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Abstract
The Trivers–Willard hypothesis (TWH) states that parents in good condition tend to 
bias their offspring sex ratio toward the sex with a higher variation in reproductive 
value, whereas parents in bad condition favor the opposite sex. Although the TWH 
has been generalized to predict various Trivers–Willard effects (TWE) depending 
on the life cycle of a species, existing work does not sufficiently acknowledge that 
sex-specific reproductive values depend on the relative abundances of males and 
females in the population. If parents adjust their offspring sex ratio according to the 
TWE, offspring reproductive values will also change. This should affect the long-term 
evolutionary dynamics and might lead to considerable deviations from the original 
predictions.

In this paper, I model the full evolutionary dynamics of the TWE, using a published 
two-sex integral projection model for the Columbian ground squirrel (Urocitellus co-
lumbianus). Offspring sex ratio is treated as a nonparametric continuous function of 
maternal condition. Evolutionary change is treated as the successive invasion of mu-
tant strategies. The simulation is performed with varying starting conditions until an 
evolutionarily stable strategy (ESS) is reached.

The results show that the magnitude of the evolving TWE can be far greater than 
previously predicted. Furthermore, evolutionary dynamics show considerable non-
linearities before settling at an ESS. The nonlinear effects depend on the starting 
conditions and indicate that evolutionary change is fastest when starting at an ex-
tremely biased sex ratio and that evolutionary change is weaker for parents of high 
condition. The results show neither a tendency to maximize average population fit-
ness nor to minimize the deviation between offspring sex ratio and offspring repro-
ductive value ratio.

The study highlights the importance of dynamic feedback in models of natural se-
lection and provides a new methodological framework for analyzing the evolution of 
continuous strategies in structured populations.
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1  | INTRODUC TION

The Trivers–Willard hypothesis (TWH) states that parents in good 
condition preferentially produce the sex with a higher variation in 
reproductive value, whereas parents in bad condition favor the op-
posite sex (Trivers & Willard, 1973). Many empirical studies support 
the TWH (Cameron & Dalerum, 2009; Cameron & Linklater, 2007; 
Charnov et  al.,  1981; Clutton-Brock, Albon, & Guinness,  1984, 
1986; Mealey & Mackey,  1990). However, there is a considerable 
amount of contradictory empirical evidence (Brown & Silk,  2002; 
Cameron, 2004; Hewison & Gaillard, 1999; Kolk & Schnettler, 2013; 
Sheldon & West, 2004). Schindler et al. (2015) show that these in-
consistencies may arise because different life histories change the 
predictions of the TWH. To account for this, they generalize the 
TWH to any functional relationship between parental condition and 
offspring reproductive value: parents preferentially produce the sex 
that has the higher expected reproductive value, given the parents’ 
own condition. Thus, depending on the specific offspring reproduc-
tive value functions, different types of the Trivers–Willard effects 
(TWE) may emerge.

Since offspring reproductive value functions depend on the 
long-term development of the whole population, this generalized 
version of the TWH requires an explicit model of the underlying 
population dynamics. Schindler et al.  (2015) demonstrate how this 
can be accomplished by a two-sex integral projection model (IPM; 
Ellner et al., 2016; Ellner & Rees, 2006). In contrast to previous stud-
ies, the demographic approach provides an explicit test of the condi-
tions necessary for a TWE.

However, the predictions made by Schindler et al.  (2015) only 
refer to the momentary change in condition-dependent offspring 
sex ratio. This implies that offspring reproductive value is treated 
as an independent variable to predict the direction of change given 
an equal offspring sex ratio. It is not possible to infer the long-term 
evolutionary dynamics from this momentary change. The main rea-
son for this is that a biased sex ratio is known to influence male and 
female reproductive values (Fisher,  1930). Since every offspring 
has one mother and one father, the absolute reproductive value 
of males and females must be equal; given an unequal sex ratio, 
this implies that per capita reproductive value will be higher for the 
rarer sex (this is known as the Fisher condition). Consequently, if 
parents adjust their offspring sex ratio according to the generalized 
TWE, per capita male and female reproductive values will change, 
which, in turn, alters the expected TWE. This introduces a nonlinear 
feedback loop, which may change the empirical predictions derived 
from the model (Borgstede, 2019). Shyu and Caswell (2016) investi-
gate the effect of such nonlinear feedback on the evolutionary dy-
namics of the TWE using a matrix population model. However, their 
model uses only two discrete stages to capture parental condition. 
Leimar (1996) acknowledges the relevance of changing reproduc-
tive values for the dynamics of the TWE for continuous parental 
condition. However, his formal analysis does not incorporate the 
effects of varying abundances of available mates on evolutionary 
dynamics.

This study aims at exploring the effects of nonlinear population 
feedback on the evolution of the TWE. I use a continuous two-sex 
integral projection approach to model the long-term evolutionary 
dynamics of the TWE. To accomplish this, I introduce a new method 
to model the evolution of continuous conditional strategies by 
means of nonparametric spline functions (Green & Silverman, 2000; 
Hastie & Tibshirani, 1999). I further modify the two-sex IPM used 
by Schindler et al. (2015) such that dynamic evolutionary feedback 
can be incorporated by means of an evolutionary invasion analy-
sis. Using a published model of the demography of the Columbian 
ground squirrel (Urocitellus columbianus), I simulate the evolutionary 
trajectories of condition-dependent offspring sex ratio to find evolu-
tionarily stable strategies (ESS) and investigate possible explanations 
for the resulting evolutionary endpoints.

2  | MODEL

IPMs describe the dynamics of continuous trait distributions (like 
size or weight) in a population by projecting the population distribu-
tion from one time step to the next time step (Easterling et al., 2000):

The number (or relative frequency) of trait value x at time t + 1 is 
denoted n(x, t + 1). This trait frequency is described as a function of 
trait frequency y at time t, which is denoted n(y, t). The trait distribu-
tion in the next time step is calculated from the trait distribution in 
the previous time step by means of a survival function p(x, y), denot-
ing the probability of an individual of trait value y to survive and de-
velop into an individual of trait value x, and a fertility function q(x, y), 
denoting the contribution of a surviving individual of trait value y to 
the frequency of trait value x offspring.

Here, I use a slightly modified version of the two-sex IPM 
introduced by Schindler et  al.  (2013), describing the relative 
trait distributions of males and females separately, such that 
nm(z, t) + nf(y, t) = n(y, t). The survival functions are treated as in the 
one-sex case, yielding p(x, z)nm(z, t) and p(x, y)nf(y, t), respectively. 
Fertility is described with regard to all possible trait combinations 
of female and male individuals as captured by the term nf(y, t)nm(z, t)
. The probability that a trait value y female and a trait value z male 
mate is denoted m(y, z). This mating probability is multiplied by the 
number of offspring per breeding event for this combination of pa-
rental trait values, R(y, z). To obtain the contribution of a breeding 
event to the trait frequencies in the next time step, the result is mul-
tiplied by the conditional probability f(x |y, z) of an offspring having
trait value x, given that the mother has trait value y and the father 
has trait value z. The two-sex IPM can now be described by the dy-
namic equations for male and female trait values:

(1)n(x, t + 1) = ∫
[
p(x, y) + q(x, y)

]
n(y, t)dy

(2)
nm(x, t + 1) = ∫ p(x, z)nm(z, t)dz + Cnf ,nm ∫ s(y)f(x |y, z)m(y, z)nf(y, t)nm(z, t)R(y, z)dy dz
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Here, s(y) denotes the proportion of male offspring as a function of 
maternal weight y and 1 − s(y) the corresponding proportion of female 
offspring. Cnf ,nm

 is a normalization constant that ensures that the overall 
number of birth events is set equal to the total number of reproducing 
females, that is, every female above a threshold rate has an expecta-
tion of reproduction:

with ymin being the minimum trait value of reproducing individuals.
To model the effect of male condition on reproductive value, the 

mating function was chosen such that males with high trait values 
have a higher probability of mating than males with lower trait val-
ues. Following Schindler et al. (2013), the mating function was

with � specifying the degree of male mating advantage and ymin being 
the minimum trait value of reproducing individuals.

In this study, I use a published two-sex IPM of the Columbian 
ground squirrel (Urocitellus columbianus) with body weight as the 
conditioning variable. Columbian ground squirrels exhibit a po-
lygynandrous mating system where larger males show strong ter-
ritorial behavior. Although territorial behavior does not guarantee 
mating success, it raises the chances of a male to obtain the first 
copulation from estrous females residing in its territory (Manno & 
Dobson, 2008). However, some males adopt a nonterritorial mating 
strategy, thereby obtaining mating opportunities without having to 
defend a territory (Balmer, 2010). Therefore, it is difficult to predict 
whether it is profitable for females to skew their offspring sex ratio 
conditioned on weight. A long-term study by Gedir and Michener 
(2014) revealed no condition-dependent offspring sex ratio in a re-
lated species (Urocitellus richardsonii). Hence, it is not clear what to 
expect with regard to the TWE for the Columbian ground squirrel.

The functions p(x, y), R(y, z), f(x |y, z), and s(y) were approximated 
by generalized regression models based on data collected between 
1994 and 1998 in the Sheep River Provincial Park in the foothills 
of the Rocky Mountains in Alberta, Canada. Data included female 
weight after spring emergence, female survival to the next year, the 
weight of female survivors the next spring, litter size at weaning 
and offspring weights at weaning. Since male and female squirrels 
have similar demographic characteristics, the estimated functions 
were used to describe female and male demography. Further details 
on the model and its parameterization can be found in Schindler 
et al.  (2013). The model was chosen to enable a direct comparison 
between the dynamic approach taken in this study and the predic-
tions made by Schindler et al. (2015). The model was implemented 

using R, version 4.0.3 (R Core Team, 2020). All functions and inter-
mediate results were double-checked with the results of Schindler 
et al. (2013) and validated using the original MATLAB script used in 
Schindler et al. (2015).

3  | METHOD

The demographic model was used to perform an evolutionary inva-
sion analysis. The rationale behind this approach is that evolution-
ary change can be analyzed by modeling successional invasions in a 
monomorphic population. As long as we consider only small changes, 
a rare mutant phenotype that outperforms the resident phenotype 
in terms of long-term growth rate under the conditions established 
by the resident population will eventually replace the resident phe-
notype (Dercole & Rinaldi, 2008).

The first step of the analysis consists of calculating the long-term 
population growth rate � and the stable stage distribution of the 
resident model. This is accomplished by iterating the demographic 
model until the relative weight distribution does no longer change. 
A numerical approximation of the integral was used to project the 
population to the next generation. The second step was to calculate 
the long-term population growth rate of the mutant model, given 
the stable stage distribution of the resident population. For this 
sake, a projection matrix was constructed, treating the contributions 
of male and female parents to the male and female population at 
time t + 1 separately and then stacking the submatrices together 
(see Appendix S1 for technical details). This projection matrix was 
substituted with the abundances of reproducing males and females 
under the conditions established by the resident phenotype, thereby 
fixing the mating rates. The mutant growth rate was obtained by cal-
culating the dominant eigenvalue of the mutant projection matrix 
(Caswell, 2001). The difference between mutant growth rate �′ and 
resident growth rate � determined the invasion fitness w(s′, s) of the 
mutant strategy s′ with respect to the resident strategy s.

Condition-dependent reproductive values were obtained by 
substituting the model equations of the resident model with the 
stable stage distribution and calculating the left eigenvector of the 
dominant eigenvalue of the asymptotic projection matrix. Offspring 
reproductive values for mothers and fathers were obtained by mul-
tiplying the weight-dependent reproductive values for males and 
females by the expected male and female offspring weight distri-
butions. Male and female offspring reproductive values (vm and vf) 
were compared by dividing male reproductive value by the sum of 
male and female reproductive value to form a reproductive value 
ratio (RVR). Conditioning offspring reproductive values of mater-
nal weight, we can define a corresponding reproductive value ratio 
function RVR(y):

Hence, a RVR of 0.5 means that for a given weight, male and 
female offspring have the same reproductive value. Reproductive 

(3)
nf(x, t + 1) = ∫ p(x, y)nf(y, t)dy + Cnf ,nm ∫ (1 − s(y))f(x |y, z)m(y, z)nf(y, t)nm(z, t)R(y, z)dy dz

(4)Cnf ,nm
=

∫∞
ymin

nf(y, t)dy

∫∞
0

m(y, z)nf(y, t)nm(z, t)dy dz

(5)m(y, z) =

⎧
⎪⎨⎪⎩

1∕2e�z, ify, z≥ymin

0 otherwise

(6)RVR(y) =
vm(y)

vm(y) + vf(y)
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value ratios are preferred over differences (as in Schindler 
et al., 2015) because ratios are independent of arbitrary factors in-
troduced by the choice of measurement units. By using RVR rather 
than the difference between male and female reproductive values, 
reproductive values are scaled such that they form a dimensionless 
number between zero and one. This allows for a direct comparison 
between reproductive values and sex ratios.

There are two standard approaches to model the evolution of 
continuous phenotypes such as condition-dependent offspring sex 
ratio. First, one may specify the model for a small number of dis-
crete levels of the conditioning variable (e.g., “high quality” and “low 
quality”). Second, one may describe the evolving strategy by means 
of a parametric function and then model natural selection on the 
parameters of this function (e.g., the slope and intercept of a lin-
ear function). However, both approaches limit the scope of analysis 
by introducing arbitrary restrictions on the phenotypic range of the 
evolving strategy.

To avoid the limitations that come with the above types of anal-
ysis, I model the evolving offspring sex ratio as a nonparametric func-
tion of adult condition. This allows for an unconstrained variation of 
the shape of the conditional offspring sex ratio function. Technically, 
this is accomplished by introducing small disturbances into the con-
ditional offspring sex ratio using a Gaussian error distribution. The 
resulting disturbed strategy is then smoothed by a nonlinear spline 
function (Green & Silverman, 2000; Hastie & Tibshirani, 1999).

Because the two-sex model used in the simulation is frequency-
dependent, it may well be nonergodic. This means that different 
initial conditions do not necessarily result in the same evolutionary 
endpoint. To assess nonergodicity, several simulations were per-
formed with different initial population structures. The first variant 
starts at an equal offspring sex ratio for all mothers (the equal SR 
strategy). The second and third variants start at the maximum possi-
ble TWE with mothers producing exclusively one sex when below a 
certain weight and the other sex when above a certain weight, with 
a smooth but steep transition between male bias and female bias 
around a certain threshold. Since there is no a priori reason to expect 
a TWE in one direction or the other for Columbian ground squirrels, 
two starting positions for the maximum TWE were realized: one with 
low-weight females producing exclusively females and high-weight 
females producing exclusively males (classical, or positive TW strat-
egy), and one with low-weight females producing exclusively males 
and high-weight females producing exclusively females (reversed, or 
negative TW strategy). Finally, the simulation was repeated with an 
initial population that almost exclusively produced males (the male 
bias strategy) and with an initial population that almost exclusively 
produced females (the female bias strategy).

For each of the starting conditions, evolutionary dynamics were 
modeled as a series of successive invasions, until the evolving off-
spring sex ratio strategy reached a stable equilibrium state (i.e., until 
small deviances from the established strategy consistently resulted 
in selection back toward the established strategy). Mutation rates 
and smoothing parameters for the spline function were calibrated 
such that small disturbances would alter the shape of the function 

without producing abrupt changes.1 Reproductive values and sta-
ble stage distributions were calculated for all invading strategies 
using a numerically approximated population projection matrix (see 
Appendix S1). For each simulated invasion, the deviance D between 
offspring reproductive value ratio, which is given by RVR(y), and off-
spring sex ratio, which is given by s(y), was calculated as the integral 
over the squared difference between the two values ranging over 
maternal weight:

with ymin being the minimum trait value of reproducing individuals.

4  | RESULTS

Figure 1 depicts the main results obtained from the reference model 
(equal SR). The long-term growth rate � of the reference model was 
1.05 and thus matched the one reported in Schindler et al.  (2013). 
The stable stage distribution revealed that, at equilibrium, mean 
maternal weight was 376.94 g (Figure 1b). Expected mean offspring 
weight at equilibrium was 97.2 g (Figure 1a). Offspring RVR was cal-
culated as a function of offspring weight (Figure 1c) and as a function 
of maternal weight (Figure 1d). Conditioned on offspring weight, the 
RVR had a reversed s-shape with an equal sex ratio at the point of 
mean offspring weight. Below this point, males had a higher repro-
ductive value than females. Above this point, females had a higher 
reproductive value than males. Conditioned on maternal weight, the 
RVR was a monotone decreasing function of weight with an equal 
sex ratio occurring at the point of mean maternal weight. The reason 
why an equal sex ratio occurs at the point of mean maternal weight is 
that the inheritance function f(x |y, z) yields average-sized offspring 
for average-sized mothers. Hence, the expected offspring RVR given 
maternal weight depicted in Figure 1d mirrors the overall shape of 
the offspring RVR depicted in Figure 1c. This matches the results in 
Schindler et al. (2015) (note that here I use reproductive value ratios 
rather than differences). The negative slope of the RVR results from 
the effects of the male mating advantage on the demography of the 
population. Given the parameterization from Schindler et al. (2013), 
mating success for females is constant once they have reached the 
minimum weight for reproduction. However, males that have just 
reached the minimum weight for reproduction have a considerably 
lower chance to mate when compared to females, whereas high-
weight males have a higher chance to reproduce when compared 
to females. Consequently, because males need to reach a certain 
weight to reproduce effectively, high-weight mothers benefit more 
from producing females who start reproduction at a younger age 
(Schindler et al., 2015).

Figure 2 illustrates the evolutionary change in weight-dependent 
offspring sex ratio as a series of successional invasions for each 
of the specified starting conditions. Within the range of error in-
troduced by the numerical approximations, all simulations of 

(7)D =

∞

∫
ymin

[
s(y) − RVR(y)

]2
dy



     |  5BORGSTEDE

evolutionary dynamics converged toward a single evolutionarily 
stable strategy. As predicted from the reference model, at the ESS, 
condition-dependent offspring sex ratio was male-biased below av-
erage maternal weight and female-biased above average maternal 
weight.2 However, contrary to the results of Schindler et al. (2015), 
who predicted a small reversed TWE, the effect is indeed very large, 
with a strong male bias for low-weight mothers and exclusive pro-
duction of females for extremely high-weight mothers.

Figure 2 shows that the evolved evolutionary equilibrium is inde-
pendent of the initial state of the population. However, the simula-
tions do not always produce a “smooth” transition from the starting 
point toward the ESS, but predict considerable nonlinear dynamics, 

depending on the initial offspring sex ratio. Most strikingly, the rate 
of change in condition-dependent offspring sex ratio appears to be 
higher for small-weight and medium-weight mothers than for high-
weight mothers. This effect is most obvious in the male bias con-
dition (Figure  2a), where low-weight and medium-weight mothers 
rapidly adjust their offspring sex ratio away from the (evolutionary 
unfavorable) extreme excess in males, whereas high-weight mothers 
seem to be less affected and retain a strong male bias at first. Thus, 
in the male bias condition, selection first leads to a positive TWE (i.e., 
female bias for low-weight mothers and male bias for high-weight 
mothers), which is later reversed until it gradually converges toward 
the ESS. The same overall pattern is also visible in the positive TWE 

F I G U R E  1   Weight distributions and reproductive value ratios (RVR) of the equal sex ratio model. Offspring weight (panel a) is a function 
of parental weight with an overall expected value of 97.2 g. Panel b presents the stable weight distribution for reproducing females at 
equilibrium. The expected value of maternal size is 376.94 g. Individuals below this value produce, on average, offspring that weigh less 
than the expected value of the offspring distribution; individuals above this value produce, on average, offspring that weigh more than the 
expected value of the offspring distribution. Panels c and d depict the offspring RVR as a function of offspring weight (panel c) and maternal 
weight (panel d). Panel d corresponds to a reversed TWE with RVR biased toward males below average maternal weight and RVR biased 
toward females above average maternal weight. This is a direct consequence of the pattern depicted in panel c, where the RVR is biased 
toward males below average offspring weight and the RVR is biased toward females above average offspring weight
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F I G U R E  2   Evolving offspring sex ratio s(y) (proportion of males among offspring) as a function of maternal condition y (weight in g). Each 
row corresponds to a different initial conditional offspring sex ratio, which is depicted on the first panel from the left in each row. The rows 
depict the conditional offspring sex ratios that evolve over the course of several thousand successional invasions. The dotted vertical lines 
mark the average weight of reproducing females. Despite different initial values and different intermediate steps, all simulations eventually 
settle at the same evolutionary equilibrium, which can be seen in the last column on the right-hand side

condition (Figure  2b), where the offspring sex ratio of low-weight 
mothers changes rapidly away from the initial extreme female bias, 
while high-weight mothers are less affected by selection at first. 
Even in the equal sex ratio condition (Figure 2c), selection toward 
the ESS is slightly lagged for high-weight mothers, before it starts to 
change rapidly toward a female-biased offspring sex ratio.

To investigate the full evolutionary dynamics that lead to the 
ESS, the evolutionary trajectories of condition-dependent offspring 
sex ratio were analyzed using the quartiles of maternal weight from 
the reference model (i.e., for minimum, maximum, and median, as 
well as the 25th and 75th percentiles of the maternal weight distri-
bution). Additionally, the trajectories of the corresponding deviance 
between offspring RVR and offspring SR, the population growth 
rate, and the population sex ratio were tracked for all conditions. 
Figures  3–6 depict the corresponding dynamics over the whole 
range of the successional invasions for the equal SR condition. The 

corresponding plots for the remaining four conditions can be found 
in Appendix S2.

Figure  3 depicts the evolutionary dynamics of condition-
dependent offspring sex ratio for all quartile values of maternal 
weight starting at an equal offspring sex ratio (equal SR strategy). 
Like in Figure  2, the rate of change appears to be lagged for the 
maximum weight class, especially when compared to the 3rd quar-
tile weight class. Whereas during the first 100 invasions, the rate of 
change is higher for the 3rd quartile weight class than for the max-
imum weight class, after a couple of hundred successive invasions, 
the highest weight class reaches the highest rate of change.

Following the logic of Schindler et al. (2015), expected offspring RVR 
should predict not only the direction but also the magnitude of the TWE. 
If this is correct, it appears plausible to assume that the evolving off-
spring sex ratio should eventually approach the offspring RVR, thereby 
reducing the deviance between both measures. In fact, the simulation 
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reveals a tendency toward a smaller deviance, as can be seen in Figure 4, 
which shows a moving average of the scaled deviance3 over the range of 
invasions for the equal SR condition. As predicted, average deviance was 
higher at the beginning of the simulation when compared to the ESS. 
However, depending on the starting conditions, deviance did not always 
decrease monotonically with successive invasions.4

Figure  5 depicts the evolutionary trajectory of average fitness 
as measured by population growth rate � for the equal SR condition. 
Although there seems to be an overall tendency toward higher popula-
tion growth rate when starting from the equal SR strategy, the ESS did 
not coincide with the strategy that maximizes �. Specifically, strategies 
with a strong bias toward female offspring produced higher population 
growth because, due to the scaling factor introduced in Equation (6), 
the overall number of matings equaled the number of reproducing fe-
males. Therefore, selection did not maximize average fitness.5

Figure 6 shows how the overall population sex ratio (male propor-
tion of individuals) changes as a result of biased offspring sex ratios 
for the equal SR condition. The population sex ratio starts at 0.5 and 
gradually increases with successional invasions. At equilibrium, the 
population sex ratio is 0.502 and thus slightly skewed toward males. 
This is in line with Bull and Charnov (1988), who predict that, given 
condition-dependent offspring sex ratio, there should be a small over-
all excess of the sex that is overproduced by mothers in bad condition.

5  | DISCUSSION

The aim of this study was to explore the evolutionary dynamics of the 
TWE in a way that accounts for the mutual dependence between re-
productive values and sex ratios and allows to model unconstrained 

selection on a continuous conditional phenotype. This was accom-
plished by means of an evolutionary invasion analysis in combination 
with a nonparametric approach to modeling offspring sex ratio as a 
continuous function of maternal condition.

The first main result was that the evolving TWE is much higher 
than predicted by the initial offspring reproductive values. This is 
caused by a positive feedback-loop consisting of offspring sex ratio 
affecting offspring reproductive value, which then affects offspring 
sex ratio again. If, conditioned on weight, mothers produce more 
offspring of the sex with greater reproductive value, the relative 
abundances of males and females in the population change. This, 
in turn, changes the reproductive values. Additionally, by altering 
conditional offspring sex ratio, mothers directly affect the number 
of their own male and female offspring. Consequently, because off-
spring reproductive value is calculated over the sum of all offspring, 
this naturally biases the expected offspring reproductive values in 
the direction of the offspring sex ratio. Therefore, reproductive val-
ues obtained from a demographic model should be treated with care 
when they are used to predict biased sex ratios like in the case of the 
TWE. The results presented here show that neglecting this feedback 
loop may lead to erroneous conclusions.

The results further show that, although all simulations con-
verged toward a single ESS, the evolutionary trajectory depends on 
the initial population structure. The general pattern implied by the 
simulations is that evolutionary change of condition-dependent off-
spring sex ratio occurs faster for medium and low-weight mothers 
and more slowly for extremely high-weight mothers. This can be ex-
plained by the fact that there are generally only very few extremely 
heavy individuals in the population because the weight distribution 
tends to be skewed (compare Figure 1b). Consequently, although the 
marginal gain in individual fitness from a biased sex ratio is high-
est for mothers of extremely high weight, they hardly contribute to 
the overall population. Therefore, changes in offspring sex ratio for 
high-weight mothers have a comparably small effect on population 
growth, and, thus, invasion fitness.

The lag in evolutionary change observed for high-weight moth-
ers can further drastically change the dynamics of the overall shape 
of the evolving strategy. This is most obvious in the male bias condi-
tion. Here, the initial population consists nearly exclusively of males. 
Due to the Fisher condition, mothers biasing their offspring sex 
ratio toward females will have a higher evolutionary fitness, which 
is why there is strong selection away from the male bias strategy. 
Because selection is weaker on high-weight mothers, there will still 
be relatively many high-weight males in the population, however. 
Consequently, low-weight males will have a smaller mating rate than 
in the equal sex ratio condition because they cannot compete effec-
tively with the high-weight males. It thus becomes more profitable 
for low-weight mothers to produce more females than males. This 
explains the initial positive TWE that can be observed in Figure 3a. 
However, due to the delayed reproduction for males (as compared to 
females of equal birth weight), producing females is also more prof-
itable (even to a higher degree) for high-weight mothers. Therefore, 
the initial TWE is eventually reversed as high-weight mothers start 

F I G U R E  3   Evolutionary trajectories of offspring sex ratio s(y) 
(proportion of males among offspring) as a function of maternal 
condition y (weight in g) for the equal sex ratio condition. 
Evolutionary dynamics were modeled as successive mutant 
invasions starting at an equal offspring sex ratio for all maternal 
weights. The different lines depict the evolutionary trajectories 
of the quartile values (calculated from the maternal weight 
distribution of the reference model)
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to bias their offspring sex ratio away from males. These nonlinear-
ities are a direct consequence of the dynamic population feedback 
introduced by changing reproductive values.

In addition to these results, it was found that selection tended 
to produce higher average fitness at the ESS when compared to the 
equal SR condition. However, the ESS did not coincide with the strat-
egy that maximizes average fitness, because the mating function 
used in the simulations forces population growth to be proportional 
to the number of reproducing females. Consequently, average fit-
ness would be highest, when the population sex ratio is skewed to-
ward females. However, at the ESS, the overall population sex ratio 
was slightly skewed toward males as predicted by Bull and Charnov 
(1988). Hence, there was no general tendency to maximize aver-
age fitness (as measured by population growth rate). This may be a 
general pattern inherited from the nonlinearity of two-sex models. 
Since the number of reproductive events is scaled according to the 

number of reproducing females at each iteration, the growth rate of 
rare mutants depends on the strategy that is followed by the res-
ident population. Thus, the long-term population growth rate of a 
specific strategy may differ from its growth rate when being a rare 
mutant in a monomorphic population. Therefore, in sexually repro-
ducing species, evaluating different strategies by means of their 
long-term population growth rates may give a misleading impression 
with regard to the direction of evolutionary change.

Furthermore, evolutionary dynamics reduced the deviance be-
tween offspring sex ratio and offspring reproductive value ratio. This 
means that at the ESS the condition-dependent sex ratio strategy 
tended toward the ratio between the expected offspring reproduc-
tive values. This is in line with previous theoretical predictions stating 
that the TWE is to be understood as a condition-dependent bias to-
ward expected offspring reproductive values. For example, Schindler 
et al. (2015) base their predictions about the direction and magnitude 
of the TWE solely on expected offspring reproductive values, without 
testing whether the implied outcome of selection actually matches 
these predictions. The results of the current study show that evolu-
tionary dynamics are not guaranteed to exhibit a general tendency to 
reduce the deviation between offspring sex ratio and offspring repro-
ductive value ratio. One possible explanation for this effect could be 
that in the region between the maximal negative TWE and an equal 
offspring sex ratio, selection toward offspring RVR (as implied by the 
TWH) is opposed by selection toward an equal sex ratio (as implied by 
the Fisher condition), leading to an equilibrium that lies somewhere 
between the minimum deviance strategy and the equal sex ratio strat-
egy. However, the results are not conclusive in this respect. Therefore, 
further research should investigate the effects of opposing selection 
pressures in the context of the TWH.

In addition to the results specific to the TWE, this study intro-
duced some general methodological improvements over existing 
work. First, the definition of an explicit projection matrix to ap-
proximate the two-sex IPM makes this type of model accessible for 

F I G U R E  4   Deviance between offspring SR and offspring RVR 
(moving average over 1,000 iterations) over the whole range of 
successional invasions for the equal sex ratio condition. Deviance 
was scaled using a logarithmic transformation

F I G U R E  5   Population growth rate � (moving average over 1,000 
iterations) over the whole range of successional invasions for the 
equal sex ratio condition

F I G U R E  6   Population sex ratio (moving average over 1,000 
iterations) over the whole range of successional invasions for the 
equal sex ratio condition. Sex ratio was measured as the proportion 
of males in the overall population
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evolutionary invasion analysis. Second, the nonparametric approach 
to describe mutations in a continuous strategy makes it possible to 
model the dynamics of whole functions, rather than single parame-
ters. This allows for the analysis of complex evolutionary processes 
without arbitrary (and often, biologically unjustified) assumptions 
about the functional form of the evolving phenotypes.

Some limitations of the study have to be mentioned. First, the 
successive invasion paradigm is only one possible way to model 
evolutionary dynamics. The underlying assumptions of a monomor-
phic population and rare mutations limit the scope of this study. 
Furthermore, although the simulations were performed using vari-
ous starting conditions, this does not guarantee a general tendency 
toward the identified evolutionary endpoint. However, since the 
starting conditions cover all plausible extreme biases (as well as a 
no-bias condition), it is difficult to conceive of an evolutionary tra-
jectory that would not eventually converge with the observed ones. 
In addition, even when selection initially favored a positive TWE in 
the male bias condition, the trajectory eventually approached the 
predicted negative TWE. Taken together, this gives considerable ev-
idence for a general tendency toward the observed ESS.

Another limitation stems from the choice of the smoothing 
method used in the simulations. Spline functions are only one way 
to generate a nonparametric function from a randomly disturbed set 
of data points. Thus, the evolving strategy was not completely inde-
pendent of constraining conditions. Moreover, the amount of ran-
dom noise cannot be chosen arbitrarily small because if disturbances 
are too small, they are smoothed by the spline function. As a result, 
the evolving sex ratio did not converge to an exact ESS but settled 
around an evolutionary endpoint with a (small but detectable) quasi 
random error distribution. This can be seen in Figure 3, where the 
lines show some unsystematic disturbances around the equilibrium 
point. Consequently, the predicted ESS is merely an approximation 
within the scope of the constraints imposed by the choice of the 
smoothing method. However, these constraints are certainly much 
less influential than those of the parametric approach usually applied 
to model conditional strategies. Despite these limitations, the re-
sults yield important insights into the evolutionary dynamics of the 
TWE on a theoretical level and help to understand how condition-
dependent sex ratio evolves in species with a complex life history.

This study shows that understanding the conditions of the TWE 
is even more difficult than previously thought and that the evolu-
tionary dynamics of the TWE may be highly nonlinear depending on 
the starting conditions. While it is necessary to estimate condition-
dependent offspring reproductive values from demographic data, 
these are not sufficient to predict the direction and strength of the 
TWE. The results presented here show that considering evolution-
ary dynamics and population feedback is essential to understand 
how condition-dependent sex ratios evolve as the result of a com-
plex interplay between natural selection and demography.
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ENDNOTE S
	1	 In all simulations, the spline function was constructed using 15 equi-

distant knots and a Gaussian error distribution with � = 0 and � = 0.0005 
(i.e., an average deviation of only five thousandths of a gram was 
allowed). The penalty for abrupt changes was calculated using R’s 
smooth.spline function with a smoothness parameter of spar = 0.3. 
Changing these parameters slightly altered the slope of the equilib-
rium strategy but did not affect the overall pattern of evolutionary 
dynamics observed in the simulations.

	2	 To double check the plausibility of this result, the simulation was re-
peated under random mating. Without male mating advantage, an 
equal offspring SR turned out to be evolutionarily stable (i.e., small 
deviations could not replace the equal SR strategy).

	3	 The deviance was scaled such that the range of values could be more 
easily compared across conditions. First, the natural logarithm of the 
deviance was calculated. Then, the minimum value of the logarith-
mized deviance across all conditions was subtracted. Finally, the re-
sulting value was again logarithmized.

	4	 The strategy with the smallest deviance occurred within the first 800 
invasions starting from the negative TW condition, which was later re-
placed by invading strategies with a greater deviance (compare Figure 
A2 in Appendix S2).

	5	 Compare Figure A3 in Appendix S2.
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