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Survey item nonresponse and its treatment 

BY SUSANNE RÄSSLER AND REGINA T. RIPHAHN * 

SUMMARY: One of the most salient data problems empirical researchers face is the lack 
of informative responses in survey data. This contribution briefly surveys the literature 
on item nonresponse behavior and its determinants before it describes four approaches 
to address item nonresponse problems: Casewise deletion of observations, weighting, im-
putation, and model-based procedures. We describe the basic approaches, their strengths 
and weaknesses and illustrate some of their effects using a simulation study. The paper 
concludes with some recommendations for the applied researcher. 

KEYWORDS: Item nonresponse, imputation, weighting, survey data. JEL Cl, C81, C49. 

1. INTRODUCTION 

Survey data can be imperfect in various ways. Sampling and noncoverage, 
unit nonresponse, interviewer error as well as the impact of survey design 
and administration can affect data quality. For the applied researcher item 
nonresponse, i. e., missing values among respondents' answers present a reg-
ular challenge. This problem receives increasing attention in the literature, 
where problems of statistical analysis with missing data have been discussed 
since the early 1970's (e. g., Hartley and Hocking, 1971; Rubin, 1972, 1974; 
or see Madow et al., 1983). 

Even though there exist numerous alternative approaches, most statisti-
cal software packages 'solve' the problem of item nonresponse by deleting 
all observations with incomplete data. This so-called 'complete case analy-
sis' does not only neglect available information but may also yield biased 
estimates. In their eminent textbook Little and Rubin (1987, 2002) catego-
rize the approaches to deal with missing data in four main groups. Besides 
complete case analysis there are weighting, imputation, and model-based 
procedures. Weighting approaches are typically applied to correct for unit 
nonresponse, i. e., the complete refusal of single respondents to provide in-
formation, which may lead to biased estimates as well. The basic idea is 
to increase the weights of respondents in some subsamples (e. g., among 
providers of complete data) in order to compensate for missing responses 
from respondents in other subsamples (e. g., incomplete data providers). 
Weighting procedures can consider population or sampling weights to align 
the observable sample with the relevant population. 

In contrast, imputation techniques insert values for missing responses 
and generate an artificially completed dataset. A large number of alterna-
tive procedures are applied to choose the values by which missing values 
are replaced: hot deck imputations use values from other observations in 
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the sample, mean imputation fills missing variables using the mean of ap-
propriate sub-samples, and regression imputation generates predicted values 
from regression models. Besides these single imputation methods, multiple 
imputation procedures impute more than one value for each missing value, 
in order to reflect the uncertainty of missingness and imputation. 

Finally, model-based procedures rely on a specified model of the observed 
data. Inference is based on the likelihood or - in the Bayesian framework -
on the posterior distribution under that model. In general, predictions of the 
missing data are generated based on the respondents' observed characteris-
tics by taking advantage of correlation patterns measured for respondents 
without missing values. These value substitutions can occur at different 
levels of complexity. 

An evaluation of the properties of the four approaches hinges on the 
assumptions regarding the nature of the missing values. The crucial role 
of this missing data mechanism was largely ignored until its concept was 
formalized by Rubin (1976). Modern statistical literature now distinguishes 
three cases: missing completely at random (MCAR), missing at random 
(MAR), and not missing at random (NMAR). 

MCAR refers to missing mechanisms which are unrelated to the survey 
- variables, missing or observed. If, for instance, the probability that income 
· 'ls reported is the same for all individuals, regardless of, e. g., their age or 

income itself, then the missing income data are said to be MCAR. Data 
are labeled MAR, if the missing mechanism is dependent on observed but 
not on unobserved variables. This is the case, e. g., if special socio-economic 
groups are disproportionately subject to missing values and the missingness 
can be explained by observed variables. Finally, data are termed NMAR, if 
the missingness depends on the values of the variables that are actually not 
observed. This might be the case for income reporting, where individuals 
with higher incomes tend to be less likely to respond, even conditional on 
their observed data. 

The next section describes the prevalence, determinants, and effects of 
item nonresponse using the German Socioeconomic Panel Survey (GSOEP) 
as an example. Section 3 discusses the strengths and weaknesses of the 
alternative approaches to solve the item nonresponse problem. The paper 
concludes with recommendations for applied researchers. 

2. lTEM NONRESPONSE IN THE GERMAN SOCIOECONOMIC PANEL 

2.1. PREVALENCE 0F ITEM NONRESPONSE IN THE GSOEP. The German 
Socioeconomic Panel is a household panel survey covering a broad range of 
issues. Its questionnaire has been administered annually since 1984. lt now 
covers over 20,000 individual respondents. The extent of item nonresponse in 
the GSOEP varies considerably across items. A veraging across the available 
19 annual panel waves (1984-2002) we obtain 0.4 percent item nonresponse 
for subjective health satisfaction, 0.5 percent for political party preference, 
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8.9 percent for gross monthly labor earnings, and 1.3 percent for the question 
on whether an individual has disability status. 1 

Riphahn and Serfling (2002, 2005) compared the item nonresponse rates 
across financial variables in the GSOEP cross-section of 1988. At the indi-
vidual level item nonresponse rates varied between 2.6 percent e. g., for re-
tirement benefits and 15.3 percent for income from self-employment. Among 
variables measured at the household level they observe more than 30 per-
cent item nonresponse for questions about interest and annuity payments. 
In contrast, certain questions on social transfers such as child or welfare 
benefits yielded nonresponse rates of below one percent. 

Schräpler (2004) describes the development of item nonresponse behavior 
with respect to individual gross labor income. He compares the nonresponse 
rates of a sample of respondents over the years and finds declining nonre-
sponse rates which differ depending on the method of data collection and 
respondent characteristics. Other studies confirm that individuals with a 
low propensity to continue responding to a panel survey are also less likely 
to disclose their income. 

2.2. DETERMINANTS AND EFFECTS OF ITEM NüNRESPONSE. The theo-
retical literature on item nonresponse mainly applies two explanatory ap-
proaches, the cognitive and the rational choice model (see e. g., Schräpler 
2004). Extending theoretical approaches from cognitive psychology to the 
interview situation, the cognitive model conceptualizes individual response 
behavior as a multi-stage process (Sudman et al., 1996): after hearing a 
question it must be interpreted and understood. Next, the respondent gath-
ers the relevant information, a stage which is affected by the complexity of 
the question. Finally, the information is translated to the answer format re-
quired by the questionnaire and possibly adjusted based on objectives such 
as self representation or social desirability. 

In contrast, rational choice theory focuses only on this last stage, when 
respondents evaluate behavioral alternatives based on their expected costs 
and benefits (Esser, 1984). Benefits of responding consist of supporting a 
potentially appreciated cause, and of avoiding the negative effects of refusal 
such as breaking social norms generated by the interview situation or vi-
olating courtesy towards the interviewer. Key costs of answering a survey 
consist of the potential negative consequence of providing private informa-
tion (e. g., from tax authorities or through breach of privacy) as well as of 
the necessary effort to recall the desired facts. 

The hypotheses that can be derived from these theories regarding the 
determinants of item nonresponse behavior relate to the nature of the ques-
tion (i. e., cognitive complexity and sensitivity), to the relationship between 
respondent and interviewer, to the interview situation, and finally to the 
characteristics of the respondent. Dillman et al. (2002) provide a classifica-
tion of seven causes of item nonresponse (INR): 

1 We thank Oliver Serfling for generating these figures. 



220 SUSANNE RÄSSLER AND REGINA T. RIPHAHN 

• Survey Mode: INR is higher in self-administered questionnaires than in 
face-to-face interviews. 

• Interviewers: if the interviewer is able to develop a high level of rapport 
with respondents, difficult answers may be given willingly. Interviewers' 
response to unanswered questions affects nonresponse outcomes. 

• Question Topic and Structure: certain contents such as finances, drug 
use, criminal and sexual behavior are notorious for INR. Also, open-
ended or multiple-part questions, as well as those with complex branching 
structures produce more INR. 

• Question Difficulty: cognitive difficulty of questions or coverage of long 
time horizons generate more INR. 

• Institutional Policies: sensitive information e. g., sales or investment in 
business surveys have high INR rates. Offering a 'don't know' answer 
option also increases INR. 

• Respondents' Attributes: in many surveys older and less educated people 
are less likely to respond. 

Schräpler (2004), Frick and Grabka (2003), and Riphahn and Serfling 
(2005) estimated multivariate models of item nonresponse behavior control-
ling for relevant indicators. The studies differ in their empirical approach, 
the subsample taken from the GSOEP, the number of items considered, and 
in the key issues addressed. 

Nevertheless some general findings can be summarized as follows: (i) 
there is significant heterogeneity in the processes determining item nonre-
sponse behavior across items; (ii) the association between interviewer and 
respondent characteristics does not appear to be influential for item non-
response behavior; (iii) item nonresponse rates are higher when the inter-
viewer is female and when a new interviewer is assigned to respondents; 
(iv) item nonresponse on income is higher at low and high income levels; 
(v) face-to-face interviews yield lower nonresponse rates than self-reporting 
or computer assisted interviewing; (vi) item nonresponse and 'don't know' 
answers are determined by different mechanisms. 

As item nonresponse behavior appears to affect financial variables most 
severely, analyses of income and wealth issues may be most subject to biases 
deriving from missing data. Given that item nonresponse may indeed bias 
the results of empirical analyses in general, correction methods need to be 
considered. 

3. DEALING WITH lTEM NONRESPONSE 

This section discusses four frequently applied methods for the analysis of 
data with missing values due to item nonresponse:2 

_
2 Fora discussion of procedures to avoid item nonresponse in advance, such as inter-

viewer training, questionnaire structure, or administration, see e. g., Groves et al. (2002). 
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3.1. CoMPLETE CASE ANALYSIS. Software packages often handle incom-
plete data by deleting all cases with at least one missing item (Iistwise 
deletion or complete case analysis, CC). This practice is inefficient and of-
ten leads to substantially biased inferences. Listwise deletion can reduce the 
available data considerably, so that they are no longer representative of the 
population of interest. 

Thus, CC analysis can be wasteful, as informative data are discarded 
when they belong to records that have missing values on other variables. As 
an alternative for univariate analyses often all values that are observed for 
a variable of interest are used independent of missing values on other vari-
ables (available case analysis, AC). A major disadvantage of AC analysis 
is that different analyses from a given dataset will be performed on differ-
ent samples, depending on which observations have complete data for each 
analysis. This can lead to inconsistent estimates especially when compar-
isons are made using estimates from different subsamples. In general, basing 
inferences only on the complete cases implies the tacit assumption that the 
missing data are missing completely at random, which is typically not the 
case. The size of the resulting bias depends on the degree of violation of 
the MCAR assumption, the share of missing data, and the specifics of the 
analysis. 

3.2. WEIGHTING. The most common procedure to correct for (unit) non-
response in official statistics and survey research is weighting. In general, 
weighting is applied to address problems of nonresponse and to adjust the 
sample when unequal probabilities of selection have been used. Therefore, 
two types of weights for a unit i, the nonresponse or poststratification 
weights 9i and the inverse-probability or design weights di = l/1ri, should 
be distinguished (Gelman and Carlin, 2002). The former are typically used 
to correct for differences between sample and population and have to be 
estimated. The latter are usually known in advance, and are needed to gen-
erate unbiased estimates for the population target quantity under repeated 
sampling given a specific sampling design. 

There is common agreement that for estimating population totals, means, 
and ratios, weighted averages are appropriate. An example are Horvitz-
Thompson type estimators which are, e. g., for a population total given by 

n n 
'""Yi y = -:- = L diYi. 
i=l 7ri i=l 

In combination with complete case analysis weights may also be used to 
address nonresponse problems. If the probabilities of response for each re-
sponding unit were known, then 

P(selection and response) = P(selection)P(responselselection) 
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(Little and Rubin, 2002) and the individual weights Wi for a unit i are 
given by wi = di9i· In practice, the response probability is unknown and a 
standard approach, e. g., is to form adjustment cells based on background 
variables measured for respondents and nonrespondents. The nonresponse 
weight for individuals in an adjustment cell is then the inverse of the re-
sponse rate in that cell. 

For illustration, let the sample be divided into J homogeneous cells or 
groups with respect to the assumed response generating process. Let ni 
denote the expected or planned sample size in group or cell j, j = 1, 2, ... , J, 
e. g., among young working women, and mj the number of respondents in 
this group. The individual weight wi of an observation i within a cell j is 

n· computed as di9i = di rr: .. 
J 

If only sample counts are used in the weighting procedure, weighting can 
be interpreted as a single conditional mean imputation. To illustrate this, 
consider the so-called weighting-class estimator (Oh and Scheuren, 1983) 
which is given by 

Y- N '°' nj '°' N '°' -obs N '°' ( )-obs 
J m; J J (m; ) 

= -:;: ;:t_ mi Yii = -:;: ;:t_ njy i = -:;: ;:t_ Yii + ni - mi y i , 

where N /n is the sampling fraction. This weighting-class estimator is iden-
tical to the estimate derived by single conditional mean imputation. Thus, 
naive estimates of standard errors and confidence intervals will be biased 
downwards as it is typically the case with single imputation. The derivation 
of an unbiased variance estimator is cumbersorne. 3 

In practice, the population totals of the cells, one wants to adjust for, 
are often unknown, but the marginals of different weighting variables are 
known for the population. In this situation, a set of weighting vectors can be 
estimated, which satisfies the constraints given by the population rnargins: 
this procedure is terrned raking. lt applies iterated proportional fitting (IPF) 
to obtain weighted sample counts that rnatch the population on the set 
of margins. Approaches that rnake use of auxiliary inforrnation cornprise 
regression and ratio estimates; for these and extensions see Deville and 
Särndal (1992) and Deville et al. (1993). To surn up, calibration and raking 
procedures which include the generalized regression (GREG) estimator and 
iterative proportional fitting are widely used in the case of unit nonresponse. 
If, e. g., only a population quantity such as the total is to be estimated, they 
may also be used in the presence of item nonresponse. 

While weighting methods are often relatively easy to irnplement, they 
face three major disadvantages: (i) especially in the presence of outliers 
weighted estimates can have high variances, (ii) variance estimation for 
weighted estimates can be computationally expensive, if, e. g., linearization 
or jackknife methods have to be used (see Gelman and Carlin, 2002), and 

3 Notice that often additional information is available and instead of weighting a mul-
tiple imputation procedure (see Section 3.5) can be applied successfully, see Rässler and 
Schnell (2004). 
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(iii) weighting methods typically do not model the joint distribution of the 
data as is clone by multiple imputation or model-based approaches. 

3.3. IMPUTATION TECHNIQUES. Imputation techniques fill in one or rnore 
plausible values for each missing daturn so that one or more completed 
datasets are created (i. e., single vs. multiple imputation). Often it is easier 
to first impute missing values and to then use standard complete-data meth-
ods of analysis than to develop statistical techniques that allow the analysis 
of incomplete data directly. Imputation allows to use information not avail-
able to the analyst. Imputation of survey data can be performed separately 
from the analysis, which is appealing. The application of standard rnethods 
on data with singly imputed values will result in underestimated standard 
errors, if the uncertainty of the irnputation procedure is ignored. Due to its 
operational convenience, single imputation has long been used, especially 
by statistical offices. Among the key challenges for single imputation is to 
preserve the covariance structures in the data and at the same time to ap-
propriately re-flect the uncertainty due to the imputation process. Usually 
this means that for every point estimate based on singly imputed data its 
frequency valid variance estimate has to be derived separately; see Lee et 
al. (2002). 

Multiple imputation (MI), introduced by Rubin (1978) and discussed in 
detail in Rubin (1987, 2004), retains the advantages of imputation while 
allowing the data analyst to make valid assessments of uncertainty. Multi-
ple imputation re-flects uncertainty in the imputation of the missing values 
through wider confidence intervals and larger p-values than under single 
imputation. MI is a Monte Carlo technique that replaces the missing values 
by m > 1 simulated versions, generated according to a probability distri-
bution which indicates how likely the true values are given the observed 
data. Typically m is small, e. g., m = 5, although with increasing computa-
tional power m can be 10 or 20. In general, this depends on the amount of 
missingness and on the distribution of the parameters to be estimated. 

To illustrate this, let Yobs denote the observed components of any uni- or 
multivariate variable Y, and Ymis its missing components. Then, m values 
are imputed for each missing datum according to some distributional as-
sumptions creating m > 1 independent simulated imputations (Yobs, Yl~~), 
(Yobs, Y~~), ... , (Yobs, Y~l}. Standard complete-case analysis can be per-
formed for each of the m imputed datasets, enabling us to calculate the im-
pute~ data estimate '[j(t) = 0(Yobs, Y_;;/ .. ) along with its estimated variance 
var(&(t)) = var(0(Yobs, Y_;;j.)), t = l, 2, ... , m. The complete-case estimates 
are combined according to the MI rule that the MI point estimate for 0 is 
simply the average 

(1) 
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To obtain a standard error Joor(if M1) for the MI estimate ~I, we first 
calculate the 'between-imputation' variance 

- 1 ~(t) 2 
var(0)between = B = m - l ~(0 - 0M1) , 

t==l 

and then the 'within-imputation' variance 

- - 1 ~- ~(t) var(0)within = W - - var(0 ) . 
m 

t==l 

Finally, the estimated total variance is defined by 

(2) 

(3) 

1 m+l 
oor(0M1) = T = oor(0)within+(l+-)oor(0)between = W +--B · (4) 

m m 
For large sample sizes, tests and two-sided (1- o:) 100% interval estimates 

can be based on Student's t-distribution 

(0M1 - 0)/VT ~ tv and 0MI ± tv,l-a/2VT 

with degrees of freedom 

V = (m - 1) ( 1 + (l + !-l )Br 
(5) 

(6) 

MI is in general applicable when the complete-data estimates are asymptot-
ically normal (e. g., ML estimates) or t distributed; see Rubin and Schenker 
(1986), Rubin (1996), Barnard and Rubin (1999), or Little and Rubin (1987, 
2002). 

The theoretical motivation for multiple imputation is Bayesian, although 
the resulting multiple imputation inference is usually also valid from a fre-
quentist viewpoint. Basically, MI requires independent random draws from 
the posterior predictive distribution of the missing data given the observed 
data. Usually this is performed by a two-step procedure. First, we take ran-
dom draws of the parameters according to their observed-data posterior 
distribution. Second, we perform random draws of the missing data accord-
ing to their conditional predictive distribution. This is done m times. If only 
one variable has missing values, such a specification is rather straightfor-
ward and univariate (Bayesian) regression models may be applied. When the 
data have a multivariate structure and different missing data patterns, the 
observed-data posteriors are often not standard distributions from which 
random numbers can easily be generated. However, with increasing com-
putational power simpler methods have been developed to enable multi-
ple imputation based on Markov Chain Monte Carlo (MCMC) techniques. 
Common concerns with multiple imputation address the model-based as-
sumptions and the complexity of the Bayesian posterior predictions. Clearly, 
there is no assumption-free imputation method but multiple imputation ex-
plicitly formulates and evaluates these assumptions. For a broad discussion 
of advantages and disadvantages of imputation procedures see Groves et al. 
(2002, Chapter 22 and 23). 
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3.4. M0DEL-BASED PR0CEDURES. Model-based procedures to adjust for 
nonresponse simultaneously have to model the distribution of the data Y 
and the response mechanism R. Without any further assumptions regard-
ing the response mechanism, the joint distribution fY,R(Y, r; 0, f) has to be 
modelled. In so-called nonignorable nonresponse models this is done in two 
slightly differing ways. On the one hand, selection models as considered by 
Heckman (1976), specify !Y,R(Y, r; 0, ~) as 

!Y,R(y,r;0,f) = fy(y;0)fRIY(rly;() (7) 

and have to formulate an explicit model for the distribution of the response 
missing-data mechanism fR/Y(rly; () where 0 and .; are the unknown pa-
rameters or in the Bayesian context are random variables as well. Keeping 
the notation simple, with missing data the likelihood of (7) is 

L(0, {; Y, r) = J fyob„Ymis (Yobs, Ymis; 0)fRIYobs,Ymis (rlYobs, Ymis; ()dYmis · 
(8) 

On the other hand, pattern-rnixture models as discussed by Glynn et al. 
(1986) factor the joint distribution in a different way: 

fv,R(y,r;0,() = fv1R(ylr;0)JR(r;(), (9) 

where the distribution of Y is conditioned on the missing data pattern R. 
Therefore, the resulting marginal distribution of Y will be a mixture of 
distributions. 

Under the MCAR assumption expressions (7) and (9) are equivalent. If 
distributional assumptions are added and the data are not MCAR, these 
specifications can lead to different models. Maximum-likelihood estimates 
are found by maximizing the likelihood functions with respect to 0 and ~- In 
the Bayesian context the posterior distribution is obtained by incorporating 
a prior distribution and performing the necessary integrations. 

In general, either way has its merits and demerits. Specification models 
usually require the existence of identifying restrictions, are very sensitive 
to model misspecification, and the results are often claimed to be unstable. 
Pattern-mixture models are often under-identified and also require identify-
ing restrictions. Typically, pattern-mixture models are suggested to be used 
for sensitivity analyses, see, e. g., Little (1993). 

Since the assumption of MAR cannot be contradicted by the observed 
data, more often the observed-data likelihood, which is also called the like-
lihood ignoring the missing data mechanism, is considered: 

L(0;Yobs) == J fyobs,Ym,,(Yobs,Ymisi0)dymis • (10) 

Inferences about 0 can be based on (10) rather than on the full likelihood (8) 
if the missing data mechanism is ignorable. Notice that ignorable Bayesian 
inference would add a prior distribution for 0. Rubin (1976) has shown that 
an ignorable rnissing data rnechanism is given when two conditions hold. 
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First, the parameters 0 and have to be distinct, i. e., they are not func-
tionally related or - in the Bayesian framework - are a priori independent. 
Second, the missing data are MAR. 

Ignorable ML methods focussing on the estimation of 0 have a couple of 
advantages. Usually the interest is in 0 and not in~- Then the explicit mod-
eling of the response mechanism can be cumbersome and easiiy misspecified. 
Also, often information for the joint estimation of 0 and is limited. Thus, 
estimates assuming MAR data turn out to be more robust in many cases. 

However, in many missing data problems, even the observed-data like-
lihood (10) is complicated and explicit expressions for the ML estimate 
cannot be derived. Here, the Expectation-Maximization (EM) algorithm is 
a broadly applicable approach to the iterative computation of maximum 
likelihood estimates. On each iteration of the EM algorithm there are two 
steps, called the expectation or E-step and the maximization or M-step. The 
basic idea of the EM algorithm is first (E-step) to fi.11 in the missing data 
Ymis by their conditional expectation given the observed data and an initial 
estimate of the parameter 0 to achieve a completed likelihood function, and 
second (M-step) to recalculate the maximum likelihood (ML) estimate of 
0 given the observed values Yobs and the filled-in values of Ymis = Ymis· 
The E-step and M-step are iterated until convergence of the estimates is 
achieved. 

More precisely, it is the log likelihood ln L( 0; y) of the complete-data 
problem that is manipulated in the E-step. As it is based partly on unob-
served data, it is replaced by its conditional expectation 

E(ln L(0; Y)\Yobsi 0(t)) 

given the observed data Yobs and a current fit B(t) for the unknown para-
meters. Thus the E-step consists of calculating this conditional expectation 
E(inL(0; Y)[Yobsi 0Ctl). The simpler M-step computation can now be applied 
to this completed data and a new actual value 0(t+1) for the ML estimate 
is computed therefrom. Now let 0(t+1) be the value of 0 that maximizes 
E(lnL(0;Y)\Yabs;e(t)). Dempster et al. (1977) have shown that 0(t+1) then 
also maximizes the observed-data likelihood L( 0; Yabs) in the sense that the 
observed-data likelihood of 0(t+1) is at least as high as that of g(t), i. e., 
L(0(t+l);Yabs) 2'. L(0Ctl;Yabs)-

Starting from some suitable initial parameter values g(o), the E- and the 
M-steps are repeated until convergence, for instance, until \&(t+l) - 0(t) \ S E 

holds for some fixed E > 0. Not all the problems are well-behaved, however, 
and sometimes the EM does not converge to a unique global maximum. 4 

3.5. EVIDENCE FROM A COMPARISON STUDY. In this section we present a 
simple simulation study to illustrate the implications of alternative imputa-

4 For a detailed description of the EM algorithm and its properties see McLachlan and 
Krishnan (1997), Schafer (1997), Little and Rubin (2002), and the fundamental paper of 
Dempster et al. (1977). 
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tion procedures. We compare moments of a random variable (income) when 
applying multiple imputation (MI), simple single mean imputation (SI), sin-
gle mean imputation within classes (also known as conditional mean impu-
tation and here equivalent to a weighting procedure as shown in Section 3.2) 
(SI CM), and complete case analysis (CC). 

Assume that a randomly drawn variable which we labe! age (AGE) is 
normally distributed with mean 40 and standard deviation 10, and another 
randomly drawn variable labelled income (INC) is normally distributed with 
mean 1500 and standard deviation 300. Because real income variables do 
not generally follow a normal distribution, often their log transformation 
log(INC) is used to achieve approximate normality. Let the correlation be-
tween age and income be 0.8, then5 

(( 
40 )) (( 10

2 
0.8-3000)) 

(AGE,INC) ~ N 1500 ' 0.8 · 3000 3002 • 

A sample of n = 2000 is drawn from this universe. After being generated, 
the AGE variable is recoded into 6 categories, 1 ::; 20 years, 2 = over 20 -
30 years, ... , 6 > 60 years. First, the complete cases are analyzed, the mean 
income estimate, its standard error (s.e.), and the 95% confidence inter-
val are calculated. Then different missingness mechanisms (MCAR, MAR, 
NMAR) are applied on income. Under MAR, income is missing with higher 
probability when age is higher, under NMAR, the probability that income 
is missing is higher the higher income is itself. 

After discarding 30% of the income data, first the complete cases are 
analyzed, then a simple mean imputation is performed, and, finally, a proper 
multiple imputation procedure with m = 5 is used according to Rubin 
(1987, p. 167). The whole simulation process of creating the data, applying 
the missingness, performing the imputations, and analyzing the sample is 
repeated 1000 times. The coverage (cvg.) is counted, i.e., the number of 
confidence intervals out of 1000 that cover the true mean value. The average 
bias, the standard errors, and the usual correlation estimates between age 
(recoded) and income are given in Table 1. 

The results in Table 1 show how precision is reduced when only the 
complete cases are used under MCAR, and how biased the complete case 
estimate (CC) gets when the missingness is MAR or NMAR.6 The table 
also shows how biased a simple mean imputation is and how this bias is 
corrected when conditional means are imputed instead of the overall mean 
(cf. the means in Rows 7 and 8 and 11 and 12). However, this conditional 
rnean imputation requires that the missingness depends on the variable 

5 For robustness checks this study was also run with lower correlation values. However, 
that did not change the main message. Notice that the Jower the correlation the less 
efficient are the procedures under NMAR. 

6 For the precision compare the standard errors in Row 1 to those of the CC analyses 
in Rows 2, 6, and 10. For bias compare the means in Rows 2, 6 and 10. 
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conditioned on. The single mean imputation within classes also leads to an 
overestimation ofthe correlation between recoded AGE and INC though the 
simple single imputation underestimates it (see the last column of Table 1). 
Moreover, with single imputation the standard errors are always too small 
to get the nominal coverage. 

Even if the missingness is MCAR, a simple mean imputation affects stan-
dard errors and correlations. Under MAR and even under NMAR, multiple 
imputation yields results much closer to the true values. Particularly in a 
NMAR scenario MI borrows strength from the correlation between age and 
income. Standard errors, correlation, and the nominal coverage are well re-
produced by MI. Notice that confidence intervals under MI can be even 
narrower than confidence intervals based on complete case analysis (CC). 
This is especially true if the imputed sample is substantially larger than the 
complete case sample. Therefore, typically, the following comparisons hold 
for most surveys and most estimates of standard errors: 

s.e.(SI) < s.e.(truth) < s.e.(MI) < s.e.(CC). 
More elaborate comparisons by simulation studies are provided, e. g., by 

Schafer (1997), Raghunathan and Rubin (1998), or Münnich and Rässler 
(2005). The latter are comparing especially GREG and Horvitz-Thompson 
estimators using nonresponse corrections as well as MI procedures. 

\\No\ Missing \ Proc. \ Mean(INC) Bias(INC) S.e.(INC) Cvg. Cor(AGE, INC) jj 
II l)None 1 1 1500.21 0.21 6.71 0.96 0.77j/ 

2 MCAR CC 1500.14 0.14 8.01 0.95 0.77 
3 MCAR SI 1500.14 0.14 5.61 0.82 0.64 
4 MCAR SI CM 1500.20 0.20 6.28 0.91 0.82 
5 MCAR MI 1500.24 0.24 7.34 0.95 0.77 

6 MAR CC 1470.35 -29.65 7.98 0.04 0.77 
7 MAR SI 1470.35 -29.65 5.58 0.01 0.63 
8 MAR SI CM 1499.90 -0.10 6.28 0.88 0.82 
9 MAR MI 1499.82 -0.18 7.43 0.93 0.77 

10 NMAR CC 1474.29 -25.71 7.99 0.11 0.77 
11 NMAR SI 1474.29 -25.71 5.59 0.03 0.64 
12 NMAR SI CM 1489.33 -10.66 6.26 0.59 0.82 
13 NMAR MI 1489.30 -10.70 7.36 0.71 0.77 

TABLE 1. Results of the simulation study. 

4. CüNCLUSIONS AND RECOMMENDATIONS 

Item nonresponse is a common problem in empirical analyses. Research 
on the determinants of nonresponse behavior yields a catalogue of relevant 
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factors. The evidence on German data confirms that data collection methods 
and respondent characteristics affect nonresponse behavior. Extant studies 
also confirm that different ways of dealing with item nonresponse may affect 
the results of empirical analyses. 

We discuss the strengths and weaknesses of four commonly used ap-
proaches to deal with item nonresponse and provide a simulation study. This 
simulation yields that the most commonly used approach, which considers 
only observations without missing values, can lead to substantial biases in 
the estimates. The performance of single imputation procedures depends on 
whether there are patterns in the missingness of the data and on whether 
the information is missing (completely) at random. Multiple imputation 
procedures appear to yield the best coverage of the true value and the best 
reflection of existing correlation patterns. 

Casewise deletion can only be an appropriate procedure if the missing 
data are missing completely at random. In all other cases it involves biased 
estimates and other procedures are preferable. Weighting is a first step to 
correct for nonresponse and disproportionalities. The literature suggests 
that multiple imputation under MAR often is quite robust against violations 
of the MAR assumption. Only when NMAR is a serious concern and the 
share of missing information is substantial it seems necessary to jointly 
model the data and the missingness using model-based procedures. Since 
missing values cannot be observed, there is no direct evidence in the data to 
test a MAR assumption. Therefore, it seems useful to consider alternative 
models and to explore the sensitivity of resulting inferences. We conclude 
that a multiple imputation procedure seems to be the best alternative at 
hand to account for missingness and to exploit all available information. In 
particular it generates the only format with correct standard errors allowing 
valid inference from standard complete case analysis. 

lt is recommendable that empirical researchers step beyond standard 
complete or available case analysis and investigate the robustness of find-
ings by applying alternative procedures. This is aided by the fact that var-
ious single imputation techniques, such as mean imputation, conditional 
mean imputation, or regression imputation, are now available in commer-
cial statistical software packages. Free programs and routines comprise the 
stand-alone Windows program NORM or the S-PLUS / R libraries NORM, 
CAT, MIX, PAN, and MICE which are all basically data augmentation 
algorithms. NORM uses anormal model for continuous data, CAT a log-
linear model for categorical data. MIX relies on a general location model 
for mixed categorical and continuous data. PAN is created for panel data 
applying a linear mixed-effects model. Moreover, there are the free SAS-
callable application IVEware as well as a STATA packet MVIS which are, 
like MICE, based on the very flexible sequential regression approach. The 
SAS procedures PROC MI with PROC MIANALYZE provide a parametric 
and a nonparametric regression imputation approach, as well as the multi-
variate normal model. Finally, there is the free Windows or Gauss version 
AMELIA. With increasing computational power, more and more multiple 
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imputation techniques are now implemented in available statistics software 
to create multiply-imputed datasets for further analyses.7 
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