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Abstract
One popular small area estimation method for estimating 
poverty and inequality indicators is the empirical best pre-
dictor under the unit-level nested error regression model 
with a continuous dependent variable. However, parameter 
estimation is more challenging when the response variable 
is grouped due to data confidentiality concerns or concerns 
about survey response burden. The work in this paper pro-
poses methodology that enables fitting a nested error regres-
sion model when the dependent variable is grouped. Model 
parameters are then used for small area prediction of finite 
population parameters of interest. Model fitting in the case 
of a grouped response variable is based on the use of a sto-
chastic expectation–maximization algorithm. Since the sto-
chastic expectation–maximization algorithm relies on the 
Gaussian assumptions of the unit-level error terms, adaptive 
transformations are incorporated for handling departures 
from normality. The estimation of the mean squared error 
of the small area parameters is facilitated by a parametric 
bootstrap that captures the additional uncertainty due to the 
grouping mechanism and the possible use of adaptive trans-
formations. The empirical properties of the proposed meth-
odology are assessed by using model-based simulations and 
its relevance is illustrated by estimating deprivation indica-
tors for municipalities in the Mexican state of Chiapas.
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1  |   INTRODUCTION

Recent applications of small area estimation (SAE) methodologies have been concerned with the 
estimation of area-specific income indicators, for example the median income, the head count ratio 
(HCR) and the Gini coefficient (Rao & Molina, 2015; Rojas-Perilla et al., 2020; Tzavidis et al., 2018). 
Popular SAE methods that have been used in this context include the so-called World Bank method 
(Elbers et al., 2003) and the empirical best predictor (EBP) method (Molina & Rao, 2010). In these pa-
pers, SAE is based on the use of a unit-level nested error regression (random effects) model estimated 
with income or consumption as a response variable that is measured on a continuous scale.

It is tempting for survey designers to reduce survey related costs by collecting information on income 
using income bands as opposed to detailed income information (Micklewright & Schnepf, 2010). Collecting 
data in bands may also help with reducing respondent burden, item non-response and micro-data disclosure 
risk. On the other hand, it is also reasonable to expect that collecting grouped data may result in a loss of in-
formation compared to collecting on a continuous scale. The impact of this loss of information on the quality 
of official statistics estimates is of particular importance. There are several surveys and censuses that collect 
grouped income data, for example, the household and land survey (HLS) of Japan (Statistics of Japan, 2013), 
the German Microcensus (Statistisches Bundesamt, 2018) and the censuses of Australia (Australian Bureau 
of Statistics, 2011), Colombia (Departamento Administrativo Nacional De Estadística, 2005), and New 
Zealand (Statistics New Zealand, 2013). In the United Kingdom, the Office for National Statistics experi-
mented with the collection of grouped income data in the lead up to the 2001 census (Collins & White, 1996).

Using statistical methods for grouped data is not a problem specific to SAE. In particular, regression 
methods for grouped data have been studied in the econometric literature (Hsiao, 1983) but to the best of 
our knowledge, these methods have not been extended to include random effects. An alternative approach 
is to view the response as discrete and use generalized linear mixed models. For example, the response can 
be viewed as a multi-category or an ordinal outcome with cut-off points defined in the latter case by the 
grouping structure relevant to the dataset of interest. In this case one can motivate the model by assuming 
the existence of an underlying continuous latent variable, which although different has some similarities to 
the approach we propose in this paper. The emphasis in this paper is on model-based small area inference 
more specifically, on estimating not only linear but also non-linear indicators that are functions of the 
continuous (latent in the case of grouping) response variable. Hence, we propose an extension of the EBP 
method when the response variable is grouped. The methodology works by reversing the process of group-
ing, leading to an outcome measured on a continuous scale which is then used for area-specific prediction. 
Estimation of the parameters of the unit-level nested error regression model is implemented via a stochastic 
expectation–maximization (SEM) algorithm (Celeux & Diebolt, 1985). The method we propose in this 
paper is not only applicable in the case of SAE. The SEM algorithm can be used to estimate the model pa-
rameters when the dependent variable is grouped and interest is in using the model for drawing substantive 
conclusions about the relationship between the dependent variables and the explanatory variables (Walter, 
2019a). The proposed methodology also allows for the use of data-driven transformations when diagnostic 
analyses indicate departures from the model assumptions. Using transformations as part of small-area es-
timation when the continuous outcome is fully available has been already proposed in the literature. In the 
context of area-level models, there are several papers discussing fixed transformations (e.g. Slud and Maiti 
(2006)) and data-driven transformations (e.g. Sugasawa and Kubokawa (2017)). Rojas-Perilla et al. (2020) 
presented theoretical and numerical justifications for the use of data-driven transformations with unit-level 
SAE models. In particular, they propose an EBP approach with data-driven transformations where the 
data-driven transformation parameter is estimated by likelihood-based methods.

Following Gonzalez-Manteiga et al. (2008), the estimation of the mean squared error (MSE) of the 
small area estimates—when the response variable is grouped—is facilitated by a parametric bootstrap. 
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This incorporates the additional uncertainty due to grouping of the response variable assuming that 
the censoring mechanism is known. The proposed method assumes that there is no measurement error 
in reporting the group associated with the latent continuous variable. In this paper, we develop the 
methodology under a two-level nested error regression model. However, an extension to three-level 
structures—incorporating possible cluster effects—along the lines of the methodology proposed by 
Marhuenda et al. (2017) is feasible. Finally, as is the case with the EBP method or the World Bank 
method, we assume access to micro-data for the model covariates from census or administrative data. 
The proposed methodology makes the use of SAE methods with grouped outcomes possible and 
therefore it enables survey organizations to consider collecting data in this form.

The paper is organized as follows. Section 2 presents the survey data we use in this paper and defines 
the indicators of interest. The EBP approach and the nested error regression model when the response 
variable is available on a continuous scale are discussed in Section 3. Section 4 introduces the SEM 
algorithm that is used for the estimation of the model parameters when the response variable is grouped. 
In Section 5, the EBP method with grouped data is presented. In Section 6, model-based simulations 
are carried out. In Section 7, the proposed methodology is used to estimate poverty and inequality indi-
cators from grouped income data from Mexico. Finally, the main results are summarized in Section 8.

2  |   ESTIMATING SMALL AREA DEPRIVATION 
INDICATORS FOR MUNICIPALITIES IN THE MEXICAN 
STATE OF CHIAPAS: DATA SOURCES AND INDICATORS

We start with an initial discussion of the data and the poverty indicators of interest before present-
ing the methodological details. The aim of the proposed methodology is to enable the estimation of 
poverty and inequality indicators from survey data with a grouped income variable. To illustrate the 
proposed approach in this paper we use data from Mexico.

Despite Mexico being the 15th largest economy in the world (International Monetary Fund, 2017), 
the fight against poverty and inequality is of great importance for the country since high poverty rates 
are omnipresent. During the Mexican peso crisis, extreme poverty increased from 21% in 1994 to 
37% in 1996 (Pereznieto, 2010). Today, poverty rates remain at considerably high levels. According 
to the World Bank (2010), 33% of the population in the country experienced moderate poverty and 9% 
extreme poverty in 2013. This demonstrates the relevance of estimating and mapping poverty at local 
levels such that appropriate interventions can be designed.

The poverty indicators we are interested in include the area HCR, the area poverty gap (PGAP) as 
defined in Foster et al. (1984) (income deprivation), the area average household income (Mean) and 
the Gini coefficient (Gini) in each area i. The indicators are defined as follows:
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where yij denotes the outcome variable, ni is the sample size, I(·) denotes the indicator function and z is the 
poverty threshold. In the simulations and application in this paper, z is set to 60% of the median of income, 
as defined by (Eurostat, 2014). When the income variable is measured on a continuous scale estimation of 
these indicators can be facilitated with standard SAE methods. However, when income is only available 
as grouped variable the methodology we propose in this paper can be used.

For computing the income-defined indicators of interest, one needs to have access to grouped 
income data that have been equivalized to account for different household sizes. If this has not been 
done, the secondary analyst will need access to household composition data in order to create equiva-
lized grouped income data. Let us assume household i reports income in [2000,3000] and consists of 
two adults and one child leading to a weight of 2.5, then the household has an equivalized household 
income in the interval [800  = 2000/2.5,1200 = 3000/2.5]. This leads to household specific intervals 
depending on the weight relating to the household composition and reported interval. For the applica-
tion in this paper we use the 2010 equivalized household income from the ENIGH (Encuesta Nacional 
de Ingreso y Gasto de los Hogares) survey and a large sample of the 2010 National Population and 
Housing census in Mexico. Both data sets are collected by the National Institute of Statistics and 
Geography (INEGI, Instituto Nacional de Estadística y Geografía) and they are provided to us by the 
National Council for the Evaluation of Social Development Policy (CONEVAL, Consejo Nacional de 
Evaluación de la Política de Desarrollo Social). Both the census and survey data sets include socio-
economic and regional information at household level. While the data cover all 31 states of Mexico, 
the application focuses on the state of Chiapas. Chiapas is one of the poorest states in Mexico with an 
average income of about 40% of the national median income (Levy et al., 2016). The state is located 
in the south of Mexico at the border to Guatemala. The survey covers 42 of the 118 municipalities in 
Chiapas. Hence, there are 76 out-of-sample municipalities for which no sample data are available. In 
order to derive reliable estimates at the level of municipality for all 118 municipalities, we rely on the 
use of model-based methods and auxiliary information from the census and survey data.

The sample size we analyse is n=2486 households and originally CONEVAL asked 3018 house-
holds in Chiapas. The response rate was 82%. The census sample size is N=96350 households. The 
regional distribution of the sample size is given in Table 1. The sample size of the in-sample munic-
ipalities varies between 13 and 651 households with a median sample size of 33 households. Since 
sample sizes are small in many municipalities, SAE methods can potentially improve the accuracy of 
direct small area estimates.

In the next section a brief introduction to the EBP method when a continuous response variable 
is available. Then, the newly proposed methodology when a grouped response variable is available is 
introduced.

3  |   EMPIRICAL BEST PREDICTION METHOD

The target of inference are the small area parameters that include linear and non-linear indicators which 
can be expressed as functions of an income variable, for example average and median equivalized in-
come, the HCR, the PGAP and the Gini coefficient. Since in this paper we assume the availability of 

T A B L E  1   Distribution of the sample and census household sizes across areas

Min. 1st Qu. Median Mean 3rd Qu. Max.

Sample 13.00 17.00 33.00 59.19 51.00 651.00

Census 82.00 399.50 617.50 816.50 839.00 7172.00
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unit-level survey and census/administrative data, two methods for estimating non-linear indicators in 
common use are available, the World Bank method (Elbers et al., 2003) and the popular EBP method 
(Molina & Rao, 2010). Although our focus is on the use of the EBP method, the proposed methodol-
ogy can be applied in conjunction with the World Bank method too. The EBP method makes use of 
unit-level nested error regression model and is summarized below. The response variable is income 
that is only available in the survey. The explanatory variables used for modelling the income variable 
are available both in the survey and in the census data sets. After the model is fitted using the survey 
data, the estimated model parameters are combined with census micro-data to form unit-level syn-
thetic census predictions of the income variable. These synthetic values are then used for estimating 
the target parameters. Census predictions are generated by using the conditional predictive distribu-
tion of the out-of-sample data given the sample data. Although estimation of linear and non-linear 
indicators can be also implemented with area-level regression models (Fabrizi & Trivisano, 2016; 
Schmid et al., 2017), we focus on unit-level models which can be used to produce estimates of a wide 
range of parameters as a by-product of fitting the model. With area-level models the focus is on one 
target parameter at the time. In addition, approaches to direct estimation with grouped data need to be 
carefully considered. Possible approaches to doing this are briefly outlined in the concluding remarks.

Consider a finite population U of size N, divided into D areas/domains. The terms areas and domains 
are used interchangeably in this paper. The population size of each of the D-domains U1, U2, …, UD is 
given by N1, N2, …, ND. Let us for now assume that the response variable denoted by yij is measured on 
a continuous scale, where j = 1, 2, …, ni denotes the jth unit belonging to the ith domain, with 
i = 1, 2, …, D. The vector x is defined as xT

ij
= (x1ij, …, xpij), where p denotes the number of explana-

tory variables. For each area i, the sample size is ni with n =
∑

D
i=1

ni and the population vector yi for 
area i comprises sampled and non-sampled units yT

i
= (yT

is
, yT

ir
). A nested error linear regression model 

is used for modelling the relationship between the variable of interest and auxiliary information with the 
unexplained variation being captured by the random effects term, ui and the residuals eij. In the simplest 
case, a two-level nested error regression model as defined in Battese et al. (1988) is given by

Assuming normality for the unit-level error terms and the domain random effects, the conditional dis-
tribution of the out-of-sample data given the sample data is also normal. Predictions for the entire pop-
ulation of area i are generated from the following model,

where ̂ui = E(ui |yis) is the conditional expectation of ui given the sample data yis. Implementation of (2) 
requires replacing the unknown quantities �, �u, �e, with estimates and simulating L synthetic popula-
tions of the income variable, y∗

ij
. Linear and non-linear indicators are computed in each domain i for 

each replication and the estimates are averaged over the number of Monte Carlo simulations L. Following 
Molina and Rao (2010) and Rojas-Perilla et al. (2020) this number is usually set equal to L = 50 or 
L = 100 but higher numbers are also possible.
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For the estimation of the unknown quantities �, �u, �e when the response variable is grouped we 
propose the use of a SEM algorithm.

4  |   THE NESTED ERROR LINEAR REGRESSION MODEL 
WITH A GROUPED RESPONSE VARIABLE

In the case of grouped data, yij is unobserved and the only observed information concerning the de-
pendent variable is whether it falls within an interval. The continuous scale is divided into K inter-
vals, where the k-th interval is given by (Ak−1,Ak). The variable kij ∈ {1, …, K} indicates in which 
of the intervals the dependent variable falls into. The first and K-th interval are allowed to be open 
ended, therefore A0 = −∞ and AK = +∞ are possible. Situations in which both or none of the outer 
intervals are open ended can also be handled by the proposed methodology. Furthermore, the inter-
val length is allowed to be arbitrary and can vary between intervals. Since the underlying distribu-
tion of yij is unknown, the aim is to reconstruct the conditional distribution f (yij |xij, kij, ui, �), where 
� = (�, �2

e
, �2

u
) are the unknown model parameters, β is a p × 1 vector of regression coefficients and 

the random effects ui and the unit-level error terms eij are assumed to be independent and normally 
distributed. Estimation methods such as maximum likelihood (ML) or restricted maximum likelihood 
(REML) are used for estimating θ when yij is observed on a continuous scale (Lindstrom & Bates, 
1990). However, when the response variable is grouped, estimation of the parameters of interest is 
more challenging. The likelihood, 

∏
i

∏
jf (kij �xij, ui, �), cannot be derived directly, but can be ex-

panded to include the latent yij into 
∏

i

∏
jf (kij �yij, xij, ui, �) × f (yij �xij, ui, �). While the second part 

is well known and can be maximized by the aforementioned methods, the first part, f (kij |yij, xij, ui, �)
, demands a more sophisticated estimation procedure as the latent part yij needs to be integrated out. 
In this section, an SEM algorithm for fitting the model is proposed and data-driven transformations 
are also considered for handling potential departures from the model assumptions. Before presenting 
the model and estimation method in detail, we review alternative approaches to dealing with grouped 
response variables and compare the SEM algorithm to alternative fitting methods.

Different approaches for dealing with grouped response variables in regression modelling that as-
sume independent observations have been proposed in the literature. A naive approach uses ordinary 
least squares on the midpoints of the intervals. While this approach is easy to implement (Thompson 
& Nelson, 2003), it has two major drawbacks. The uncertainty associated with the value of each ob-
servation within each interval is not accounted for and dealing with open-ended intervals is not easy. 
Nevertheless, the naive approach can provide results of acceptable quality if the grouping is very fine 
(Fryer & Pethybridge, 1972). An alternative approach is to view the response as discrete and use a 
generalized linear mixed model. Approaches to modelling multicategory discrete outcomes have been 
proposed in the small area literature (Lopez-Vizcaino et al., 2015; Molina et al., 2007). Nevertheless, 
one difficulty with the use of discrete-type models remains. In our application we are not only inter-
ested in estimating the proportion of units in a category but also interested in estimating indicators 
such as the PGAP, the HCR and the Gini coefficient. Therefore, if we decide to use a discrete-type 
model we also need to develop a method for recovering estimates of target parameters that are usually 
computed by using a continuous outcome. To overcome these drawbacks, linear regression models 
for left-censored (Tobin, 1958), right-censored (Rosett & Nelson, 1975) and grouped (or interval-
censored) (Stewart, 1983) variables have been proposed. Stewart (1983) proposes an expectation–
maximization (EM) algorithm for estimating the model parameters of a linear regression model with 
a grouped response variable. While the original paper introducing the EM algorithm (Dempster et al., 
1977) proposed maximizing the likelihood within the M-step, it mentioned that the EM algorithm can 
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be also used to obtain REML estimates. Literature related to this includes Kim and Taylor (1995) and 
Foulley et al. (2000).

To estimate the parameters of the nested error regression model when the outcome is grouped, we 
propose the use of a SEM algorithm (Celeux & Diebolt, 1985; Celeux et al., 1996). A similar SEM 
algorithm is proposed in Groß et al. (2017) for kernel density estimation on aggregated data. SEM 
can be regarded as a middle ground between the EM and full MCMC. With the EM algorithm we al-
ternate between calculating the expectation of the conditional distribution f (yij |xij, kij, ui, �) (E-Step) 
and obtaining θ via maximizing the complete data likelihood (M-Step). However, with fixed intervals 
(Ak−1,Ak) it can be seen that a bias in θ will be introduced, for example, �2

e
 would be underestimated 

as the overall variance of the expectations of yij is much smaller than that of the (latent) variable yij. 
SEM and full MCMC (Gelman et al., 2013) replace the E-Step by drawing from the conditional dis-
tribution of yij and therefore do not suffer from this drawback. This approach can be also viewed as 
part of the literature about measurement error models (Carroll et al., 2006), where the latent values 
yij are regarded as model parameters or partially observed data (Carpenter et al., 2012). In addition, 
MCMC also replaces the M-Step by sampling from the conditional distribution of θ. In summary, 
compared to EM, SEM avoids or reduces biases in the estimation of the parameters of interest, while 
compared to MCMC, SEM is considerably faster due to faster convergence because only the values yij 
are drawn. Using the SEM also saves time with the implementation because the users can make use 
of existing estimation algorithms for the M-Step, while it is easy to make draws of yij. Considering the 
assessment of convergence, SEM should be treated similarly to MCMC with its broad variety of con-
vergence measures. Related to the SEM approach is also the simulated maximum likelihood (SML, 
Gouriéroux and Monfort, 1990) method. The SML also samples yij values but uses these samples to 
estimate the expectation of the density f (kij |yij, xij, ui, �) × f (yij |xij, ui, �) which is then maximized 
with respect to θ. However, SML is not unbiased, but it is consistent (Gouriéroux & Monfort, 1990), 
and not as straightforward to implement as SEM as one needs to deal with the numerical aspects of 
the optimization procedure.

Let us now consider the model we use in this paper. To reconstruct the unknown distribution 
f (yij |xij, kij, ui, �) we use the Bayes theorem and express the target distribution as follows:

To avoid confusion, note that in the notation we use here we treat �2
u
 as part of θ. However, when 

writing the distribution of the random effects we make it explicit that this distribution depends on �2
u
. 

Since f (kij |yij, xij, ui, �) = f (kij |yij), the conditional distribution of kij is given by

and under the nested error regression model (1),

4.1  |  The SEM algorithm

Because yij and ui are unobserved, one approach to fitting the model defined above is to use the SEM 
algorithm. Generally speaking, the algorithm works by replacing the unobserved response data yij in 
the complete data likelihood by generating pseudo samples of the unobserved response data given the 

f (yij |xij, kij, ui, �) ∝ f (kij |yij, xij, ui, �)f (yij |xij, ui, �).

f (kij |yij) =
{

1 if Akij−1
≤ yij≤Akij

,

0 else,

f (yij |xij, ui, �) ∼ N(xT
ij
� + ui, �

2
e
), f (ui |�2

u
) ∼ N(0, �2

u
).
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observed data and the current values of θ (S-step) and then maximizes the complete data likelihood 
for updating θ and the predicted random effects in the M-step. The iterations stop after B + M steps.

Assuming θ is known, pseudo samples, ỹij, are drawn from the following conditional distribution

where I(·) denotes the indicator function. The conditional distribution of yij has the form of a two-sided 
truncated normal distribution given by

with �ij = xT
ij
� + ui, ϕ(·) is the probability density function of the standard normal distribution and Φ(·) 

is its cumulative distribution function. By definition Φ
(

Akij
−�ij

�e

)
= 1 if Akij

= +∞ and Φ
(

Akij−1
−�ij

�e

)
= 0 if 

Akij−1
= −∞. For each observation with explanatory variables xij the corresponding ỹij is randomly drawn 

from N(xT
ij
� + ui, �

2
e
) within the given interval Akij−1

≤ yij ≤ Akij
. This is the S-step of the SEM algo-

rithm. The M-step comprises fitting the nested error regression model using the newly generated (ỹij, xij). 
The steps of the SEM algorithm are as follows:

1.	 Estimate �̂ = (�̂, �̂
2

e
, �̂

2

u
) and u from (1) using the midpoints of the intervals as a substitute 

for the unknown yij. The parameters are estimated using REML and using the empirical best 
linear unbiased predictor (EBLUP) for u.

2.	 S-step: For j = 1, …, ni and i=1, …, D sample from the conditional distribution f (yij |xij, kij, ui, �) 
by drawing randomly from N(xT

ij
�̂ + ûi, �̂

2

e
) within the given interval Akij−1

≤ yij ≤ Akij
 obtaining 

(ỹij, xij). The drawn pseudo ỹij are used as replacement for the unknown yij.
3.	 M-step: Re-estimate the model parameters and the predicted random effects using (1) and the 

pseudo samples (ỹij, xij) from Step 2. The parameters are estimated as in Step 1.
4.	 Iterate Steps 2–3 B + M times, with B burn-in iterations and M additional iterations.
5.	 Discard the burn-in iterations and estimate �̂ by averaging the derived M estimates.

For open-ended intervals A0 = −∞ and AK = + ∞, the midpoints M1 and MK in Step 1 are com-
puted as follows:

where

Note that Step 1 is purely for the initialization of the algorithm. Empirical results show that using the 
midpoints of the intervals as a substitute for the unknown yij and the procedure for handling open-ended 
intervals in the first iteration step has little impact on the estimates. Empirical results are provided in table 
9 in the online supplementary material (OSM).

f (yij |xij, kij, ui, �) ∝ I(Akij−1
≤ yij ≤ Akij

) × N(xT
ij
� + ui, �

2
e
),

f (yij |xij, kij, ui, �) =
�
(

yij −�ij

�e

)

�e

(
Φ
(

Akij
−�ij

�e

)
−Φ

(
Akij−1

−�ij

�e

)) ,

M1= (A1−D)∕2,

MK = (AK−1+D)∕2,

D =
1

(K − 2)

K − 1∑
k= 2

|Ak−1 − Ak | .
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The proposed SEM algorithm makes repeated use of a two-sided truncated normal distribution, by 
drawing from N(xT

ij
�̂ + ûi, �̂

2

e
) within the given interval Akij−1

≤ yij ≤ Akij
. Therefore, the performance 

of the SEM algorithm relies on the Gaussian assumptions of the unit-level error terms being met. To 
accommodate possible departures from the model assumptions, the proposed SEM algorithm is ex-
tended to allow for the use of transformations.

4.2  |  The SEM algorithm under transformations

Transformations of the outcome can be used in case of departures from the model assumptions. Broadly 
speaking, one can use non-adaptive or adaptive transformations. For the application in this paper that 
models income-type data, the logarithmic transformation is probably the one most commonly used. 
While the logarithmic transformation is easy to use, there is no guarantee that it will provide the best 
transformation for the target distribution. This is crucial in this paper since the validity of the normal-
ity assumption of the unit-level error terms cannot be tested due to the fact that the response variable 
is grouped. Therefore, using adaptive (data-driven) transformations instead of fixed transformations, 
is preferable. In addition, the logarithmic transformation can be obtained as a special case of a family 
of adaptive transformations. In this paper, we focus on the use of the Box-Cox transformation (Box 
& Cox, 1964; Draper & Cox, 1969) and its extension under the nested error regression model (Gurka 
et al., 2006). The Box-Cox transformation is given by

where s is a fixed shift parameter that ensures that yij+s > 0. The Box-Cox transformation depends on the 
transformation parameter λ that is used for transforming the data Tλ(yij) = yij(λ). The aim is to find the value 
of λ given the data such that the assumptions about the unit-level error terms of the nested error regression 
model are met (Gurka et al., 2006). The implementation of data-driven transformations within the SEM 
algorithm is computationally intensive because the transformation parameter λ has to be estimated in each 
iteration step. The algorithm is structured into two parts. In Part 1 the SEM algorithm is used for finding 
the optimal transformation parameter, ̂�

(F)
. In Part 2 the SEM algorithm is implemented with the estimated 

�̂
(F)

 from Part 1. The detailed steps of the SEM algorithm under transformations are given below.
Part 1

1.	 Define a grid g of possible values of λ. Using each value in the grid, implement the steps 
below.

2.	 Use the scaled version of the Box-Cox transformation, as defined in Rojas-Perilla et al. (2020), 
to transform the midpoints of each interval (Ak−1,Ak) and fit the nested error regression model 
(1). Repeat the same process for each value of λ in g and select the value of �̂ that maximizes the 
restricted maximum likelihood. Note that the use of the scaled version of the Box-Cox transforma-
tion, defined by

yij(�) =

⎧⎪⎨⎪⎩

(yij+s)�−1

�
if �≠0,

ln(yij+s) if �=0,

yij(�)

J(�, y)
1

n

= yij(�)

(
D∏

i= 1

ni∏
j= 1

y�−1
ij

)−1∕n

,
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where J denotes the Jacobian, is important for estimating the transformation parameter λ. The Jacobian 
of the scaled Box-Cox transformation is equal to 1. This means that the scale of the likelihood is 
preserved independently of the transformation parameter λ in g. Thus, values of the log-likelihood 
function—under differently transformed yij(λ)—can be compared and the log-likelihood function sim-
plifies to the log-likelihood function of the nested error regression model (1). For further details we 
refer to Rojas-Perilla et al. (2020).

3.	 Using the selected value of �̂ from the previous step, fit the nested error regression model (1) to 
obtain �̂ = (�̂, �̂

2

e
, �̂

2

u
) and û.

4.	 Generate a new pseudo sample as a proxy for the unobserved yij(�̂). To do this, for j = 1, …, ni 
and i  =  1,  …,  D sample from the conditional distribution f (yij(�) |xij, kij, ui) by drawing from 
N(xT

ij
�̂ + ûi, �̂

2

e
) within the given interval (Akij−1

(�̂) ≤ yij(�̂) ≤ Akij
(�̂)) to obtain (ỹij(�̂), xij). Back-

transform ỹij(�̂) to the original scale ỹij using the selected �̂ from Step 2.
5.	 Go to Step 2 and select a new optimal �̂ this time using the newly generated ỹij from the previous 

step in Step 2 of the algorithm instead of the interval midpoints.
6.	 Iterate Steps 2-5 B + M times, with B burn-in iterations and M additional iterations.
7.	 Discard the burn-in iterations and estimate the final �̂

(F)
 by averaging the M estimates of �̂.

Part 2

8.	 Use �̂
(F)

 from Part 1 and the Box-Cox transformation to transform the midpoints and the 
interval bounds of each interval (Ak−1,Ak). Then apply the SEM algorithm as described in 
Section 4.1 in steps 1–5 with B burn in and M additional iterations to estimate �̂.

Figure 1 illustrates why in the case of using transformations it is important to structure the SEM 
algorithm in two parts, that is, finding the optimal λ first and then using the optimal λ, to estimate β. 
The left panel of Figure 1 plots the estimated λ for each iteration step of the algorithm for monitoring 
its convergence. The right panel of Figure 1 plots �̂ against �̂ for each iteration step of Part 1. From 
that plot it is clear that by simply running Part 1 and averaging the M estimates of ̂� and ̂� the averaged 
parameter estimates would not be the same as the parameter estimates obtained by using the value of 
the transformation parameter, λ, at convergence. This is the case because the relationship between �̂ 
and �̂ is non-linear. In addition, as λ is different in every iteration, different iterations would be fitting 
models for differently defined response variables. Therefore, the SEM algorithm is divided into two 
parts. In Part 1 the final �̂

(F)
 is estimated and in Part 2 this estimate is used for estimating the param-

eters of the nested error regression model on the transformed scale.

F I G U R E  1   Convergence of �̂ and �̂ using the stochastic expectation–maximization algorithm
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5  |   EMPIRICAL BEST PREDICTION WITH 
GROUPED DATA

In the presence of a grouped income variable, the EBP approach needs to be modified. In the first step, 
the model parameters, �̂ = (�̂, �̂

2

u
, �̂

2

e
), and the predicted random effects are estimated using the SEM 

algorithm. Note that predicted random effects are computed by using the estimated model parameters 
and the values of the pseudo response generated by the SEM algorithm. It is likely that when model-
ling an income variable the normality assumptions of the nested error regression model may not hold. 
In this case, a suitable transformation is needed and the SEM algorithm is implemented to estimate �̂ 
and �̂

(F)
 using the results in Section 4.2 and following the developments by Rojas-Perilla et al. (2020).

Having estimated �̂, �̂
(F)

 and ûi, the remaining steps of the Monte Carlo algorithm used to imple-
ment the empirical best predictor (EBP) are as follows:

1.	 Use the sample data and the SEM algorithm to estimate �̂ = (�̂, �̂
2

u
, �̂

2

e
), �̂

(F)
 and �̂ i =

�̂
2

u

�̂
2

u
+

�̂2e
ni

.
2.	 For l = 1, …, L:

(a).	 Generate a synthetic population under the nested error regression model 
ŷ
∗ (l)

ij
(�̂

(F)
) = xT

ij
�̂ + ûi + u

∗ (l)

i
+ e

∗ (l)

ij , where xij are population micro-data for unit j in area i, 
u
∗ (l)

i

iid
∼N(0, �̂

2

u
(1 − �̂ i)), e

∗ (l)

ij

iid
∼N(0, �̂

2

e
) and ûi is given by ûi = E(ui |yis).

(b).	 Back-transform to the original scale ŷ∗ (l)
ij

= T −1

(
ŷ
∗ (l)

ij
(�̂

(F)
)

)
.

(c).	 In each area, estimate the target parameter Î
(l)

i
 using ŷ∗ (l)

ij
.

3.	 The target parameter is estimated by averaging over the L Monte Carlo estimates Î
(l)

i
 in each area,

If the SEM algorithm is used without a transformation; �̂
(F)

 in Step 1 and Step 2 (a) as well as the 
whole Step 2 (b) (the back-transformation step) can be neglected and T is the identity function. For 
non-sampled areas, we cannot estimate an area random effect, hence ûi is not available. In this case, 
Step 2(a) above is modified such that synthetic values of the outcome are generated as follows, 
ŷ
∗ (l)

ij
(�̂

(F)
) = xT

ij
�̂ + u

∗ (l)

i
+ e

∗ (l)

ij
, where the random effects are drawn from u∗ (l)

i

iid
∼N(0, �̂

2

u
) and the unit-

level error terms are drawn from e∗ (l)
ij

iid
∼N(0, �̂

2

e
). The same applies to the case where we are working 

with the untransformed response variable.
Mean squared error estimation is a crucial step in SAE. Complications arise due to the com-

plexity of non-linear indicators which make the development of analytic MSE estimators difficult. 
For the EBP, Molina & Rao, (2010) propose a parametric bootstrap MSE estimator under the 
nested error regression model. The use of bootstrap under the EBP approach with data-driven 
transformations has been discussed by Rojas-Perilla et  al. (2020). The authors propose an ap-
proach to accounting for the additional uncertainty due to the estimation of the transformation 
parameter. A parametric bootstrap is also used when working with a grouped outcome. However, 
there are two additional sources of variability we need to account for. One is the uncertainty due 
to the estimation of the transformation parameter and the second is the uncertainty resulting from 
working with limited information due to grouping. The bootstrap MSE assumes that the mech-
anism used to group the response variable is known. Denoting by k the bootstrap iteration, the 
bootstrap MSE estimator below is presented in the more general case where a transformation of 
the response variable is used.

Î
EBP

i
=

1

L

L∑
l= 1

Î
(l)

i
.
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1.	 (a).	 Using the sample estimates, �̂, �̂
2

u
, �̂

2

e
, �̂

(F), at convergence of the SEM algo-
rithm, generate u

∗ (k)

i

iid
∼N(0, �̂

2

u
) and e

∗ (k)

ij

iid
∼N(0, �̂

2

e
) and a bootstrap superpopulation 

ŷ
∗ (k)

ij
(�̂

(F)
) = xT

ij
�̂ + u

∗ (k)

i
+ e

∗ (k)

ij
, where xij are population micro-data for unit j in area i.

(b).	 Back-transform ŷ∗ (k)
ij

= T −1

(
ŷ
∗ y(k)

ij
(�̂

(F)
)

)
 to the original scale and compute the population 

value of the target parameter in area i and bootstrap iterations k, Ii,k.
(c).	 Select a bootstrap sample using a simple random sampling with replacement from each 

area that respects the area-specific sample sizes of the original sample.
(d).	 Using the known censoring mechanism and the bootstrap sample data, create the grouped 

response variable.
(e).	 Use the SEM algorithm with the current bootstrap sample for deriving EBP estimates of 

the target parameters. In this case where a transformation is used this consists of using 
Parts 1 and 2 from Section 4.2 and the EBP algorithm under a transformation described 
in Section 5.

(f).	 Obtain EBP estimates of the target parameter in area i and bootstrap iteration k, Î
EBP

i,k
.

2.	 Using a total of K bootstrap samples, the MSE estimator is computed as follows:

6  |   MODEL -BASED SIMULATIONS

This section presents model-based simulation results for assessing the performance of the proposed 
methodology for estimating poverty and inequality indicators introduced in Section 2. In particular, 
we assess the performance of point estimators and of corresponding MSE estimators. In order to eval-
uate the properties of estimators of the model parameters obtained with the proposed methodology we 
have conducted additional simulation studies that are presented in Section 2 in the OSM.

Three population models (Normal, Log-scale and Pareto)—in line with the scenarios considered 
by Rojas-Perilla et  al. (2020)—are used for generating the simulated data. Details about the data 
generation mechanisms and the corresponding conditional R2

c
 (Nakagawa & Schielzeth, 2013) are 

outlined in tables 1 and 2 in the OSM. The normal scenario (in Section 6.1) is used for evaluating the 
performance of the EBP approach under grouping of the response variable when the model assump-
tions are met. The log-scale scenario (in Section 6.2) attempts to mimic the distribution of an income 
variable we might work with in practice. In addition, we also assess the properties of the proposed 
bootstrap MSE estimator. The Pareto scenario attempts to mimic an observed income distribution and 
illustrates the performance of the SEM Box-Cox algorithm under model misspecification. The results 
from this simulation study are available in the OSM.

For the normality-based scenario, we use two different grouping mechanisms, referred to as nor-
mal scenario 1 (with 14 income groups) and normal scenario 2 (with 7 income groups) (see tables 4 
and 5 of the OSM). This allows us to explore the impact of the number of groups on the performance 
of the small area estimators which is of interest for survey practitioners.

In each Monte Carlo run, a finite population U of size N = 10000 is generated and is partitioned into 
D = 50 areas each with size Ni = 200. From the finite population we select a sample using an unbalanced 
design with area-specific sample sizes ni ranging between 8 ≤ ni ≤ 29. The total sample size is n = 921. 
In total we run 200 Monte Carlo iterations with the number of Monte Carlo iterations for implementing 
the EBP set to L = 200 and the number of bootstrap iterations for MSE estimation set to K = 200.

We compare the EBP under the model that assumes that the continuous response variable is avail-
able (abbreviated below by LME) to the EBP when only the grouped variable is available and the use 

M̂SE

(
Î
EBP

i

)
=

1

K

K∑
k= 1

(
Î
EBP

i,k
− Ii,k

)2

.
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of the SEM algorithm is necessary (abbreviated below by SEM). For both model-based scenarios 
we further compare the standard EBP when a Box-Cox transformation is used (LME Box-Cox) to 
the EBP–SEM approach when a Box-Cox transformation is used (SEM Box-Cox). This allows us to 
examine how well the parameter of the Box-Cox transformation, λ, is estimated when we only have 
access to the grouped response. For assessing the use of a fixed transformation, the standard EBP as 
well as the EBP with grouped data is used with a logarithmic transformation (LME Log, SEM Log). 
The SEM algorithm uses 40 burn-in iterations and 200 additional iterations. Note that the estimators 
above are available in the packages emdi (Kreutzmann et al., 2019) and smicd (Walter, 2019b) in R.

The performance of point estimates is assessed by computing the area-specific empirical root mean 

squared error RMSE
�
Î
EBP

i

�
=

�
1

200

∑
200
m=1

�
Î
EBP(m)

i
− I

(m)

i

�2
�1∕2

, where m denotes the Monte Carlo 

iteration, Î
EBP

i
 is the estimated indicator using one of the above-mentioned methods and Ii is the true 

population value. Tables are used to report the mean and median over areas of the RMSE. The pro-
posed MSE estimators are evaluated by the relative bias and the relative RMSE for each area i. We 
treat the empirical root MSE as the true MSE.

6.1  |  Results: Normality-based scenarios

Table 2 presents a summary of the results for normal scenario 1 (14 intervals) and normal scenario 2 
(7 intervals) using the SEM method, the SEM Box-Cox method, the LME and LME Box-Cox meth-
ods. In figures 1 and 2 in the OSM the estimated density of the population yij values is plotted against 
the estimated densities of ŷ∗ (l)

ij
 using the different estimation methods from one arbitrarily chosen 

simulation run. For normal scenario 2, we also have included the regression on the midpoints method 
(denoted by MID) as a naive competitor. The results show that the performance of the EBPs using the 
SEM algorithm a) outperforms the estimates obtained using midpoint regression and b) is close to the 
performance of the EBPs when the continuous outcome is fully available. As expected, when using 
the fully available continuous outcome the EBP estimates are more efficient (lower RMSE) than the 
SEM-based estimates. However, despite working with the grouped outcome, the increase in RMSE 
(reduction in efficiency) is not dramatic which demonstrates that the SEM algorithm works well. In 
line with the theory, the results also show that as the number of classes used to discretize the continu-
ous outcome reduces (from 14 to 7 groups), the RMSE of the SEM-based estimates increases. This 
is reasonable as in this case the information available is reduced. Nevertheless, even in the case of 
scenario 2 we would argue that the performance of the SEM-based estimates is reasonable. Our view 
is based on the fact that seven groups present a rather extreme scenario in real applications.

The performance of the estimates using the SEM and SEM Box-Cox methods is very similar. In the 
case of the normal-based scenarios, this is expected since the data-driven transformation parameter, 
λ, is estimated to be close to one, which is equivalent to using no transformation. This is confirmed 
by looking at the estimation of λ in table 3 in the OSM. Hence, the structure of the SEM algorithm 
in two parts works as expected and the Box-Cox transformation adapts well to the shape of the data 
distribution, even though only the grouped information is used for estimating λ.

The MSE results for the different indicators are summarized in Table 3. Overall, the relative bias 
and relative RMSE of the estimated RMSE are low. In particular, for most scenarios and target pa-
rameters the relative bias is below 10% and for a few scenarios somewhat above 10%. The relative 
RMSE also shows that the bootstrap estimator is stable. In the OSM, we also present domain-specific 
coverage rate plots of the confidence intervals for the different indicators. In particular, figures 4-6 
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(in the OSM) show the coverage rates of 95% confidence intervals constructed by using the estimated 
bootstrap MSEs. We observe that the coverage rates of the EBP estimates using the SEM Box-Cox 
method are close to that of the EBP when the continuous outcome is fully available.

6.2  |  Results: Log-scale scenario

In this section, we present results when the assumptions of the nested error regression model are not 
met. This is the case for the log-scale scenario. For this scenario, the response variable is grouped 
in seven intervals, hence a fairly extreme censoring mechanism is evaluated. The distribution of the 
response variable using one arbitrarily chosen Monte Carlo population can be seen in table 6 of the 
OSM. The results in Table 2 show that the performance of the estimates using the SEM Box-Cox and 
the SEM Log methods is close to the performance of the estimates using the LME Box-Cox and to 
the LME Log methods that assume that the continuous outcome variable is available. As expected, 
some accuracy in estimation is compromised when working with the grouped outcome. However, the 
SEM-based estimates remain competitive when compared to the estimates obtained by assuming that 
full information for the response variable is available. This is also confirmed by looking at how the 
SEM-based methods recover the true population density in figure 3 in the OSM.

The use of the Box-Cox transformation appears to work well. Under this scenario, the transfor-
mation parameter λ should be estimated to be close to zero. This is confirmed by examining the 

T A B L E  2   Performance of the estimated empirical best predictors (EBPs) in terms of RMSE over areas

Mean HCR PGAP Gini

Indicator: Median Mean Median Mean Median Mean Median Mean

Normal scenario 1 (14 intervals)

RMSE

LME 201.482 212.450 0.033 0.035 0.014 0.015 0.013 0.014

LME Box-Cox 201.675 212.466 0.033 0.035 0.014 0.016 0.013 0.014

SEM 203.783 217.075 0.034 0.036 0.014 0.016 0.013 0.014

SEM Box-Cox 204.604 217.335 0.034 0.036 0.014 0.017 0.013 0.015

Normal scenario 2 (7 intervals)

RMSE

MID 258.199 264.024 0.045 0.045 0.027 0.028 0.018 0.019

LME 200.725 212.405 0.033 0.035 0.014 0.015 0.013 0.014

LME Box-Cox 201.422 212.502 0.033 0.035 0.014 0.016 0.013 0.014

SEM 216.780 225.692 0.035 0.038 0.015 0.017 0.014 0.015

SEM Box-Cox 215.324 225.897 0.035 0.037 0.016 0.018 0.014 0.016

Log-scale scenario (7 intervals)

RMSE

LME Log 994.586 988.374 0.063 0.065 0.039 0.040 0.035 0.034

LME Box-Cox 995.068 992.021 0.063 0.065 0.040 0.040 0.035 0.034

SEM Log 1046.724 1030.190 0.066 0.068 0.041 0.042 0.035 0.035

SEM Box-Cox 1043.407 1040.646 0.066 0.068 0.040 0.042 0.037 0.037
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estimation results of λ in table 3 in the OSM. Finally, Table 3 shows that the proposed bootstrap MSE 
estimator has reasonably low relative bias. As expected, the MSE under the Box-Cox version of the 
SEM is somewhat more unstable than the corresponding MSE for the Log SEM. This is due to the fact 
that in the case of the Box-Cox method the transformation parameter is estimated with each bootstrap 
sample whereas for the Log method the transformation is held fixed.

In order to further evaluate the impact of the grouping on the performance of the SEM estimators, 
we report as part of the OSM two additional Log-scale scenarios. For the first one we used 14 equally 
spaced intervals leading to a large proportion of observations in the upper open-ended interval. For 
the second scenario we increased the interval size with increasing y values. The results are reported 
in table 12 in the OSM.

7  |   ESTIMATING SMALL AREA DEPRIVATION 
INDICATORS FOR MUNICIPALITIES IN THE MEXICAN 
STATE OF CHIAPAS: AN APPLICATION OF THE SEM  
BOX-COX METHOD

In our application the response variable, equivalized household income, is measured on a continuous 
scale. In order to assess the performance of the proposed methodology, we group equivalized 

T A B L E  3   Performance of the bootstrap root mean squared error (MSE) estimator over areas

Mean HCR PGAP Gini

Indicator: Median Mean Median Mean Median Mean Median Mean

Normal scenario 1 (14 intervals)

rel.Bias[%]

SEM 7.37 7.05 5.91 5.07 2.31 3.07 3.90 3.88

SEM Box-Cox 7.56 7.33 5.61 5.47 −6.86 −5.58 −3.67 −4.41

rel.RMSE[%]

SEM 9.50 10.50 10.59 11.38 12.05 13.34 8.68 9.87

SEM Box-Cox 9.92 10.85 10.78 11.42 13.03 14.01 8.81 10.53

Normal scenario 2 (7 intervals)

rel.Bias[%]

SEM 5.30 5.84 4.71 3.65 −0.18 0.30 2.24 1.94

SEM Box-Cox 5.46 6.10 4.59 3.91 −15.77 −14.82 −10.22 −11.67

rel.RMSE[%]

SEM 8.59 9.91 10.22 10.98 12.22 13.29 8.84 9.59

SEM Box-Cox 8.82 10.30 10.30 11.07 19.27 19.16 12.09 14.79

Log-scale scenario (7 intervals)

rel.Bias[%]

SEM Log 7.22 6.56 6.73 7.58 6.74 7.13 0.88 0.77

SEM Box-Cox 13.17 26.00 6.78 7.65 7.10 7.57 6.54 6.40

rel.RMSE[%]

SEM Log 33.49 34.78 13.19 14.25 21.02 21.63 7.95 8.36

SEM Box-Cox 42.19 60.85 13.23 14.36 21.33 21.93 16.49 17.05
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household income to 14 and 8 intervals. The distribution of the grouped equivalized household in-
come is presented in tables 16 and 17 of the OSM. The variables in Table 4 were identified as possible 
covariates that predict equivalized household labour income well. The variables in the working model 
are selected by using the coefficient of determination proposed by Nakagawa and Schielzeth (2013). 
The conditional R2

c
, interpreted as the variance explained by the whole model, is R2

c,lme
= 0.61 when 

estimating the model with the observed continuous response variable on the transformed scale (Box-
Cox transformation). When estimating the model with a grouped response variable on the transformed 
scale (Box-Cox transformation) using the SEM algorithm the R2

c,sem(14)
 is 0.61 and R2

c,sem(8)
 is 0.62 for 

the 14 and 8 interval scenario respectively.
The Box-Cox transformation is used as the preferred transformation method because it is data-

driven. This is crucial when working with grouped data as response variable, because the normal-
ity assumption of the residuals cannot be checked. The estimated transformation parameters are 
�̂lme = 0.16 for the continuous response, �̂

(F)

sem(14)
= 0.18 and �̂

(F)

sem(8)
= 0.17 for the 14 and 8 grouping 

scenarios respectively. The results indicate that the use of a logarithmic transformation or the 
use of the untransformed response variable may lead to erroneous results. Rojas-Perilla et  al. 
(2020) and Tzavidis et al. (2018) show that even if λ is estimated to be close to 0 the EBP esti-
mates using the Box-Cox transformation may outperform the EBP estimates using the logarithmic 
transformation.

Estimates of the mean equivalized household labour income, HCR and PGAP for each of the 118 
municipalities are obtained by using the SEM Box-Cox method based on 14 and 8 intervals, and by 
using LME Box-Cox based on the observed continuous response variable. The mean and median 

T A B L E  4   Variables used in the nested error regression working model

Variable type Description

Response variable: Grouped equivalized household labour income

Auxiliary variables: Value of all household goods

Value of household communication equipment

Share of employees in the household

Educational level of head of household

Social class of head of household

Municipalities of Chiapas

F I G U R E  2   Estimated head count ratio (HCR) for municipalities in the state of Chiapas based on different 
estimation methods. The empirical best predictor (EBP) under the model with continuous response and Box-
Cox transformation is abbreviated by LME Box-Cox, the EBP under the model with grouped data and Box-Cox 
transformation is abbreviated by SEM Box-Cox [Colour figure can be viewed at wileyonlinelibrary.com]
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averaged over all municipalities are given in Table 5 and plotted in Figures 2 and 4. The results show 
that the point estimates from all three estimation methods are very similar. Interval censoring does not 
appear to impact significantly on the estimation results. Additionally, the relative efficiencies of the 
estimators (EFF) defined as EFF(̂I

EBP

i
) = RMSEsem (̂I

EBP

i
)∕RMSElme (̂I

EBP

i
) is reported in the Table 5. 

It is notable that the efficiency loss is small even when the response variable is grouped to only eight 
intervals. In the 14 interval scenario the point estimates of the mean are even more efficient, but this 
result is only due to the Monte Carlo variability. The spatial distributions of the HCR in municipalities 
in Chiapas are shown in Figure 2 for all three estimation methods. The figure supports the previously 
mentioned results that the estimates obtained by using the different methods are very close.

A possible way to further validate the estimation results is by comparing the direct estimates, where 
available, to the model-based estimates. In Figure 3 the direct estimates of the mean (based on the ob-
served continuous data) are compared to the model-based estimates (SEM Box-Cox) of the mean using a 
grouped response variable with 14 intervals. As expected, the left panel shows a positive linear correlation 
between the estimates. However, there is a disparity between the intersection line (the identity) and the re-
gression line. As anticipated, the model-based estimates are less extreme compared to the direct estimates 

F I G U R E  3   The left panel shows a scatter plot and the right panel a line plot of the direct and the model-based 
estimates for each in-sample domain (municipality). The empirical best predictor under the model with grouped data 
and Box-Cox transformation is abbreviated by SEM Box-Cox [Colour figure can be viewed at wileyonlinelibrary.
com]
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for municipalities with very small and very high mean estimates. The right panel plots the value of the 
estimates for both estimation methods for each in-sample domain. The pattern shows that as the sample 
size increases the direct estimates and the SEM Box-Cox estimates are almost identical. Figure 4 presents 
municipal estimates of mean income and PGAP for the SEM Box-Cox algorithm based on 14 intervals. 
The plots for the other estimation methods are omitted because the results are comparable. We observe 
that municipalities in the middle and in the east of Chiapas exhibit high rates of HCRs and PGAPs and 
low levels of mean equivalized household labour income and are thus more adversely affected by poverty. 
These regions are characterized by high mountains, the Chiapas Highlands and a large concentration of 
indigenous population. There are, however, two regions in the centre of the state with relatively high mean 
income and low rates of poverty. These are the regions where the capital Tuxtla Gutiérrez and the larger 
city San Cristóbal de las Casas are located. Also the coastal region—especially in the south—where the 
most important city economically Tapachula is located, is less affected by poverty. The analysis shows 
that even though Chiapas is one of the poorest states in Mexico, there are spatial variations between the 
municipalities. These differences can be revealed by using SAE methods designed for grouped data. The 
proposed SEM Box-Cox method is, to the best of our knowledge, the first approach that allows the use of 
the popular EBP method in conjunction with a grouped response variable. This enables the estimation of 
spatially disaggregated target indicators with small sample sizes when confidentiality restrictions or de-
cisions about the survey design require the use of relatively limited information for the response variable.

8  |   CONCLUDING REMARKS

The paper proposes SAE methodology when working with a response variable that is grouped. The 
novel aspects of the paper include the estimation of a nested error regression model when the response 
is grouped, the estimation both of linear and non-linear indicators for small areas, the use of data-
driven transformation with the nested error regression model and the estimation of the MSE of the 
small area target parameters that accounts for the fact that we are working with limited information 
compared to standard small area models.

The proposed methods are evaluated using model-based simulations under different scenarios for 
the unit-level error terms. The results show that the proposed methods work well and in most scenar-
ios the loss of accuracy is small when compared to the use of EBPs that are estimated by assuming 
the availability of full information for the response variable. As expected, the loss of accuracy also 
depends on the number of intervals used for grouping the data and the proposed methodology appears 
to work well even when the number of groups used is fairly small. The results also show that the use 
of an adaptive transformation works satisfactorily and the transformation parameter is estimated well 
in the presence of limited information for the response variable. Finally, the proposed MSE estimator 
appears to capture the different sources of variability and appropriately tracks the empirical MSE.

The new methodology is used to estimate disaggregated poverty and inequality indicators for mu-
nicipalities in Chiapas, a southern state of Mexico, using grouped income banded in 8 and 14 in-
tervals. In order to evaluate the proposed methodology estimates of the target parameters are also 
obtained when income is fully available, that is, not grouped. The Box-Cox transformation is applied 
to ensure that the model assumptions are met. The estimates from the continuous and grouped re-
sponses are very close, indicating the validity of the proposed methodology. The plotted poverty maps 
enable policy makers to get a spatial overview of the distribution of poverty in Chiapas and to target 
poorer regions more precisely.

The proposed methodology for estimating non-linear indicators with grouped response data re-
quires access to unit-level census micro-data for the covariates. Access to such data may be very 
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challenging due to confidentiality constraints. Although the proposed methodology assumes access 
to unit-level census micro-data, it is important to discuss briefly an alternative when such data are 
not available. An alternative approach would be to use area-level models which are based on direct 
estimates of the linear or non-linear indicator of interest. Methods for direct estimation with grouped 
data can be mainly categorized in three groups: (1) Direct estimation based on the midpoints of the 
intervals, (2) parametric (Chen, 2017; Reed & Wu, 2008) and (3) non-parametric (Kakwani & Podder, 
2008) modelling of the distribution function. How these different direct estimation methods can be 
combined with area-level models is an open area for further research.

The proposed model-based small area methodology does not incorporate survey weights in the 
estimation. Conventionally, SAE methods are model based and in most cases the survey weights are 
not used in model fitting. However, not including the survey weights carries risks. One example is 
when the assumption of a non-informative sample selection mechanism does not hold, even after con-
ditioning on auxiliary variables, hence wrongly assuming that the model for the sample also holds for 
the population. An approach to accounting for the survey weights in EBP was recently proposed by 
Guadarrama et al. (2018). Although not implemented in this paper, the pseudo EBP approach can be 
adapted to the setting of the present paper. Doing so requires fitting the nested error regression model 
and estimating the fixed effects and the variance components in each step of the SEM algorithm by 
using the methods in You and Rao (2002).

The issue of missing data in SAE has received some attention in the literature. Similarly to the use 
of survey weights, most small area literature assumes a missing at random mechanism hence after 
conditioning on covariates, the probability to respond is assumed not to depend on the response. This 
is the assumption we are making in the present paper. Provided that the survey weights adjust for non-
response, one approach to account for non-response is by incorporating the weights in model fitting as 
proposed by Guadarrama et al. (2018). In a recent paper Sverchkov and Pfeffermann (2018) proposed 
an alternative approach to modelling non-missing at random mechanisms in SAE. However, to the 
best of our knowledge this has not been extended yet for estimating the more general parameters that 
are of interest in this paper.

Current research focuses on extending the SEM method for fitting nested error regression mod-
els for more complex structures, for example models with random coefficients. In future research, 
we also plan to focus on the case where grouping also affects some of the auxiliary variables. This 
is a more challenging problem but perhaps more realistic if interest is in protecting data confiden-
tiality. Finally, there are three further aspects that we do not discuss in this paper and are left open 
for future research. First, the proposed methodology does not adjust for the effects of heaping. This 
can be resolved by following the methods proposed by Groß and Rendtel (2016). Second, we also 
acknowledge that another type of measurement error may exist when respondents report their in-
come in the wrong interval. However, this is a type of misclassification error that cannot be solved 
unless we are willing to impose additional assumptions or use results from a validation sample, 
which can be treated as a gold standard. Third, the proposed methodology assumes normality for 
the random effects. The assumption may be relaxed by leaving the distribution of the random ef-
fects unspecified and use non-parametric methods (Marino et al., 2019). This leads to a discrete 
mixture distribution which avoids the need to impose parametric assumptions like normality for 
the random effects. However, the extension to the case of grouped response variables is a topic for 
further research.
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