and manipulation of all Deployment Level aspects including the manage-

ment of quiescence regions.

Quiescence Region State Publisher Bean Instances of this bean are in-

formed by Deployment Level Manager Beans about state transitions of a

quiescence region, if defined. On arrival, a corresponding notification

message is created and published through the Notification Topic. In case

the received state is BLOCKING, a timer is started which is used to inspect

the region state in regular intervals. When a state transfer to QUIESCENT is

identified, this is also published through the topic mentioned above. Ad-

222 The mKernel Realization

ditionally, the timer for regular inspection is stopped. Although this pro-

ceeding implies a polling of the region state including interactions with

the access points of the affected modules, it is considered of being an ap-

propriate solution for all conceivable scenarios, because interactions with

module access points for identifying quiescence are not resource inten-

sive. Furthermore, the timeout interval duration might be adjusted to the

concrete system demands. In case a release or destruction of a region is

identified, the applied timer is also stopped, because for this case no direct

transfer to the QUIESCENT state would be possible anymore.

Instance Level Manager Bean The Instance Level Manager Bean provides

the interface InstanceLevelManager to the API and to the Logging Sched-

uler Bean. It is used to request and remove Instance Level information from

the container plugin and the underlying database. Furthermore, the inter-

face can be used to activate Instance Level information tracking.

Internally, the bean manages registrations for information tracking and

initiates the transfer of settings to the affected module access points throu-

gh the ConfigurationEndpoint interface. In order to correctly finish

the collection of Instance Level information, the bean makes use of the

container timer service. A timer is created on initiation of logging and

expires in the end of the logging interval. On activation and expiration

of the timer the affected modules are informed about the new logging

settings. Furthermore, the database is updated regarding the activation or

deactivation of logging.

Logging Scheduler Bean In order to schedule logging intervals, the Log-

ging Scheduler Bean is used. It accepts scheduling instructions from the

API and internally configures corresponding timers. On expiration of a

timer an instance of Instance Level Logging Manager Bean is accessed and

instructed to start logging. The scheduler can also be instructed to deacti-

vate the scheduling of logging for previously defined targets.

System Management 223

Module Configurator Bean As discussed in the context of the Deployment

Level Manager Bean, module configurations are transferred through the

module access points based on the ConfiguratorEndpointInterface.

This is performed in a push-oriented fashion, for example, when cer-

tain configuration aspects are changed. Managed modules do not store

configuration information persistently, but keep them in main memory.

This might lead to situations where configuration settings are lost, for

instance, due to container restarts or crashes. A retransfer of configura-

tion data can be initiated through invocations of the corresponding meth-

ods of ModuleConfigurator upon instances of the Module Configurator

Bean. These internally make use of the module access points through

the ConfigurationEndpoint interface, analog to the Deployment Level

and Instance Level Manager Beans. Consequently, the Module Configura-

tor Bean is used by the managed modules for on demand configuration

transfers.

Event Receiver Bean The Event Receiver Bean acts as access point for

managed modules to transfer tracked Instance Level information to the

Container Plugin based on the EventReceiver interface. On arrival of

logging information the Event Receiver Bean creates corresponding entries

in the plugin database which can later on be used by the Instance Level

Manager Bean.

The push-oriented proceeding for information transfer is realized to

avoid the need to access all modules of a managed system or at least a

subset of them in regular intervals for requesting new invocation infor-

mation. This would become necessary for an alternative pull-oriented ap-

proach because of the demand for collecting complete call chains starting

at those modules inside which logging is activated for at least one bean.

Nevertheless, it would not be sufficient to access only those modules, be-

cause call chains might reach across module boundaries. Although the

system architecture might provide helpful information to limit the set of

224 The mKernel Realization

modules to access, the opportunity to transfer bean references as param-

eters or return values ought to be taken into account. In summary, such

an alternative would demand for analyses which might lead to uncertain

results and to unnecessary communication overhead. In contrast, the real-

ized solution only requires interactions for the original transfer of logging

information.

There do exist different beans with overlapping responsibilities inside the

Container Plugin. An example might be the Module Configurator Bean in

combination with the Deployment Level Manager Bean and the Instance

Level Manager Bean. While the latter two beans are responsible for ac-

cepting and transferring parts of module configurations, the former bean

must be able to transfer all aspects of module configurations. In case

of overlapping responsibilities, the corresponding source code is encap-

sulated in special classes called Tasks. These tasks might be used from

inside all beans of the Container Plugin to fulfill their duties. Through this

proceeding redundant bean source code is avoided while the administra-

tive overhead of the container is minimized at the same time. Alterna-

tively, it would have been possible to let the Module Configurator Bean rely

on the Deployment Level Manager Bean for Deployment Level configuration

transfer. For this scenario an additional inter-bean-interaction would be

necessary which would lead to an avoidable performance overhead.

Transactions regarding the manipulation of plugin data are isolated throu-

gh bean managed transaction demarcation. If an instance of the Deploy-

ment Level Manager Bean is, for instance, used for starting a managed

module, this state transition and the corresponding manipulation of the

plugin database are executed in a transaction which is separated from the

publication of the transition through the Notification Topic. Therefore, the

original transition is isolated from the potential client transaction which

is suspended before the corresponding invocation. Furthermore, transac-

System Management 225

tions of message receivers cannot have impact on the original state trans-

fer. Summarizing, BMTD is used to avoid external impacts on critical

processes inside the container plugin regarding transactions. Otherwise,

consistency between the underlying plugin database and the system archi-

tecture might be violated.

6.1.2. Managed Modules

Managed Modules are those EJB modules which are controlled by an mK-

ernel system. Internally, they consist of the original artifacts being the re-

sults of component development, as well as mKernel specific adjustments

and extensions. Figure 6.3 depicts a schematic overview of the different

elements of a module on Managed Layer.

Figure 6.3.: Internals of a managed Module

In the figure the original enterprise beans are represented through a Man-

aged Session Bean. Furthermore, the original interceptors attached to this

bean are depicted through the three dots between the Life Cycle Controller

Interceptor and the Managed Session Bean. All other elements in the figure

are specific to mKernel. In general, the elements can be divided into two

groups. The first group consists of the Configuration Endpoint Bean and

the Management Context, as well as the Event Publisher Bean and the Event

226 The mKernel Realization

Cache. These elements are needed for the configuration of a module as a

whole and for the transfer of Instance Level events to the Container Plugin.

The remaining elements belong to the second group. They are used in

the context of managed bean instances for controlling their life cycle, in-

teractions with their environment, and for collecting information needed

for mKernel-based management.

The remainder of this section discusses the two groups separately, start-

ing with the first group in section 6.1.2.1. Afterwards, section 6.1.2.2 ad-

dresses those aspects of managed components which are directly related

to individual enterprise beans and, thus, belong to the second group.

6.1.2.1. Module Infrastructure

The infrastructure of a managed module consists of those elements which

are not directly associated with a single bean, but address aspects of the

module as a whole.

Management Context The Management Context represents the configu-

ration center of a managed module. It holds all configuration informa-

tion which is needed by instances of managed beans and their associated

elements. This covers, amongst others, information about connections

between enterprise beans and the configuration of a quiescence region,

if defined. Furthermore, the Management Context is also responsible for

configuration aspects regarding Instance Level information tracking. Fi-

nally, it holds identifiers of active invocations which can be requested by

the different elements affected by a call to obtain context information.

In case the Management Context is accessed by an element for con-

figuration discovery, and the corresponding information is not present,

the context establishes a connection to the Container Plugin through the

ModuleConfigurator interface and requests the publication of the corre-

sponding information. The Container Plugin reacts with the submission of

System Management 227

the corresponding configuration through the ConfigurationEndpoint

interface, as discussed in the previous section. Such a situation might, for

example, occur after a container restart or crash.

The functionality of the Management Context is realized through static

fields and methods, because this makes the covered information available

globally inside a Java Virtual Machine (JVM). Therefore, any element in-

side the JVM might request configuration data. In this context, the identi-

fication of the active invocation and the corresponding information such

as the bean identifier, is based on the identifier of the active thread29. For

an approach which would not be based on static methods and fields

configuration information would have to be published along internal call

chains during execution of an interaction. This was assumed of not be-

ing feasible, because a reference to a session bean instance might be used

in any conceivable context, including through elements of the underly-

ing JVM30. Therefore, the opportunity to publish configuration data along

internal call chains would require a manipulation of the underlying Java

Runtime Environment (JRE). This would – beyond a violation of the COR-

UCI (Unchanged Container Implementation) requirement stated in sec-

tion 1.3 – imply a serious performance overhead, because all interactions

inside a JVM would be affected by information transfers. Furthermore, on

configuration changes, these would also require information synchroniza-

tion across all affected objects which was also assumed of not being feasi-

ble. Alternatively, configuration information could be obtained from the

29 The identifier of the currently active thread can be requested through an invocation of

Thread.currentThread().getId().

30 This might, for example, be the case if an interface defined by the Java API is imple-

mented by a session bean and provided as business interface to clients. In such a case

the connection to an SB instance might be established inside the bean source code, and

the corresponding reference might be submitted to an instance of a class provided by the

JVM. This instance might afterwards make use of the submitted reference in different

contexts or even transfer it to other bean instances during interactions.

228 The mKernel Realization

underlying database directly, either through accessing a central database

or local caches for each module. This might require multiple database ac-

cesses for each client interaction which was assumed of leading to an un-

acceptable performance overhead. Therefore, a centralized solution based

on locally cached configuration information inside the main memory was

chosen. This solution requires write access to static fields and is there-

fore a violation of the EJB standard (cf. [58], p. 545). Nevertheless, the

corresponding reasons for the limitation in the standard are not given for

the GlassFish Application Server31. Consequently, the solution presented

here was considered of being appropriate at least for the applied container.

Summarizing, the chosen approach is feasible for storing and providing

configuration information, but avoids the application of mKernel within

environments in which the restriction of the EJB standard are relevant.

An alternative solution could be based on direct access to the Container

Plugin database from inside the Management Context to avoid the need

for static fields. This alternative was rejected for two reasons. First of

all, such a solution would imply a high number of database interactions

because of the different configuration settings relevant for each client in-

teraction. Secondly, the caching strategy for the EIS-tier would have to

be deactivated inside managed modules at least for accesses to the plugin

database. This would become necessary, because configuration updates

might occur anytime and should take effect directly. Therefore, each re-

quest for a configuration setting would require its lookup inside the cor-

responding database. This was assumed of inducing an unacceptable per-

formance overhead.

Configuration Endpoint Bean This stateless session bean is part of each

module and is used as endpoint for configuration transfer from the Con-

31 There would arise problems if instances of beans belonging to the same module are not

executed within the same JVM, because they would not share static fields. This is not

given for the GlassFish Application Server.

System Management 229

tainer Plugin. In this context, it receives configuration updates through

the ConfigurationEndpoint interface and forwards them to the Man-

agement Context. The particular mapped name for a module-specific end-

point inside the global namespace of a container is set by the Deployment

Level Manager Bean during deployment of managed modules and is stored

in the underlying database. Consequently, the Container Plugin is able to

identify the corresponding Configuration Endpoint Bean for each of the

managed modules and to submit the relevant information to the correct

targets.

Event Cache The Event Cache is used as central, temporary storage for

invocation related events to track on Instance Level for the corresponding

module. Its implementation is analog to the one of the Management Con-

text in that it relies on static fields for caching relevant events. The

cache receives events from the different Event Publisher Interceptors which

are attached to individual bean instances as interceptors. Events are col-

lected block wise from the cache in regular intervals by the Event Publisher

Bean. To ensure the event collection through the Event Publisher Bean, the

Event Cache internally stores whether the Event Publisher Bean will collect

events in the future in a boolean field tracking. Initially, the corre-

sponding value is set to false. When an event is received and no events

will be collected, the cache contacts the Event Publisher Bean through the

EventPublisher interface and instructs the publisher to start event col-

lection. At the same time tracking is set to true. When the publisher

stops collection of events, it informs the cache which resets tracking.

Event Publisher Bean The Event Publisher Bean is realized as stateless

SB and makes use of the container timer service. If instructed to col-

lect and transfer events, as discussed above, it creates and activates a

timer. The corresponding timespan can be configured according to the

demands of a concrete system. On timer expiration the bean removes

230 The mKernel Realization

the currently cached events from the Event Cache and transfers them to

the Container Plugin through the EventReceiver interface if at least one

event was found. If no event could be obtained from the cache, an in-

ternal counter for storing unsuccessful attempts for event collection is

incremented, otherwise the counter is reset. When the counter reaches a

configurable threshold, the timer is deactivated, and the cache is informed

about stopping event collection performed by the publisher.

Event Cache and Event Publisher Bean are integrated into modules due to

performance reasons. In an alternative design without Event Cache and

Event Publisher Bean, Event Publisher Interceptors could also submit rele-

vant events directly to the container plugin through the EventReceiver

interface. Such an approach would lead to an additional invocation for

each interaction to track, but would not violate the EJB standard. Fur-

thermore, each of these additional invocations would require the origi-

nally handled interaction to wait for the integration of the corresponding

event into the plugin database. In combination, this would induce unde-

sired delays for the execution of client interactions. A block wise trans-

fer would not be feasible in this case, because timeliness of information

transfer could not be guaranteed. This would be the case, because events

would be transferred to the Container Plugin during the execution of one

of the following client interactions. Their occurrence could not be pre-

dicted generally. Therefore and because no timer facility is provided for

interceptors, there might arise situations where a relatively long times-

pan between the processing of an interaction and the submission of the

corresponding event elapses.

As second alternative it would have been possible to store events directly

inside the plugin database from inside the Event Publisher Interceptors.

Besides the need to wait for the integration of events during interaction

processing, this might imply a great number of database connections, be-

cause each interceptor instance would require its own connection. Alter-

System Management 231

natively, the integration into the database could be assigned to a separate

stateless SB which instances would reuse their database connections for

multiple interceptor instances. This would reduce the number of required

connections, but would induce additional interactions between intercep-

tor instances and bean instances. Furthermore, database caching inside

the Container Plugin and the corresponding EIS-tier respectively would

be highly limited, because information updates must be received from

the database at least if logging is activated and the corresponding meta

model representations are requested.

Summarizing, a violation of the EJB standard was accepted due to the

achieved performance gains. Nevertheless, a standard compliant solution

would also be possible. Its integration would not induce any changes re-

garding the provided functionality and the external view on a managed

system, but would result in a high performance overhead.

6.1.2.2. Managed Enterprise Beans

Enterprise beans managed by mKernel are attached with a set of intercep-

tors for gaining control over the control flow during execution of inter-

actions and for performing management tasks. Furthermore, all interac-

tions with a container performed from inside the context of an interac-

tion are intercepted through proxies, for example, to control the establish-

ment of connections to SB instances. Finally, connections to SB instances

themselves are also performed through proxies which allow connection

rerouting.

Within this section the participating elements are presented with re-

spect to their particular tasks. The discussion is organized according to

the order in which the different elements are accessed for the first time

during interaction execution.

232 The mKernel Realization

Enterprise Bean Interfaces In figure 6.3 on page 225 two interfaces are

depicted for the Managed Session Bean, namely AppInterface and State-

Access. The first interface AppInterface represents those interfaces

which can be used to interact with instances of the corresponding bean

to make use of the encapsulated functionality. For the discussion in this

section it is not relevant whether the original interface on Access Layer

or an extended version on Managed Layer is given. The second interface

StateAccess is used by mKernel internally. For stateful SB instances on

Managed Layer it provides methods for inspection and manipulation of

the instance state. For Managed Layer stateless SBs timers might be re-

quested and configured.

To inspect or manipulate the timers of MDBs, specially constructed

JMS messages are used. For those messages certain properties are set

which allow to identify that a management message is given. For the case

that timers are requested, their representations are returned through a

second message received by the original sender of the management mes-

sage. The response message is sent through an mKernel-specific queue

which is created for this purpose during installation of the Container Plu-

gin.

Interceptors To each managed enterprise bean a set of mKernel-specific

interceptors is attached. These interceptors are arranged before the set of

original interceptors which were assigned to the enterprise bean based on

the configuration of the original archive. Each member of the mKernel-

specific set fulfills different tasks of bean instance management.

The Bean Controller Interceptor is responsible to create context informa-

tion for interactions to process. This information covers, for example,

identifiers of the affected module, bean, bean instance, and invocation.

The first two identifiers are received from mKernel-specific simple envi-

ronment entries (mKernel SEE) which are integrated during deployment.

The instance identifier is generated during processing of the postContruct

System Management 233

life cycle call. Finally, for each interaction a new unique identifier is cre-

ated. With each interaction inside the managed system administrative

information, for instance, regarding the corresponding call chain or in-

structions for information tracking, are submitted as parameters of in-

vocations on SB instances or as message properties for MDB instances.

This information is also integrated into the established context informa-

tion. After finishing its creation the information is submitted to the Man-

agement Context for being accessible to other elements concerned with

management aspects. Beyond context establishment the Bean Controller

Interceptor also identifies management instructions arriving at a bean in-

stance. Instructions such as the setting of a new state for a stateful SB

instance, are not forwarded along the interceptor chain, but are realized

directly through an invocation on the corresponding bean instance. Con-

sequently, management instructions are always executed without being

noticed by other interceptors or by the business logic of the affected bean

instance. This is ensured, because the corresponding methods are inte-

grated during preprocessing of the module, and the execution of direct in-

vocations upon the target of an interaction do not pass interception meth-

ods of subsequent interceptors or the target bean instance itself. Before

forwarding a life cycle invocation along the interceptor chain the inter-

ceptor analyzes whether the corresponding bean is part of a BLOCKING or

QUIESCENT region. If this is the case, the forwarding of the invocation

is omitted to avoid the occurrence of undesired interactions inside a qui-

escence region. Finally, the execution of state injection for stateful SB

instances is stored internally in a field and becomes part of the context

information during subsequent interactions.

For each enterprise bean an individual Dependency Injection Intercep-

tor is generated and attached during preprocessing if at least one SEE or

bean dependency is defined. On identification of a postConstruct invoca-

tion an interceptor instance requests configuration information regarding

dependency injection from the Management Context. For SEEs the corre-

234 The mKernel Realization

sponding values are directly injected into the bean instance. For required

interfaces references to SB instances are looked up and injected in accor-

dance with the configuration requested from the Management Context. In

this context, references are not directly inserted, but integrated into prox-

ies to control interactions and to allow the rerouting of Instance Level con-

nections. The underlying concepts of these proxies are discussed later on

within this section. An interceptor instance internally stores whether de-

pendency injection was performed for the corresponding bean instance.

If this is not the case and an aroundInvoke method arrives at an interceptor

instance, this is interpreted as release or destruction of a quiescence re-

gion. In this case dependency injection is caught up except for those cases

where state injection for stateful SB instances was performed. Otherwise,

the injected state or parts of it would be overwritten. The identification

of such a situation is based on the information submitted by the Bean

Controller Interceptor, as discussed above.

Life Cycle Controller Interceptor instances manage the life cycle of bean

instances after the execution of seamless reconfigurations. In this context,

they initiate the execution of necessary life cycle invocations after a quies-

cence region is released or destroyed, and the first interaction reaches an

interceptor instance.

Instances of the Event Publisher Interceptor are responsible to forward

interaction information to the Event Cache if logging is activated directly

or indirectly. If logging is activated for the corresponding bean or module

through the configuration obtained from the Management Context, direct

activation is given. An indirect activation is determined from the informa-

tion forwarded along interactions inside a managed system. It is given if

for at least one call upward inside a call chain logging is activated directly.

Managed Bean Managed Beans are divided into two groups according

the layering of system architectures introduced in section 5.1. The fol-

lowing discussion addresses these two layers for session beans separately.

System Management 235

MDBs of the two layers are treated in combination because of their close

relationships.

Managed Layer SBs are deployed instances of adjusted and extended

bean types adopted from the original module type. To enable their man-

agement through mKernel they, amongst others, provide additional meth-

ods to inspect and manipulate the state of instances as well as for instance

life cycle management. Newly integrated methods for state access are

generated during component preprocessing and do not interfere with the

original methods. Methods for life cycle management internally lead to

an invocation of the corresponding methods of the original bean, if any

exist. Consequently, they provide adapter methods for original life cy-

cle methods which are needed to provide a unified interface to Managed

Layer beans. Finally, the implementations of the extended methods pro-

viding access to the encapsulated business logic internally make use of

the original ones. In this context, only the original parameters are for-

warded while the parameters used to transfer management information

are omitted. These are used by the mKernel-specific interceptors only.

Consequently, the implementations of the extended methods are realized

as adapter methods, too. Summarizing, there do not exist any conceiv-

able differences for the original source code regarding its management

through mKernel.

Access Layer SB types are generated during preprocessing of an ejb-jar

file from the provided interfaces of the original SB types. Their implemen-

tations internally make use of proxies to Managed Layer SB instances at

runtime to forward invocations. The design of these proxies is presented

in the context of environment interactions discussed below. In addition

to the provided interfaces of the original SB, Access Layer SBs expose an

mKernel-specific interface which allows the injection of an internally used

proxy.

MDB types belonging to the Access Layer are realized by an implemen-

tation being part of mKernel which forwards incoming messages to a spe-

236 The mKernel Realization

cific JMS topic in case it is itself connected to a topic or to a specific JMS

queue otherwise. The target destinations are created for mKernel during

the installation of the container plugin. At these destinations all Managed

Layer MDBs are registered as message receivers, depending on the Ac-

cess Layer MDB they are connected to. This implies that a Managed Layer

MDB which is registered at the mKernel-specific topic inside a managed

container can only be reconnected to those Access Layer beans which are

themselves associated with a topic. The same holds for Managed Layer

MDBs connected to the mKernel queue and their reconnection to Access

Layer MDBs registered at a queue. Only if the corresponding Managed

Layer module is in state EXISTS, a reconnection from a queue to a topic is

possible for an MDB, because in this case there does not exist a registra-

tion at a destination inside the container which cannot be changed after

module deployment.

Figure 6.4 depicts an exemplary part of a system architecture with two

Access Layer MDBs and two Managed Layer MDBs for the case of message

routing through queue connections.

Figure 6.4.: Connection Structure for MDBs

Connections declared through the mKernel API are represented through

dashed lines within the figure. Access Layer MDB A is registered as mes-

sage receiver at Queue X through its mapped name, and Access Layer MDB

B is registered at Queue Y. All Managed Layer MDBs are registered at the

mKernel Queue. Such a connection is established during deployment for

System Management 237

each MDB on Managed Layer which is connected to a queue listener on

Access Layer. On arrival of a message M at X it is forwarded to an in-

stance of A. As first step during processing of an incoming message the

instance of A analyzes whether the further delivery must be delayed. This

would be the case if at least one of the associated Managed Layer MDBs

is affected by a quiescence region in state QUIESCENT, or if at least one of

them is part of a region in state BLOCKING and the call chain leading to

the sending of M did not already pass the region. If this is the case, the

further processing is delayed until the quiescence region is destroyed or

released. During further processing the properties of M are analyzed by

the instance of A regarding the existence of management information at

first. This is given if the message was sent during execution of an inter-

action inside the managed system. If management information is found,

it is adopted and adjusted according to the current context. Otherwise,

new management information is constructed. The new or adjusted in-

formation is integrated into M. Additionally, the message properties of M

(shown in brackets) are extended by the instance of A with the identifiers

of the connected Managed Layer MDBs (C). Finally, the adjusted message

(M’) is send to the mKernel Queue. Each original message selector (mes-

sageSelector) of a Managed Layer MDB is extended with its own identifier

through AND concatenation during deployment. For the case depicted in

figure 6.4 on page 236 it is assumed that the different message selectors

of the Managed Layer MDBs match with the original properties of M. Due

to the integration of target identifiers into the properties of M’ and the se-

lector adjustments, M’ can only be received by an instance of C, but not by

an instance of D. Analogously, a message N’ sent by an instance of Access

Layer MDB B could only be received by an instance of D. In case of a re-

connection of a Managed Layer MDB to another Access Layer MDB, the af-

fected Access Layer beans would be informed about the change and would

react accordingly with respect to the extension of incoming messages with

target MDB identifiers. This proceeding allows the reconnection of MDBs

238 The mKernel Realization

without the need to change the configuration inside underlying container.

Environment Interaction To gain control over the different aspects of

bean instances, connections to their environments are intercepted by el-

ements of mKernel. All of the discussed proxies are integrated transpar-

ently during preprocessing. mKernel does not require that those proxies

are used explicitly in the source code of enterprise beans. Consequently,

there do not arise any additional requirements during component devel-

opment.

Within the EJB standard interactions with the container are envisioned

through so-called Contexts. In order to interact with the global names-

pace, for example, to obtain references to session bean instances or to

request references to JMS destinations, a reference to a javax.naming.-

Context might be used. Moreover, session bean instances might make

use of references to a javax.ejb.SessionContext to obtain references

from their local namespace or, for stateless SBs, to request a reference

to their timer service. A corresponding context32 is provided for MDBs.

Finally, the interface javax.interceptor.InvocationContext exposes

methods for inspection and manipulation of different aspects during in-

terception of an interaction. Invocations on all of those contexts are in-

tercepted and manipulated by mKernel, if necessary. Each lookup in the

global or local namespace is intercepted to realize rerouting according to

the configurations performed through the mKernel API and to integrate

proxies for references to SB instances (see below). Furthermore, the es-

tablishment of references is delayed in case this would affect a quiescence

region unless it should be created from inside the context of an inter-

action which has already passed the region. The results of inspections

performed through an InvocationContext are manipulated to ensure

transparency of management aspects. It is, for instance, possible to re-

32 javax.ejb.MessageDrivenContext

System Management 239

quest an array of java.lang.Objects covering all parameter values of

the currently processed invocation upon an SB instance. This array would

– if the corresponding request would be processed without interception

by mKernel – contain the original parameter values, as well as those which

are specific to mKernel. To make mKernel based management transparent

for interceptors, the original array is replaced with a new one not covering

the mKernel-specific values. An analog proceeding is performed for the

case of parameter value manipulation through the InvocationContext

interface.

Connections to session bean instances are intercepted by mKernel throu-

gh so-called Session Bean Proxies. Their main tasks are to provide an

adapter from the original interfaces to the extended ones, and to support

rerouting and seamless reconfiguration. In order to provide the adapter

functionality, instances of SB proxies expose the original interfaces of ref-

erenced SB instances to their clients. Internally, they request information

to transfer along call chains from the Management Context. Afterwards,

they use this information and the submitted parameter values to perform

invocations to their referenced SB instances through the extended inter-

faces used by mKernel. If default rerouting should be performed, that is,

existing references should be rerouted, this is supported by an SB proxy

through the establishment of a connection to an instance of new the tar-

get. On each incoming invocation a proxy instance analyzes the configu-

ration of a quiescence region, its state, and the call chain of the currently

processed invocation, if a region is defined within the system. If neces-

sary, the invocation is blocked until the region is released or destroyed.

The blocking of invocations is realized by the Management Context. The

underlying implementation does not make use of thread synchronization

primitives, because this is forbidden by the EJB standard (cf. [58], p. 545).

Instead of that, instances of java.util.concurrent.ArrayBlocking-

Queue are applied. For each blocked invocation such an instance is con-

structed and integrated into a data structure for keeping track of blocked

240 The mKernel Realization

invocations. Afterwards, the method take is invoked by the affected proxy

upon the queue instance. This invocation blocks until an element is avail-

able inside the queue. On release or destruction of a quiescence region the

Management Context inserts an element into each blocking queue which

results in the unblocking of the take invocations. A permanent block-

ing of invocations is avoided through an additional ArrayBlockingQu-

eue inside the Management Context. Otherwise, it would be possible that

interleaving requests on the Management Context lead to an omission of

an invocation release. An exemplary scenario is depicted in figure 6.5 as

sequence diagram. The included interactions are simplified versions and

do not directly represent the original source code. Instead of that, they are

intended to provide a schematic insight into the avoided problem.

Figure 6.5.: Scenario of permanent Blocking without Synchronization

In this scenario the proxy to block p performs a getQueue invocation (1)

to obtain a queue reference (q) from the Management Context (mClass).

During execution of this invocation the requested queue is created first

(1.1). Afterwards, it is added to the set of queues to unblock on release

or destruction of a quiescence region. This is depicted through the invo-

cation of addBlockedProxy (1.4). During unblocking of proxies due to

System Management 241

the release of a region (1.2.1) elements are added to all queues contained

in the set of queues to unblock. If unblocking of queues occurs between

the creation of a new queue and its integration, as depicted in the figure,

no element would be added to this queue during unblocking, because it

is not part of the set of queues yet. Therefore, the corresponding proxy

would not get unblocked from the subsequently performed take invoca-

tion upon q (3). As no quiescence region is active after the unblocking,

this might result in a permanent blocking of the affected proxy. To avoid

this and comparable scenarios, an additional queue is used by the Man-

agement Context which is constructed with a capacity of one. Furthermore,

the queue is initialized as fair queue meaning that invocations upon the

instance are processed in first-in-first-out order, if possible. In the be-

ginning of an execution of getQueue and releaseQuiescenceRegion an

element is added to the queue through invocation of the put method.

This method blocks if there is no space left inside the queue. Invocations

of releaseQuiescenceRegion could not interleave with invocations of

getQueue because of the capacity of one. In the end of an execution of

getQueue and releaseQuiescenceRegion the previously inserted ele-

ment is removed again freeing the critical section for other invocations.

The presented solution does not violate the EJB standard with respect to

the usage of thread management primitives. Nevertheless, the queues for

blocking proxy invocations are stored within a static field by the Man-

agement Context. Therefore, the same case of standard violation is given,

as already discussed earlier within this section. An alternative approach

would have been to register each proxy to block as message receiver at

a JMS topic and to perform a blocking request for receiving a message

from inside the proxy source code. In case of quiescence region release

or destruction, a message could be send to the topic to release all blocked

proxies33. Depending on the concrete reconfiguration context and the af-

33 To avoid the permanent blocking problem, the receiving could be performed with a time-

242 The mKernel Realization

fected system, a great number of proxies might require to be blocked. This

would result in the same number of topic registrations which might lead

to an unacceptable administrative overhead for the underlying container.

Therefore, this alternative was rejected.

According to the EJB standard it is valid that enterprise bean instances

transfer references to SB instances during interactions. This also covers

the transfer of references to external clients, for example, as return value

of a method invocation. In the context of mKernel, situations are conceiv-

able where a Managed Layer SB instance returns an SB proxy as result of a

method invocation. If this proxy is subsequently transferred to an external

client, the proxy to transfer must pass an Access Layer bean instance, be-

cause clients do access Managed Layer SBs only indirectly through these

instances. The container serializes the proxy before transferring it to the

Access Layer bean instance and deserializes it again on arrival. Based on

the interaction context information provided by mKernel, the proxy would

determine that it is deserialized in the context of an Access Layer SB bean

instance. For this case, it initiates its own replacement with a direct ref-

erence to an instance of an Access Layer SB bean which provides the same

Java interface. The exchange itself is performed in four steps.

1. The proxy searches for a matching Access Layer SB which provides

the required Java interface and is connected to the same Managed

Layer SB as the reference encapsulated in the proxy instance. If no

such bean is given, this can be interpreted as insufficient config-

uration of the system, because the session bean instance which is

referenced by the proxy should not be exposed outside the managed

system.
2. A reference to the Access Layer SB is created using the global names-

pace.

out. After its expiration a blocked proxy could interact with the Container Plugin to find

out whether the region does still exist. If this is not the case, the proxy could continue

processing.

System Management 243

3. The proxy to the Managed Layer SB instance is injected into the Ac-

cess Layer SB instance. This step is only necessary if a stateful SB

instance is referenced, because all references to instances of a single

stateless SB are equivalent. In order to inject the proxy, the corre-

sponding interface provided by each Access Layer SB is used.

4. The reference to the Access Layer SB instance instead of the proxy

instance is returned as result of deserialization.

The Access Layer SB instance through which the reference is passed as

return value does not use it, but only forwards the reference to the client.

Therefore, no interactions between bean instances would take place inside

a managed system directly without proxies for the presented solution.

A second scenario would be the case that a bean instance tries to trans-

fer a proxy to an externally used interaction partner, for example, as pa-

rameter value during a method invocation. This case is identified by af-

fected proxies through analyzing information obtained from the Manage-

ment Context. If such a situation is given, the proceeding for replacing

the proxy with a reference to an Access Layer SB instance is the same as

discussed above.

Both replacement scenarios discussed above demand the substitution

of proxy objects with reference objects. From the point of view of a client,

the provided interface would not exhibit any difference. Nevertheless, the

EJB standard forbids object substitution during serialization due to secu-

rity reasons without further explanations (cf. [58], p. 547). Consequently,

the above stated approach represents a violation of the EJB standard be-

cause of the integration of object substitution into the behavior of proxies

during serialization and deserialization. An alternative to the above stated

proceeding would be, to transfer proxy instances to clients and to replace

the internally used reference to a Managed Layer SB instance with a ref-

erence to an Access Layer instance similar to the steps discussed above.

Furthermore, proxies would have to be able to internally make use of orig-

inal interfaces. This is already given, because mKernel was designed to

244 The mKernel Realization

also allow interactions initiated by managed bean instances of which the

target is an unmanaged SB instance. For the corresponding references,

proxies are also integrated. The transfer of proxy instances to external cli-

ents would induce three major disadvantages which led to a rejection of

this alternative approach:

1. The transfer of proxy instances would require the availability of the

corresponding class files inside the client environment. This would

result in the demand for clients to integrate the classes needed for

proxy usage through class loading anyway such as the integration of

an additional library into their class path. Consequently, the applica-

tion of mKernel in a managed system would state additional require-

ments for clients affected by proxy transfers and would therefore not

reach the level of transparency as the applied approach.

2. The proceeding for replacing a reference to a Managed Layer SB in-

stance with a reference to an Access Layer SB instance would require

access to management functionality from inside the client environ-

ment. This was assumed of inducing very much higher security

risks than the execution of nearly the same source code inside a

controlled container environment during serialization or deserial-

ization.

3. Finally, the replacement of a reference requires certain interactions

with a managed system. If these are performed inside the container

based on information being available inside the affected module,

this causes much lower performance overhead than the correspond-

ing interactions between clients and a managed system which are

potentially performed across container boundaries from inside a

web container, or even over a network infrastructure.

In addition to the above stated disadvantages, it must be highlighted that

classes which contain source code for object substitution are only used

inside a managed container. They are not exposed to clients and there-

fore might not be the source of security attacks. Therefore, the potential

System Management 245

security risks, which were provided as reason for forbidding the usage of

object substitution during serialization or deserialization, are not evident

for the chosen approach.

Beyond attempts to transfer proxies during method invocations it is also

possible that a bean instance tries to transfer a proxy as part of the content

of a JMS message. For this case it cannot be determined in general if the

receiver of the message would be a managed MDB or an external interac-

tion partner, for instance, if managed MDBs and other JMS receivers are

registered at the same queue or topic. For the design of mKernel it was

decided to transfer proxies through JMS destinations, although it would

also have been possible to replace them with references to Access Layer SB

instances, analog to the proceeding presented above. The reason for this

decision was that a transfer of references would lead to a loss of control

and information richness. If references would be transferred to managed

MDBs, information about call chains would get lost in case of invocations

performed through the Access Layer. This would be the case, because the

original interfaces do not support the transfer of management informa-

tion. Therefore, Instance Level information would not reflect interactions

correctly, because invocations performed by Managed Layer SB instances

through Access Layer instances would be interpreted as externally arriving.

For the same reasons seamless reconfiguration might become limited, be-

cause for an invocation performed through the Access Layer it cannot be

identified if the corresponding call chain has already passed a quiescence

region. Therefore, a deadlock might arise although the corresponding in-

teractions would solely be performed within a managed system. Finally,

direct references could not be rerouted which would limit opportunities

for dynamic adaptation34.

In addition to the previous scenarios, it is also conceivable that an ex-

34 Nevertheless, a manipulation of one single line of the mKernel source code would be

sufficient to change the behavior of a system in a way that proxies are replaced with

references to Access Layer SB instances in the context of JMS based messaging.

246 The mKernel Realization

ternal interaction partner transfers a reference to an Access Layer SB in-

stance back to the managed system through the same channels as dis-

cussed above. Such a reference does not necessarily need to be passed as

parameter value or message content on top level, but might reside deeply

within an object hierarchy associated with a parameter value or message

content. Therefore and because enterprise bean instances are not allowed

to use reflection for the inspection of object hierarchies (cf. [58], p. 545),

it is not possible to investigate whether a relevant reference is submitted

in general. In case a reference to an Access Layer SB instance is submitted

to the managed system and is used by Managed Layer SB instances, this

would not limit their ability to interact as desired. Nevertheless, system

management would be affected the same way as discussed above.

Invocations for sending a message to JMS-based destinations are inter-

cepted by so-called JMS Sender Proxies. These proxies enrich an outgoing

message with management information, for instance, regarding the cur-

rent call chain or activated logging. This information is integrated through

additional message properties. Therefore, the original content and the

original properties of a message are not affected by these extensions.

Finally, Timer Service Proxies intercept attempts of stateless SB or MDB

instances to interact with a timer service. Internally, a set of blocked

timers is managed with the aid of the Management Context for the case

that a quiescence region requires the blocking of timers. On arrival of

an invocation for the creation of a new timer it is first analyzed whether

a quiescence region does exist within the system, covering the currently

considered bean. If this is the case and the region is in state BLOCKING

or QUIESCENT, the creation of the timer is avoided, and the necessary

information for later activation of a matching timer is constructed and

integrated into the set of blocked timers. Otherwise, the invocation is

forwarded to the original timer service. In addition to the interception

of timer creation, Timer Service Proxies are also used by managed bean

instances for deactivating existing timers when a relevant quiescence re-

System Management 247

gion is transferred to the BLOCKING state. To realize timer deactivation a

proxy requests all active timers for the corresponding bean from the orig-

inal timer service, extracts the relevant information for reactivation, and

cancels their execution. Afterwards, entries for all canceled timers are

integrated into the set of blocked timers.

6.1.3. Application Programming Interface

The external view on the mKernel API was introduced as interface to a

managed system for autonomic entities in chapter 5. In this section an

overview of the API implementation is presented including the main el-

ements and the relationships between these elements. This section does

not aim to provide a comprehensive and detailed insight into all API as-

pects, but presents the general design decisions. Figure 6.6 depicts an

extract of the API implementation covering the relations between selected

elements. These can be applied analogously to the remaining elements of

the API implementation.

Figure 6.6.: Overview of API Implementation

The figure shows representatives of the main elements of the API and re-

lationships among them, as well as the required interfaces which must be

provided by a managed system. These are used by the API as foundation

248 The mKernel Realization

for inspection and to perform management actions.

The class InitialContainer is used as mediator between the elements

of the API implementation and the managed system. It provides the

Container interface as access point to the managed system for autonomic

entities. A reference to an instance of InitialContainer is returned on

invocation of the static method getNewContainer on ContainerFac-

tory (see chapter 5). Instances of the InitialContainer class interact

with the Container Plugin through the interfaces TypeLevelManager, De-

ploymentLevelManager, InstanceLevelManager, and LoggingSche-

duler. Furthermore, an InitialContainer interacts with session bean

instances through the StateAccess interface, for example, during seam-

less reconfiguration for requesting timer information or for accessing the

state of a stateful SB instance. Finally, it establishes connections to in-

stances of managed MDBs through the mKernel-specific JMS queue or

topic which are also used for forwarding messages from Access Layer to

Managed Layer. In this context, nearly the same proceeding is performed

as the one discussed in the previous section. To only interact with an in-

stance of the desired MDB, the target identifier of that bean is set as value

of a message property. A corresponding part is integrated into the mes-

sage selector of each Managed Layer MDBs and connected to all remaining

selector parts through OR concatenation. Consequently, Managed Layer

MDBs would either receive messages sent by Access Layer MDBs based on

their extended original message selector, as discussed in the previous sec-

tion, or they would accept management messages explicitly addressed to

them. These are not processed by MDB instances, but by mKernel-specific

interceptors.

In order to receive results of management messages such as timer in-

formation, instances of InitialContainer make use of a JMS queue

which is created during container plugin installation for this purpose. At

this queue an InitialContainer registers with a special message selec-

tor before sending a message to a managed MDB. In response to the re-

System Management 249

ceived message and after execution of the corresponding actions the MDB

instance sends a response message to the queue the InitialContainer

is listening to, containing information about the results of execution. Within

this message matching message properties ensure that only the request-

ing InitialContainer receives that message.

Each interface of the API is implemented through a corresponding

class, as depicted in the upper part of figure 6.6 on page 247 such as the

class RiSessionBean which implements the interface SessionBean. In

this context, the prefix Ri of the class name indicates that it is a member

of the API reference implementation. Between instances of API classes

different associations might exist such as associations between a session

bean representation (RiSessionBean) and its provided interfaces (RiEjb-

Interface).

Instances of API elements are received either as results of invocations

on an instance of InitialContainer or from invocations on other API

element instances. An example of the former type of invocations is an

invocation of getEjbModules which delivers a set of representations for

all modules within a managed system. From each element of this set all

included EnterpriseBeans might be requested through an invocation of

getEnterpriseBeans which is an example of the second type of invoca-

tions.

All interactions with a managed system are performed through an in-

stance of InitialContainer. If, for example, all RiSessionBeans for a

session bean type are requested from an RiSessionBeanType through an

invocation of getSessionBeans, this request is forwarded to an Initial-

Container which performs the original interaction with the container

plugin. As results of interactions with the plugin instances of API ele-

ments are returned. Consequently, all instances of API elements pass

an instance of InitialContainer. This allows the container to inject a

reference to this into each received element which might require a me-

diated interaction with the Container Plugin later on. To avoid the need

250 The mKernel Realization

for traversal over object hierarchies, references to an InitialContainer

are forwarded to sub elements on injection. This would, for example, be

performed by an instance of RiSessionBean upon each of its associated

RiEjbInterfaces on container injection. Due to the different navigation

opportunities there would exist the threat of endless loops35. These are

avoided through a test whether a container reference was injected earlier.

If this is the case, no actual injection is performed, and no reference is

forwarded.

mKernel is developed to enable concurrent system management per-

formed by independent autonomic entities. Therefore, it would be possi-

ble that multiple entities perform changes of a system and thus influence

their views on the system mutually. In order to keep the reflective nature

of the meta model, only immutable associations are established during

information transfer from a Container Plugin to an InitialContainer.

An example of an immutable association would be the relation between

a session bean and its provided interfaces. A mutable association is, for

instance, given for a connection between a required and a provided inter-

face, because it might be changed through management actions. Addi-

tionally, mutable properties of element instances such as the deployment

state of a module or the value of a SEE, are also not set for transferred

representations. Instead of that, these aspects of a system representation

are always requested from a Container Plugin if accessed through method

invocations upon instances of API elements.

Internally, instances of InitialContainer make use of a Cache for

reducing interactions with a Container Plugin. In this cache, amongst

35 An RiEjbInterface might, for instance, be obtained as part of an RiSessionBean or

as connected interface for a required interface. Because of the former navigation oppor-

tunity the SB representation must forward the injection of a container reference to the

RiEjbInterface. For the latter case an RiEjbInterface must forward the injection

to the corresponding SB representation. Without any further restrictions for injection

forwarding both cases in combination would result in an endless loop.

System Management 251

others, mapping from unique identifiers to bean representations or from

identifiers to module representations are stored. The cache size for each

type of elements is limited, but might be configured. Entries of the cache

are removed following the least-recently-used strategy. The cache is used to

perform local lookups before interacting with a Container Plugin, for in-

stance, if a representation of a module or enterprise bean is requested by

its identifier. Additionally, the cache is used to reduce the size of trans-

ferred object hierarchies from a Container Plugin to an InitialContainer.

This is, for instance, performed during navigation along call chains and

call histories on Instance Level. For this case only Instance Level informa-

tion is transferred while associations to the Deployment Level and the Type

Level are not resolved. For those associations only identifiers of the cor-

responding elements are kept inside the transferred elements. If these

associations are used for navigation, for example, to request a reference to

the corresponding enterprise bean of an EnterpriseBeanInstance, first

of all the cache is accessed based on the covered identifier. Only if it could

not deliver a result for the bean identifier, the Container Plugin is accessed.

In order to support embedded inspection as discussed in section 5.4.4,

the corresponding class CallContext makes use of the mKernel-specific

simple environment entries which are attached to each bean during de-

ployment. Additionally, a context instance interacts with the correspond-

ing bean instance for state inspection and manipulation. For this purpose

the current javax.interceptor.InvocationContext must be submit-

ted as parameter to the corresponding method of CallContext, because it

allows to request a direct reference to the bean instance. For this reference

it is ensured during preprocessing that it provides the StateAccess inter-

face. This also holds for MDBs, because the interface is needed by the mK-

ernel interceptors. The interface specifies methods which are sufficient for

providing the inspection and manipulation functionality of CallContext.

252 The mKernel Realization

6.2. The mKernel Preprocessing Tool

The preprocessing tool of mKernel accepts EJB compliant ejb-jar files as

input and constructs manageable archives as output. The emitted archives

can be integrated into a managed system as module types through the

API, as discussed in section 5.2.4. The discussion of the preprocessing

tool is divided into three parts. First of all, the architecture of the tool is

presented in section 6.2.1. Afterwards, section 6.2.2 discusses the major

tasks during preprocessing. Finally, section 6.2.3 presents alternatives

for the construction of Access Layer archives against the background of

management aspects.

6.2.1. Tool Architecture

The tool is designed as extensible and modular foundation for the process-

ing of ejb-jar files. Its basic building blocks and the artifacts needed for

its execution, as well as the results of processing are depicted in figure 6.7

on page 253. The gray shaded elements of the figure represent artifacts

which are created or manipulated during preprocessing.

Internally, the preprocessing tool consists of two major elements, name-

ly the Processing Controller and the Target Representation. In combination,

these two elements provide the infrastructure for so-called Processing Mod-

ules which encapsulate the different functionalities required for successful

preprocessing.

Processing Modules are provided through Java classes which realize the

interface ProcessingModule. This interface demands for the implemen-

tation of two methods, one for configuring a concrete instance and one for

starting its execution. Furthermore, a public standard constructor must

be provided by each module implementation which allows the creation of

an instance through invocation of the newInstance upon a correspond-

ing java.lang.Class. To include a module during preprocessing, the

module class itself and all required utility classes must be integrated into

The mKernel Preprocessing Tool 253

the class path of the tool, for instance, through packing them into the pre-

processor archive. The configuration of the tool regarding modules to exe-

cute during preprocessing of an ejb-jar file is provided through a so-called

Module Configuration. This file-based configuration of the tool consists of

FQNs of modules to be incorporated during preprocessing. Therefore,

the FQN of each module which should be executed during preprocess-

ing must be integrated into that configuration file. A basic configuration

is provided as part of mKernel. An extension of the tool, for instance, to

integrate new features during preprocessing, would require the develop-

ment of a corresponding module, its integration into the tool archive, and

the addition of a corresponding entry into the Module Configuration. Con-

sequently, it is possible to extend the tool for specific AC domains with

respect to the preprocessing of ejb-jar files.

Figure 6.7.: Architecture of the Preprocessing Tool

On execution of the preprocessing tool the Processing Controller is instan-

254 The mKernel Realization

tiated first, submitting the relevant information such as the FQN of the

ejb-jar file to process and additional elements for the class path which

should be considered during preprocessing. These additional elements

might, for instance, be container specific extensions which do not need to

be part of the ejb-jar file to process, but are available for all deployed mod-

ules inside a target container. The controller first of all analyzes whether

the submitted information is correct, that is, if the ejb-jar file to be pro-

cessed and the class path extensions do exist. If this was successful, it

instantiates the Target Representation which provides access to the origi-

nal ejb-jar file and to a Workspace directory which builds the foundation

for the archive to construct as result of preprocessing. Afterwards, the

controller instantiates and configures all modules listed within the mod-

ule configuration. If none of the instantiations and configurations threw

an exception, the foundation for the original preprocessing is given. Fi-

nally, the execution of the modules is initiated in the order the modules

are found in the Module Configuration.

The Target Representation encapsulates the original ejb-jar file, as well as

the processing Workspace. In this context, it enables processing modules

to access the covered elements without the need to know their concrete

location in the underlying file system. Furthermore, the Target Repre-

sentation provides opportunities for inspection and manipulation of pre-

processing aspects which are not reflected in the original ejb-jar file or

the Workspace. Examples of these are a representation of the processed

archive which is held in main memory or newly created classes which are

not yet written to the Workspace.

No inspection or manipulation of the original ejb-jar file or the target

ejb-jar file are performed by the constituent elements of the tool. Instead

of that, all steps from the extraction of the archive up to the packing of

the emitted files are realized through the different processing modules.

This also covers the establishment of the archive representation inside the

Target Representation. Consequently, no element of the tool infrastructure

The mKernel Preprocessing Tool 255

does perform any actions upon the source or targets of preprocessing.

To facilitate the development of processing modules beyond the provi-

sion of unified access to the Workspace and the original archive through

the target representation, different utility classes are part of the tool. These

support, amongst others, the identification, extraction, and integration of

jar file elements, as well as the generation of Type Level identifiers and

analyses of bean methods.

6.2.2. Preprocessing Tasks

The preprocessing tool might be used through a command line script.

Internally, the script prepares the environment for the tool with respect to

the identification of necessary environmental information and afterwards

starts the execution of the tool. As discussed in the previous section, the

actions performed during preprocessing of an ejb-jar file are determined

by the Module Configuration. Each of the listed modules is responsible

for performing a special task. Consequently, the tool might be extended

through the integration of new modules. Furthermore, certain actions

might be excluded through removing the corresponding entry from the

Module Configuration.

For the construction of the two archives which are emitted as results

of preprocessing some of the tasks to perform are equal while others are

specific for one of the two archives. Therefore, the tool requires two con-

figuration files which are used as foundation for the construction of the

particular archive. In the remainder of this section, the different tasks to

perform for the construction of a Managed Layer ejb-jar file are discussed

first. Afterwards, the differences regarding the generation of an Access

Layer archive are highlighted. The discussion does not present the con-

crete preprocessing modules in detail, but gives an overview of different

groups of tasks to perform.

256 The mKernel Realization

6.2.2.1. Managed Layer Archive Construction

The construction of Managed Layer ejb-jar files requires the addressing of

all aspects discussed in section 6.1.2.2. The processing modules which

fulfill these demands can be divided into six groups, namely Infrastructure

Preparation, View Creation, Bean Manipulation, Environment Encapsula-

tion, Interceptor Integration, and Target Archive Construction. These groups

are introduced in the remainder of this section.

Infrastructure Preparation The preparation of the infrastructure includes

two steps. First of all, the foundation of the Workspace must be estab-

lished. This is performed through the extraction of the original archive.

Secondly, a class loading infrastructure must be constructed which allows

the inspection and manipulation of the class files from the Workspace. In

combination, these two steps lay the necessary foundation for the subse-

quent actions to perform. All actions performed by modules of this group

do not address any aspects which are specific for the source archive.

View Creation Based on the established workspace and the class loading

infrastructure, the modules of this group inspect the artifacts of the pro-

cessed archive and construct a comprehensive view of it. For this purpose

two deployment descriptors are used. The first one is given through the

original DD extracted from the archive. The second one is constructed

from the annotations identified in the class files being part of the archive.

These two DDs are afterwards merged according to the rules defined in

the EJB standard. In this context, declarations inside the original DD are

prioritized over specifications contained in annotations if both address the

same aspects of an ejb-jar file. Beyond the construction of the comprehen-

sive DD different parts of the Target Representation are initialized such as

aspects of identified Java interfaces and the corresponding inheritance hi-

erarchies.

The mKernel Preprocessing Tool 257

The modules of this group are responsible to lay the archive-specific

foundation for further processing. At the same time no manipulation is

performed on any artifact of the original ejb-jar file.

Bean Manipulation The manageability of enterprise beans is established

by this group of modules. Consequently, all of the performed actions

directly relate to interactions between bean instances through required

and provided interfaces. In contrast, interactions with MDBs based on

JMS are not addressed by this group of steps.

As preparation for bean manipulation all interfaces contained within

the original archive are taken as foundation for the generation of new in-

terfaces supporting mKernel management. In this context, each provided

method of business interfaces36 is extended with additional parameters

for management information transfer. The names of the new interfaces

are derived from the names of the original ones attached with an mKernel-

specific suffix. For local home and home interfaces replacing interfaces

are created, too. Within these interfaces, the return types of methods

for the creation of SB instances are adjusted to provide access through

StateAccess. In this context, an extended local or remote business inter-

face is constructed for each original local or remote interface. Afterwards,

the new interface is declared to be provided by the affected SBs to ensure

that the corresponding functionality is still accessible. The StateAccess

interface specifies – besides the management endpoint discussed before

– a method for requesting references to the target bean based on any pro-

vided interface. Consequently, it is possible to perform management ac-

tions and to obtain any reference which might be needed by an SB proxy

through a StateAccess-based reference. Therefore, proxies are also en-

abled to obtain references based on those interfaces they require for pro-

viding the functionality exposed to clients. The replacement of the original

36 Local business and remote business interfaces.

258 The mKernel Realization

local or remote interface with a corresponding generated business inter-

face inside the Managed Layer cannot be recognized by bean instances

making use of proxy instances, because these still expose the original in-

terfaces to their clients (see below). It is not sufficient to consider only

those Java interfaces which are used for required or provided interfaces of

beans, because the remaining Java interfaces might build the foundation

for connection establishment through lookups within the global names-

pace or during reference transfer between bean instances. Additionally,

it might still be possible that Java interfaces from external libraries or the

JRE are also used as foundation for connections. Nevertheless, only the

Java interfaces being part of the processed archive are considered for ex-

tension. Otherwise, all Java interfaces within the class path – including

those of the JRE – would require to be extended and integrated into the

constructed archive. This would result in an indefensible storage over-

head. Therefore, all Java interfaces which are used as foundation of con-

nections between bean instances must be contained within the processed

archive.

After the generation of Java interfaces all SB classes are extended to pro-

vide the relevant new interfaces. For the extended interfaces new meth-

ods are integrated into the classes which internally delegate an invocation

to the corresponding methods originally provided by the SB. The addi-

tional parameters are ignored, because they are only needed by mKernel-

specific interceptors, as discussed in section 6.1.2.2. The methods of MDB

classes for receiving messages do not need to be addressed by the pre-

processing tool, because management information is transferred through

message properties which do not result in any adjustment demands on

receiver side. Afterwards, all bean classes are extended to provide the

StateAccess interface.

SB proxy classes are generated for all Java interfaces contained within

the original module. Depending on the type of exposed interface, each

generated proxy class extends a corresponding basic implementation be-

The mKernel Preprocessing Tool 259

ing part of mKernel. These implementations provide methods which are

needed as foundation for realizing the behavior discussed in section 6.1.2.2.

Each proxy class implements one of the original interfaces. For each of the

corresponding methods an implementation is generated which internally

makes use of the provided functionality of the particular super class, for

example, to block an invocation if necessary for ensuring quiescence or to

replace the underlying reference. In order to forward method invocations,

the necessary management information is requested from the Manage-

ment Context, and a corresponding invocation making use of the extended

interface is performed on the reference to the Managed Layer target.

Finally, the EJB DD is adjusted regarding declarations of provided in-

terfaces of SBs. In this context, the newly created interfaces are used to

replace the original ones. Furthermore, mKernel-specific interfaces are

also declared to be provided.

This group of modules mainly addresses the establishment of a founda-

tion for supervising and controlling relationships and interactions within

a managed system.

Environment Encapsulation In order to encapsulate interactions with the

environment of bean instances, corresponding proxies must be integrated

into the beans. The general proceeding of proxy integration is based on

the replacement of references during their obtainment or on the intercep-

tion of interactions. In this context, proxies for the global naming context

are, for instance, integrated through replacing each constructor invoca-

tion of javax.naming.InitialContext with the construction of a corre-

sponding context proxy. For context proxies which allow the obtainment

of references to session beans, mappings from original interfaces to their

mKernel-specific counterparts are generated which support the instantia-

tion of matching SB proxy instances for received references.

Through this group of modules control over interactions with the con-

tainer environment is ensured.

260 The mKernel Realization

Interceptor Integration For the basic integration of the mKernel-specific

interceptors it is sufficient to adjust the DD accordingly, that is, to inte-

grate a declaration for the particular interceptor and specify that the inter-

ceptor should be attached to each affected bean.

While the other interceptors are attached without changes to each con-

sidered bean, dependency injection interceptors are specific to each af-

fected bean. If no dependency injection is required for a bean, no cor-

responding interceptor is attached at all. Otherwise, an individual inter-

ceptor is generated considering all identified injection declarations. After-

wards, the interceptor is attached to the bean. Finally, all affected injection

declarations are removed from the bean class file, as well as from the DD

to prevent container-based dependency injection.

Target Archive Construction In the end of preprocessing the target archive

is constructed. As a first step the two mKernel-specific SBs presented

in section 6.1.2.1 are integrated into the DD. These are the Configura-

tion Endpoint Bean and the Event Publisher Bean. Afterwards, all classes

which were generated or manipulated during preprocessing are written

into class files inside the workspace. Moreover, class files which are part

of mKernel and which are needed inside the target archive such as the class

files of the mKernel-specific beans, are extracted from the tool archive into

the workspace. Subsequently, the resulting DD (EJB DD) and the mKer-

nel-specific DD (mDD) are written to the workspace. At this point of pre-

processing all artifacts of the target archive do exist within the workspace.

Finally, the content of the workspace directory is packed into the target

ejb-jar file, and the directory is removed from the file system.

6.2.2.2. Access Layer Archive Construction

For the construction of an Access Layer ejb-jar file the proceeding is sim-

ilar to the one for a Managed Layer ejb-jar file. The main difference dur-

The mKernel Preprocessing Tool 261

ing the construction of Access Layer archives is caused by the fact that the

constituent beans of the original archives are substituted with mKernel-

specific implementations which act as proxies for external clients. There-

fore, the second group of modules (View Creation) is extended while the

remaining groups only require a subset of the modules applied for the

construction of Managed Layer ejb-jar files. In the remainder of this sec-

tion the differences of the construction proceeding are highlighted.

Infrastructure Preparation This group consists of the same set of mod-

ules applied to Managed Layer archives.

Bean Replacement After the creation of the comprehensive DD and the

internal representation each of the identified SBs is replaced with its Ac-

cess Layer implementation. The replacing bean extends a generic imple-

mentation being part of mKernel which encapsulates general management

functionalities. Furthermore, method implementations are generated for

each of the originally provided methods. For MDBs it is sufficient to re-

place the original implementation with a generic one, because the con-

tent of messages is irrelevant on Access Layer. Therefore, messages do

not require individual treatment. Finally, the original bean classes are re-

moved from the workspace. Moreover, the corresponding entries in the

DD are adjusted to refer to the Access Layer implementations. For SBs the

management interface for setting a reference in the context of reference

transfer to clients is added to the set of provided interfaces.

Summarizing, this group of steps is derived from the original View Cre-

ation. It is extended with modules for replacing the original beans with

matching implementations for the Access Layer. This requires the gener-

ation of bean implementations, and manipulations of the workspace and

the target representation.

262 The mKernel Realization

Interface Manipulation This group consists of a subset of modules being

part of the Bean Manipulation group applied for Managed Layer archive

construction. All aspects of bean manipulation are excluded from the

group, because all requirements of Access Layer beans are already reached

during bean replacement. In this context, only the generation of proxies

is performed for identified interfaces, because these proxies are used by

Access Layer SB instances for forwarding requests.

Environment Encapsulation This group of modules is applied to Access

Layer archives the same way as to Managed Layer archives. Only the newly

integrated beans are excluded from the modules, because their source

code shows the desired behavior for environment interaction. This is

done, because transferred objects might try to interact with their envi-

ronment during deserialization or serialization. Nevertheless, the corre-

sponding behavior at runtime might lead to undesired side effects, for

example, because the entries of the local namespace of the original tar-

get would not be available within Access Layer beans. Furthermore, inter-

actions could be performed more than once, because the corresponding

object would be deserialized twice, one time at the Access Layer and one

time at the Managed Layer. This could not be avoided in general, because

a generic manipulation of serialization and deserialization methods was

considered of not being possible.

The remaining two groups Interceptor Integration and Target Archive Con-

struction are applied to Access Layer modules the same way as to Managed

Layer modules.

6.2.3. Access Point Distribution

Regarding the generation of Access Layer ejb-jar files, the preprocessing

tool is not limited to the construction of archives based on enterprise

Applied Tools 263

beans providing business logic. In contrast, it would also be possible

to create an ejb-jar file consisting of MDBs or SBs for which it is only

specified that they provide one or many interfaces. The corresponding

implementation could be left empty as long as the requirements of the

EJB standard are fulfilled. Such an archive might be submitted to the

preprocessing tool which generates the corresponding Access Layer and

Managed Layer archives. While the Managed Layer archive would not pro-

vide any meaningful functionality, the Access Layer archive might be used

for establishing an Access Layer architecture which deviates from the one

on Managed Layer with respect to the distribution of beans upon modules.

This might be helpful, for instance, to establish the Access Layer architec-

ture, because it provides a high degree of freedom for the distribution of

client access points upon modules. As one extreme it would be possible

to construct archives which consist of only one enterprise bean providing

one single functionality. The other extreme would be the integration of

all external access points of a system into one single archive. While this

would not make any difference for client interactions, it might have cer-

tain impacts on system management. Regarding reconfiguration the first

extreme enables an isolated reconfiguration of single access points while

demanding for the management of a potentially high number of modules

on Access Layer. In contrast, the second extreme would lead to one single

module on Access Layer, but would result in a temporal unavailability of

all client access points even if only parts of the access points should be

replaced. This is the case, because all access points would be affected by

deployment actions.

6.3. Applied Tools

In order to realize the different parts of mKernel, four tools were applied.

In particular, tools are used for XML processing, for performing deploy-

ment operations, for byte code inspection and manipulation, and for source

264 The mKernel Realization

code generation. This section gives an overview of the applied tools. It is

not intended to provide an insight into each of the tools, but only sketches

the particular application context.

Deployment Operations The execution of deployment operations within

the container plugin is based on the corresponding API of the JSR 88 [64].

It was chosen, because it supports all functionalities needed by mKernel.

Furthermore, it is an integral part of the Java EE 5 specification [140] and

is therefore deeply integrated into a broader context building the founda-

tion for Java-based enterprise systems. JSR 88 itself was already discussed

in section 3.4.1.

XML Processing For the processing of deployment descriptors the Java

Architecture for XML Binding 2.0 (JAXB) [154] is used. It allows, amongst

others, the construction of specific APIs out of XML Schema definitions

[22, 153]. The generated classes allow the creation, inspection, and ma-

nipulation of XML files based on schema-specific objects from inside Java

source code. In this context, APIs were generated for the schemata of EJB

deployment descriptors and for mKernel-specific descriptors. The gener-

ated classes for both schemata are used during preprocessing for inspect-

ing the original EJB DD, and for the construction of the comprehensive

EJB DD and the creation of the mKernel-specific DD. Furthermore, the

APIs are also used inside the container plugin for obtaining information

about a submitted ejb-jar file. Finally, the API for EJB DDs is used inside

the Container Plugin when adjusting the descriptor during module deploy-

ment. JAXB was released as JSR 222 and became part of the Java Platform,

Standard Edition, version 6.0.

Byte Code Inspection and Manipulation The inspection and manipula-

tion of class files, as well as the construction of new classes and inter-

faces are performed with the aid of the Java Programming Assistant (Javas-

Applied Tools 265

sist) [5,48,49]. Javassist provides, amongst others, an API for Java byte code

inspection and manipulation based on Java language constructs. This

enables, for example, the creation of methods for classes based on sub-

mitted Java source code or the construction of completely new classes.

Additionally, facilities for in depth access to the underlying byte code are

also provided. In combination, the Javassist API represents an easy to

use foundation for byte code engineering which provides all opportunities

needed in the context of mKernel. Javassist is used by different processing

modules during preprocessing of ejb-jar files. The tool would also allow

the dynamic generation and instantiation of classes at runtime and would

therefore theoretically be usable within deployed modules such as the dy-

namic generation of proxies. For the realization of mKernel this was no

alternative to the applied static approach, because it would violate the EJB

standard. The development of Javassist started as independent project.

Meanwhile, it became a sub-project of the JBoss Application Server [6].

Source Code Generation Finally, the generation of Java source code is

based on the Velocity Engine of the Apache Velocity Project [10]. The Veloc-

ity Engine supports the processing of templates from inside Java source

code. The corresponding template language allows the definition of tem-

plates which might, amongst others, refer to submitted Java objects and to

iterate over Java-based collections. Furthermore, the opportunity to define

branch definitions allows the conditional integration of template sections

into the output. In the context of preprocessing, templates build the foun-

dation for the generation of Java source code which is used as input for

byte code manipulation performed with the aid of Javassist.

The tool application does not induce any violations of the EJB standard.

Javassist and the Velocity Engine are applied during preprocessing. In this

context, standard compliant ejb-jar files are constructed, and no elements

of the tools become part of these files. Regarding Javassist it would the-

266 The mKernel Realization

oretically be possible that the tool internally generates byte code which

makes use of language constructs such as thread synchronization which

would represent a violation of the EJB standard. To guarantee that this is

not the case, an in depth analysis of the tool source code would be neces-

sary. This was not performed during the development of mKernel. Instead

of that, decompilations and analyses of many examples of generated and

manipulated class files were performed. None of these files showed in-

valid source code constructs. Therefore, the application of Javassist was

assumed of leading to valid byte code for the integration into ejb-jar files.

The API of JSR 88 is explicitly designed for the management of Java-based

enterprise systems. Its usage from inside an EJB container is not forbid-

den by the EJB standard. Finally, the usage of JAXB during preprocessing

does not even induce any changes of byte code. Furthermore, the gener-

ated XML files are valid with respect to the underlying schemata. For the

application of JAXB inside a managed container no file access or other

invalid operations are necessary. Therefore, the usage of JAXB does also

not induce any violations of the EJB standard.

6.4. Summary

Within this chapter an overview of the internals of mKernel-based system

management was presented. The discussion did not aim to provide an

insight into implementation details, but focused on the presentation of

general concepts, design decisions, and applied techniques.

Section 6.1 first provided an overview of the main parts of the manage-

ment infrastructure, as well as their tasks and relationships for realizing

the management of EJB-based enterprise systems. Afterwards, the differ-

ent parts were discussed separately with respect to their realization. In

this context, an insight into the internal structure of each part was given

highlighting how the different tasks are provided through the constituent

elements. This also covered the presentation of relevant processes regard-

Summary 267

ing interactions for reaching the desired behavior in case these were nec-

essary for the understanding of design decisions.

Within section 6.2 the preprocessing of ejb-jar files was presented. The

discussion started with an overview of the architecture of the preprocess-

ing tool being part of mKernel. In this context, so-called Processing Mod-

ules were introduced which contribute to the construction of manageable

archives through the provision of core functionalities needed for prepro-

cessing. The subsequent discussion of the proceeding for manageable

archive generation was divided according to the layer for which the par-

ticular archive is constructed. The discussion did not go into detail for

each of the applied modules. In contrast, it focused on the presentation

of groups of modules which in combination fulfill a certain part of the

overall tasks during preprocessing. In this context, the differences regard-

ing the construction of Access Layer ejb-jar files and Managed Layer ejb-jar

files were highlighted. Furthermore, alternatives for the construction of

Access Layer archives and their implications for system management were

discussed.

Section 6.3 provided an overview of the applied tools which were used

by different parts of mKernel. In this context, the intended usage area

of each tool was presented and its particular application in the context of

mKernel was discussed. Finally, it was argued why the application of each

of the tools does not induce any violation of the EJB standard.

In section 6.1.2 two violations of the EJB standard were pointed out,

namely the use of static fields, and the application of object substitu-

tion during SB proxy serialization and deserialization. For both of these

violations alternative realizations of the corresponding concepts were pre-

sented, and it was argued why a violation of the standard was accepted for

the realization of mKernel. In this context, it must be highlighted that the

decisions for standard violation were based on detailed analyses and in-

vestigations regarding alternatives. Nevertheless, the replacement of the

realized solutions with standard compliant substitutes would be possible

268 The mKernel Realization

with low expenditures.

7. Application

The previous chapters presented the approach for supporting autonomic

management of enterprise systems based on the EJB standard. Chapter

5 discussed the externally provided sensors and effectors for autonomic

entities which are organized in a meta model and are realized through

a corresponding API. Afterwards, chapter 6 provided an insight into the

realization of mKernel with respect to the overall architecture and the con-

stituent elements. In this context, conceptual aspects were presented and

the underlying design decisions were discussed. In combination, the

chapters provided the black-box-view and white-box-view of the AC infras-

tructure.

While the previous chapters considered the realization of the thesis

subject directly, this chapter discusses the application of mKernel for two

projects. In this context, the AC infrastructure was used as foundation

for addressing certain objectives of AC. The goal of the first project was to

support Self-Configuration through the realization of a stepwise approach

for defining complex reconfiguration strategies. These can be reused for

different reconfiguration scenarios. The second project aimed to support

Self-Protection and Self-Healing through applying the concept of Design by

Contract [116] for supervising the behavior of system elements at runtime.

In this context, erroneous or malicious behavior can be discovered, and

immediate counteractions can be defined. Furthermore, enhanced analy-

ses of relevant incidents are supported.

The remainder of this chapter is structured as follows: Section 7.1

presents the project for addressing Self-Configuration through reconfigura-

tion strategies. Afterwards, section 7.2 discusses the approach for support-

270 Application

ing Self-Protection and Self-Healing through application of the Design by

Contract concept. Finally, section 7.3 summarizes the project results and

evaluates the application of mKernel as foundation for the two projects.

The presentation of the two projects does not go into details regarding

their realization, but only provides conceptual overviews.

7.1. Support for Self-Configuration

The goal of the project presented in this section was to design and im-

plement a framework which supports the definition, instantiation, and

execution of reconfiguration strategies on top of the mKernel API. In this

context, the project concentrates on dynamic adaptation regarding the re-

placement of an existing module with a new one. The project was real-

ized during a diploma thesis by Vogel (cf. [156]) and was supervised by

the author of this thesis. The results of the project were published in

the Proceedings of the International Conference on Software Engineering and

Knowledge Engineering 2008 (SEKE’08) (cf. [157]) and presented in a talk at

the SEKE’08 conference.

In the remainder of this section the project is discussed as follows: The

motivation of the project is presented in section 7.1.1. Afterwards, section

7.1.2 provides a sketch over the design and realization of the approach37.

7.1.1. Motivation

In section 1.2.2 the life cycle of enterprise systems was introduced. In this

context, the Management Phase represents that phase of a life cycle during

which a system is productively used. Over time, the reconfiguration of a

system might become necessary due to various reasons such as changes

in the environment which demand for the integration of new functionali-

37 All details have been explicitly left out here. Please refer to the conference paper [157]

and the diploma thesis [156] for further details.

Support for Self-Configuration 271

ties, the removal of deprecated elements, or the need to replace erroneous

ones. These adaptations might – depending on the concrete scenario –

become highly complex, error-prone, and time consuming tasks, for ex-

ample, due to the number and complexity of affected elements, the corre-

sponding configuration demands, and external requirements to fulfill.

The Self-Configuration objective of autonomic entities addresses their

capabilities to perform parameter and compositional adaptation autonom-

ically based on user requirements (see section 2.1.1.1). Therefore, they

should ideally be able to deduce the necessary actions without further in-

teraction demands and finally execute them autonomically. Consequently,

administrators should be enabled to concentrate on the specification of

goals and should be disburdened from realization details. An exemplary

goal might be the demand to replace an existing deployed component with

a new revision of the corresponding component.

For the planning and execution of self-configuration there do exist cer-

tain activities which might recur in different reconfiguration scenarios.

Examples of these activities are the deployment and configuration of a re-

placing module, or the rerouting of incoming connections from a module

to replace to the replacing one. All these activities are supported through

the mKernel API in a model based way. Nevertheless, their usage within

the implementation of different autonomic entities might require the re-

peated writing of very similar source code. Therefore, it was considered

meaningful to develop a framework on top of mKernel which supports the

development, integration, and application of reusable building blocks for

reconfiguration planning and execution. Furthermore, the assembling

and realization of comprehensive reconfiguration procedures as a whole

should also be supported. The last aspect was inspired by the work of Rosa

et al. who identified three so called Reconfiguration Strategies and applied

them in their system for the composition of message oriented services,

called RAppia [129].

272 Application

7.1.2. Overview

The framework realized as result of this project supports reconfiguration

planning and execution in a stepwise approach on top of the mKernel API.

Figure 7.1 depicts the corresponding concepts and their relationships.

Figure 7.1.: Reconfiguration Framework Concepts

As foundation the mKernel API provides the infrastructure for the realized

framework. On the next higher level so called Step Executors encapsulate

delimited functionalities which can be integrated into complex reconfigu-

ration procedures. To allow a structuring of executors, the concept of Steps

establishes a classification schema which supports the grouping of Step

Executors according to the particular task they could fulfill during reconfig-

uration execution. This classification should facilitate the identification of

Step Executors which might be able to fulfill similar tasks during reconfig-

uration and to select an appropriate executor for the particular needs. As

top-level concept so-called Strategies represent comprehensive procedures

which define templates for performing an entire reconfiguration within a

managed system. These Strategies might be instantiated into Plans which

are not depicted explicitly in the figure. After their configuration these

plans can be executed with the aid of so called Plan Executors which inter-

Support for Self-Configuration 273

nally make use of the Step Executors referenced within the corresponding

Strategy.

The two elements on the left hand side of figure 7.1 on page 272 –

Strategy and Step – do not provide any functionalities during reconfigura-

tion execution. Therefore, they are depicted with dashed lines. For the

other two elements of the framework – Plan Executor and Step Executor –

different realizations are conceivable which might be applied in different

reconfiguration scenarios. As part of the framework, for both of them de-

fault implementations are provided as proof-of-concept. Additionally, the

framework allows the integration and application of custom realizations,

both for Plan Executors and Step Executors. Finally, on top level it is also

possible to make use of an ad-hoc Plan Executor. Such an executor does not

require the existence of a corresponding Strategy, but might be configured

directly.

In the following, the core elements of the framework are presented

bottom-up. Therefore, section 7.1.2.1 starts with a short overview of the

identified groups of Steps and afterwards discusses the requirements for

making use of Step Executors. In section 7.1.2.2 Strategies and Plan Ex-

ecutors are presented with respect to the construction of plans and their

application to concrete reconfiguration scenarios. Finally, section 7.1.2.3

provides a short overview of the framework realization.

7.1.2.1. Steps

The types of tasks to perform during a reconfiguration are classified throu-

gh a schema which specifies Steps with distinguishable objectives. In this

context, a Step defines What has to be done while the corresponding execu-

tors provide concrete realizations. Consequently, the choice of a concrete

Step Executor determines How the objective should be reached. Within

his work Vogel organized the identified Steps into seven groups according

to the major topic the constituent Steps address. The following list gives

274 Application

an overview of these groups while a detailed discussion of the contained

Steps is left out here. Please refer to the work of Vogel for further details

(cf. [156, 157]).

1. Quiescence Management: This group addresses the life cycle of qui-

escence regions. In this context, different Steps are defined to in-

duce state transitions, as well as for waiting for a region to reach the

QUIESCENT state.

2. Module Life Cycle Management: Analog to the management of qui-

escence regions, Steps for the management of module life cycles are

subsumed within this group.

3. Compositional Adaptation: The tasks of Steps within this group re-

late to the execution of compositional adaptation. An example of

a contained Step would be the rerouting of existing connections to

SBs of a replacing module.

4. Parameter Adaptation: This group covers Steps for all aspects of

parameter adaptation such as the setting of SEE values or the speci-

fication of security and transaction aspects.

5. State Transfer of stateful SB Instances: The transfer of conversa-

tional states of stateful SB instances is addressed by Steps of this

group. This might cover, for instance, the extraction, transforma-

tion, and injection of state elements.

6. Database Management: Steps of this group consider the need for

transfer or manipulation of underlying databases during reconfigu-

ration.

7. Supporting Steps: Finally, this group contains all Steps which define

supporting tasks for system reconfiguration. An example would be

the integration of a delay which could be necessary between the ac-

tivation of tracking for a quiescence region and the transfer of the

region to the BLOCKING state.

Support for Self-Configuration 275

The groups of Steps listed above address all aspects of system reconfigura-

tion provided by mKernel. Nevertheless, the complexity of tasks assigned

to Steps varies between groups as well as inside groups. While certain

groups more or less directly reflect manipulation opportunities exposed

by the mKernel API38, others do cover more complex tasks39. The varying

granularities are considered necessary to reach a high degree of flexibil-

ity regarding the construction of strategies. In this context, it would, for

instance, be possible to interleave the execution of Step Executors for the

management of a quiescence region with the execution of those for man-

aging the life cycle of a new module to minimize system disruption. Fur-

thermore, it would be possible to exclude certain Steps for special purpose

scenarios such as situations where an already existing module should be

used to replace another one. For such a situation it would not be neces-

sary to apply executors for all Steps of module life cycle management. In

this context, it is not required that all Steps are integrated into a Strategy

through corresponding executors. Instead of that, Steps represent oppor-

tunities instead of requirements. Moreover, it is also possible to apply

more than one executor associated with the same Step, for example, if

more than one module should be integrated into a system.

As mentioned earlier, each Step might be realized through an arbitrary

number of Step Executors. Depending on their concrete realization, Step

Executors might require to be configured for their application within a con-

crete reconfiguration situation. An example of such a configuration de-

mand would be the need to submit the unique identifier of an EjbModule

which should be destroyed. Additionally, executors might provide outputs

as results of execution such as the module identifier of an EjbModule

which was newly created. Consequently, Step Executors are characterized

38 Examples would be the Steps for state transfers of a quiescence region.

39 Such a task would be the transformation of the conversational state of a stateful SB in-

stance.

276 Application

by their assignment to a certain Step, as well as by input and output Pa-

rameters.

7.1.2.2. Strategies

Strategies define templates for the execution of complete reconfiguration

procedures. They cover a collection of Step Executors which are intended to

fulfill partial tasks during reconfiguration. Additionally, each Strategy can

define input parameters which can be used to configure the Strategy with

respect to a concrete application context. A Strategy definition requires

mappings for all input parameters of the constituent Step Executors. Such

a mapping might be provided through a connection to an output parame-

ter of another Step Executor or to one of the input parameters of the Strat-

egy. Additionally, it is possible to define output parameters for returning

the results of Plan execution. Each of these outputs must be connected

to an output parameter of one of the Step Executors. Finally, each Strat-

egy must refer to a Plan Executor which should be used for realizing the

Strategy in a concrete application context.

Plan Executors are envisioned as generic elements which might be re-

used for different Strategies. In this context, the framework supports the

integration and usage of different implementations for the execution of

plans. This allows the application of Plan Executors which are capable to

cope with specific needs of Strategies and Step Executors. In contrast, it

is considered impossible to provide one single Plan Executor as inherent

part of the framework which could be applied to all conceivable reconfigu-

ration scenarios. An elementary Step Executor would, for instance, accept

a Plan to execute and would address the constituent Step Executors accord-

ing to the order they are contained within the Plan. In this context, the

Plan Executors would receive and forward the different parameter values

according to the parameter mappings defined within the corresponding

Strategy. An alternative Plan Executor would, for example, be able to an-

Support for Self-Configuration 277

alyze a Plan against certain dependencies which might exist between the

Step Executor according to the corresponding Steps. These do not nec-

essarily need to be reflected by the parameter mappings. One example

would be that a Step Executor which is responsible for the starting of a

new module must be executed after an executor which is responsible for

module deployment. In this case there might not exist a connection be-

tween the Step Executors, because both of them receive the needed module

identifier from the output of the executor responsible for module creation.

Moreover, there are Plan Executors conceivable which are optimized for a

subset of reconfiguration scenarios or even for one single scenario.

7.1.2.3. Realization

The framework supports the implementation of Step Executors and Plan

Executors and their integration into a managed system. Additionally, it al-

lows the definition of Strategies, as well as the instantiation and execution

of Plans. To provide an infrastructure for reconfiguration planning and ex-

ecution, a specific EJB module must be integrated into the managed EJB

container. Figure 7.2 depicts the core elements of the framework inside a

managed system, as well as their relationships.

Figure 7.2.: Reconfiguration Framework Realization Overview

Step Executors and Plan Executors represent the core extension points of

278 Application

the developed framework, because they allow the integration of new func-

tionalities. For the development of new executors the Reconfiguration API

defines two special interfaces. Each of these is specific to one executor type

and must be implemented by corresponding realizations. Additionally,

certain annotations are defined as part of the API which can, for instance,

be used to specify input and output parameters for Step Executors.

The Reconfiguration API provides the foundation of all aspects of the

framework which are not directly concerned with the original reconfigu-

ration. In particular it determines how executors must be realized through

the definition of annotation types and interfaces. After finishing the devel-

opment of executors, these must be packed into a so called executor-jar file

which must be submitted to the API. The API creates a framework specific

deployment descriptor from the information contained within the execu-

tor byte code and the included annotations. Furthermore, each executor

is extended through byte code manipulation for being usable as session

bean. It is not necessary that all Step Executors which are used during

a reconfiguration do reside within the same archive as the Plan Executor

which controls the reconfiguration. In fact, the framework does not state

any requirements regarding the distribution of executors upon executor-

jar files. Strategies can also be defined and manipulated through the API.

Additionally, sensors and effectors for inspection and manipulation of the

sets of available executors and Strategies are provided. Furthermore, ex-

ecutor modules can be integrated into and removed from a managed sys-

tem through the API. For the planning of a reconfiguration the API en-

ables the instantiation of a Plan, its configuration, and its submission to

a Plan Executor instance. Finally, Plan Executor instances do control their

associated Step Executor instances through corresponding API elements.

To allow the application of the API from inside EJB containers, it is di-

vided into two libraries. In this context, the processing of executor-jar

files is sourced out into a separate archive, because it is used for byte code

manipulation which is forbidden by the EJB standard. Nevertheless, all

Support for Self-Configuration 279

other aspects of the API can be used from inside a managed container.

Implementations of Step Executors might make use of the mKernel API

for realizing the required functionality of the corresponding Step. In this

context, the API provides the foundation for all activities directly related

to the inspection and manipulation of a managed system. Nevertheless,

Step Executors do not necessarily need to make use of mKernel. An exam-

ple would be an executor which realizes a delay between the transfer of a

quiescence region from the TRACKING to the BLOCKING state.

To establish the basis for framework application within a managed sys-

tem, the Reconfiguration Infrastructure must be deployed into the target

container. It is able to receive executor-jar files through the Reconfigu-

ration API, extract the included information and create a corresponding

representation. Based on these archives, the infrastructure allows manag-

ing entities to inspect the set of available executors, deploy corresponding

modules, and manage their life cycles. In this context, the infrastruc-

ture also generates the necessary EJB DD during deployment. Finally,

these modules can be destroyed and ejb-jar files can be removed from

the system when they are not needed anymore. Regarding Strategies, the

infrastructure provides sensors and effectors for their inspection and ma-

nipulation.

Strategies are not depicted within figure 7.2 on page 277. They are

managed inside the Reconfiguration Infrastructure and are exposed through

corresponding API elements. In order to provide a proof-of-concept, the

three reconfiguration strategies identified by Rosa et al. are taken as foun-

dation and are adjusted for the underlying application area, namely EJB.

These strategies are in particular (cf. [129, 156]):

• Flash: This strategy does not consider the existence of established

connections on Instance Level. In this context, the replaced module

is stopped before the establishment of connections to the replacing

one. Existing connections on Deployment Level are rerouted lazily.

A temporal system disruption would be the result of strategy appli-

280 Application

cation, and existing Instance Level references would get lost. This

strategy might, for example, be applied if the system is only used

during business hours, and it can be ensured that no interactions

are active during reconfiguration.

• Interrupt: For the application of this Strategy the affected modules

are used as foundation for a quiescence region. After reaching qui-

escence, conversational states of stateful SB instances are extracted

from the replaced module and injected – after a potential transfor-

mation – into corresponding instances of the replacing module. Af-

terwards, the replaced module is stopped and connections on De-

ployment Level are rerouted. Finally, the quiescence region is re-

leased. This strategy requires that a state transfer on Instance Level

is possible, that is, a corresponding transformation is feasible. The

strategy is intended to be used if the underlying data sources are not

usable concurrently by the replaced an the replacing module.

• Non-Interrupt: On application of this Strategy connections on In-

stance Level are not rerouted while connections on Deployment Level

are rerouted lazily. Consequently, existing references to the replaced

module are used as long as they are needed while newly established

ones refer to the replacing module. For the application of this Strat-

egy it is necessary that both affected modules can be used concur-

rently.

Furthermore, a fourth strategy has been identified which might be inter-

preted as a hybrid form, covering aspects of the Non-Interrupt and the

Interrupt strategy.

• Non-Interrupt/Interrupt: This Strategy might be applied if both mod-

ules might be used concurrently, but existing connections on In-

stance Level should be rerouted also. In such a scenario connections

on Deployment Level are rerouted lazily before a quiescence region

is defined. Afterwards, the replaced module is transferred to a qui-

escent state, and existing references on Instance Level are rerouted

Self-Protection and Self-Healing based on Contracts 281

analog to the Interrupt Strategy. Consequently, no delay would be

noticed for newly established connections, because they would not

have to wait for the transfer of conversational states40. This strategy

is meaningful if applied to scenarios where connections to stateful

SB instances are used over a long timespan, and the reconfiguration

should be finished in a timely manner.

For each of these strategies corresponding representations were created

through the Reconfiguration API. Furthermore, reference implementations

for all needed Step Executors, as well as an implementation of a Plan Ex-

ecutor are provided. They were tested based on a sample application. In

this context, most of the Step Executors could be reused for more than one

Strategy41

7.2. Self-Protection and Self-Healing based on Contracts

In this section a project is described which aims to address the self-healing

and self-protection objectives of autonomic entities through application of

the Design by Contract (DbC) concept. The project was realized as a full-

time university practical during the semester break in summer 2007. It

represented the final part of the course specialization Practical Computer

Science at the Distributed and Mobile Systems Group of the University of Bam-

berg. The group of participants consisted of seven students who were in

their main study period. The results of the project were published in the

Communications of SIWN, volume 4, June 2008 [35] and presented in a talk

at the 4th International Conference on Self-organization and Adaptation of

Computing and Communications (SACC 2008).

The remainder of this section is structured as follows. Section 7.2.1

provides a motivation of the project and discusses the relation to AC. Af-

40 Besides potential delays due to the performance overhead for reconfiguration execution.

41 For further details please refer to [157].

282 Application

terwards, section 7.2.2 presents an overview of the project realization.

7.2.1. Motivation

The concept of DbC was developed by Meyer [116] and addresses relation-

ships between providers and clients of functionalities. These relationships

can be specified through so called Contracts consisting of Preconditions,

Postconditions, and Invariants. Preconditions define Obligations for cli-

ents of a functionality, that is, before usage they are responsible to ensure

that the corresponding preconditions hold. In return the provider is – if

the client adheres to its obligations – responsible to ensure that the us-

age leads to the fulfillment of the postconditions. The other way round,

preconditions are Benefits for the providers which can rely on their fulfill-

ment while clients can benefit from the postconditions if using the cor-

responding functionality with holding preconditions. Invariants specify

conditions which must hold in any observable state of the functionality

provider. Consequently, the provider is responsible to ensure their fulfill-

ment after its creation. Additionally, it has to ensure that each interaction

with holding preconditions leads to a subsequent state guaranteeing in-

variants fulfillment. If it does so, its implementation can be assumed to

be correct. If one of the conditions is violated at runtime, this is interpreted

as Fault inside the system. A fault indicates that at least one part of the

system contains a Defect inside its implementation leading to a deviation

from the intended behavior. The identification of a defect depends on the

type of the violated condition. If a precondition is violated, the client of

the functionality can be assumed of containing the defect, because it does

not follow its obligations. A violation of a postcondition or an invariant

– if no precondition violation happened before – might indicate a defect

inside the implementation of the provider. Nevertheless, it might also be

possible that the provider itself made use of other functionality providers.

If at least one of those did not perform its tasks correctly, this might also

Self-Protection and Self-Healing based on Contracts 283

have led to an identified violation.

The Self-Protection and Self-Healing objectives of autonomic entities were

already discussed in section 2.1.1.1. A self-protecting entity should be able

to detect, identify, and defend against internal and external threats which

might arise, amongst others, from malicious or erroneous interactions.

In this context, an entity should react appropriately, for instance, through

preventing these interactions from reaching their target or through con-

fining the effects of harmful interactions. Self-healing entities should di-

agnose and recover from inconsistencies, malfunctions, or failures de-

tected in a managed system to preserve or reestablish integrity and avail-

ability. As foundation for both objectives autonomic entities must be able

to identify undesired behavior of system elements or external clients.

The approach presented in this section relies on the idea to apply the

concept of DbC for the identification of undesired behavior. In this con-

text, contracts are assumed of providing a reasonable foundation for defin-

ing correct behavior. At runtime the observation of contract adherence

allows the identification of deviations from this behavior. Moreover, if

such a deviation is identified, it would be possible to blame the responsi-

ble interaction partner based on the type of violated condition. Therefore,

the goal of the project was to realize a foundation for the specification of

contracts as part of interfaces and to enable the supervision of contract ad-

herence. Additionally, immediate reactions to contract violations should

also be supported.

7.2.2. Overview

The approach is based on the operationalization of contracts for super-

vising the runtime behavior of bean instances and their clients. In this

context, the project concentrates on provided functionalities of SBs, be-

cause these are specified through Java interfaces which define syntac-

tic aspects of interactions. These aspects might be used inside contract

284 Application

specifications, for example, to define the range of valid parameter val-

ues within preconditions. For the approach it was decided not to assign

contracts to SB classes but to interfaces, because these are independent

from concrete implementations and are intended to provide the founda-

tion for interactions between arbitrary providers and clients of the cor-

responding functionalities. Furthermore, it was considered meaningful

to directly integrate contracts into affected interfaces instead of provider

classes. Within the Java programming language there do not exist any lan-

guage constructs which directly support the concept of DbC for interfaces.

Therefore, it was necessary to develop a contract language which supports

the definition of contracts and provides a foundation for the integration of

contracts into interfaces.

In order to make use of the proposed approach, autonomic entities

must be provided with sensors to inspect existing contracts and to track

contract violations. Additionally, they must be equipped with effectors to

configure the system behavior, for example, regarding violation tracking

or countermeasures to perform in response to violation situations. Ana-

log to mKernel, the required sensors and effectors are exposed through a

corresponding API.

The validation of contract adherence at runtime requires the intercep-

tion of method invocations upon affected SB instances. In case of a con-

tract violation information is stored for later analyses. Furthermore, direct

countermeasures are supported which allow autonomic entities to imme-

diately react to undesired behavior. All of these facilities are realized by

a specific infrastructure within the managed container which internally

makes use of the functionalities provided by mKernel.

The remainder of this section discusses the three core elements of the

approach. Section 7.2.2.1 starts with a presentation of the contract lan-

guage which was developed as part of the project. In this context, the

operationalization of contracts is also addressed, including deployment

preparations. Afterwards, section 7.2.2.2 presents the API which might

Self-Protection and Self-Healing based on Contracts 285

be used by autonomic entities for inspection and manipulation purposes.

Finally, section 7.2.2.3 provides an overview of the infrastructure inside a

managed container which is needed for applying the approach.

7.2.2.1. Development and Deployment Preparation

Before the original presentation of the contract language it must be high-

lighted that the language itself was not a major goal of the project. There-

fore, it contains only basic features for the inspection of parameter and re-

turn values, as well as opportunities to interact with the invocation target,

namely an SB instance. Nevertheless, the language is designed extensible

and might consequently also support more advanced features.

The contract language can be used to specify pre- and postconditions

on method level, as well as invariants on interface level. Each condition

is represented as a boolean expression. If evaluated to true, the condi-

tion is fulfilled while an evaluation to false indicates a contract violation.

The specification of a condition can consist of boolean operations42 and

comparisons43. Additionally, a test for null-references is also supported.

Internally, pre- and postconditions may refer to method parameters. The

return value of a method call can also be referred to in postconditions.

An OLD operator is included which allows to make use of the value of a

certain expression evaluated before method execution in postconditions.

Boolean, number, and string constants are also supported. A COMBINE op-

eration is integrated to iterate over collections and arrays, and to derive a

single value44 as result which is usable within other expressions. The us-

age of the basic constructs guarantees termination of evaluation and side

effect freeness. Method invocations are also supported as parts of expres-

42 and, or, xor,not.

43 <, <=, ==, ! =, >=,>

44 boolean, number, or string

286 Application

sions, for example, to observe the state of a session bean instance as part

of an invariant. Through this opportunity extensibility of the contract lan-

guage is given. In contrast to the basic elements, for the use of method

calls care must be taken to keep evaluation termination and side effect

freeness.

Contracts can be declared for interfaces and the included methods throu-

gh metadata annotations and thus become an integral part of them. There-

fore, the three annotation types Preconditions, Postconditions, and

Invariants are provided. Each of them holds a set of the corresponding

conditions which contain contract language declarations. Furthermore,

human readable documentations can be integrated. Although it would

have been possible to integrate all conditions of a certain type for a partic-

ular target into one single condition, a differentiation allows more specific

analyses regarding violations and reaction control at runtime.

Listing 7.1 on page 287 contains a Java interface which is extended with

a contract specification. The interface BankAccount was taken from the

example discussed in [35]. It represents an access point to a bank account.

For such an account the covered balance must always be greater or equal

to zero. This is specified through the invariant BalanceGreaterEqual-

Zero. Note that an invocation of getBalance will be performed on the

implementation of the interface during contract evaluation. The method

withdraw can be used to withdraw the submitted amount from the ac-

count. To use the method correctly, a user must fulfill two preconditions:

• BalanceSufficient: The balance of the account must be high

enough to process the withdrawal, that is, the operation must not

lead to a negative balance.

• ValidAmount: Only positive amounts are valid for withdrawal.

Inside pre- and postconditions terms starting with ’$’ followed by a non-

negative integer refer to a method parameter. The integer represents the

position inside the parameter list, starting with zero.

Self-Protection and Self-Healing based on Contracts 287

1 @Invar iants ({
2 @Invariant (
3 name = " Ba lanceGrea te rEqua lZero " ,
4 d e s c r i p t i o n =
5 " Ba lance must be g r e a t e r or equa l ’ 0 ’ . " ,
6 c o n d i t i o n = " g e t B a l a n c e () >= 0 ; "
7)
8 })
9 p u b l i c i n t e r f a c e BankAccount {

10

11 @Precondit ions (c o n d i t i o n s ={
12 @Precondit ion (
13 name=" B a l a n c e S u f f i c i e n t " ,
14 d e s c r i p t i o n =
15 "Amount t o withdraw must not exceed b a l a n c e . " ,
16 c o n d i t i o n =" $0 <= g e t B a l a n c e () ; "
17) ,
18 @Precondit ion (
19 name=" ValidAmount " ,
20 d e s c r i p t i o n =
21 "Amount t o withdraw must be g r e a t e r ’ 0 ’ . " ,
22 c o n d i t i o n =" $0 > 0 ; "
23)
24 })
25 @Postcondi t ions ({
26 @Postcondit ion (
27 name=" C o r r e c t P r o c e s s i n g " ,
28 d e s c r i p t i o n =
29 "New b a l a n c e must be c o r r e c t l y c a l c u l a t e d . " ,
30 c o n d i t i o n =
31 "OLD(g e t B a l a n c e ()) − $0 == g e t B a l a n c e () ; "
32)
33 })
34 p u b l i c v o i d withdraw (long amount) ;
35

36 p u b l i c long g e t B a l a n c e () ;
37

38 }

Listing 7.1: Contract Example (cf. [35].)

After processing, a provider of the interface must ensure adherence to the

postcondition CorrectWithdrawalProcessing, that is, it must guaran-

tee that the balance is reduced by the submitted amount. Here, the OLD

288 Application

construct is used to refer to the balance before method execution. For a

detailed discussion about implications regarding concurrency, as well as

violation analyses and countermeasures, please refer to the corresponding

article (cf. [35]).

As preparation for deployment, a module must be preprocessed by the

Contract Processor. This command line tool identifies all provided remote

business interfaces within a submitted ejb-jar file and generates an indi-

vidual contract interceptor for each session bean included, if contracts are

identified. This interceptor is capable to evaluate all relevant conditions

on method invocation. On violation occurrence it also performs the cor-

responding reaction and publishes tracking information, if desired. The

preprocessor was developed with the aid of the Java Compiler Compiler

(JavaCC) [2] which was used to generate a Java-based parser for the con-

tract language.

7.2.2.2. Contract API

The Contract API provides sensors and effectors for autonomic entities

which are specific for the presented approach. In this context, the API can

be seen as extension of the mKernel API discussed in chapter 5. Figure

7.3 on page 289 depicts the central concepts of the Contract API and their

relationships to elements of the mKernel API.

The figure is divided into four areas which are delimited from each

other through dashed lines. The horizontal line separates the Type Level

in the upper part of the figure from the Instance Level in the lower part.

The Contract API on the left hand side of the figure is separated from the

mKernel API on the right hand side of the figure through the vertical line.

Conditions are used to represent the different elements of contracts, that

is, preconditions, postconditions, and invariants. Depending on the par-

ticular type, conditions are either associated with a JavaInterfaceType

Self-Protection and Self-Healing based on Contracts 289

Figure 7.3.: Central Concepts of the Contract API

or a MethodSpecification, both belonging to the mKernel API45. On

Instance Level an observed contract violation is represented through an

instance of Violation. Each violation relates to exactly one correspond-

ing Condition which has been violated. Furthermore, each violation oc-

curred in the context of a concrete invocation which is represented as Call

by the mKernel API. In this context, pre- and postcondition violations are

only associated with BusinessCalls while invariant violations might also

occur in the context of LifecycleCalls. Moreover, it is possible that

there do exist more than one Violation for a single Call. Finally, each

Violation is associated with a ReactionType46 which represents the per-

formed countermeasure. There are three basic reaction types supported

by the approach, namely:

45 Invariants are always associated with JavaInterfaceTypes while pre- and postcondi-

tions are associated with MethodSpecifications. The specialization was left out in the

figure for reasons of simplification.

46 ReactionType is realized as enum, this is indicated through the suffix Type. Neverthe-

less, ReactionType belongs to the Instance Level and not to the Type Level

290 Application

1. EXCEPTION: If this ReactionType was performed, an exception is

thrown in response to the Violation. This also implies the initia-

tion of a transaction rollback, if possible.

2. ROLLBACK: This type indicates that a transaction rollback was initi-

ated for confining the Violation effects. The concrete effects of

applying this ReactionType vary according to the transaction de-

marcation type specified for the corresponding method.

3. PROCEED: For a contract violation identified before method execu-

tion this ReactionType indicates that the invocation was forwarded

to the original target. If applied after execution, the corresponding

method returned without any intervention.

In addition to the three types, a fourth type FORWARD_TO_HANDLER is also

supported by the approach. If applied to a Violation, it indicates that a

so-called Violation Handler has been contacted in response to a Violation.

The handler concept represents an extension point to allow autonomic en-

tities to intercept the call flow in case a Violation is identified. Violation

Handlers are discussed in the following section.

Analog to the ContainerFactory class and the Container interface

of the mKernel API there do exist a class ContractSupervisorFactory

and an interface ContractSupervisor in the Contract API. These repre-

sent entry points to the approach. They are not depicted in figure 7.3 on

page 289. A reference to a ContractSupervisor can be used to request

Violations on different levels, that is, for a certain invocation, an SB in-

stance, an SB, or a module as a whole. Furthermore, it is also possible

to obtain all Violations which relate to a submitted Condition. Naviga-

tion is provided in both directions, from elements of the Contract API to

elements of the mKernel API and vice versa. Consequently, the Contract

API can be seen as an extension of the mKernel API.

Regarding analyses of contract violations, all opportunities provided by

the Instance Level of the mKernel API might be used, for instance, for the

Self-Protection and Self-Healing based on Contracts 291

inspection of call chains and call histories. The proceeding for the iden-

tification of relevant incidents might be the same as the one described

in section 5.4.5. In this context, the concept of DbC provides additional,

valuable information which allows, for instance, to identify the interac-

tion partner responsible for a contract violation. Moreover, the concretely

violated condition might give further information about the underlying

defect. If a managed bean instance is responsible for a violation, it is

possible to determine the EnterpriseBean on Deployment Level which

contains the corresponding defect. With this bean as origin, other system

elements can be identified through navigation along connections which

might also be affected by the defect directly or indirectly. On Type Level

the EnterpriseBeanType containing the causal error can be determined.

This might also help to find other EnterpriseBeanTypes which rely on

the same implementation. Based on this information, a navigation back to

the Deployment Level would possibly reveal other EnterpriseBeans which

contain the same defect, but did not yet cause a corresponding violation.

In combination, this information might provide a helpful foundation for

further analyses, as well as for planning a system reconfiguration.

The Contract API allows autonomic entities to activate information track-

ing regarding contract violations on different levels, similar to the mKernel

API, as discussed in section 5.4.3. Additionally, it is possible to activate

logging for single Conditions. The API internally ensures that mKer-

nel-based logging is also activated for affected parts of a system. Further-

more, countermeasures for contract violations can be defined on Deploy-

ment Level, for example, for a certain SB or a module as a whole. In this

context, reaction definitions can be based on Conditions, as well as on

combinations of Conditions and Deployment Level elements of the mKer-

nel API. The ReactionTypes discussed above, are used as foundation for

the definition of reactions. Finally, the API allows the selective removal of

violation information.

292 Application

7.2.2.3. Runtime Infrastructure

After the extension of an ejb-jar file the archive must be preprocessed for

its application with mKernel and finally be integrated into a managed sys-

tem. Figure 7.4 depicts those elements of a managed system which are

directly concerned with the application of the approach and their relation-

ships. The figure does not cover all aspects of mKernel in detail, because

these were already discussed in chapter 6. The gray shaded elements

Figure 7.4.: Reconfiguration Framework Concepts

within the figure are specific to the presented approach. The Contract

Plugin is used as infrastructure within a managed container. Sensors and

effectors are provided through a corresponding Contract API, as discussed

in the previous section. The Contract Interceptor was already introduced

shortly in section 7.2.2.1. It is generated from identified interfaces and

is afterwards integrated into the ejb-jar file during preprocessing. Finally,

Violation Handlers represent extension points of the approach with respect

to immediate reactions to contract violations.

In order to apply the approach to a managed system, the Contract Plu-

gin must be deployed into the target container. This is supported by a

Self-Protection and Self-Healing based on Contracts 293

command line script, similar to the proceeding described in section 6.1.1

for the Container Plugin of mKernel. After script execution all necessary

resources do exist, and the plugin is ready for usage. For the integra-

tion of new ejb-jar files which are affected by the approach it is necessary

that the corresponding contract information is submitted to the plugin.

This can be performed through a tool which is provided as part of the

project. It internally makes use of the mKernel API for archive integration

and afterwards submits the approach specific information to the Contract

Plugin. The plugin provides functionalities for the Contract API and for

Contract Interceptors. Regarding the API, all inspection and manipulation

opportunities are originally realized by the plugin. It internally stores nec-

essary information and exposes it through API elements, similar to the

proceeding performed for the mKernel API, as discussed in section 6.1.3.

The Contract Plugin also accepts configuration instructions regarding in-

formation tracking and reaction execution. This information is provided

to Contract Interceptors in a pull-oriented approach, that is, interceptor in-

stances must request information, if needed. Although each violation

occurrence requires an interaction with the plugin, the resulting perfor-

mance overhead was considered acceptable. Violations basically reflect

incorrect behavior and thus indicate a lack of reliability if a bean instance

is responsible for their occurrence (see section 1.1). Otherwise, the incor-

rect behavior results from clients which would also indicate faults or even

attacks. Summarizing, contract violations should only occur in rare situa-

tions, especially for enterprise systems. Anyway, the underlying problems

are estimated of being much more serious than the performance overhead

for requesting information of how to proceed. Inconsistencies between

the plugin information base and the information stored by mKernel are

avoided. Therefore, the Container Plugin is registered as listener at the

Notification Topic through which mKernel publishes notifications. In this

context, the plugin only receives Type Level events regarding the removal

of ejb-jar files. For this case all tracked violations regarding the affected

294 Application

bean types are removed from the plugin information base47.

Violation Handlers represent extension points of the approach provid-

ing the opportunity to directly engage with the call flow of an invocation

during which a contract violation occurred. Violation Handlers must be

implemented as session beans exposing a specific interface. For being

usable by the approach they must be deployed into the target container.

On registration of the corresponding reaction type through the API the

mapped name of the handler to apply must be submitted. Handler in-

stances are provided with context information and are enabled to initiate

the execution of the other reaction types. Furthermore, they can perform

direct countermeasures before an invocation is forwarded to its original

target or before an invocation result is returned to a client.

In section 7.2.2.1 Contract Interceptors were introduced as interceptors

which are generated individually for each SB, based on its provided in-

terfaces. If a contract violation is identified during the interception of a

method invocation, an interceptor instance behaves in accordance with

the configuration requested from the Container Plugin. This might cover

the submission of violation information to the plugin and the execution

of the intended reaction such as throwing an exception or contacting a Vi-

olation Handler. Internally, interceptor instances make use of the context

information provided by the mKernel API (see section 5.4.4).

47 In this context, the plugin also stores the identifiers of EnterpriseBeans and

EnterpriseBeanTypes as part of each violation data set. This was performed, because

the information that a certain bean or bean type is related to a violation was considered

important even if the corresponding Instance Level or Deployment Level information is not

available anymore. For such a case the Contract API would provide access to the violation

information, but would not be able to establish associations to the removed counterparts

of the mKernel API anymore.

Evaluation 295

7.3. Evaluation

The project presented in section 7.1 addressed the self-configuration ob-

jective of autonomic entities. In this context, the planning and execution

of seamless reconfigurations are supported. As conceptual foundation a

stepwise approach for constructing complex reconfiguration procedures

out of basic building blocks is realized, allowing the reuse of core func-

tionalities in different contexts. Additionally, the provided parameteri-

zation support for complex reconfiguration strategies further promotes

reusability. The resulting framework is designed extensible regarding the

integration of custom executors for different tasks. Through applying the

approach to Strategies identified in literature, it could be shown that the

framework provides a reasonable and useful level of support. This covers

the general capability of the framework to reflect relevant reconfiguration

procedures, as well as the desired reusability of building blocks and Strate-

gies.

The second project, which was discussed in section 7.2, focused on the

self-healing and self-protection objectives of autonomic entities through

applying the concept of DbC to AC. In this context, the provided approach

supports the specification and integration of contracts during component

development through a contract language and annotations, respectively.

Regarding system management, the approach allows model based admin-

istration through an extension on top of the mKernel API. This extension

provides effectors for configuring managed modules with respect to the

tracking of violation information and the definition of countermeasures

to violation situations. For inspection purposes sensors do support the

inspection of Type Level aspects regarding contract definitions. Moreover,

Instance Level inspection is also supported, for example, to analyze con-

crete violation situations. In this context, associations to elements of the

mKernel API enable the utilization of Instance Level information provided

by mKernel. Finally, the approach is extensible with respect to the integra-

296 Application

tion of custom violation handlers. These allow managing entities to en-

gage with a violation situation and to immediately perform custom coun-

termeasures.

The two projects and their results make use of different sensors and

effectors provided by the mKernel API. To give a general overview of the

applied features, table 7.1 contains a compilation of relationships between

the major topics of the API and their usage in the context of the particular

project. Within the columns for the projects there do exist three possible

characteristics (’-’, ’x’ and ’+’). A ’-’ indicates that the particular project

does not make use of the corresponding feature. Through an ’x’, it is de-

picted that the corresponding feature is used in the context of the project,

but the full potential is not exploited. Finally, a ’+’ is inserted if the full

potential of the feature aspects are applied for the project.

Kernel API

Self-Configuration

Project

(Section 7.1)

DbC Project

(Section 7.2)

Type Level + x

Deployment Level + x

Instance Level - +

Notification Facility - +

Seamless Reconfiguration + -

Table 7.1.: Relationships between Projects and mKernel

The table shows that each feature was used extensively in the context of at

least one of the projects. Regarding the Type Level and the Deployment Level

of the API, the Self-Configuration Project made use of nearly each of the

provided inspection features for reconfiguration preparation. Moreover,

the Deployment Level features for adaptation support were also used exten-

sively. Seamless Reconfiguration was one major foundation of the project,

Evaluation 297

because it provided the basis for dynamic adaptation. In contrast, the In-

stance Level and the Notification Facility were not relevant for the project,

because it concentrated on adaptation aspects. The DbC Project mainly

focused on the Instance Level. In this context, nearly all aspects of the cor-

responding part of the API were exploited also covering access to context

information during invocation execution. Furthermore, the Notification

Facility was used for keeping consistency between the information stored

for the approach and the underlying database of mKernel. For the identi-

fication of defects and errors Deployment Level and Type Level aspect were

also used. Nevertheless, they were only considered partially. For example

on both levels aspects of parameter adaptation were not relevant. Finally,

the project did not aim to deliver any support for system reconfiguration.

Therefore, the corresponding effectors on Deployment Level and the Seam-

less Reconfiguration facility were not needed.

Both projects presented in this chapter were successfully finished. Their

relevance in the context of AC could be shown through the publication of a

corresponding paper and an article. For the two projects mKernel provided

an auxiliary and profound foundation which enabled their realization. In

this context, all of the features provided by mKernel were evaluated regard-

ing their practical usability and their adequacy regarding the support for

different application areas of AC.

8. Related Work

After the discussion of the AC-infrastructure and its application within the

previous chapters, this chapter provides an overview of related work. The

chapter is structured as follows: Section 8.1 presents approaches which

mainly focus on architectural aspects of software and systems and high-

lights their relation to this thesis. In section 8.2, approaches for infras-

tructure management support are discussed. Afterwards, within section

8.3 approaches are discussed which explicitly address the EJB standard.

Finally, section 8.4 discusses related work of the two projects presented in

chapter 7.

8.1. Architecture-centric Approaches

The meta model of mKernel and the corresponding API can be used by au-

tonomic entities, amongst others, for obtaining an insight into the archi-

tecture of a managed system and for manipulation purposes. On Deploy-

ment Level the basic building blocks of a system are represented through

deployed components (EJB modules), their access points (enterprise beans)

and connections among them.

The design of the Type Level and the Deployment Level regarding the top

level element is – besides the specifications of the EJB standard – inspired

by so called Architecture Description Languages (ADL). These languages are

mainly used for the development of software to describe a software ar-

chitecture through coarse-grained elements abstracting from the source

code level and fine-grained constructs like classes for object oriented ap-

proaches (cf. [113]). Furthermore, they might be used for the description

300 Related Work

of system architectures. The majority of approaches focuses on special

aspects of architectures and is not intended to provide a comprehensive

foundation for architectural considerations. These approaches were of mi-

nor interest, because they demand for their integration into software de-

velopment which was explicitly excluded from this thesis. Nevertheless,

the general approach of ADLs inspired this thesis through the provision

of ideas for the layout of the meta model. In this context, technological

aspects are relevant while recent considerations regarding the inclusion

of business and domain related aspects are negligible (cf. [112]). The re-

mainder of this section discusses one exemplary ADL approach which is

considered relevant for this thesis, namely xADL 2.0. For further con-

siderations about ADLs, as well as their impact on AC, please refer to

the corresponding literature (cf. , e.g., [85], [112] and [113]). Addition-

ally, a model-based approach for system management, called Fractal, is

sketched.

xADL 2.0 xADL 2.0 is an XML-based ADL which can be used for describ-

ing software and system architectures (cf. [54,55]). It was realized with the

main intention to provide an extensible foundation for supporting the de-

velopment of different other ADLs. Therefore, xADL 2.0 defines certain

XML schemata which are associated with each other. An extension of the

basic language elements can be realized through the definition of a new

schema which imports existing ones.

xADL 2.0 supports, amongst others, the concepts of Components, Con-

nector, and Configurations. In this context, the term Component denotes

coarse-grained building blocks of a software or system in general. Con-

nectors are used for representing communication channels, and configu-

rations define constraints regarding the arrangement of components and

connectors. A hierarchical structuring of architectures, as well as the ag-

gregation of elements into groups are also possible. Furthermore, con-

cepts for the declaration of optional or alternative elements, as well as

Architecture-centric Approaches 301

versions of elements are also supported. xADL 2.0 distinguishes between

software and system architectures. Finally, an extensible development tool

for xADL 2.0 is provided [53].

Dashofy et al. [56] discuss the application of xADL 2.0 in the context

of self-healing. For this purpose they propose that the architecture of a

running system is represented through an xADL 2.0 model which is ana-

lyzed, for instance, regarding broken or missing connections. As results

of planning, a new architecture representation would be provided which

solves the identified shortcomings. Afterwards, the differences between

the current and the desired architecture would be calculated, consisting

of additions and removals of elements. Finally, the results of planning

would be used as foundation to perform reconfiguration actions.

Fractal With Fractal a generic, extensible, and reflective meta model for

component oriented systems is provided (cf. [36])48. The basic goal of

this project is to provide a comprehensive foundation for the develop-

ment of software, as well as the deployment and reconfiguration of sys-

tems. Therefore, the meta model considers a managed system as a collec-

tion of interconnected and potentially nested deployed components. Each

component is, amongst others, characterized by a set of interfaces which

might be used for inspection and manipulation purposes. In general,

there do exist four types of interfaces which can be used for parameter

adaptation, compositional adaptation, manipulations of component hier-

archies, and for controlling the life cycle of deployed components. The

generic nature of Fractal demands that the interfaces are kept rather gen-

48 Actually, the authors of Fractal speak about a component model, but this terminology

would be misleading in the context of this thesis. The same holds for the term Com-

ponent which is – according to the authors – a runtime entity. In the following, the

terminology of this thesis is used.

302 Related Work

eral49. Therefore, they are envisioned to be extended for special applica-

tion areas.

The meta model is intended to be realized for different platforms. In

this context, a Java-based reference implementation, called Julia, is pro-

vided (cf. [37, 38]) which implements the meta model through a corre-

sponding API. In order to make a component usable with Fractal, devel-

opers must implement the different interfaces required for components.

In this context, the concept of separation of concerns regarding the im-

plementation of the core application logic and management aspects is

supported. Nevertheless, the need to consider management aspects dur-

ing development or maintenance leads to increasing complexity during

the software life cycle. Finally, an XML-based, extensible ADL for Fractal

models and an extensible tool are also provided for Fractal (cf. [101]). For

further details about implementations of Fractal and extensions, please

refer to the project website [39].

The two representatives of architecture-centric approaches for software

construction and system management discussed above, focus on the es-

tablishment of generic foundations for their particular application area.

In contrast, mKernel represents a standard-specific management infras-

tructure. mKernel is intended for but not limited to its usage by auto-

nomic entities. Furthermore, it could complement existing model-based

approaches as the ones discussed above through its application as system

infrastructure. This would also promote the integration of mKernel into a

broader management context. The major conceptual task for the integra-

tion of mKernel with a model-based approach would be the need to provide

a mapping for the mKernel API to fulfill the requirements of the particular

approach, for example, through adapters.

49 Regarding the life cycle of a deployed component, only the states STOPPED and

STARTED are considered.

Infrastructure-centric Approaches 303

8.2. Infrastructure-centric Approaches

The AC-infrastructure establishes the foundation for the autonomic man-

agement of the business-tier of enterprise systems. In contrast, the man-

agement of the underlying infrastructure such as the internals of a Java

EE server or an EJB container, are explicitly excluded from mKernel.

There do exist different approaches for the management of system in-

frastructures in literature. This section addresses two major areas of in-

frastructure management which are contiguous to the work on mKernel.

First of all, the research area of Reflective Middleware is sketched shortly.

Afterwards, Java EE-based approaches for infrastructure management are

presented. Finally, a summarizing discussion regarding the relations of

the presented approaches to mKernel is provided.

Reflective Middleware The research area of Reflective Middleware addres-

ses the management of the underlying middleware infrastructures of sys-

tems. In this context, various approaches are proposed which address

different aspects of middleware such as supported interaction paradigms,

the target middleware platform ,or the application domain. The basic idea

of reflective middleware platforms is to enable the configuration of the

underlying infrastructure according to the particular needs of the concrete

application context. This aspect of reflective middleware directly relates to

compositional and parameter adaptation, as discussed in section 1.2.2. In

this context, the underlying infrastructure instead of the application sys-

tem is the target of adaptation. For further discussions regarding Reflective

Middleware, provided platforms, and alternatives for their classification,

please refer to the corresponding literature (cf., e.g., [65] and [132]). In the

following, two reflective middleware platforms are considered as exem-

plary representatives, namely dynamicTAO and OpenORB v 2. They were

chosen, because they follow a similar approach to mKernel concerning the

addressing of an existing standard as foundation.

304 Related Work

dynamicTAO [96] represents an extension of The ACE ORB (TAO) [136]

which itself is an implementation of an Object Request Broker(ORB) for

the Common Request Broker Architecture, revision 2.2 (CORBA) [120]. TAO

was designed to provide a configurable ORB for real-time systems which

allows its adjustment to concrete application scenarios through configura-

tion files. Such a configuration can contain settings for various aspects of

an ORB such as the applied thread scheduling strategy or security policies.

The configuration is read during startup of an ORB and is used to instan-

tiate Strategies for the different configuration aspects. In relation to the

discussion in section 1.2.2, TAO supports load-time adaptation, because

applied strategies cannot be changed after startup. dynamicTAO extends

TAO through the concept of so-called Configurators which are used to in-

tercept and manipulate bindings between system elements and strategies,

as well as among strategies at runtime. In this context, they allow interac-

tion blocking and connection rerouting. Furthermore, strategies can also

be reloaded at runtime. In order to allow their dynamic exchange, strate-

gies must exhibit different functionalities, for example, for state extraction

and injection. For further details regarding dynamicTAO, please refer to

the corresponding literature (cf., e.g., [96] and [98]).

OpenORB v2 represents an alternative, reflective realization of CORBA

[23]. OpenORB relies on a combination of the three concepts compo-

nent orientation, computational reflection, and component frameworks

for providing opportunities to manage an ORB at runtime. It is estab-

lished out of components which can be managed through a meta model

consisting of a set of complementary views focusing on different aspects.

In this context, two views are envisioned for addressing structural as-

pects. The first one considers interface-related aspects, that is, required

and provided interfaces of components. The second view addresses ar-

chitectural aspects, that is, connections between required and provided

interfaces. Two additional views are provided covering behavioral aspects.

These views allow the management of interceptors and resources. Com-

Infrastructure-centric Approaches 305

ponents are organized into frameworks which address different aspects of

an ORB such as the management of protocol stacks or scheduling strate-

gies. These allow the addressing of specific features of the particular as-

pect of a framework. The set of component frameworks itself is config-

urable which enables a high degree of adaptation freedom. For a detailed

discussion about the realization of OpenORB v2, please refer to the corre-

sponding literature (cf. ,e.g., [23] or [24]).

Summarizing, it can be stated that OpenORB provides a higher degree

of flexibility compared to dynamicTAO regarding the opportunities for in-

frastructure adaptation, because its support for reconfiguration is not lim-

ited to a predetermined set of aspects. Sadjadi and McKinley classify dy-

namicTAO as tunable, because it supports adaptation regarding aspects

anticipated during development. In this context, OpenORB v2 is charac-

terized as mutable, because it also allows adjustments of unanticipated

aspects. This terminology should not be confused with the one applied

in section 1.2.2 for characterizing sub-types of compositional adaptation.

Kon et al. [97] provide a summarizing comparison of dynamicTAO and

OpenORB, specially highlighting design aspects. This article was jointly

written by authors belonging to both projects.

Java EE-based Approaches The management of Java EE servers is ad-

dressed by different approaches. In the following, four approaches are

discussed which address different aspects of Java EE servers.

The PeKing University Application Server (PKUAS) [83, 114] is an imple-

mentation of a Java EE server which supports version 1.3 of the Java EE

standard [138]. It provides a reflective meta model which allows inspection

and manipulation of application server internals such as the exchange of

communication protocols, or to inject or remove interceptors50.

50 These interceptors are specific to PKUAS and should not be confused with the intercep-

306 Related Work

PKUAS supports model-based management of deployed components,

focusing on EJB modules, in accordance with version 2.0 of the EJB stan-

dard [61]. Most of the aspects of enterprise beans declared in a DD might

be inspected and manipulated at runtime (cf. [83, 114]). Wang et al. [158]

discuss the replacement of enterprise beans, also covering the proceeding

for instances and references. In this context, instances can be replaced

only if their internal state representation did not change between the re-

placed and the replacing version regarding the constituent fields. Oth-

erwise, instances of the original beans are kept until their clients do not

need them anymore. At the same time instance of the replacing bean are

already accessible for newly established references. Alternatively, it is pos-

sible to delete original instances which might lead to connection losses for

clients. The inspection and manipulation facilities of PKUAS are exposed

through an API which is an extension of the JSR 88 discussed in section

3.4.1 (cf. [84]). Furthermore, certain performance statistics are provided.

Consequently, PKUAS can be seen as application server which provides a

high degree of freedom regarding its support for dynamic compositional

adaptation and parameter adaptation at runtime, compared to other server

implementations.

PKUAS also addresses the relation between software development and

a software system. In this context, it follows an approach for graphically

representing a managed system. For the deployment phase of the system

life cycle corresponding tools allow the creation of necessary information,

for example, for the DD. In order to represent a managed system, two

approaches are considered depending on the availability of architecture

descriptions from the development phase. If development information is

available, it is used as foundation for the generation of a representation of

a managed system. Otherwise, a model of the system is derived from the

system itself, not covering development specific information (cf. [82]). In

tors considered in the EJB standard, version 3.0.

Infrastructure-centric Approaches 307

order to manipulate a managed system through its visual representation,

the corresponding tool makes use of the JSR 88-compliant API (cf. [83]).

The support for parameter adaptation at runtime as provided by PKUAS

is more flexible than the one provided by mKernel. mKernel does, for in-

stance, not allow the manipulation of transaction or security settings dur-

ing the whole life cycle of an EJB module. In contrast, PKUAS is able

to support these adaptations, because it directly controls the implemen-

tations of the corresponding facilities. Comparable opportunities are not

supported by the EJB standard which builds the foundation for mKernel.

This does not mean that mKernel does not support parameter adaptation

for deployed components regarding security or transaction settings. Nev-

ertheless, its execution would require additional efforts for EJB modules

in state DISTRIBUTED or STARTED. For both cases the module would have

to be transferred to the EXISTS state before adaptation execution. After-

wards, it could be brought back to its original state. For a module in the

STARTED state it would be additionally necessary to declare a quiescence

region solely consisting of the affected module. This allows the extraction

of conversational states of stateful SB instances. After adaption execution

new instances of the affected beans must be created, and the extracted

states must be injected into them. Finally, existing references must be

rerouted. This proceeding avoids any system disruptions and is generic

for all conceivable adaptation scenarios. It could be implemented once

as extension on top of mKernel. Nevertheless, it would require certain

state transitions and conversational state transfers. Therefore, it induces

a certain performance overhead compared to PKUAS. Furthermore, the

limitations regarding quiescence regions do also hold for this scenario

(cf. section 5.6.4).

The provided level of granularity and the corresponding freedom for

adaptation alternatives is much higher for the mKernel infrastructure51.

51 Except the case discussed above.

308 Related Work

PKUAS does, for instance, not expose any concept comparable to quies-

cence support of mKernel which can be used for reconfiguration orches-

tration. Facilities for controlling the semantics of rerouting are also not

provided. Furthermore, the fine-grained opportunities for the inspection

and manipulation of conversational states of EJB instances as provided

by mKernel have no corresponding counterpart inside PKUAS. Conse-

quently, mKernel is much more flexible, because it also provides facilities

for a state transfer between stateful SB instances with different underlying

conversational state representations.

The meta model of mKernel is much more detailed than the one pro-

vided by PKUAS regarding enterprise bean related aspects. In this con-

text, the PKUAS meta model does not support Instance Level aspects at

all. Therefore, the corresponding opportunities discussed in section 5.4

are not available. Furthermore, Type Level aspects are not considered as

fine-grained as in mKernel, for example, regarding the identification of

the underlying implementation of an enterprise bean. In contrast, the

meta model of PKUAS is mainly limited to the Deployment Level of a man-

aged system. The design of a software architecture is also considered by

PKUAS, but not covered directly. In contrast, it is mapped to an external

design which stands in a one-to-one relation to the system architecture.

In this context, it is intended to cover additional information not included

in the system architecture itself. The information might, for instance,

be specific to the development and maintenance phases of the software

life cycle. Comparable information might also be integrated into the Type

Level of the mKernel meta model and requested from it through custom

artifacts of ejb-jar files. This would lead to a higher level of independence

from external information sources and to self-contained archives. The in-

spection opportunities provided by mKernel on Type Level such as the iden-

tification of identical implementations of enterprise bean types, have no

corresponding counterparts in the PKUAS meta model. In contrast, the

design representation as considered by PKUAS can be seen as extended

Infrastructure-centric Approaches 309

Deployment Level.

Summarizing, it can be stated that the PKUAS project provides a con-

tainer implementation which delivers a very high level of adaptation op-

portunities compared to other application servers. Its reconfiguration fa-

cilities are exposed through container-specific extensions of the JSR 88

standard. PKUAS was rejected as foundation for mKernel for three major

reasons. First of all, PKUAS does not supported the target component

standard EJB 3.0. In contrast, version 2.0 of the EJB standard – which is

supported by PKUAS – lies two revisions behind the current version of

EJB. Secondly, it would have been necessary to rely on container-specific

facilities for the realization of mKernel. As stated in section 1.3 in the con-

text of requirement COR-SC, the usage of container specific extensions

should be minimized as far as possible. Finally, the provided facilities do

not support all aspects required by mKernel as stated above such as quies-

cence support or conversational state transfers. Therefore, these facilities

would have to be extended or could not be used at all.

Beyond a comprehensive support for Java EE through the provision

of a specific application server, there do exist approaches which address

the management of Java EE-based systems on top of application servers.

Three of these approaches, addressing the recovery from failures, are dis-

cussed in the following.

The JBoss with Application-Generic Recovery (JAGR) approach proposed

by Candea et al. addresses failure recovery in a single Java EE server envi-

ronment (cf. [42]). It is realized on top of the JBoss Application Server [6].

The general idea is to provide an infrastructure for the identification of

failures and the execution of autonomic recovery actions in response. The

identification of failures is based on a monitoring facility which applies

different monitors, for instance, to identify (system) exceptions52. Fur-

52 In this context, system exceptions indicating null-pointer-references or out-of-memory

310 Related Work

thermore, other monitors might be configured according to the specifics

of a managed system, for example, to identify failure notifications re-

turned to clients through web pages. Monitoring information is sent to so

called Recovery Managers which analyze the information and initiate coun-

termeasures. For the proposed approach these consist of the undeploy-

ment and subsequent deployment of affected enterprise beans. In this

context, client invocations are blocked during redeployment, but no con-

versational states are transferred for stateful SB instances. Consequently,

client connections might be broken. Candea et al. argue that this is negli-

gible for the given scenario. Certain concepts of JAGR which address the

business-tier of a managed system might also be realized based on mKer-

nel. An example would be the identification of system exceptions and the

execution of countermeasures. In order to identify relevant exceptions, a

proceeding similar to the one presented in section 5.4.5 in the context of

incident tracking could be applied. Reactions might be performed based

on Deployment Level facilities of the mKernel API.

Abdellatif and Danes [12] address management automation based on the

Java Open Application Server (JOnAS) [7] which is a Java EE server, compli-

ant to version 1.4 of the Java EE standard [139]. The approach is realized

on top of JSR 77 and JSR 88 (see section 3.4). Its main focus lies on the

autonomic recovery from software or hardware failures in a cluster en-

vironment. The approach is based on a distributed system consisting of

multiple application servers which are grouped into so called Domains.

Newly started servers are identified and attached to the particular groups

through a discovery service which is specific to JOnAS. Software or hard-

ware failures are recognized through polling the availability of manage-

ment endpoints in regular intervals. If a certain endpoint does not react

for a certain timespan, recovery actions are initiated. These might either

consist of the reboot of the affected software (system) or of the startup

exceptions are explicitly mentioned by Candea et al. (cf. [42]).

Infrastructure-centric Approaches 311

of a new JOnAS instance on a different server in case of a hardware fail-

ure. The approach of Abdellatif and Danes is specific to JOnAS in that

it makes use of the corresponding discovery service and requires certain

adjustments of the JOnAS implementation.

With the Jade system, Bouchenak et al. [26] propose an infrastructure for

coarse-grained self-healing of distributed, multi-layered server infrastruc-

tures. In [26], Bouchenak et al. propose the application of Jade to a Java EE

environment. The system is based on Fractal for representing the archi-

tecture of a managed environment. As top level elements of a server in-

frastructure, server nodes are considered. These can be used to deploy and

configure so-called Components which represent system elements such as

a web server, an application server, or a database management system.

Components might be further configured, for instance, regarding the de-

ployment of sub-components like web modules inside a web sever. The

underlying, Fractal-based meta model is not discussed in detail. Especially

sub-components are only mentioned casually. The major focus of Jade lies

on the discussion of the extensible architecture of the self-healing system

itself. In this context, the approach addresses failures on the level of node

availability and component failures. For both cases it proposes rudimen-

tal recovery policies. Examples of these are the redeployment of a failed

component on the same node or the deployment of affected components

on a different node in case of a node failure, both including the rebinding

of connections. In this context, Bouchenak et al. mention that the states

of components are explicitly excluded from their considerations. Further-

more, the examples presented in [26] only consider failures within the

web-tier. One specially highlighted aspect of Jade is its ability to perform

self-healing for its own system architecture through the deployment of

system elements into nodes.

The infrastructure-centric approaches discussed in this section are re-

lated to mKernel insofar as they address the underlying platform of a man-

312 Related Work

aged system. They could possibly be used in combination with mKernel

to support separation of concerns regarding the management of a system

on different layers, that is, on business-tier, the corresponding Java EE

server, the underlying middleware platform, and the hardware environ-

ment. For this purpose it would at least be necessary to establish a rela-

tion between the different representations of a managed system covered

by the particular management layer. This is already supported by mKernel

for the relationship between its meta model and the view on a managed

container exposed by the GlassFish Application Server [11] through JSR 77

and JSR 88.

In combination, the architecture-centric approaches discussed in the

previous section and the infrastructure-centric approaches discussed in

this section enframe the AC-infrastructure proposed in this thesis. Their

underlying concepts could contribute to the development of comprehen-

sive and holistic approaches for the management of layered system ar-

chitectures in heterogeneous environments. In this context, architecture-

centric approaches could be applied for addressing top-level aspects of the

overall system architecture. Furthermore, they might provide integrated

access points for the specific management of system parts on different

layers. These might be realized by infrastructures like mKernel on the

business-tier of systems and by approaches like the ones discussed in

this section for the management of underlying containers, middleware,

or hardware environments. The integration of additional layers such as

operating systems or network infrastructures, might be meaningful ex-

tensions. Through such an approach, separation of concerns would be

supported on the one hand, while the tracing of relationships and inter-

dependencies among elements of different layers would provide helpful

navigation opportunities for in-depth analyses.

EJB-specific Approaches 313

8.3. EJB-specific Approaches

Within this section, related work is discussed which directly addresses the

EJB standard. In this context, three approaches are presented, proposing

facilities and concepts which might be considered as future work for their

realization on top of mKernel.

Rutherford et al. [131] propose the Bean Automatic Reconfiguration frame-

worK (BARK) for supporting life cycle management of deployed EJB com-

ponents through the automation of activities. BARK is designed as man-

agement tool which can be used by human administrators. It is realized

on top of the JBoss Application Server [6]. BARK consists of a management

frontend and a server plugin which is realized in a Java EE compliant way,

but makes use of JBoss-specific facilities. BARK supports different activi-

ties for life cycle management such as the upload or removal of archives,

the deployment and undeployment of modules, and the management of

connections between enterprise beans. BARK is designed for a multi-

server environment, that is, it explicitly considers multiple instances of

the JBoss Application Server. In this context, it supports the orchestration

of dependent reconfigurations performed on different servers. Further-

more, the tool allows the execution of reconfiguration scripts which con-

tain a sequence of multiple reconfiguration actions. In order to perform

adaptations, the framework manipulates the naming facility for support-

ing name indirection. Internally, BARK makes use of framework specific

mapped names. This was done to minimize system disruption during re-

configuration, because the indirection might be changed during module

replacement after the new module is ready for servicing client requests.

This approach is similar to the proceeding applied for mKernel regarding

the distinction between Access Layer and Managed Layer (see section 5.1).

Rutherford et al. do not consider bean instances and do consequently not

support the transfer of conversational states.

In relation to mKernel, BARK concentrates on the Deployment Level. Al-

314 Related Work

though mKernel provides far more comprehensive facilities for adaptation,

the support for orchestrated reconfiguration in multi-server environments

might be worth further considerations in case mKernel would be extended

regarding this aspect. The design and realization of mKernel was devel-

oped with the intention to support autonomic entities with a rich set of

sensors and effectors for fulfilling their objectives. Nevertheless, it would

also be possible to develop tools which expose the opportunities provided

by mKernel to human administrators. In this context, it would be possible

to realize different wizards, for example, to generate configuration pro-

posals according to the Type Level and Deployment Level plans presented in

the sections 5.2.5 and 5.3.5.

Jarir et al. propose an approach for the dynamic injection and removal

of so-called Middleware Services (cf. [90]). Their approach is based on ver-

sion 2.0 of the EJB standard [61] and is applied to the JOnAS application

server [7]. The concept is realized through an extension of the JOnAS

implementation to integrate an interception facility. The facility redirects

method interactions arriving at bean instances to a so-called Adaptation

Engine. This engine forwards the call flow to Services in accordance with

internally stored policies. These policies might, for instance, lead to a for-

warding of invocations in case of performance degradation. Jarir et al.

mention a logging facility as an example for a service. The approach of

Jarir et al. does not address compositional adaptation regarding the ma-

nipulation of enterprise beans and connections among them. In contrast,

it allows the dynamic integration and removal of interceptors. Further-

more, the conditional forwarding of interactions further promotes flexi-

bility of their approach.

The infrastructure for interaction interception had to be integrated, be-

cause version 2.0 of the EJB standard did not address interceptors as in

version 3.0 of the standard (see section 3.1.4). The realization of this ap-

proach would be facilitated for EJB 3.0, because the rerouting of inter-

EJB-specific Approaches 315

actions would be possible solely based on the interceptor facility. If the

adaptation engine would also be realized on top of the EJB standard, the

approach would not be limited to JOnAS.

In relation to mKernel a comparable approach could be integrated with-

out great efforts. It could be realized through the integration of an ad-

ditional interceptor which conditionally forwards interactions to services.

The integration of the interceptor itself could be performed based on a

rather straightforward extension of the preprocessing tool (see section

6.2). For performance reasons it would be meaningful to assign the task

of policy evaluation to the interceptor, too. In this context, the distribution

of context information could be performed similar to the proceeding dis-

cussed for the Management Context in section 6.1.2.1. Finally, the support

for call context information as presented in section 5.4.2 would allow the

definition of policies also covering aspects exposed through the mKernel

meta model.

White et al. propose the J3Process as foundation for the development

of self-managing software based on version 1.1 of the EJB standard [109]

(cf. [162, 163]). For this purpose a set of tools is provided which supports

developers to fulfill their tasks. In particular, a modeling tool, an arti-

fact generation tool, and a framework providing basic facilities are con-

tained as part of J3Process. Based on these tools, the approach proposes

a stepwise proceeding for the development of software with autonomic

capabilities based on QoS requirements. During design, functional as-

pects are modeled based on enterprise beans. Additionally, QoS goals

and goal hierarchies can be defined and attached to enterprise beans. In

the end of design, different artifacts can be generated through execution

of the corresponding tool. In this context, the later content of an ejb-

jar file is extended with so-called guardians which supervise interactions

at runtime, for example, to identify exceptions or to collect performance

measures. Furthermore, stubs for analysis classes are constructed which

316 Related Work

should later on evaluate goal fulfillment. At runtime guardians are in-

tended to forward collected information to analysis instances which re-

port goal violations back to the corresponding guardian and upward along

goal hierarchies. Guardians might be configured with strategies to trig-

ger countermeasures for goal violations at runtime. Furthermore, certain

simulation facilities are also provided. These are not relevant in the con-

text of this thesis, because they only affect the development phase of the

software life cycle.

With J3Process an approach is provided which mainly addresses the de-

velopment of EJB components into which facilities for the identification

and reaction to QoS goal violations are integrated. Through this proceed-

ing a certain architecture for autonomic management is determined. mK-

ernel would be able to support similar approaches which are based on EJB

3.0. In fact, it could facilitate their application through the provision of in-

teraction context information and the opportunities provided by the API

in general. In relation to the project discussed in section 7.2, contract

adherence could be interpreted as QoS goal. Moreover, the immediate

reactions to contract violations could be seen as a kind of strategies.

8.4. Related Work of mKernel Applications

This section discusses related work of the two projects presented in chap-

ter 7.

Support for Self-Configuration As already highlighted in section 7.1.1,

the inspiration of the project for supporting self-configuration of EJB-

based system was provided by Rosa et al. [129]. In this context, the pro-

posed reconfiguration strategies were taken as foundation for the evalu-

ation of the project regarding the appropriateness of the underlying con-

cepts for supporting different reconfiguration scenarios.

Additionally, the project is also related to the concept of quiescence

Related Work of mKernel Applications 317

management and the corresponding related work, as discussed in section

5.6.1, because it heavily relies on the support of this concept for complex

reconfiguration scenarios.

Finally, the project is related to the PeKing University Application Server

[83, 114] discussed in section 8.2 in that this server supports the replace-

ment of EJB modules according to one single strategy which is coarsely

comparable to the non-interrupt strategy presented in section 7.1.2.2. In

this context, the results of the project provide a very much higher level of

flexibility for controlling the concrete execution of adaptation compared to

PKUAS.

Self-Healing and Self-Protection based on Contracts There do exist dif-

ferent solutions for making the concept of DbC applicable to the Java Pro-

gramming language, like Jass [19] or the Java Modeling Language (JML)

[41]. These approaches mainly address the enforcement of contract ad-

herence at runtime. In response to identified contract violations, excep-

tions are thrown. The Assertion Facility [107], being integrated into the

Java programming language since version 1.4, goes into the same direc-

tion, but only allows the integration of contracts into classes. Therefore,

it is not directly applicable to CO where contracts are considered with re-

spect to interfaces. In contrast to these approaches, the project results

provide opportunities for in-depth analyses of violation situations. More-

over, different alternatives regarding reactions to violations are integrated.

Therefore, the approach does not focus on strong contract enforcement,

but mainly addresses the analyzing and handling of violation situations in

a platform specific context.

On top of JML there do exist approaches for supporting unit testing

based on contract specifications. While these approaches concentrate on

the extraction and generation of test oracles (cf. [45]) and test data (cf. [46]),

the presented project focuses on the provision of context information for

automated analyses of contract violations. Moreover, it provides facilities

318 Related Work

to directly react to violation situations. Nevertheless, the presented ap-

proach could also be used during software development and maintenance

for testing purposes. In this context, the provided information about con-

tract violations could provide a helpful foundation for the discovery of er-

rors.

Finally, contracts as considered by Meyer [116] do not need to be solely

used for the evaluation of violations regarding parameter values and re-

turn values. Instead of that, they might also be applied to services with

underlying state machines. A corresponding framework was realized in

the context of an earlier project by Bruhn et al. [31]. This project aimed

to provide an infrastructure for scheduling client requests to instances of

equivalent services. For this purpose clients do request service references

through the provision of required states. These are matched with state

information exposed by services. If at least one matching service is found

which is free for servicing a new interaction, a corresponding reference

is returned to a requesting client. Otherwise, requests are queued until

a matching service is available. The underlying idea to reflect state ma-

chines through contracts could also be realized based on the project pre-

sented in section 7.2. In this context, correct states could be represented

through invariants, and valid state transitions could be reflected through

postconditions.

9. Conclusion

In the beginning of this thesis, complexity of software and systems was

identified as one major challenge information technology has to address

to enable its future development. All the more, this can be stated for

enterprise software and systems because of the diversity of business ar-

eas to support and the corresponding relationships between software and

system elements. Moreover, dynamic environments, changing require-

ments, and potential relationships with external clients further complicate

the management of enterprise systems, as well as the maintenance of the

corresponding software. Finally, high demands on trustworthiness have

to be taken into account also. Consequently, enterprise software and sys-

tems are highly affected by complexity and therefore require its addressing

badly.

Software Engineering was considered as discipline which mainly addres-

ses the complexity of software during development and maintenance. In

this context, the concept of Component Orientation was developed to sup-

port the construction of software based on clearly distinguishable building

blocks called Components. These are ideally characterized by a comprehen-

sive specification which facilitates their integration into complex software

and systems. Furthermore, components are usually developed against a

certain Component Standard which provides the general frame for their

construction and execution.

Through the vision of Autonomic Computing, the complexity of systems

and the corresponding tasks during their management are addressed. AC

is based on the idea to assign administrative tasks to a managed sys-

tem itself to disburden human administrators. Consequently, administra-

320 Conclusion

tors can concentrate on the specification of high-level goals while leaving

their realization open to autonomic entities. To enable autonomic man-

agement, autonomic entities must be equipped with Sensors and Effectors

which build the foundation for inspection and manipulation of a managed

system.

CO and AC both address the complexity problem, but focus on differ-

ent aspects. While CO concentrates on the software life cycle and the

deployment of systems, AC mainly focuses on system management. In

combination, CO and AC cover all aspects of software and system life cy-

cles regarding complexity treatment.

The underlying idea of this thesis is to bring together CO and AC throu-

gh the realization of an infrastructure for supporting the autonomic man-

agement of component oriented enterprise systems. Such an infrastruc-

ture is assumed to provide a common ground which enables the realiza-

tion of concepts and approaches for different application areas of AC. To

reach this goal the infrastructure must provide a comprehensive set of

sensors and effectors and must not be limited to certain AC aspects. To

ensure that the provided infrastructure is of practical relevance, a broadly

accepted and widely used component standard was chosen as technologi-

cal foundation for this thesis. In this context, the Enterprise JavaBeans, Ver-

sion 3.0 standard was selected, because it is the de-facto standard for the

development of the business-tier of Java-based enterprise software and the

operation of corresponding systems. Furthermore, it provides an appro-

priate component model and has reached a sophisticated maturity level.

The remainder of this conclusion is organized as follows: Section 9.1

provides an evaluation of the provided infrastructure. Within section 9.2,

an outlook is provided which consists of conceivable extensions of mKer-

nel and considerations on the upcoming Enterprise JavaBeans, version 3.1

standard [133].

Evaluation 321

9.1. Evaluation

Within section 1.3 of this thesis a set of requirements for a generic AC-

infrastructure was established. These requirements were organized into

four groups, namely Component Orientation Requirements, Software Re-

quirements, Manageability Requirements, and System Requirements. In order

to evaluate mKernel against these requirements, five characteristics were

applied. These are shown in table 9.1. For each of the characteristics

(Char.), a short description is also covered within the table.

Char. Description

--
Indicates a violation of a requirement which makes the

practical application of mKernel impossible.

-
The requirement is violated, causing serious impacts on

the practical application of the infrastructure.

0
The corresponding requirement is not fulfilled, but the

violation is not considered serious.

+
The requirement is fulfilled to a very high degree, only

minor violations are present.

++ Indicates the complete fulfillment of the requirement.

Table 9.1.: Evaluation Characteristics

Table 9.2 on page 322 contains an evaluation of mKernel against these

requirements. The first column covers the group specific abbreviation of

the particular requirement. Within the second column, the full require-

ment name is given. Afterwards, the third column shows the evaluation

results against the characteristics depicted in table 9.1. Finally, the last

column contains a short remark regarding the fulfillment of the particu-

lar requirement.

In the following the four groups are shortly discussed with respect to

the fulfillment of the constituent requirements.

322 Conclusion

Component Orientation Requirements (COR-)

Abbr. Name Eval. Remark

RAS Realistic Application Scenario ++ Usage of EJB as technological foundation

SC Standard Compliance +
Violations: static fields, object substitution,

mapped names

UCI
Unchanged Container

Implementation
++

GlassFish Application Server, many releases ap-

plied over time

Software Requirements (SoftR-)

Abbr. Name Eval. Remark

FSS Full Standard Support + Interceptors not completely supported

MT Management Transparency ++ No impacts on component development

SCS
Self-managed Component

Support
++

Context information provided at runtime (See

section 5.4.4)

Manageability Establishment Requirements (MER-)

Abbr. Name Eval. Remark

MA Manageability Automation ++ Automated through preprocessing tool

LCI Life Cycle Independence ++
Tool can be executed after development or before

integration into mKernel

System Requirements (SysR-)

Abbr. Name Eval. Remark

CMS
Centralized Management

Support
++ API can be used outside container

RMM Reflective Meta Model ++ Provided through API

LCC Life Cycle Coverage ++ EJB module life cycle fully supported

SR Software Relation ++
Provided through associations between Type

Level and Deployment Level

G Genericity ++ Generic Meta Model, no limitations known

E Extensibility ++ No limitations known

CT Client Transparency ++
Interaction through original interfaces and

messages, no extensions necessary

Table 9.2.: Evaluation of mKernel against Requirements

Evaluation 323

Component Orientation Requirements These requirements address the

demands on the infrastructure which are directly related to the concept of

component orientation, a corresponding standard, and its application by

the infrastructure.

Through the selection of EJB as technological foundation for mKernel,

the requirement COR-RAS can be assumed of being completely fulfilled,

because EJB represents an accepted standard which is used in practice.

Regarding standard compliance, it was not possible to adhere to all de-

mands of the EJB standard. Nevertheless, it can be stated that for the

vast majority of all parts of mKernel COR-SC is fulfilled. Therefore, it is

rated with a ’+’. In particular, write access to static field and object substi-

tution during serialization are two applied features which directly violate

the EJB standard. For both of them alternatives were presented in chap-

ter 6 and the rejection of these alternatives was justified. Additionally,

mKernel internally makes use of mapped names as considered within the

corresponding API of EJB and the XML schema for DDs. This feature

is classified as product-specific, not required, and not portable. Conse-

quently, it was not possible to realize a platform independent solution.

Therefore, the implementation of mKernel is specific to the GlassFish Ap-

plication Server [11] regarding naming. Regarding static fields and nam-

ing, please refer to section 9.2.2, because the upcoming version 3.1 of EJB

contains new features and considerations which might make the violation

of both requirements obsolete.

For the application of mKernel no changes of the GlassFish Application

Server implementation are necessary. Additionally, most of the applica-

tion server builds which were released in the meantime, were used as

foundation for the development of mKernel. Therefore, the independence

of mKernel from one single release or a subset of releases could be shown.

The deployment of the container plugin is the only prerequisite for the

application of mKernel as foundation for system management. Conse-

quently, COR-UCI is fulfilled completely (’++’).

324 Conclusion

Software Requirements These requirements directly relate to enterprise

software of which corresponding systems should be managed with the

help of the infrastructure. They mainly address aspects of the develop-

ment and maintenance phases of the software life cycle.

The later application of mKernel for system management does not re-

strict or hinder the development of enterprise software. Nevertheless, it

was decided not to consider interceptors within the meta model and the

corresponding API for two reasons. First of all, interceptors were consid-

ered as integral part of an enterprise bean regarding the external view on

a component. Secondly, through the exclusion of interceptors it is possi-

ble to bypass mKernel for interceptors which should perform management

tasks like described in section 7.2 in the context of the second project.

Component developers are still allowed to make use of the interceptor

facility provided by the EJB standard. Furthermore, they might perform

any kind of environmental interactions inside the source code of intercep-

tors. It is only necessary to pass on the application of dependency injection

for interceptors and to integrate entries for the local namespace of inter-

ceptors into the configuration of the corresponding beans. The former

aspect is necessary to avoid the establishment of undesired connections.

The later one allows the configuration of interceptors through the corre-

sponding bean configuration, because beans and the attached interceptors

share their local namespace.

The integration of interceptors into the meta model would be unprob-

lematic. It would require the extension of the API with additional el-

ements for interceptor representation. The corresponding information

could be extracted during preprocessing in the same way as performed

for enterprise beans. Moreover, interceptor classes would have to be ma-

nipulated for DI simulation which would have to be integrated into the

interceptors themselves. DI could be initiated analog to the proceeding

for enterprise bean instances. Summarizing, the requirement SoftR-FSS

is not fulfilled completely, but for the vast majority of the EJB standard

Evaluation 325

which leads to a rating of ’+’.

During the development of EJB-based software, developers do not have

to consider the later management of corresponding systems at all, that is,

they do not need to make use of any mKernel-specific APIs. This leads to

a rating of ’++’ regarding the fulfillment of SoftR-MT.

For the fulfillment of SoftR-SCS, the API provides the opportunity to

obtain mKernel-specific context information from inside the source code of

beans and interceptors. This information can be used as access point for

the identification of relevant elements. In this context, all opportunities

provided by the API can be used by self-managing entities. Therefore, the

fulfillment of SoftR-SCS was rated with a ’++’.

Manageability Establishment Requirements In order to make components

manageable by mKernel, adjustments and extensions are necessary. Re-

strictions regarding the proceeding for manageability establishment are

defined by these requirements.

The establishment of manageability for EJB-based components is auto-

mated through the application of the preprocessing tool. MER-MA was

rated ’++’, because the tool solely requires the archive to process and ref-

erences to additional archives for its successful execution.

MER-LCI is fulfilled completely (’++’), because the execution of the pre-

processing tool is not limited to the software or system life cycle. Further-

more, preprocessed ejb-jar files can be successfully integrated into arbi-

trary managed systems53.

System Requirements During the system life cycle, managing entities

should be provided with appropriate facilities for supporting system man-

agement. In this context, system requirements define the necessary as-

pects to guarantee a comprehensive support for the vision of autonomic

53 Assuming the necessary infrastructure is given.

326 Conclusion

computing.

A centralized management approach, as required by SysR-CMS, is sup-

ported by the API, because it might be used inside or outside a managed

container, or in combination. Consequently, the SysR-CMS is rated ’++’.

SysR-RMM is fulfilled completely through the mKernel meta model and

the corresponding API (’++’).

Requirement SysR-LCC is completely fulfilled (’++’) through the Deploy-

ment Level of the API in combination with the opportunities provided for

seamless reconfiguration. Additionally, the original deployment of com-

ponents is supported based on ejb-jar files which are provided on Type

Level.

The relationships between the different API levels support SysR-SR, be-

cause they enable the navigation between software and system aspects

from various starting points. This requirement is consequently fulfilled

completely (’++’).

The design of mKernel is kept generic and was established to provide

a comprehensive foundation for managing EJB-based systems. Further-

more, during the supervision of the two projects presented in chapter 7

no limitations of mKernel regarding its application to different areas of

AC could be identified. Therefore, SysR-G was rated with a ’++’.

Extensibility of mKernel is provided through the modular design of the

preprocessing tool which allows the integration of additional aspects for

special application areas. Furthermore, the support for the integration of

artifacts into archives during deployment enables the injection of custom

elements for special application areas. Finally, through the notification fa-

cility, information consistency between mKernel and external data sources

can be reached. Summarizing, this led to a rating of ’++’ for SysR-E.

The source code of clients does not need to contain any aspects specific

to mKernel. Furthermore, clients are enabled to interact with a managed

system as if no management is performed. In combination, client trans-

parency is given, and SysR-CT could be rated with ’++’.

Evaluation 327

The AC-infrastructure presented in this thesis completely fulfills most of

the requirements. Only two requirement (COR-SC and SoftR-FSS) were

not met to the full extent, but could both be rated with a ’+’. Summarizing,

mKernel can be successfully evaluated against the requirements stated in

section 1.3.

Beyond the requirements, mKernel was evaluated in the context of two

projects. Both projects were undertaken under the supervision of the

author of this thesis and were finished successfully. The projects ad-

dressed distinct application areas of AC, namely self-configuration, as well

as self-protection and self-healing. For each of the two projects a corre-

sponding publication points out the relevance of the addressed topics. In

combination, both projects made extensive use of all of the features pro-

vided by the API. Consequently, the practical usability of the proposed

AC-infrastructure can be concluded.

mKernel provides a comprehensive, standard-specific, and realistic foun-

dation for supporting the vision of autonomic computing on top of the

EJB standard. The aim to provide a generic foundation for AC exposed

various aspects which might help to develop AC-infrastructures for other

standards or platforms as well. An example of such an aspect would be

the need to establish associations between software and systems to en-

able complex analyses. Furthermore, the proposed design and realization

might contribute to a discussion regarding the requirements for estab-

lishing a high-level basis for AC to support the integrated management of

heterogeneous environments.

By addressing software and systems on different levels and through the

provision of enhanced opportunities for system inspection and manipula-

tion mKernel revealed the advantages of such a comprehensive approach.

Nevertheless, a comparable solution is – to the best of the author’s knowl-

edge – not yet provided in practice. In contrast, the standards for the

328 Conclusion

management of Java EE-based systems (JSR 77 and JSR 88) provide only

very rudimental foundations which are left open for vendor specific ap-

proaches. In this context, mKernel provides a very much more integrated

and concrete basis. Therefore, it might contribute to a discussion about

the demands for supporting the management phase of the system life cy-

cle in a comprehensive and integrated way. Furthermore, the API shows

the advantages of supporting reflection on component level. Therefore,

the presented approach might also contribute to considerations about the

integration of comparable facilities into component standards.

9.2. Outlook

This section provides an outlook on aspects which were not considered as

part of this thesis. In this context, section 9.2.1 addresses possible exten-

sions of mKernel. Afterwards, section 9.2.2 shortly discusses the upcom-

ing EJB standard, version 3.1, with respect to relevant changes.

9.2.1. Extension Opportunities

Although mKernel provides a comprehensive foundation for the autonomic

management of EJB-based systems, there are three areas of extensions

conceivable for the future development of mKernel. These areas do not

directly relate to the provided facilities, but could broaden the range of

conceivable application scenarios.

Support for Multi-Container-Environments The application of mKernel is

limited to one single container which should be sufficient for a broad

range of application scenarios. Nevertheless, there are also environments

conceivable within which more than one container is used. Each of these

containers might be dedicated to a certain field of responsibility. With the

current state of mKernel, each of these containers would have to be man-

aged in isolation based on independently deployed container plugins. In

Outlook 329

this case, relationships between elements belonging to different contain-

ers could neither be established nor reflected through the API. Neverthe-

less, such relationships could be of special interest for various reasons, for

instance, to allow orchestrated reconfigurations or to analyze interactions

across container boundaries.

In order to extend mKernel to support multi-container-environments,

first of all the meta model would have to be extended with at least one

element for representing containers. This would also imply the need to

adjust the internal representation of the container plugin, as well as the

representation inside managed modules. Secondly, the container plugin

would require to be adjusted and extended to support interactions with

remote containers and the included plugins, respectively. In order to

distribute responsibilities upon the different plugins, there would exist

a broad range of alternatives. These might reach from a configuration

where each plugin is responsible for its corresponding container up to

a centralized solution where a kind of ”master-plugin” stores all relevant

information and acts as endpoint for the API. For this case all other con-

tainers would only contain a kind of ”executor-plugin” which accepts and

realizes management instructions.

The corresponding conceptual and technological foundations were al-

ready considered within the context of a separate project for enhanced

naming, called dyName (cf. [33]). It has not been discussed in the context

of this thesis, because it does not directly contribute to the understanding

of the thesis subject.

Integration with related Standards and Approaches For the application

of mKernel in a heterogeneous environment it would be meaningful to

integrate the infrastructure with related management standards and ap-

proaches. This might promote the development of holistic approaches for

a comprehensive management of systems and infrastructures.

As a first step, the integration of mKernel with the two standards dis-

330 Conclusion

cussed in section 3.4 (JSR 77 and 88) would be meaningful. Regarding

JSR 77, it would, for example, be possible to extend information provided

by the mKernel API with additional information exposed through the stan-

dard such as statistical data. Furthermore, JSR 88 might be used to man-

age the underlying container. An establishment of relationships between

elements of the mKernel API and information exposed by the JSRs would

be possible without great efforts. In fact, mKernel already exposes the mod-

ule identifiers assigned by JSR 88 during deployment. These identifiers

are also used by JSR 77.

Additionally, the integration of mKernel with architecture-centric and

infrastructure-centric approaches could be meaningful as discussed in

the end of section 8.1 in the context of related work. This might result

in a comprehensive approach for the management of complex and het-

erogeneous IT-infrastructures. Moreover, the disclosure of relationships

among system elements and infrastructure layers could enable the devel-

opment of more sophisticated forms of autonomic management.

Extension of Application Area This thesis concentrated on the EJB stan-

dard. Nevertheless, it might be meaningful to extend the underlying con-

cepts to other standards in the context of Java EE or even to client soft-

ware and systems. This would support the autonomic management of

complete systems and would allow more comprehensive analyses such as

the identification of defects and errors. Moreover, a broader management

scope would enable the orchestration of more complex reconfiguration

scenarios. In this context, the restrictions regarding quiescence manage-

ment discussed in section 5.6.4 could be eliminated.

This extension would demand for a partial redesign of the meta model,

at least on Instance Level, because relationships with external interaction

partners would have to be reflected. Furthermore, quiescence manage-

ment would have to be revised to allow the establishment of quiescence

regions across container boundaries, also enabling the integration of ele-

Outlook 331

ments not relying on the EJB standard. Finally, a foundation like mKernel

would have to be established for the affected standards and platforms.

This might be a project covering a complexity comparable to the design

and realization of mKernel.

9.2.2. Enterprise JavaBeans, Version 3.1

At the time of writing, version 3.1 of the EJB standard is in the process of

specification. Currently54, it reached the status of Public Review. For ver-

sion 3.0 of the standard it took approximately nine month from this status

up to the final release. Based on the public review of the standard [133],

this section discusses the major adjustments and extensions which were

considered of having major impacts on a potential further development of

mKernel.

Singleton Session Beans Within version 3.1 of the standard, the new

concept Singleton Session Beans is planned to be introduced (cf. [133], p.

99 - 111). Singleton beans are intended to be instantiated once per appli-

cation and exist for the entire life time of the corresponding application55.

If an application is distributed across multiple JVMs, one instance should

be created within each JVM. The life cycle of a singleton SB is nearly the

same as that of stateless SBs. For managing concurrent access to a sin-

gleton SB two types of concurrency management are considered, namely

Container Managed Concurrency and Bean Managed Concurrency.

In order to support singleton SBs, the mKernel meta model would have

to be adjusted at least to allow the identification of singleton SBs. Addi-

tionally, the concurrency settings would have to be reflected to allow their

management. The preprocessing tool would have to be adjusted to extract

the relevant information and to create a corresponding representation for

54 November, 3rd 2008

55 An instance is not required to survive container crashes.

332 Conclusion

the container plugin. Finally, the container plugin would require certain

adjustments regarding information management, configuration options,

and deployment preparation.

Internally, mKernel could make use of singleton SBs to avoid the vio-

lation of requirement COR-SC regarding the use of static fields. In this

context, the information stored in static fields could be relocated into the

state of an mKernel-specific singleton SB which could replace the Manage-

ment Context.

Asynchronous Methods The execution of asynchronous calls is planned

to be supported upon instances of SBs (cf. [133], p. 78 - 81). As underly-

ing concept for realizing asynchronous invocations, the interface java.-

util.concurrent.Future is used which also allows the cancellation of

invocations.

The integration of this concept would not demand for major adjust-

ments of mKernel. In this context, opportunity to cancel invocations would

have to be reflected through the meta model, for example, through a cor-

responding property of a call representation.

In combination with singleton SBs, asynchronous methods could be

used to perform quiescence management without the need for blocking

interactions inside modules. In this context, the container plugin could

initiate an asynchronous, blocking invocation upon a specific singleton

SB inside each module which internally would wait for the receipt of a

message from a specific JMS-topic. Each interaction which should be pre-

vented from entering a quiescence region, would have to perform an invo-

cation upon the singleton SB which would get blocked until the message

is received and the blocking call returned. During release or destruction

of a blocking or quiescent region, the expected message would be sent by

the container plugin.

Outlook 333

Global JNDI Access The EJB standard, version 3.1, defines a required

name schema for the integration of SBs into the global namespace of a

container (cf. [133], p. 76 - 78). This name schema might be used by

mKernel to overcome the violation of COR-SC regarding mapped names.

No-interface View Local interactions between SB instances and their cli-

ents are planned to be supported without the need for an interface (cf.

[133], p. 45, 46 and 117). In this context, a client might directly make

use of the class of the target session bean instance as type for a reference.

Clients are still required to use naming or DI for obtaining references. In

contrast, they must not directly invoke the constructor of the target bean.

To integrate this facility into mKernel, the meta model would have to

be adjusted to reflect method invocations not performed through an inter-

face. Furthermore, SB proxies would have to be generated for no-interface

views. This might be realized through sub-classing where proxies extend

the corresponding session bean and overwrite all affected methods for in-

vocation delegation purposes.

The goal of this thesis to design and realize a generic infrastructure for

autonomic management of EJB-based enterprise systems can be consid-

ered as being met. Through this thesis and the corresponding projects it

could be shown that the concept of Component Orientation and the vision

of Autonomic Computing can provide a meaningful and promising foun-

dation for addressing the complexity challenge of information technology

in a holistic way at least for the considered application area.

A. Type Level Planning

1 import j a v a . u t i l . C o l l e c t i o n ;
2 import j a v a . u t i l . HashMap ;
3 import j a v a . u t i l . HashSet ;
4 import j a v a . u t i l . Map ;
5 import j a v a . u t i l . Se t ;
6

7 import mKernel . e j b . E j b I n t e r f a c e T y p e ;
8 import mKernel . e j b . EjbModuleType ;
9 import mKernel . e j b . E jbReferenceType ;

10 import mKernel . e j b . J a v a I n t e r f a c e T y p e ;
11 import mKernel . e j b . SessionBeanType ;
12

13 /∗∗ I n s t a n c e s o f t h i s c l a s s can be u s e d f o r
14 ∗ d e p l o y m e n t p l a n n i n g b a s e d on J a v a I n t e r f a c e T y p e s .
15 ∗ The p r o v i d e d methods o f T y p e L e v e l P l a n can be
16 ∗ d i v i d e d i n t o f o u r g r o u p s :
17 ∗
18 ∗ C o n s t r u c t i o n : An i n s t a n c e o f T y p e L e v e l P l a n can be
19 ∗ c r e a t e d u s i n g t h e o n l y p r o v i d e d c o n s t r u c t o r . T h i s
20 ∗ c o n s t r u c t o r e x p e c t s a b o o l e a n v a l u e i n d i c a t i n g
21 ∗ w h e t h e r p l a n n i n g s h o u l d be p e r f o r m e d f o r t h e
22 ∗ Managed L a y e r (t r u e) o r t h e A c c e s s L a y e r (f a l s e)
23 ∗ o f a s y s t e m .
24 ∗
25 ∗ R e q u i r e m e n t s D e f i n i t i o n : As f o u n d a t i o n f o r
26 ∗ p l a n n i n g Java i n t e r f a c e t y p e s , which a r e r e q u i r e d
27 ∗ on t h e t a r g e t l a y e r , must be s u b m i t t e d t o t h e p l a n
28 ∗ t h r o u g h i n v o c a t i o n s o f t h e method
29 ∗ a d d J a v a I n t e r f a c e T y p e .
30 ∗
31 ∗ I n s p e c t i o n : The me thods b e l o n g i n g t o t h i s g r o up
32 ∗ a l l o w t h e i n s p e c t i o n o f a p l a n r e g a r d i n g r e q u i r e d
33 ∗ Java i n t e r f a c e t y p e s (g e t P r o v i d e d J a v a I n t e r f a c e s)
34 ∗ and t h e i r p o t e n t i a l p r o v i d e r s
35 ∗ (g e t J a v a I n t e r f a c e T y p e P r o v i d e r s) . Fur th e rmor e ,
36 ∗ r e q u i r e d i n t e r f a c e s f o r t h e r e a l i z a t i o n o f t h e
37 ∗ p l a n (g e t R e q u i r e d R e f e r e n c e s) , a s w e l l a s

336 Type Level Planning

38 ∗ a l t e r n a t i v e s f o r t h e i r c o n n e c t i o n can be i n s p e c t e d
39 ∗ (g e t C o n n e c t i o n A l t e r n a t i v e s) . F i n a l l y , t h e r e q u i r e d
40 ∗ module t y p e s t o d e p l o y (g e t M o d u l e T y p e s T o D e p l o y)
41 ∗ and bean t y p e s can be r e q u e s t e d
42 ∗ (g e t S e s s i o n B e a n T y p e s) .
43 ∗
44 ∗ Unambigui ty E s t a b l i s h m e n t : A p l a n i s o n l y
45 ∗ unambiguous i f t h e r e do n o t e x i s t a l t e r n a t i v e s f o r
46 ∗ d e s i r e d Java i n t e r f a c e t y p e s o r r e q u i r e d i n t e r f a c e
47 ∗ t y p e s anymore . Unambigui ty can be r e a c h e d t h r o u g h
48 ∗ t h e r e m o v a l o f a l t e r n a t i v e p r o v i d e r s o f d e s i r e d
49 ∗ Java i n t e r f a c e t y p e s
50 ∗ (r e m o v e J a v a I n t e r f a c e T y p e P r o v i d e r) and p r o v i d e r s
51 ∗ f o r r e q u i r e d i n t e r f a c e t y p e s
52 ∗ (r e m o v e R e f e r e n c e T y p e P r o v i d e r) . An i n v o c a t i o n o f
53 ∗ t h e method i sUnambiguous r e t u r n s a b o o l e a n v a l u e
54 ∗ i n d i c a t i n g w h e t h e r u n a mb i g u i t y i s r e a c h e d (t r u e)
55 ∗ o r n o t (f a l s e) . ∗/
56 p u b l i c c l a s s TypeLeve lP lan {
57

58 /∗∗ Map f o r r e p r e s e n t i n g a l t e r n a t i v e p r o v i d e r s
59 ∗ (v a l u e) f o r a d e s i r e d Java i n t e r f a c e t y p e
60 ∗ (k e y) . ∗/
61 p r i v a t e Map< J a v a I n t e r f a c e T y p e ,
62 Set < E j b I n t e r f a c e T y p e >> p =
63 new HashMap< J a v a I n t e r f a c e T y p e ,
64 Set < E j b I n t e r f a c e T y p e > >() ;
65

66 /∗∗ Map f o r r e p r e s e n t i n g a l t e r n a t i v e p r o v i d e r s
67 ∗ (v a l u e) f o r r e q u i r e d i n t e r f a c e t y p e s (k e y) . ∗/
68 p r i v a t e Map< EjbReferenceType ,
69 Set < E j b I n t e r f a c e T y p e >> a = new
70 HashMap< EjbReferenceType ,
71 Set < E j b I n t e r f a c e T y p e > >() ;
72

73 /∗∗ F i e l d i n d i c a t i n g i f t h e p l a n i s c o n s t r u c t e d f o r
74 ∗ t h e Managed L a y e r (t r u e) o r t h e A c c e s s L a y e r
75 ∗ (f a l s e) . ∗/
76 p r i v a t e boolean m = f a l s e ;
77

78 /∗∗ C o n s t r u c t o r f o r t h e c r e a t i o n o f a p l a n .
79 ∗
80 ∗ @param in iManagedLaye r Parame t e r f o r t h e
81 ∗ i n i t i a l i z a t i o n o f t h e f i e l d m. ∗/
82 p u b l i c TypeLeve lP lan (
83 boolean iniManagedLayer) {
84 t h i s .m = iniManagedLayer ;

337

85 }
86

87 /∗∗ Method can be u s e d t o s u b m i t a d e s i r e d Java
88 ∗ i n t e r f a c e t y p e t o t h e p l a n .
89 ∗
90 ∗ @param j D e s i r e d Java i n t e r f a c e t y p e .
91 ∗ @return t r u e i f Java i n t e r f a c e t y p e c o u l d be
92 ∗ p r o v i d e d , f a l s e o t h e r w i s e . ∗/
93 p u b l i c boolean a d d J a v a I n t e r f a c e T y p e (
94 J a v a I n t e r f a c e T y p e j) {
95 i f (t h i s . p . con ta insKey (j)) r e t u r n t r u e ;
96 Set < E j b I n t e r f a c e T y p e > r =
97 new HashSet < E j b I n t e r f a c e T y p e > () ;
98 f o r (E j b I n t e r f a c e T y p e e i : j . g e t E j b I n t e r f a c e T y p e s ()) {
99 SessionBeanType s = e i . ge tSess ionBeanType () ;

100 i f (s . getEjbModuleType () . isManagedLayer () ==
101 t h i s .m) {
102 Map< EjbReferenceType , Set < E j b I n t e r f a c e T y p e >>
103 tmpA = new HashMap< EjbReferenceType ,
104 Set < E j b I n t e r f a c e T y p e > >() ;
105 tmpA . p u t A l l (t h i s . a) ;
106 f o r (E jbReferenceType er :
107 s . g e t E j b R e f e r e n c e T y p e s ()) {
108 tmpA = t h i s . p r o v i d e E j b R e f e r e n c e T y p e (er , tmpA) ;
109 i f (tmpA == n u l l) break ;
110 }
111 i f (tmpA ! = n u l l) {
112 t h i s . a = tmpA ;
113 r . add (e i) ;
114 }
115 }
116 }
117 i f (r . s i z e () > 0) {
118 t h i s . p . put (j , r) ;
119 }
120 r e t u r n r . s i z e () > 0 ;
121 }
122

123 /∗∗ R e t u r n s t h e s e t o f a l l Java i n t e r f a c e t y p e s
124 ∗ which a r e p l a n n e d t o be p r o v i d e d a s t a r g e t s o f
125 ∗ t h e p l a n .
126 ∗
127 ∗ @return S e t o f t a r g e t J a v a I n t e r f a c e T y p e s . ∗/
128 p u b l i c Set < J a v a I n t e r f a c e T y p e >
129 g e t P r o v i d e d J a v a I n t e r f a c e s () {
130 r e t u r n t h i s . p . keySe t () ;
131 }

338 Type Level Planning

132

133 /∗∗ D e l i v e r s a l t e r n a t i v e p r o v i d e d i n t e r f a c e t y p e s
134 ∗ f o r a s u b m i t t e d Java i n t e r f a c e t y p e .
135 ∗
136 ∗ @param j a v a I n t e r f a c e T y p e R e l e v a n t
137 ∗ J a v a I n t e r f a c e T y p e .
138 ∗ @return E j b I n t e r f a c e T y p e s which migh t be u s e d t o
139 ∗ p r o v i d e t h e J a v a I n t e r f a c e T y p e . ∗/
140 p u b l i c Set < E j b I n t e r f a c e T y p e >
141 g e t J a v a I n t e r f a c e T y p e P r o v i d e r s (
142 J a v a I n t e r f a c e T y p e j a v a I n t e r f a c e T y p e) {
143 r e t u r n t h i s . p . g e t (j a v a I n t e r f a c e T y p e) ;
144 }
145

146 /∗∗ R e t u r n s t h e s e t o f a l l r e q u i r e d r e f e r e n c e t y p e s
147 ∗ f o r t h e c u r r e n t s t a t e o f t h e p l a n .
148 ∗
149 ∗ @return S e t o f t a r g e t r e q u i r e d E j b R e f e r e n c e T y p e s .
150 ∗/
151 p u b l i c Set < EjbReferenceType >
152 g e t R e q u i r e d R e f e r e n c e s () {
153 r e t u r n t h i s . a . keySe t () ;
154 }
155

156 /∗∗ D e l i v e r s t h e s e t o f a l t e r n a t i v e p r o v i d e r s f o r a
157 ∗ c e r t a i n E j b R e f e r e n c e T y p e a s r e f l e c t e d by t h e
158 ∗ c u r r e n t s t a t e o f a p l a n .
159 ∗
160 ∗ @param r e f T a r g e t r e f e r e n c e t y p e .
161 ∗ @return S e t o f a l t e r n a t i v e p r o v i d e r s f o r t h e
162 ∗ r e q u i r e d i n t e r f a c e t y p e . ∗/
163 p u b l i c Set < E j b I n t e r f a c e T y p e >
164 g e t C o n n e c t i o n A l t e r n a t i v e s (E jbReferenceType r e f) {
165 r e t u r n t h i s . a . g e t (r e f) ;
166 }
167

168 /∗∗ D e l i v e r s a l l module t y p e s which would have t o be
169 ∗ d e p l o y e d b a s e d on t h e c u r r e n t s t a t e o f t h e p l a n .
170 ∗
171 ∗ @return S e t o f a l l module t y p e s t o d e p l o y . ∗/
172 p u b l i c Set <EjbModuleType > getModuleTypesToDeploy () {
173 Set <EjbModuleType > r e s u l t =
174 new HashSet <EjbModuleType > () ;
175 f o r (SessionBeanType s b t :
176 t h i s . ge tSess ionBeanTypes ()) {
177 r e s u l t . add (s b t . getEjbModuleType ()) ;
178 }

339

179 r e t u r n r e s u l t ;
180 }
181

182 /∗∗ D e l i v e r s a l l s e s s i o n bean t y p e which a r e p l a n n e d
183 ∗ t o p r o v i d e a t l e a s t one E j b I n t e r f a c e T y p e a s
184 ∗ p a r t o f t h e p l a n .
185 ∗
186 ∗ @return S e s s i o n bean t y p e s which a r e c o n s i d e r e d
187 ∗ by t h e p l a n . ∗/
188 p u b l i c Set <SessionBeanType > getSess ionBeanTypes () {
189 Set <SessionBeanType > r =
190 new HashSet <SessionBeanType > () ;
191 r . addAl l (t h i s . getSBTypesFrom (t h i s . p . v a l u e s ())) ;
192 r . addAl l (t h i s . getSBTypesFrom (t h i s . a . v a l u e s ())) ;
193 r e t u r n r ;
194 }
195

196 /∗∗ T h i s method can be u s e d t o r e a c h u na m b i g u i t y o f
197 ∗ a p l a n t h r o u g h r e m o v i n g an a l t e r n a t i v e p r o v i d e r
198 ∗ o f a t a r g e t Java i n t e r f a c e t y p e . The method d o e s
199 ∗ n o t r emove t h e p r o v i d e r i f i t i s t h e l a s t one
200 ∗ w i t h i n t h e s e t o f a l t e r n a t i v e p r o v i d e r s .
201 ∗
202 ∗ @param p r o v i d e r I n t e r f a c e t y p e p r o v i d e r which
203 ∗ s h o u l d be r emoved .
204 ∗ @return t r u e i f p r o v i d e r c o u l d be removed , f a l s e
205 ∗ i f t h e i n v o c a t i o n r e p r e s e n t e d an a t t e m p t t o
206 ∗ r emove t h e l a s t p r o v i d e r f rom t h e s e t o f
207 ∗ p o t e n t i a l p r o v i d e r s . ∗/
208 p u b l i c boolean r e m o v e J a v a I n t e r f a c e T y p e P r o v i d e r (
209 E j b I n t e r f a c e T y p e p r o v i d e r) {
210 J a v a I n t e r f a c e T y p e j i t =
211 p r o v i d e r . g e t J a v a I n t e r f a c e T y p e () ;
212 C o l l e c t i o n < E j b I n t e r f a c e T y p e > p r o v i d e r C o l l e c t i o n =
213 t h i s . p . g e t (j i t) ;
214 i f (p r o v i d e r C o l l e c t i o n . s i z e () > 1) {
215 p r o v i d e r C o l l e c t i o n . remove (p r o v i d e r) ;
216 t h i s . r e c a l c u l a t e R e f e r e n c e s (
217 p r o v i d e r . ge tSess ionBeanType ()) ;
218 r e t u r n t r u e ;
219 } e l s e {
220 r e t u r n f a l s e ;
221 }
222 }
223

224 /∗∗ T h i s method can be u s e d t o r e a c h u n am b i g u i t y o f
225 ∗ a p l a n t h r o u g h r e m o v i n g an a l t e r n a t i v e p r o v i d e r

340 Type Level Planning

226 ∗ f rom t h e s e t o f p o t e n t i a l p r o v i d e r s o f an
227 ∗ E j b R e f e r e n c e T y p e r e q u i r e d on Managed L a y e r . The
228 ∗ method d o e s n o t r emove t h e p r o v i d e r i f i t i s t h e
229 ∗ l a s t one w i t h i n t h e s e t o f a l t e r n a t i v e p r o v i d e r s .
230 ∗
231 ∗ @param r e q u e s t o r R e f e r e n c e t y p e f rom which t h e
232 ∗ p r o v i d e r s h o u l d be r emoved .
233 ∗ @param p r o v i d e r P r o v i d e r which s h o u l d be r emoved .
234 ∗ @return t r u e i f p r o v i d e r c o u l d be removed , f a l s e
235 ∗ i f t h e i n v o c a t i o n r e p r e s e n t e d an a t t e m p t t o
236 ∗ r emove t h e l a s t p r o v i d e r f rom t h e s e t o f
237 ∗ p o t e n t i a l p r o v i d e r s . ∗/
238 p u b l i c boolean removeReferenceTypeProv ider (
239 EjbReferenceType r e q u e s t o r ,
240 E j b I n t e r f a c e T y p e p r o v i d e r) {
241 C o l l e c t i o n < E j b I n t e r f a c e T y p e > p r o v i d e r C o l l e c t i o n =
242 t h i s . a . g e t (r e q u e s t o r) ;
243 i f (p r o v i d e r C o l l e c t i o n . s i z e () > 1) {
244 p r o v i d e r C o l l e c t i o n . remove (p r o v i d e r) ;
245 t h i s . r e c a l c u l a t e R e f e r e n c e s (
246 p r o v i d e r . ge tSess ionBeanType ()) ;
247 r e t u r n t r u e ;
248 } e l s e {
249 r e t u r n f a l s e ;
250 }
251 }
252

253 /∗∗ Can be u s e d t o i d e n t i f y i f u na m b i g u i t y i s
254 ∗ r e a c h e d f o r t h e p l a n .
255 ∗
256 ∗ @return t r u e i f u na m b i g u i t y i s r e a c h e d , f a l s e
257 ∗ o t h e r w i s e . ∗/
258 p u b l i c boolean isUnambiguous () {
259 f o r (C o l l e c t i o n s : t h i s . p . v a l u e s ()) {
260 i f (s . s i z e () > 1) {
261 r e t u r n f a l s e ;
262 }
263 }
264 f o r (C o l l e c t i o n t : t h i s . a . v a l u e s ()) {
265 i f (t . s i z e () > 1) {
266 r e t u r n f a l s e ;
267 }
268 }
269 r e t u r n t r u e ;
270 }
271

272 / / I n t e r n a l l y u s e d me thods

341

273

274 /∗∗ T h i s method i s u s e d i n t e r n a l l y t o f u l f i l l t h e
275 ∗ i n t e r f a c e demands o f a s e s s i o n bean t y p e which i s
276 ∗ i n t e n d e d t o be i n t e g r a t e d i n t o a p l a n .
277 ∗
278 ∗ @param r R e q u i r e d i n t e r f a c e t y p e o f t h e s e s s i o n
279 ∗ bean t y p e .
280 ∗ @param tmpA Temporary mapping f rom r e q u i r e d
281 ∗ i n t e r f a c e t y p e s t o p o t e n t i a l p r o v i d e r s .
282 ∗ @return New mapping f rom r e q u i r e d i n t e r f a c e t y p e s
283 ∗ t o p o t e n t i a l p r o v i d e r s . The r e t u r n v a l u e w i l l
284 ∗ be n u l l i f no p r o v i d e r f o r r c o u l d be f ound
285 ∗ r e c u r s i v e l y . ∗/
286 p r i v a t e Map< EjbReferenceType , Set < E j b I n t e r f a c e T y p e >>
287 p r o v i d e E j b R e f e r e n c e T y p e (E jbReferenceType r ,
288 Map< EjbReferenceType , Set < E j b I n t e r f a c e T y p e >> tmpA) {
289 J a v a I n t e r f a c e T y p e j = r . g e t J a v a I n t e r f a c e T y p e () ;
290 boolean s u c c e s s = f a l s e ;
291 f o r (E j b I n t e r f a c e T y p e i : j . g e t E j b I n t e r f a c e T y p e s ()) {
292 SessionBeanType s = i . ge tSess ionBeanType () ;
293 EjbModuleType m = s . getEjbModuleType () ;
294 i f (m. isManagedLayer () && ((i . i s L o c a l () &&
295 r . ge tE jbType () . getEjbModuleType () . e q u a l s (m)) | |
296 ! i . i s L o c a l ())) {
297 i f (t h i s . getSBTypesFrom (
298 tmpA . v a l u e s ()) . c o n t a i n s (s)) {
299 t h i s . a d d E j b I n t e r f a c e P r o v i d e r (r , i , tmpA) ;
300 s u c c e s s = t r u e ;
301 } e l s e {
302 Map< EjbReferenceType , Set < E j b I n t e r f a c e T y p e >>
303 subTempA = new HashMap< EjbReferenceType ,
304 Set < E j b I n t e r f a c e T y p e > >() ;
305 subTempA . p u t A l l (tmpA) ;
306 t h i s . a d d E j b I n t e r f a c e P r o v i d e r (r , i , subTempA) ;
307 f o r (E jbReferenceType s r :
308 s . g e t E j b R e f e r e n c e T y p e s ()) {
309 subTempA =
310 t h i s . p r o v i d e E j b R e f e r e n c e T y p e (sr , subTempA) ;
311 i f (subTempA == n u l l) break ;
312 }
313 i f (subTempA ! = n u l l) {
314 tmpA = subTempA ;
315 s u c c e s s = t r u e ;
316 }
317 }
318 }
319 }

342 Type Level Planning

320 i f (s u c c e s s) r e t u r n tmpA ;
321 r e t u r n n u l l ;
322 }
323

324 /∗∗ I n t e r n a l l y u s e d method t o i n t e g r a t e a p o t e n t i a l
325 ∗ p r o v i d e r t y p e f o r a r e q u i r e d i n t e r f a c e t y p e i n t o
326 ∗ a mapping da ta s t r u c t u r e .
327 ∗
328 ∗ @param r e q u e s t o r R e q u i r e d i n t e r f a c e t y p e .
329 ∗ @param p r o v i d e r New , a l t e r n a t i v e p r o v i d e r t y p e .
330 ∗ @param t e m p A l t e r n a t i v e s E x i s t i n g mappings
331 ∗ b e t w e e n r e q u i r e d and p r o v i d e d i n t e r f a c e t y p e s .
332 ∗/
333 p r i v a t e v o i d a d d E j b I n t e r f a c e P r o v i d e r (
334 EjbReferenceType r e q u e s t o r ,
335 E j b I n t e r f a c e T y p e p r o v i d e r , Map< EjbReferenceType ,
336 Set < E j b I n t e r f a c e T y p e >> t e m p A l t e r n a t i v e s) {
337 Set < E j b I n t e r f a c e T y p e > knownProviders =
338 t e m p A l t e r n a t i v e s . g e t (r e q u e s t o r) ;
339 i f (knownProviders == n u l l) {
340 knownProviders = new HashSet < E j b I n t e r f a c e T y p e > () ;
341 t e m p A l t e r n a t i v e s . put (r e q u e s t o r , knownProviders) ;
342 }
343 knownProviders . add (p r o v i d e r) ;
344 }
345

346 /∗∗ T h i s me thods e x t r a c t s t h e s e t o f SB t y p e s f rom a
347 ∗ c o l l e c t i o n o f s e t s o f E j b I n t e r f a c e T y p e s .
348 ∗
349 ∗ @param e j b I f s P r o v i d e d i n t e r f a c e t y p e s f rom which
350 ∗ t h e s e t o f c o r r e s p o n d i n g SB t y p e s s h o u l d be
351 ∗ e x t r a c t e d .
352 ∗ @return S e t o f e x t r a c t e d SB t y p e s .
353 ∗/
354 p r i v a t e Set <SessionBeanType > getSBTypesFrom (
355 C o l l e c t i o n <Set < E j b I n t e r f a c e T y p e >> e j b I f s) {
356 Set <SessionBeanType > s b t s =
357 new HashSet <SessionBeanType > () ;
358 f o r (Set < E j b I n t e r f a c e T y p e > c : e j b I f s) {
359 f o r (E j b I n t e r f a c e T y p e e : c) {
360 s b t s . add (e . ge tSess ionBeanType ()) ;
361 }
362 }
363 r e t u r n s b t s ;
364 }
365

366 /∗∗ T h i s method i s u s e d t o r e v i s e t h e mapping o f

343

367 ∗ r e q u i r e d i n t e r f a c e t y p e s t o a l t e r n a t i v e p r o v i d e r s
368 ∗ (t h i s . a) r e c u r s i v e l y b a s e d on a SB t y p e t o r emove
369 ∗ f rom t h e p l a n .
370 ∗
371 ∗ @param s S e s s i o n B e a n T y p e which s h o u l d be r emoved
372 ∗ f rom t h e p l a n . ∗/
373 p r i v a t e v o i d r e c a l c u l a t e R e f e r e n c e s (
374 SessionBeanType s) {
375 i f (t h i s . ge tSess ionBeanTypes () . c o n t a i n s (s)) r e t u r n ;
376 Set < E j b I n t e r f a c e T y p e > i s =
377 new HashSet < E j b I n t e r f a c e T y p e > () ;
378 f o r (E jbReferenceType r : s . g e t E j b R e f e r e n c e T y p e s ()) {
379 Set < E j b I n t e r f a c e T y p e > r s = t h i s . a . remove (r) ;
380 i f (r s ! = n u l l) {
381 i s . addAl l (r s) ;
382 }
383 }
384 f o r (E j b I n t e r f a c e T y p e i : i s) {
385 t h i s . r e c a l c u l a t e R e f e r e n c e s (
386 i . ge tSess ionBeanType ()) ;
387 }
388 }
389

390 }

Listing A.1: Implementation of Type Level Plan

B. Deployment Level Planning

1 package mKernel . c a s e s t u d y ;
2

3 import j a v a . u t i l . HashSet ;
4 import j a v a . u t i l . Se t ;
5

6 import mKernel . e j b . Conta iner ;
7 import mKernel . e j b . C o n t a i n e r F a c t o r y ;
8 import mKernel . e j b . E j b I n t e r f a c e ;
9 import mKernel . e j b . E j b I n t e r f a c e T y p e ;

10 import mKernel . e j b . EjbModule ;
11 import mKernel . e j b . EjbModuleType ;
12 import mKernel . e j b . E jbRefe rence ;
13 import mKernel . e j b . E n t e r p r i s e B e a n ;
14 import mKernel . e j b . J a v a I n t e r f a c e T y p e ;
15 import mKernel . e j b . SessionBean ;
16 import mKernel . e j b . SessionBeanType ;
17

18 /∗∗ A d e p l o y m e n t l e v e l p l a n can be u s e d t o r e a l i z e
19 ∗ a t y p e l e v e l p l a n . T h e r e f o r e , an unambiguous t y p e
20 ∗ l e v e l p l a n must
21 ∗ be s u b m i t t e d t o t h e d e p l o y m e n t l e v e l p l a n d u r i n g
22 ∗ c o n s t r u c t i o n . An i n s t a n c e o f D e p l o y m e n t L e v e l P l a n
23 ∗ i s a b l e t o c r e a t e , d e p l o y , and s t a r t new modu l e s
24 ∗ b a s e d on a Type L e v e l p l a n . During d e p l o y m e n t , i t
25 ∗ p e r f o r m s c o m p o s i t i o n a l a d a p t a t i o n i n a c c o r d a n c e
26 ∗ w i t h t h e T y p e L e v e l P l a n . A Dep loyment L e v e l p l a n
27 ∗ d o e s n o t t a k e t h e c u r r e n t a r c h i t e c t u r e o f a
28 ∗ s y s t e m i n t o a c c o u n t . The r e a l i z a t i o n o f a p l a n
29 ∗ can be c o n t r o l l e d t h r o u g h t h e t h r e e method c r e a t e ,
30 ∗ d e p l o y , and s t a r t . T h e s e me thods must be e x e c u t e d
31 ∗ c o n s e c u t i v e l y .
32 ∗
33 ∗ A d d i t i o n a l management a c t i o n s s u c h a s p a r a m e t e r
34 ∗ a d a p t a t i o n can be p e r f o r m e d b e t w e e n t h e e x e c u t i o n
35 ∗ o f t h e t h r e e me thods . For i n s p e c t i n g t h e e l e m e n t s
36 ∗ o f a p l a n t h e r e m a i n i n g methods o f t h e c l a s s can
37 ∗ be u s e d . ∗/

346 Deployment Level Planning

38 p u b l i c c l a s s DeploymentLevelPlan {
39

40 /∗∗ Type L e v e l p l a n which b u i l d s t h e f o u n d a t i o n
41 ∗ f o r an i n s t a n c e o f D e p l o y m e n t L e v e l P l a n . ∗/
42 p r i v a t e TypeLeve lP lan tp ;
43

44 /∗∗ EJB modu l e s which a r e t h e t a r g e t s o f t h e p l a n .
45 ∗/
46 p r i v a t e Set <EjbModule > ms =
47 new HashSet <EjbModule > () ;
48

49 /∗∗ R e f e r e n c e t o t h e mKerne l s y s t e m . ∗/
50 p r i v a t e Conta iner c =
51 C o n t a i n e r F a c t o r y . getNewContainer () ;
52

53 /∗∗ C o n s t r u c t o r f o r t h e c r e a t i o n o f a p l a n .
54 ∗
55 ∗ @param i n i T p Parame t e r f o r t h e i n i t i a l i z a t i o n o f
56 ∗ t h e f i e l d t p . ∗/
57 p u b l i c DeploymentLevelPlan (TypeLeve lP lan in iTp) {
58 i f (! in iTp . isUnambiguous ()) {
59 throw new I l l e g a l A r g u m e n t E x c e p t i o n (
60 " Only unambiguous p lans can be r e a l i z e d . ") ;
61 }
62 t h i s . tp = in iTp ;
63 }
64

65 /∗∗ The e x e c u t i o n o f t h i s method l e a d s t o t h e
66 ∗ c r e a t i o n o f EJB modu l e s f o r a l l module t y p e s
67 ∗ b e i n g p a r t o f t p . A d d i t i o n a l l y , c o m p o s i t i o n a l
68 ∗ a d a p t a t i o n i s p e r f o r m e d . ∗/
69 p u b l i c v o i d c r e a t e () {
70 f o r (EjbModuleType m:
71 t h i s . tp . getModuleTypesToDeploy ()) {
72 t h i s . ms . add (t h i s . c . c rea teE jbModule (m)) ;
73 }
74 f o r (SessionBean s : t h i s . ge tSess ionBeans ()) {
75 f o r (E jbRefe rence r : s . g e t E j b R e f e r e n c e s ()) {
76 E j b I n t e r f a c e T y p e i =
77 t h i s . tp . g e t C o n n e c t i o n A l t e r n a t i v e s (
78 r . ge tE jbRe fe renceTy pe ()) . i t e r a t o r () . nex t () ;
79 boolean s u c c e s s = f a l s e ;
80 f o r (SessionBean sp : t h i s . ge tSess ionBeans ()) {
81 f o r (E j b I n t e r f a c e i p : sp . g e t E j b I n t e r f a c e s ()) {
82 i f (i p . g e t E j b I n t e r f a c e T y p e () . e q u a l s (i)) {
83 r . connectTo (i p) ;
84 s u c c e s s = t r u e ;

347

85 break ;
86 }
87 }
88 i f (s u c c e s s) break ;
89 }
90 }
91 }
92 }
93

94 /∗∗ A l l modu l e s a f f e c t e d by t h e p l a n (t h i s . ms) a r e
95 ∗ d e p l o y e d t h r o u g h an i n v o c a t i o n o f t h i s method . ∗/
96 p u b l i c v o i d dep loy () {
97 f o r (EjbModule m: t h i s . ms) {
98 m. dep loy () ;
99 }

100 }
101

102 /∗∗ A l l modu l e s a f f e c t e d by t h e p l a n (t h i s . ms) a r e
103 ∗ s t a r t e d t h r o u g h an i n v o c a t i o n o f t h i s method . ∗/
104 p u b l i c v o i d s t a r t () {
105 f o r (EjbModule em : t h i s . ms) {
106 em . s t a r t () ;
107 }
108 }
109

110 /∗∗ Grant s a c c e s s t o t h e modu l e s a f f e c t e d by t h e
111 ∗ p l a n . Might o n l y be i n v o k e d m e a n i n g f u l l y i f a t
112 ∗ l e a s t c r e a t e () was i n v o k e d b e f o r e .
113 ∗
114 ∗ @return S e t o f a f f e c t e d modu l e s . ∗/
115 p u b l i c Set <EjbModule > getEjbModules () {
116 r e t u r n t h i s . ms ;
117 }
118

119 /∗∗ Grant s a c c e s s t o t h e s e s s i o n b e a n s a f f e c t e d by
120 ∗ t h e p l a n . The method might o n l y be i n v o k e d
121 ∗ m e a n i n g f u l l y i f a t l e a s t c r e a t e () was i n v o k e d
122 ∗ b e f o r e . The s e t n e e d s n o t n e c e s s a r i l y c o n t a i n a l l
123 ∗ s e s s i o n b e a n s which a r e p a r t o f a module r e t u r n e d
124 ∗ by g e t E j b M o d u l e s () . In c o n t r a s t , o n l y s e s s i o n
125 ∗ b e a n s a r e r e t u r n e d o f which t h e c o r r e s p o n d i n g
126 ∗ t y p e i s a f f e c t e d by t h e u n d e r l y i n g t y p e l e v e l
127 ∗ p l a n .
128 ∗
129 ∗ @return S e t o f a f f e c t e d SBs . ∗/
130 p u b l i c Set <SessionBean > ge tSess ionBeans () {
131 Set <SessionBeanType > sbTypes =

348 Deployment Level Planning

132 t h i s . tp . ge tSess ionBeanTypes () ;
133 Set <SessionBean > sbs = new HashSet <SessionBean > () ;
134 f o r (EjbModule em : t h i s . ms) {
135 f o r (E n t e r p r i s e B e a n eb : em . g e t E n t e r p r i s e B e a n s ()) {
136 i f (eb i n s t a n c e o f SessionBean) {
137 SessionBean sb = (SessionBean) eb ;
138 i f (sbTypes . c o n t a i n s (sb . ge tSess ionBeanType ())) {
139 sbs . add (sb) ;
140 }
141 }
142 }
143 }
144 r e t u r n sbs ;
145 }
146

147 /∗∗ D e l i v e r s t h e i n t e n d e d p r o v i d e r o f a
148 ∗ J a v a I n t e r f a c e T y p e a s r e q u i r e d by t h e u n d e r l y i n g
149 ∗ t y p e l e v e l p l a n . The method might o n l y be i n v o k e d
150 ∗ m e a n i n g f u l l y i f a t l e a s t c r e a t e () was i n v o k e d
151 ∗ b e f o r e .
152 ∗
153 ∗ @param j i t R e q u i r e d Java i n t e r f a c e t y p e .
154 ∗ @return I n t e n d e d p r o v i d e r w i t h i n t h e managed
155 ∗ s y s t e m . ∗/
156 p u b l i c E j b I n t e r f a c e
157 g e t E j b I n t e r f a c e F o r J a v a I n t e r f a c e T y p e (
158 J a v a I n t e r f a c e T y p e j i t) {
159 E j b I n t e r f a c e T y p e e i t = t h i s . tp .
160 g e t J a v a I n t e r f a c e T y p e P r o v i d e r s (j i t) . i t e r a t o r () .
161 nex t () ;
162 f o r (SessionBean sb : t h i s . ge tSess ionBeans ()) {
163 f o r (E j b I n t e r f a c e e i : sb . g e t E j b I n t e r f a c e s ()) {
164 i f (e i . g e t E j b I n t e r f a c e T y p e () . e q u a l s (e i t)) {
165 r e t u r n e i ;
166 }
167 }
168 }
169 r e t u r n n u l l ;
170 }
171

172 /∗∗ D e l i v e r s t h e Dep loyment L e v e l c o u n t e r p a r t o f a
173 ∗ SB t y p e a f f e c t e d by t h e u n d e r l y i n g Type L e v e l
174 ∗ Plan . The method might o n l y be i n v o k e d
175 ∗ m e a n i n g f u l l y i f a t l e a s t c r e a t e () was i n v o k e d
176 ∗ b e f o r e .
177 ∗
178 ∗ @param t y p e SB t y p e f o r which t h e Dep loyment

349

179 ∗ L e v e l c o u n t e r p a r t i s r e q u i r e d .
180 ∗ @return Dep loyment L e v e l c o u n t e r p a r t o f t y p e . ∗/
181 p u b l i c SessionBean getSess ionBeanForSess ionBeanType (
182 SessionBeanType t y p e) {
183 f o r (SessionBean sb : t h i s . ge tSess ionBeans ()) {
184 i f (sb . ge tSess ionBeanType () . e q u a l s (t y p e)) {
185 r e t u r n sb ;
186 }
187 }
188 r e t u r n n u l l ;
189 }
190

191 /∗∗ D e l i v e r s t h e Dep loyment L e v e l c o u n t e r p a r t o f a
192 ∗ module t y p e a f f e c t e d by t h e u n d e r l y i n g t y p e l e v e l
193 ∗ p l a n . The method might o n l y be i n v o k e d
194 ∗ m e a n i n g f u l l y i f a t l e a s t c r e a t e () was i n v o k e d
195 ∗ b e f o r e .
196 ∗
197 ∗ @param t y p e Module t y p e f o r which t h e Dep loyment
198 ∗ L e v e l c o u n t e r p a r t i s r e q u i r e d .
199 ∗ @return Dep loyment L e v e l c o u n t e r p a r t o f t y p e . ∗/
200 p u b l i c EjbModule getEjbModuleForEjbModuleType (
201 EjbModuleType t y p e) {
202 f o r (EjbModule em : t h i s . ms) {
203 i f (em . getEjbModuleType () . e q u a l s (t y p e)) r e t u r n em ;
204 }
205 r e t u r n n u l l ;
206 }
207

208 }

Listing B.1: Implementation of Deployment Level Plan

C. Seamless Reconfiguration

1 import j a v a . u t i l . C o l l e c t i o n ;
2 import j a v a . u t i l . HashMap ;
3 import j a v a . u t i l . HashSet ;
4 import j a v a . u t i l . Map ;
5 import j a v a . u t i l . Se t ;
6

7 import mKernel . e j b . Conta iner ;
8 import mKernel . e j b . C o n t a i n e r F a c t o r y ;
9 import mKernel . e j b . E j b I n t e r f a c e ;

10 import mKernel . e j b . EjbModule ;
11 import mKernel . e j b . EjbModuleType ;
12 import mKernel . e j b . E jbRefe rence ;
13 import mKernel . e j b . E n t e r pr i s e B e a n ;
14 import mKernel . e j b . J a v a I n t e r f a c e T y p e ;
15 import mKernel . e j b . SessionBean ;
16 import mKernel . e j b . SimpleEnvironmentEntry ;
17 import mKernel . e j b . q u i e sc e nc e . HoldingReference ;
18 import mKernel . e j b . q u i e sc e nc e . QuiescenceRegion ;
19 import mKernel . e j b . q u i e sc e nc e . S ta t eE lement ;
20

21 /∗∗ I n s t a n c e s o f t h i s c l a s s can be u s e d t o p e r f o r m
22 ∗ t h e r e p l a c e m e n t a s e t o f EJB modu l e s s e a m l e s s l y
23 ∗ r e g a r d i n g c o m p o s i t i o n a l a d a p t a t i o n . In t h i s
24 ∗ c o n t e x t , o n l y s e s s i o n b e a n s o f t h e r e p l a c e d and
25 ∗ t h e r e p l a c i n g modu l e s a r e c o n s i d e r e d . For
26 ∗ s e a m l e s s r e c o n f i g u r a t i o n i t i s r e q u i r e d t h a t no
27 ∗ q u i e s c e n c e r e g i o n d o e s e x i s t w i t h i n t h e managed
28 ∗ s y s t e m . As p r e p a r a t i o n f o r e x e c u t i o n , a l l
29 ∗ r e q u i r e d r e f e r e n c e s o f t h e s e s s i o n b e a n s which
30 ∗ a r e i n t e n d e d t o r e p l a c e an e x i s t i n g one must be
31 ∗ c o n n e c t e d t o p r o v i d e d i n t e r f a c e s o f s e s s i o n
32 ∗ b e a n s which do n o t b e l o n g t o t h e modu l e s t o
33 ∗ r e p l a c e . Fur th e rmor e , t h e r e p l a c i n g modu l e s must
34 ∗ have b e e n d e p l o y e d and s t a r t e d . F i n a l l y , s e s s i o n
35 ∗ b e a n s t o r e p l a c e and t h e r e p l a c i n g c o u n t e r p a r t s
36 ∗ must have t h e same EJB name . A l l c o n f i g u r a t i o n
37 ∗ demands b e s i d e s c o m p o s i t i o n a l a d a p t a t i o n and

352 Seamless Reconfiguration

38 ∗ b a s i c s t a t e t r a n s f e r s must be p e r f o r m e d o u t s i d e
39 ∗ t h e i m p l e m e n t a t i o n .
40 ∗
41 ∗ As f o u n d a t i o n f o r r e c o n f i g u r a t i o n i t i s assumed
42 ∗ t h a t ea ch a f f e c t e d Java i n t e r f a c e t y p e d o e s o n l y
43 ∗ e x i s t o n c e i n s i d e t h e r e p l a c i n g modu l e s . For t h e
44 ∗ r e a l i z a t i o n o f a q u i e s c e n t r e c o n f i g u r a t i o n t h e
45 ∗ methods p r o v i d e d by t h i s c l a s s s h o u l d be
46 ∗ e x e c u t e d i n t h e f o l l o w i n g o r d e r :
47 ∗ 1 . d e f i n e R e g i o n
48 ∗ 2 . r e a c h Q u i e s c e n c e
49 ∗ 3 . t r a n s f e r T i m e r s
50 ∗ 4 . t r a n s f e r S t a t e
51 ∗ 5 . r e p l a c e C o n n e c t i o n s
52 ∗ 6 . f i n i s h
53 ∗ 7 . d e s t r o y R e g i o n
54 ∗ Between t h e e x e c u t i o n o f two s u b s e q u e n t me thods
55 ∗ cus tom r e c o n f i g u r a t i o n a c t i o n s migh t be p e r f o r m e d .
56 ∗/
57 p u b l i c c l a s s S e a m l e s s R e c o n f i g u r a t o r {
58

59 /∗∗ S e t o f o r i g n a l modu l e s which s h o u l d be r e p l a c e d .
60 ∗/
61 p r i v a t e Set <EjbModule > om =
62 new HashSet <EjbModule > () ;
63

64 /∗∗ S e t o f o r i g n a l SBs which s h o u l d be r e p l a c e d . ∗/
65 p r i v a t e Set <SessionBean > os =
66 new HashSet <SessionBean > () ;
67

68 /∗∗ S e t o f r e p l a c i n g modu l e s . ∗/
69 p r i v a t e Set <EjbModule > rm =
70 new HashSet <EjbModule > () ;
71

72 /∗∗ S e t o f s e s s i o n b e a n s b e l o n g i n g t o t h e r e p l a c i n g
73 ∗ modu l e s (rm) . ∗/
74 p r i v a t e Map< St r ing , SessionBean > r s =
75 new HashMap< St r ing , SessionBean > () ;
76

77 /∗∗ Map o f Java i n t e r f a c e t y p e s t o r e p l a c i n g
78 ∗ p r o v i d e d i n t e r f a c e s . ∗/
79 p r i v a t e Map< J a v a I n t e r f a c e T y p e , E j b I n t e r f a c e > r i =
80 new HashMap< J a v a I n t e r f a c e T y p e , E j b I n t e r f a c e > () ;
81

82 /∗∗ R e f e r e n c e t o t h e mKerne l s y s t e m . ∗/
83 p r i v a t e Conta iner c =
84 C o n t a i n e r F a c t o r y . getNewContainer () ;

353

85

86 /∗∗ Q u i e s c e n c e r e g i o n which b u i l d s t h e f o u n d a t i o n
87 ∗ o f s e a m l e s s r e c o n f i g u r a t i o n . ∗/
88 p r i v a t e QuiescenceRegion q = n u l l ;
89

90 /∗∗ C o n s t r u c t o r f o r t h e c r e a t i o n o f a
91 ∗ r e c o n f i g u r a t o r .
92 ∗
93 ∗ @param o r i g i n a l M o d u l e s Parame t e r f o r t h e
94 ∗ i n i t i a l i z a t i o n o f om .
95 ∗ @param r e p l a c i n g M o d u l e s Parame t e r f o r t h e
96 ∗ i n i t i a l i z a t i o n o f rm . ∗/
97 p u b l i c S e a m l e s s R e c o n f i g u r a t o r (
98 Set <EjbModule > or ig ina lModules ,
99 Set <EjbModule > rep lac ingModules) {

100 t h i s .om = o r i g i n a l M o d u l e s ;
101 f o r (EjbModule em : t h i s .om) {
102 f o r (E n t e r p r i s e B e a n e j b : em . g e t E n t e r p r i s e B e a n s ()) {
103 SessionBean sb = (SessionBean) e j b ;
104 t h i s . os . add (sb) ;
105 }
106 }
107 t h i s . rm = rep lac ingModules ;
108 f o r (EjbModule em : t h i s . rm) {
109 f o r (E n t e r p r i s e B e a n e j b : em . g e t E n t e r p r i s e B e a n s ()) {
110 i f (e j b i n s t a n c e o f SessionBean) {
111 SessionBean sb = (SessionBean) e j b ;
112 t h i s . r s . put (sb . g e t E n t e r p r i s e B e a n T y p e () .
113 getEjbName () , sb) ;
114 f o r (E j b I n t e r f a c e e i : sb . g e t E j b I n t e r f a c e s ()) {
115 t h i s . r i . put (e i . g e t E j b I n t e r f a c e T y p e () .
116 g e t J a v a I n t e r f a c e T y p e () , e i) ;
117 }
118 }
119 }
120 }
121 }
122

123 /∗∗ T h i s method d e c l a r e s a q u i e s c e n c e r e g i o n
124 ∗ c o v e r i n g t h e modu l e s t o r e p l a c e and t h e r e p l a c i n g
125 ∗ o n e s . Fur th e rmor e , t r a c k i n g i s a c t i v a e d f o r t h e
126 ∗ r e g i o n . ∗/
127 p u b l i c v o i d def ineReg ion () {
128 Set <EjbModule > qm = new HashSet <EjbModule > () ;
129 qm. addAl l (t h i s .om) ;
130 qm. addAl l (t h i s . rm) ;
131 t h i s . q = c . dec l a reQuiescenceReg ion (qm, nul l , n u l l) ;

354 Seamless Reconfiguration

132 t h i s . q . t r a c k () ;
133 }
134

135 /∗∗ T h i s method t r a n s f e r s t h e q u i e s c e n c e r e g i o n t o
136 ∗ t h e BLOCKING s t a t e and s u b s e q u e n t l y w a i t f o r t h e
137 ∗ t r a n s i t i o n t o t h e QUIESCENT s t a t e . The r e t u r n
138 ∗ v a l u e i n d i c a t e s i f q u i e s c e n c e c o u l d s u c c e s s f u l l y
139 ∗ be r e a c h e d .
140 ∗
141 ∗ @return t r u e i f q u i e s c e n c e has b e e n r e a c h e d
142 ∗ s u c c e s s f u l l y , f a l s e o t h e r w i s e . ∗/
143 p u b l i c boolean reachQuiescence () {
144 t h i s . q . b l o c k () ;
145 r e t u r n t h i s . q . wa i tForQuiescence () ;
146 }
147

148 /∗∗ Through an i n v o c a t i o n o f t h i s method t i m e r s o f
149 ∗ a l l s t a t e l e s s SBs t o r e p l a c e a r e t r a n s f e r r e d t o
150 ∗ t h e i r r e p l a c i n g c o u n t e r p a r t s . ∗/
151 p u b l i c v o i d t r a n s f e r T i m e r s () {
152 f o r (SessionBean o : t h i s . os) {
153 i f (! o . ge tSess ionBeanType () . i s S t a t e f u l ()) {
154 SessionBean r = t h i s . r s . g e t (
155 o . getSess ionBeanType () . getEjbName ()) ;
156 r . se tT imers (o . getTimers ()) ;
157 }
158 }
159 }
160

161 /∗∗ T h i s method t r a n s f e r s a l l i n s t a n c e s o f s t a t e f u l
162 ∗ SB t o r e p l a c e t o i n s t a n c e s o f t h e i r r e p l a c i n g
163 ∗ c o u n t e r p a r t s . ∗/
164 p u b l i c v o i d t r a n s f e r S t a t e () {
165 f o r (HoldingReference ob : t h i s . q . g e t R e f e r e n c e s ()) {
166 SessionBean s = r s . g e t (ob . ge tSess ionBean () .
167 getType () . getEjbName ()) ;
168 HoldingReference rb = c . c r e a t e R e f e r e n c e T o (s) ;
169 Map< St r ing , C o l l e c t i o n < Sta teElement >> s t =
170 ob . g e t S t a t e () ;
171 C o l l e c t i o n < Sta teElement > elems = s t . g e t (
172 ob . ge tSess ionBean () . ge tSess ionBeanType () .
173 g e t F u l l y Q u a l i f i e d E n t e r p r i s e B e a n C l a s s N a m e ()) ;
174 Map< St r ing , C o l l e c t i o n < Sta teElement >> newM =
175 new HashMap< St r ing , C o l l e c t i o n < Sta teElement > >() ;
176 newM. put (rb . ge tSess ionBean () . ge tSess ionBeanType () .
177 g e t F u l l y Q u a l i f i e d E n t e r p r i s e B e a n C l a s s N a m e () ,
178 elems) ;

355

179 rb . s e t S t a t e (newM) ;
180 / / The f o l l o w i n g t h r e e s o u r c e c o d e l i n e s a r e
181 / / commented out , b e c a u s e t h e y a r e s p e c i f i c t o t h e
182 / / c a s e s t u d y . N e v e r t h e l e s s , t h e y a r e l e f t i n h e r e
183 / / f o r t h e s a k e o f c o m p l e t e n e s s . The same r e s u l t
184 / / c o u l d be r e a c h e d o u t s i d e t h i s c l a s s . For t h i s
185 / / p u r p o s e h o l d i n g r e f e r e n c e s would have t o be
186 / / e x p o s e , f o r example , t h r o u g h a c o r r e s p o n d i n g
187 / / method .
188 / / i f (s . g e t S e s s i o n B e a n T y p e () . ge tE jbName () .
189 / / e q u a l s (" T x C o n t r o l l e r B e a n ")) {
190 / / r b . s e t F i e l d V a l u e (" f e e " , new Long (10)) ;
191 / / }
192 ob . r e p l a c e W i t h (rb) ;
193 }
194 }
195

196 /∗∗ Incoming c o n n e c t i o n s o f SB t o r e p l a c e a r e
197 ∗ r e c o n n e c t e d t o t h e c o r r e s p o n d i n g , r e p l a c i n g SBs
198 ∗ by t h i s method . ∗/
199 p u b l i c v o i d r e p l a c e C o n n e c t i o n s () {
200 f o r (SessionBean s : t h i s . os) {
201 f o r (E j b I n t e r f a c e i : s . g e t E j b I n t e r f a c e s ()) {
202 f o r (E jbRefe rence r :
203 i . ge tConnec tedE jbRefe rences ()) {
204 i f (! t h i s . os . c o n t a i n s (r . g e t E n t e r p r i s e B e a n ())) {
205 r . connectTo (t h i s . r i . g e t (
206 i . g e t E j b I n t e r f a c e T y p e () .
207 g e t J a v a I n t e r f a c e T y p e ())) ;
208 }
209 }
210 }
211 }
212 }
213

214 /∗∗ T h i s method s t o p s , u n d e p l o y s , and d e s t r o y s t h e
215 ∗ modu l e s t o r e p l a c e . Fur th e rmor e , t h e q u i e s c e n c e
216 ∗ r e g i o n i s r e l e a s e d . ∗/
217 p u b l i c v o i d f i n i s h () {
218 f o r (EjbModule m: t h i s .om) {
219 m. s t o p () ;
220 }
221 t h i s . q . r e l e a s e () ;
222 f o r (EjbModule m: t h i s .om) {
223 m. undeploy () ;
224 m. d e s t r o y () ;
225 }

356 Seamless Reconfiguration

226 }
227

228 /∗∗ T h i s method f i n a l l y d e s t r o y s t h e q u i e s c e n c e
229 ∗ r e g i o n . ∗/
230 p u b l i c v o i d d e s t r o y R e g i o n () {
231 q . d e s t r o y () ;
232 }
233

234 }

Listing C.1: Implementation of Seamless Reconfiguration

Bibliography

[1] “An architectural blueprint for autonomic computing. (Third

Edition)”, http://www-03.ibm.com/autonomic/pdfs/AC Blueprint

White Paper V7.pdf, June 2005.

[2] Java Compiler Compiler (JavaCC) – The Java Parser Generator,

https://javacc.dev.java.net/, July 2007.

[3] “Sun Java System Application Server 9.1 Reference Manual”, Sun

Microsystems, October 2007,

http://docs.sun.com/app/docs/doc/819-3675.

[4] IBM WebSphere Application Server,

http://www-306.ibm.com/software/webservers/appserv/was/, Au-

gust 2008.

[5] Java Programming Assistant (Javassist),

http://www.csg.is.titech.ac.jp/ chiba/javassist/, November 2008.

[6] JBoss Application Server,

http://www.jboss.org/jbossas, August 2008.

[7] JOnAS – Java Open Application Server,

http://jonas.objectweb.org/, December 2008.

[8] Oracle WebLogic Application Server,

http://www.oracle.com/appserver, August 2008.

[9] Sun GlassFish Enterprise Server,

http://www.sun.com/software/products/appsrvr, August 2008.

358 Bibliography

[10] The Apache Velocity Project,

http://velocity.apache.org, September 2008.

[11] The GlassFish Application Server,

https://glassfish.dev.java.net, November 2008.

[12] T. Abdellatif and A. Danes, “JMX-Based Autonomic Management

of J2EE Servers”, International Transactions on Systems Science and

Applications (ITSSA), vol. 2, no. 3, pp. 289–295, September 2006.

[13] J. P. A. Almeida, M. Van Sinderen, and L. Nieuwenhuis, “Trans-

parent Dynamic Reconfiguration for CORBA”, in Proceedings of the

3rd International Symposium on Distributed Objects and Applications

(DOA ’01). IEEE Computer Society, 2001, pp. 197–207.

[14] M. AlSharif, W. P. Bond, and T. Al-Otaiby, “Assessing the Com-

plexity of Software Architecture”, in Proceedings of the 42nd Annual

Southeast Regional Conference (ACM-SE 42). ACM Press, 2004, pp.

98–103.

[15] H. Balzert, “Lehrbuch der Software-Technik – Software-Entwick-

lung”, ser. Lehrbücher der Informatik. Spektrum Akademischer

Verlag, December 2000, vol. 1.

[16] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig, “Software

Complexity and Maintenance Costs”, Communications of the ACM,

vol. 36, no. 11, pp. 81–94, November 1993.

[17] R. Barret, P. P. Maglio, E. Kandogan, and J. Bailey, “Usable Auto-

nomic Computing Systems: The Administrator’s Perspective”, in

Proceedings of the First International Conference on Autonomic Com-

puting (ICAC 2004). IEEE Computer Society, 2004, pp. 18–26.

[18] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama,

and M. Prabaker, “Field Studies of Computer System Administra-

Bibliography 359

tors: Analysis of System Management Tools and Practices”, in Pro-

ceedings of the 2004 ACM Conference on Computer Supported Coopera-

tive Work (CSCW ’04). ACM Press, November 2004, pp. 388–395.

[19] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim, “Jass - Java

with Assertions”, Electronic Notes in Theoretical Computer Science,

vol. 55, no. 2, pp. 103–117, October 2001.

[20] A. F. Benner, P. K. Pepeljugoski, and R. J. Recio, “A Roadmap to

100G Ethernet at the enterprise data center,” IEEE Communications

Magazine, vol. 45, no. 11, pp. 10–17, November 2007.

[21] K. H. Bennett and V. T. Rajlich, “Software Maintenance and Evolu-

tion: a Roadmap”, in Proceedings of the Conference on The Future of

Software Engineering (ICSE ’00). ACM Press, 2000, pp. 73–87.

[22] P. V. Biron and A. Malhotra, XML Schema Part 2: Datatypes

Second Edition, http://www.w3.org/TR/2004/REC-xmlschema-2-

20041028/, World Wide Web Consortium (W3C) Std., October

2004.

[23] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. M.

Costa, H. A. Duran-Limon, T. Fitzpatrick, L. Johnston, R. S. Mor-

eira, N. Parlavantzas, and K. B. Saikoski, “The Design and Imple-

mentation of Open ORB 2”, IEEE Distributed Systems Online, vol. 2,

no. 6, 2001.

[24] G. S. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace, R. Mor-

eira, and N. Parlavantzas, “Reflection, Self-Awareness and Self-

Healing in OpenORB”, in Proceedings of the First Workshop on Self-

Healing Systems (WOSS ’02). ACM Press, November 2002, pp.

9–14.

[25] B. W. Boehm, “A Spiral Model of Software Development and En-

hancement”, IEEE Computer, vol. 21, no. 5, pp. 61–72, May 1988.

360 Bibliography

[26] S. Bouchenak, F. Boyer, D. Hagimont, S. Krakowiak, A. Mos,

N. De Palma, V. Quéma, and J.-B. Stefani, “Architecture-Based Au-

tonomous Repair Management: An Application to J2EE Clusters”,

in Proceedings of the 24th IEEE Symposium on Reliable Distributed Sys-

tems (SRDS 2005). IEEE Computer Society, October 2005, pp. 13–

24.

[27] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and

F. Yergeau, Extensible Markup Language (XML) 1.0 (Fifth Edition),

http://www.w3.org/TR/xml/, World Wide Web Consortium (W3C)

Std., November 2008.

[28] A. W. Brown and K. Short, “On Components and Objects: The

Foundations of Component-Based Development”, in Proceedings

of the 5th International Symposium on Assessment of Software Tools

(SAST ’97). IEEE Computer Society, June 1997, pp. 112–124.

[29] A. B. Brown, A. Keller, and J. L. Hellerstein, “A Model of Configura-

tion Complexity and its Application to a Change Management Sys-

tem”, in Proceedings of the 9th IFIP/IEEE International Symposium on

Integrated Network Management 2005 (IM 2005). IEEE Computer

Society, May 2005, pp. 631–644.

[30] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G. Pomberger,

W. Pree, M. Stal, and C. A. Szyperski, “What characterizes a (soft-

ware) component?” Software - Concepts and Tools, vol. 19, no. 1, pp.

49–56, June 1998.

[31] J. Bruhn, S. Kaffille, and G. Wirtz, “Hierarchical Scheduling for

State-Based Services”, in Proceedings of the 2004 International Confer-

ence on Parallel and Distributed Processing Techniques and Applications

(PDPTA 2004), vol. 1. CSREA Press, June 2004, pp. 179–185.

Bibliography 361

[32] J. Bruhn, C. Niklaus, T. Vogel, and G. Wirtz, “Comprehensive Sup-

port for Management of Enterprise Applications”, in Proceedings of

the 6th IEEE/ACS International Conference on Computer Systems and

Applications (AICCSA 2008). IEEE Computer Society, March 2008,

pp. 755 – 762.

[33] J. Bruhn and G. Wirtz, “DyName: Enhanced Naming for EJB”, in

Proceedings of the 2007 International Conference on Parallel and Dis-

tributed Processing Techniques and Applications (PDPTA 2007), vol. 1.

CSREA Press, June 2007, pp. 17–23.

[34] J. Bruhn and G. Wirtz, “mKernel: A manageable Kernel for EJB-

based Systems”, in Proceedings of the First International Conference

on Autonomic Computing and Communication Systems (Autonomics

2007). ACM Press, October 2007, pp. 1–10.

[35] J. Bruhn and G. Wirtz, “Using Contracts for Self-Management”,

Communications of SIWN, vol. 4, pp. 110–115, June 2008.

[36] E. Bruneton, T. Coupaye, and J.-B. Stefani, “Recursive and Dy-

namic Software Composition with Sharing”, in Proceedings of the

7th ECOOP International Workshop on Component-Oriented Program-

ming (WCOP’02), June 2002.

[37] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,

“An Open Component Model and its Support in Java”, Lecture Notes

in Computer Science, vol. 3054/2004, pp. 7–22, May 2004.

[38] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,

“The FRACTAL component model and its support in Java: Experi-

ences with Auto-adaptive and Reconfigurable Systems”, Software –

Practice and Experience (SP&E), vol. 36, no. 11-12, pp. 1257–1284,

September 2006.

362 Bibliography

[39] E. Bruneton, T. Coupaye, and J.-B. Stefani, “The Fractal Project –

Website”, http://fractal.objectweb.org/, December 2008.

[40] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, “To-

wards a taxonomy of software change: Research Articles”, Journal

of Software Maintenance and Evolution: Research and Practice, vol. 17,

no. 5, pp. 309–332, September 2005.

[41] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leav-

ens, K. R. M. Leino, and E. Poll, “An overview of JML tools and

applications”, International Journal on Software Tools for Technology

Transfer (STTT), vol. 7, no. 3, pp. 212–232, June 2005.

[42] G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox, “JAGR:

an autonomous self-recovering application server”, in Proceedings of

the Autonomic Computing Workshop 2003. IEEE Computer Society,

2003, pp. 168 – 177.

[43] N. Chapin, J. E. Hale, K. M. Kham, J. F. Ramil, and W.-G. Tan,

“Types of software evolution and software maintenance”, Journal of

Software Maintenance and Evolution: Research and Practice, vol. 13,

no. 1, pp. 3–30, February 2001.

[44] X. Chen, “Extending RMI to Support Dynamic Reconfiguration of

Distributed Systems”, in Proceedings of the 22nd International Confer-

ence on Distributed Computing Systems (ICDCS’02). IEEE Computer

Society, November 2002, pp. 401–408.

[45] Y. Cheon and G. T. Leavens, “A Simple and Practical Approach to

Unit Testing: The JML and JUnit Way”, in Proceedings of the 16th

European Conference on Object-Oriented Programming (ECOOP ’02).

Springer-Verlag, 2002, pp. 231–255.

[46] Y. Cheon and C. E. Rubio-Medrano, “Random Test Data Generation

for Java Classes Annotated with JML Specifications”, in Proceedings

Bibliography 363

of the 2007 International Conference on Software Engineering Research

and Practice (SERP’07). CSREA Press, 2007, pp. 385–391.

[47] S. Cheung and V. Matena, Java Transaction API (JTA),

http://java.sun.com/javaee/technologies/jta/, Sun Microsystems

Inc. Std., Rev. 1.1, November 2002.

[48] S. Chiba, “Load-Time Structural Reflection in Java”, in Proceed-

ings of the 14th European Conference on Object-Oriented Programming

(ECOOP ’00). Springer-Verlag, June 2000, pp. 313–336.

[49] S. Chiba and M. Nishizawa, “An easy-to-use toolkit for efficient Java

bytecode translators”, in Proceedings of the 2nd international confer-

ence on Generative programming and component engineering (GPCE

’03). Springer-Verlag, September 2003, pp. 364–376.

[50] T. Coupaye and J. Estublier, “Foundations of Enterprise Software

Deployment”, in Proceedings of the Fourth European Conference on

Software Maintenance and Reengineering (CSMR 2000). IEEE Com-

puter Society, February 2000, pp. 65–73.

[51] I. Crnkovic, “Component-based Software Engineering – New Chal-

lenges in Software Development”, in Proceedings of the 25th Inter-

national Conference on Information Technology Interfaces (ITI 2003).

IEEE Computer Society, June 2003, pp. 9–18.

[52] I. Crnkovic, M. Chaudron, and S. Larsson, “Component-Based De-

velopment Process and Component Lifecycle”, in Proceedings of the

International Conference on Software Engineering Advances (ICSEA

’06). IEEE Computer Society, October 2006, pp. 44–53.

[53] E. Dashofy, H. Asuncion, S. Hendrickson, G. Suryanarayana,

J. Georgas, and R. Taylor, “ArchStudio 4: An Architecture-Based

364 Bibliography

Meta-Modeling Environment”, in Companion of the 29th Interna-

tional Conference on Software Engineering (ICSE 2007). IEEE Com-

puter Society, May 2007, pp. 67–68.

[54] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “A Highly-

Extensible, XML-Based Architecture Description Language”, in Pro-

ceedings of the Working IEEE/IFIP Conference on Software Architec-

ture (WICSA 2001). IEEE Computer Society, August 2001, pp.

103–112.

[55] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “An Infrastruc-

ture for the Rapid Development of XML-based Architecture Descrip-

tion Languages”, in Proceedings of the 24th International Conference

on Software Engineering (ICSE ’02). ACM Press, May 2002, pp.

266–276.

[56] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “Towards

Architecture-based Self-Healing Systems”, in Proceedings of the first

Workshop on Self-healing Systems (WOSS ’02). ACM Press, Novem-

ber 2002, pp. 21–26.

[57] A. Dearle, “Software Deployment, Past, Present and Future”, in Pro-

ceedings of the International Conference on Software Engineering. IEEE

Computer Society, May 2007, pp. 269–284.

[58] L. DeMichiel and M. Keith, JSR 220: Enterprise JavaBeans, Version

3.0 – EJB Core Contracts and Requirements,

http://jcp.org/aboutJava/communityprocess/final/jsr220, Sun Mi-

crosystems Std., May 2006.

[59] L. DeMichiel and M. Keith, JSR 220: Enterprise JavaBeans, Version

3.0 – Java Persistence API,

http://jcp.org/aboutJava/communityprocess/final/jsr220, Sun Mi-

crosystems Std., May 2006.

Bibliography 365

[60] L. DeMichiel and M. Keith, JSR 220: Enterprise Jav-

aBeansTM,Version 3.0 – EJB 3.0 Simplified API,

http://jcp.org/aboutJava/communityprocess/final/jsr220, Sun

Microsystems Std., May 2006.

[61] L. G. DeMichiel, L. Ümit Yalcinalp, and S. Krishnan, JSR 19: Enter-

prise JavaBeans Specification, Version 2.0,

http://jcp.org/aboutJava/communityprocess/final/jsr019, Sun Mi-

crosystems Std., August 2001.

[62] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and

D. Phung, “Self-Managing Systems: A Control Theory Foundation”,

in Proceedings of the 12th IEEE International Conference and Work-

shops on the Engineering of Computer-Based Systems (ECBS’05). IEEE

Computer Society, April 2005, pp. 441–448.

[63] E. W. Dijkstra, “The humble Programmer”, Communications of the

ACM, vol. 15, no. 10, pp. 859–866, October 1972.

[64] J. Dochez, JSR-88: Java Enterprise Edition 5 Deployment API Specifi-

cation, Version 1.2,

http://jcp.org/aboutJava/communityprocess/mrel/jsr088, Sun Mi-

crosystems Std., May 2006.

[65] H. A. Duran-Limon, G. S. Blair, and G. Coulson, “Adaptive Re-

source Management in Middleware: A Survey”, IEEE Distributed

Systems Online 1541-4922, vol. 5, no. 7, July 2004.

[66] D. Eastlake and P. Jones, RFC 3174: US Secure Hash Algorithm 1

(SHA1), http://www.ietf.org/rfc/rfc3174.txt, Internet Engineering

Task Force (IETF) Std., September 2001.

[67] M. Fowler, Patterns of Enterprise Application Architecture. Addison

Wesley, November 2002.

366 Bibliography

[68] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic com-

puting era”, IBM Systems Journal, vol. 42, no. 1, pp. 5–18, 2003.

[69] A. G. Ganek, C. P. Hilkner, J. W. Sweitzer, B. Miller, and J. L.

Hellerstein, “The Response to IT Complexity: Autonomic Comput-

ing”, in Proceedings of the Third IEEE International Symposium on

Network Computing and Applications (NCA’04). IEEE Computer

Society, 2004, pp. 151–157.

[70] D. Garlan and D. E. Perry, “Introduction to the Special Issue on

Software Architecture”, IEEE Transactions on Software Engineering,

vol. 21, no. 4, pp. 269–274, April 1995.

[71] D. Gupta, P. Jalote, and G. Barua, “A Formal Framework for On-line

Software Version Change”, IEEE Transactions on Software Engineer-

ing, vol. 22, no. 2, pp. 120–131, February 1996.

[72] W. G. J. Halfond, A. Orso, and P. Manolios, “Using positive tainting

and syntax-aware evaluation to counter SQL injection attacks”, in

Proceedings of the 14th ACM SIGSOFT international symposium on

Foundations of software engineering (SIGSOFT ’06/FSE-14). ACM

Press, November 2006, pp. 175–185.

[73] G. Halprin, “The Work Flow of System Administration”, in Proceed-

ings of the 6th Annual Conference of the System Administrators Guild of

Australia (SAGE-AU ’98), July 1998.

[74] G. Hamilton, JavaBeans Specification 1.01,

http://java.sun.com/javase/technologies/desktop/javabeans/docs/

spec.html, Sun Microsystems Std., August 1998.

[75] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, Java Mes-

sage Service, Version 1.1, http://java.sun.com/products/jms/, Sun

Microsystems Std., April 2002.

Bibliography 367

[76] S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang, M. Parashar,

and H. Liu, “The Autonomic Computing Paradigm”, Cluster Com-

puting, vol. 9, no. 1, pp. 5–17, 2006.

[77] W. Hasselbring and R. Reussner, “Toward Trustworthy Software

Systems”, Computer, vol. 39, no. 4, pp. 91–92, April 2006.

[78] J. He, X. Li, and Z. Liu, “Component-Based Software Engineering

The Need to Link Methods and Their Theory”, in Proceedings of the

Second International Colloquium on Theoretical Aspects of Computing

(ICTAC 2005). Springer-Verlag, October 2005, pp. 70–95.

[79] J. Hillman and I. Warren, “Quantitative Analysis of Dynamic Re-

configuration Algorithms”, in Proceedings of the International Confer-

ence on Design, Analysis and Simulation of Distributed (DASD 2004),

April 2004.

[80] P. Horn, “Autonomic Computing: IBM’s Perspective on the State

of Information Technology”,

http://www.research.ibm.com/autonomic/manifesto/

autonomic_computing.pdf, October 2001, IBM Corporation.

[81] H. Hrasna, JSR-77: Java 2 Platform, Enterprise Edition Management

Specification,

http://jcp.org/aboutJava/communityprocess/mrel/jsr077, Sun Mi-

crosystems Std., Rev. 1.1, May 2006.

[82] G. Huang, “Post-Development Software Architecture”, ACM SIG-

SOFT Software Engineering Notes, vol. 32, no. 5, pp. 1–9, September

2007.

[83] G. Huang, H. Mei, and Q. xiang Wang, “Towards Software Ar-

chitecture at Runtime”, ACM SIGSOFT Software Engineering Notes,

vol. 28, no. 2, p. 8, March 2003.

368 Bibliography

[84] G. Huang, H. Mei, and F.-Q. Yang, “Runtime recovery and manip-

ulation of software architecture of component-based systems”, Au-

tomated Software Engineering, vol. 13, no. 2, pp. 257–281, April 2006.

[85] M. C. Huebscher and J. A. McCann, “A survey of Autonomic

Computing—Degrees, Models, and Applications”, ACM Computing

Surveys, vol. 40, no. 3, pp. 1–28, August 2008.

[86] M. T. Ibrahim, R. Telford, P. Dini, P. Lorenz, N. Vidovic, and R. An-

thony, “Self-Adaptability and Man-in-the-Loop: A Dilemma in Auto-

nomic Computing Systems”, in Proceedings of the 15th International

Workshop on Database and Expert Systems Applications (DEXA’04).

IEEE Computer Society, August 2004, pp. 722–729.

[87] IEEE Standard Glossary of Software Engineering Terminology (610.12-

1990), Institute of Electrical and Electronics Engineers Inc. (IEEE)

Std., Rev. 2002, January 2003.

[88] I. Jacobson, G. Booch, and J. Rumbaugh, “The Unified Process”,

IEEE Software, vol. 16, no. 3, pp. 96–102, May/June 1999.

[89] S. Jansen and S. Brinkkemper, “Definition and Validation of the

Key process of Release, Delivery and Deployment for Product Soft-

ware Vendors: turning the ugly duckling into a swan”, in Proceedings

of the 22nd IEEE International Conference on Software Maintenance

(ICSM ’06). IEEE Computer Society, September 2006, pp. 166–

175.

[90] Z. Jarir, P.-C. David, and T. Ledoux, “Dynamic Adaptability of

Services in Enterprise JavaBeans Architecture”, in Proceedings of

the 7th International Workshop on Component-Oriented Programming

(ECOOP-WCOP’2002), June 2002.

[91] E. Jendrock, J. Ball, D. Carson, I. Evans, S. Fordin, and K. Haase,

The Java EE 5 Tutorial, 3rd ed. Addison Wesley, February 2007.

Bibliography 369

[92] A. Keller, J. L. Hellerstein, K.-L. Wu, and V. Krishnan, “The

CHAMPS System: Change Management with Planning and

Scheduling”, in Proceedings of the IEEE/IFIP Network Operations and

Management Symposium (NOMS 2004). IEEE Computer Society,

April 2004, pp. 395–408.

[93] J. O. Kephart, “Research Challenges of Autonomic Computing”, in

Proceedings of the 27th International Conference on Software Engineer-

ing (ICSE ’05). ACM Press, May 2005, pp. 15–22.

[94] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Comput-

ing”, Computer Magazine, vol. 36, no. 1, pp. 41–50, January 2003.

[95] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M.

Loingtier, and J. Irwin, “Aspect-Oriented Programming”, in Proceed-

ings of the 11th European Conference on Object-Oriented Programming

(ECOOP 1997). Springer-Verlag, June 1997, pp. 220–242.

[96] F. Kon and R. H. Campbell, “Dependence Management in

Component-Based Distributed Systems”, IEEE Concurrency, vol. 8,

no. 1, pp. 1–11, January-March 2000.

[97] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The Case for Reflec-

tive Middleware”, Communications of ACM, vol. 45, no. 6, pp. 33–38,

June 2002.

[98] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C. Magalhães,

and R. H. Campbell, “Monitoring, Security, and Dynamic Config-

uration with the dynamicTAO Reflective ORB”, in Proceedings of

the IFIP/ACM International Conference on Distributed Systems Plat-

forms and Open Distributed Processing (Middleware’2000). Springer-

Verlag, April 2000, pp. 121–143.

370 Bibliography

[99] J. Kramer and J. Magee, “The Evolving Philosophers Problem: Dy-

namic Change Management”, IEEE Transactions on Software Engi-

neering, vol. 16, no. 11, pp. 1293–1306, November 1990.

[100] K.-K. Lau and Z. Wang, “Software Component Models”, IEEE Trans-

actions on Software Engineering, vol. 33, no. 10, pp. 709–724, October

2007.

[101] M. Leclercq, A. E. Ozcan, V. Quema, and J.-B. Stefani, “Supporting

Heterogeneous Architecture Descriptions in an Extensible Toolset”,

in Proceedings of the 29th International Conference on Software Engi-

neering (ICSE ’07). IEEE Computer Society, May 2007, pp. 209–

219.

[102] J. Lee, K. Siau, and S. Hong, “Enterprise integration with ERP and

EAI”, Communications of ACM, vol. 46, no. 2, pp. 54–60, February

2003.

[103] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.

Turski, “Metrics and Laws of Software Evolution - The Nineties

View”, in Proceedings of the 4th International Symposium on Software

Metrics (METRICS ’97). IEEE Computer Society, November 1997,

p. 20.

[104] M. Lehman, “Programs, life cycles, and laws of software evolution”,

Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, September

1980.

[105] P. Lin, A. MacArthur, and J. Leaney, “Defining Autonomic Com-

puting: A Software Engineering Perspective”, in Proceedings of the

2005 Australian Software Engineering Conference (ASWEC’05). IEEE

Computer Society, March 2005, pp. 88–97.

[106] P. Maes, “Concepts and experiments in computational reflection”,

in Proceedings of the ACM SIGPLAN International Conference on

Bibliography 371

Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA ’87). ACM Press, October 1987, pp. 147–155.

[107] Q. H. Mahmoud, “Using Assertions in Java Technology”,

http://java.sun.com/developer/technicalArticles/JavaLP/assertions/,

June 2005.

[108] S. Mamone, “The IEEE standard for software maintenance”, SIG-

SOFT Software Engineering Notes, vol. 19, no. 1, pp. 75–76, January

1994.

[109] V. Matena and M. Hapner, Enterprise JavaBeans Specification, v1.1,

http://java.sun.com/products/ejb/docs.html, Sun Microsystems

Std., December 1999.

[110] J. A. McCann and M. C. Huebscher, “Evaluation Issues in Auto-

nomic Computing”, in Proceedings of the International Workshop on

Agents and Autonomic Computing and Grid Enabled Virtual Organi-

zations (AAC-GEVO’2004). Springer-Verlag, September 2004, pp.

597–608.

[111] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. Cheng, “Com-

posing Adaptive Software”, Computer, vol. 37, no. 7, pp. 56–64, July

2004.

[112] N. Medvidovic, E. M. Dashofy, and R. N. Taylor, “Moving Architec-

tural Description from Under the Technology Lamppost”, Informa-

tion and Software Technology, vol. 49, no. 1, pp. 12–31, January 2007.

[113] N. Medvidovic and R. N. Taylor, “A Classification and Compari-

son Framework for Software Architecture Description Languages”,

IEEE Transactions on Software Engineering, vol. 26, no. 1, pp. 70–93,

January 2000.

372 Bibliography

[114] H. Mei and G. Huang, “PKUAS: An Architecture-based Reflective

Component Operating Platform”, in Proceedings of the 10th IEEE In-

ternational Workshop on Future Trends of Distributed Computing Sys-

tems (FTDCS 2004). IEEE Computer Society, May 2004, pp. 163–

169.

[115] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld,

and M. Jazayeri, “Challenges in Software Evolution”, in Proceedings

of the Eighth International Workshop on Principles of Software Evolu-

tion (IWPSE ’05). IEEE Computer Society, September 2005, pp.

13–22.

[116] B. Meyer, Object-oriented Software Construction (2nd ed.). Prentice-

Hall, Inc., 1997, ch. Design by Contract: Building reliable Software,

pp. 331–410.

[117] K. Moazami-Goudarzi and J. Kramer, “Maintaining Node Consis-

tency in the Face of Dynamic Change”, in Proceedings of the 3rd Inter-

national Conference on Configurable Distributed Systems (ICCDS ’96).

IEEE Computer Society, May 1996, pp. 62–69.

[118] G. E. Moore, “Cramming more components onto integrated cir-

cuits”, Electronics Magazine, vol. 38, no. 8, pp. 114–117, April 1965.

[119] F. Niessink and H. van Vliet, “Software Maintenance from a Service

Perspective”, Journal of Software Maintenance: Research and Practice,

vol. 12, no. 2, pp. 103–120, March/April 2000.

[120] The Common Object Request Broker: Architecture and Specification,

http://www.omg.org/docs/formal/98-07-01.pdf, Object Manage-

ment Group (OMG) Std., Rev. 2.2, February 1998.

[121] The Common Object Request Broker: Architecture and Specification,

http://www.omg.org/docs/formal/99-10-07.pdf, Object Manage-

ment Group (OMG) Std., Rev. 2.3.1, October 1999.

Bibliography 373

[122] CORBA CosNaming Service Specification,

http://www.omg.org/docs/formal/00-06-19.pdf, Object Man-

agement Group (OMG) Std., Rev. 1.0, April 2000.

[123] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-based

Runtime Software Evolution”, in Proceedings of the 20th international

Conference on Software Engineering (ICSE ’98). IEEE Computer So-

ciety, April 1998, pp. 177–186.

[124] M. Parashar and S. Hariri, “Autonomic Computing: An Overview”,

Lecture Notes in Computer Science (LNCS): Unconventional Program-

ming Paradigms, vol. 3566/2005, pp. 257–269, 2005.

[125] D. L. Parnas, “Software Aging”, in Proceedings of the 16th Interna-

tional Conference on Software Engineering (ICSE ’94). IEEE Com-

puter Society, May 1994, pp. 279–287.

[126] D. E. Perry and A. L. Wolf, “Foundations for the Study of Software

Architecture”, SIGSOFT Software Engineering Notes, vol. 17, no. 4,

pp. 40–52, October 1992.

[127] V. T. Rajlich and K. H. Bennett, “A Staged Model for the Software

Life Cycle”, Computer, vol. 33, no. 7, pp. 66–71, July 2000.

[128] D. J. Reifer, V. R. Basili, B. W. Boehm, and B. Clark, “COTS-Based

Systems - Twelve Lessons Learned about Maintenance”, in Proceed-

ings of the 3rd International Conference on COTS-Based Software Sys-

tems (ICCBSS 2004). Springer-Verlag, February 2004, pp. 137–145.

[129] L. Rosa, L. Rodrigues, and A. Lopes, “A Framework to Support Mul-

tiple Reconfiguration Strategies”, in Proceedings of the First Interna-

tional Conference on Autonomic Computing and Communication Sys-

tems (Autonomics 2007). ACM Press, October 2007.

374 Bibliography

[130] W. W. Royce, “Managing the Development of Large Software Sys-

tems: Concepts and Techniques”, in Proceedings of the 9th interna-

tional conference on Software Engineering (ICSE ’87). IEEE Com-

puter Society, 1987, pp. 328–338.

[131] M. J. Rutherford, K. M. Anderson, A. Carzaniga, D. Heimbigner,

and A. L. Wolf, “Reconfiguration in the Enterprise JavaBean Com-

ponent Model”, in Proceedings of the IFIP/ACM Working Conference

on Component Deployment (CD ’02). Springer-Verlag, June 2002,

pp. 67–81.

[132] S. M. Sadjadi and P. K. McKinley, “A Survey of Adaptive Middle-

ware”, Computer Science and Engineering, Michigan State Univer-

sity, Tech. Rep. MSU-CSE-03-35, December 2003.

[133] K. Saks, JSR 318: Enterprise JavaBeans, Version 3.1, http://jcp.org/

aboutJava/communityprocess/pr/jsr318, Sun Microsystems Std.,

Rev. Public Review, November 2008.

[134] M. Salehie and L. Tahvildari, “Autonomic Computing: Emerging

Trends and Open Problems”, in Proceedings of the 2005 Workshop on

Design and Evolution of Autonomic Application Software (DEAS ’05).

ACM Press, May 2005, pp. 1–7.

[135] SAP AG, “SAP Upgrade Factory Ihr schneller, einfacher Umstieg

auf SAP ERP 6.0 zum Festpreis”, http://www.sap.com/germany/

media/mc_402/50082803.pdf, April 2008.

[136] D. C. Schmidt and C. Cleel, “Applying Patterns to Develop Exten-

sible ORB Middleware”, IEEE Communications Magazine, vol. 37,

no. 4, pp. 54–63, April 1999.

[137] J.-G. Schneider and O. Nierstrasz, Software Architectures: Advances

and Applications. Springer-Verlag, November 1999, ch. Compo-

nents, Scripts and Glue, pp. 13–25.

Bibliography 375

and Applications. Springer-Verlag, November 1999, ch. Compo-

nents, Scripts and Glue, pp. 13–25.

[138] B. Shannon, Java 2 Platform Enterprise Edition Specification, v 1.3,

http://java.sun.com/j2ee/1.3/download.html, Sun Microsystems

Std., July 2001.

[139] B. Shannon, Java 2 Platform Enterprise Edition Specification, v1.4,

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf, Sun Microsystems

Std., November 2003.

[140] B. Shannon, JSR 244: Java Platform, Enterprise Edition (Java EE)

Specification, v5,

http://jcp.org/aboutJava/communityprocess/final/jsr244, Sun Mi-

crosystems Std., April 2006.

[141] Software Engineering Institute, Carnegie Mellon University, “How

Do You Define Software Architecture?”,

http://www.sei.cmu.edu/architecture/definitions.html, June 2008.

[142] I. Sommerville, Software Engineering, 6th ed. Addison Wesley,

2001.

[143] R. Sterritt, “Towards Autonomic Computing: Effective Event Man-

agement”, in Proceedings of the 27th Annual NASA Goddard Software

Engineering Workshop (SEW ’02). IEEE Computer Society, Decem-

ber 2002, pp. 40–47.

[144] R. Sterritt and D. Bustard, “Autonomic Computing – a Means of

Achieving Dependability?” in Proceedings of the 10th IEEE Interna-

tional Conference and Workshop on the Engineering of Computer-Based

Systems (ECBS 2003). IEEE Computer Society, April 2003, pp. 40–

47.

376 Bibliography

[145] R. Sterritt and D. Bustard, “Towards an Autonomic Computing

Environment”, in Proceedings of the 14th International Workshop on

Database and Expert Systems Applications (DEXA ’03). IEEE Com-

puter Society, September 2003, pp. 694–698.

[146] R. Sterritt and M. Hinchey, “Autonomic Computing – Panacea or

Poppycock?” in Proceedings of the 12th IEEE International Confer-

ence and Workshops on the Engineering of Computer-Based Systems

(ECBS’05). IEEE Computer Society, April 2005, pp. 535–539.

[147] JAR File Specification,

http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html,

Sun Microsystems Std., 2003.

[148] Java Naming and Directory Interface (JNDI), http://java.sun.com/

products/jndi/, Sun Microsystems Inc. Std., July 1999.

[149] E. B. Swanson, “The dimensions of maintenance”, in Proceedings of

the 2nd International Conference on Software Engineering (ICSE ’76).

ACM Press, October 1976, pp. 492–497.

[150] R. S. Swarz and J. K. DeRosa, “A Framework for Enterprise

Systems Engineering Processes”, MITRE Corporation, Tech. Rep.,

November 2006,

http://www.mitre.org/work/tech_papers/tech_papers_06/06_1163/.

[151] C. Szyperski, Component Software: Beyond Object-Oriented Program-

ming, 2nd ed. Addison-Wesley Professional, November 2002.

[152] C. Szyperski, “Component Technology: What, Where, and How?”

in Proceedings of the 25th International Conference on Software Engi-

neering (ICSE ’03). IEEE Computer Society, May 2003, pp. 684–

693.

Bibliography 377

[153] H. S. Thompson, D. Beech, M. Maloney, and N. Mendel-

sohn, XML Schema Part 1: Structures Second Edition,

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/, World

Wide Web Consortium (W3C) Std., October 2004.

[154] S. Vajjhala and J. Fialli, JSR 222: Java Architecture for XML Bind-

ing (JAXB) 2.0, jcp.org/aboutJava/communityprocess/final/jsr222,

Sun Microsystems Std., April 2006.

[155] Y. Vandewoude and Y. Berbers, “Component state mapping for run-

time evolution”, in In Proceedings of the 2005 International Confer-

ence on Programming Languages and Compilers (PLC 2005). CSREA

Press, June 2005, pp. 230–236.

[156] T. Vogel, “Design and Implementation of Autonomous Reconfigu-

ration Procedures for EJB-based Enterprise Applications”, Diploma

thesis, Otto-Friedrich-University Bamberg, 2008.

[157] T. Vogel, J. Bruhn, and G. Wirtz, “Autonomous Reconfiguration

Procedures for EJB-based Enterprise Applications”, in Proceedings of

the 20th International Conference on Software Engineering and Knowl-

edge Engineering 2008 (SEKE’08). Knowlegde Systems Institute,

July 2008, pp. 48–53.

[158] Q. Wang, F. Chen, H. Mei, and F. Yan, “Using Application Server

To Support Online Evolution”, in Proceedings of International Confer-

ence on Software Maintenance (ICSM’02). IEEE Computer Society,

October 2002, pp. 131–140.

[159] R. Want, T. Pering, and D. Tennenhouse, “Comparing autonomic

and proactive computing”, IBM Systems Journal, vol. 42, no. 1, pp.

129–135, January 2003.

[160] I. Warren and I. Sommerville, “A Model for Dynamic Configura-

tion Which Preserves Application Integrity”, in Proceedings of the 3rd

378 Bibliography

International Conference on Configurable Distributed Systems (ICCDS

’96). IEEE Computer Society, May 1996, pp. 81–88.

[161] M. Wermelinger, “A Hierarchic Architecture Model for Dynamic

Reconfiguration”, in Proceedings of the Second International Workshop

on Software Engineering for Parallel and Distributed Systems (PDSE

’97). IEEE Computer Society, May 1997, pp. 243–254.

[162] J. White, D. C. Schmidt, and A. Gokhale, “Simplifying Auto-

nomic Enterprise Java Bean Applications Via Model-Driven Devel-

opment: A Case Study”, in Proceedings of the ACM/IEEE 8th Interna-

tional Conference on Model Driven Engineering Languages and Systems

(MoDELS / UML 2005). Springer-Verlag, October 2005, pp. 601–

615.

[163] J. White, D. C. Schmidt, and A. Gokhale, “Simplifying autonomic

enterprise Java Bean applications via model-driven engineering and

simulation”, Software and Systems Modeling, vol. 7, no. 1, pp. 3–23,

February 2008.

[164] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J. O.

Kephart, “An Architectural Approach to Autonomic Computing”,

in Proceedings of the First International Conference on Autonomic Com-

puting 2004 (ICAC 2004). IEEE Computer Society, May 2004, pp.

2–9.

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig und ohne

die Hilfe eines Promotionsberaters angefertigt habe. Dabei habe ich keine

anderen Hilfsmittel als die im Literaturverzeichnis genannten benutzt.

Alle aus der Literatur wörtlich oder sinngemäß entnommenen Stellen

sind als solche kenntlich gemacht.

Weder diese Arbeit noch wesentliche Teile derselben wurden einer ande-

ren Prüfungsbehörde zur Erlangung des Doktorgrades vorgelegt.

Die Arbeit wurde bisher noch nicht in ihrer Ganzheit publiziert. Alle be-

reits veröffentlichten Beiträge, auf denen diese Arbeit basiert, sind im Li-

teraturverzeichnis unter [31], [32], [33], [34], [35] und [157] angegeben.

Diese Arbeit stellt eine realistische Infrastruktur für die autonome Ver-

waltung von komponentenbasierten Geschäftsanwendungen vor. Der

Anwendungsbereich solcher Systeme stellt spezielle Anforderungen an

verwaltete Systeme und ist besonders von der Komplexitätsproblema-

tik betroffen. Um die praktische Relevanz der verfolgten Konzepte und

Verfahren zu gewährleisten, wurde ein etablierten Komponentenstan-

dards als Grundlage des Ansatzes gewählt. Bei diesem handelt es sich

um Enterprise JavaBeans, Version 3.0. Die vorgestellte Infrastruktur ist

generisch konzipiert und umgesetzt. Sie stellt sie eine Plattform bereit,

auf deren Basis Lösungen für verschiedene Anwendungsfelder des

Autonomic Computing realisiert werden können. Zur Unterstützung

autonomer Verwaltungseinheiten wird eine Programmierschnittstelle

bereitgestellt, welche ein System auf drei Ebenen abbildet und dessen

Steuerung ermöglicht: Auf oberster Ebene erfolgt die Betrachtung der

einem System zugrunde liegenden Software. Auf mittlerer Ebene wird

die Architektur eines verwalteten Systems adressiert. Interaktionen

innerhalb eines Systems werden auf der untersten Ebene dargestellt.

Auf dieser Grundlage kann ein System ganzheitlich und modellbasiert

verwaltet werden. Zur Unterstützung der Laufzeitverwaltung eines

Systems dient eine spezielle Komponente, welche in ein betroffenes

System integriert werden muss. Sie ist konform zum verwendeten

Standard und erfordert keine Anpassung der zugrunde liegenden Kom-

ponentenplattform. Für die Herstellung der Verwaltbarkeit von Kom-

ponenten wird ein Werkzeug bereitgestellt, welches automatisiert alle

nötigen Anpassungen vornimmt. Darüber hinaus ist die Verwaltung

eines Systems für dessen Elemente zur Laufzeit transparent. Zusam-

mengenommen bleibt die Entwicklung von Geschäftsanwendungen

UNIVERSITY OF BAMBERG PRESS

ISBN 978-3-923507-49-8
ISSN 1867-7401

18,00 Euro

Seit einigen Jahrzehnten ist eine fortschreitende Durchdringung immer

weiterer Bereiche des menschlichen Lebens mit IT-Systemen festzustellen.

Hiermit verbunden ist ein massives Ansteigen der inhärenten Komplexität

dieser Systeme. Ein für die Zukunft zu erwartender weiterer Komplexitäts-

anstieg erfordert eine explizite Adressierung um die Weiterentwicklung der

IT nicht zu behindern.

Das Konzept der Komponentenorientierung beinhaltet Ansätze zur Komple-

xitätsreduktion für die Entwicklung und Konfiguration von Software durch

funktionale Dekomposition. Mit der Vision des Autonomic Computing exi-

stiert ein Ansatz zur Komplexitätsbewältigung für Betrieb und Wartung von

Softwaresystemen durch die Übertragung von Aufgaben zur Feinsteuerung

eines Systems auf das verwaltete System selbst.

Diese Arbeit stellt eine realistische Infrastruktur für die autonome Ver-

waltung von Geschäftsanwendungen vor. Basierend auf einem etablierten

Komponentenstandard wird eine Plattform vorgestellt die autonomen

Verwaltungseinheiten eine ganzheitliche und modellbasierte Verwaltungs-

schnittstelle zur Informationsversorgung und zur Systemanpassung bietet.

Die vorgestellte Plattform unterstützt den eingesetzten Komponentenstan-

dard vollständig. Gleichzeitig werden keine Zusatzanforderungen an die

Entwicklung von verwalteten Komponenten gestellt. Somit ist die Herstel-

lung der Verwaltbarkeit von Softwarekomponenten nicht mit einem Kom-

plexitätsanstieg verbunden.

