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Abstract We first present a brief review of nonlinear

asset-pricing models and contributions in which such

models have been used as benchmarks to evaluate the

effectiveness of a number of regulatory policy mea-

sures. We then illustrate the functioning of one

particular asset-pricing model—the seminal frame-

work by Brock and Hommes (J Econ Dyn Control

22:1235–1274, 1998)—and its possible stabilization

via a central authority that seeks to counter the

destabilizing trading behavior of speculators. Our

paper underlines that tools from the field of nonlinear

dynamical systems may foster our understanding of

the functioning of asset markets, thereby enabling

policymakers to design better trading environments in

the future.
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1 Introduction

Financial markets regularly display severe bubbles

and crashes. The detailed historical accounts compiled

by Galbraith [38], Kindleberger and Aliber [52] and

Shiller [76] highlight the fact that the instability of

financial markets may also harm the real economy.

The Great Depression, triggered by the stock market

crash of 1929, and the Great Recession, caused by the

financial havoc of 2007, are just two such examples of

notoriety. Nonlinear asset-pricing models, featuring

interactions between heterogeneous interacting spec-

ulators that can result in complex (chaotic) price

dynamics, provide important insights into the func-

tioning of financial markets and may therefore help

policymakers derive strategies that are conductive to

improving market stability. To illustrate the power of

this research approach, we discuss one particular

asset-pricing model—the seminal framework by

Brock and Hommes [16]—and explore its possible

stabilization via a central authority seeking to offset

the destabilizing trading behavior of speculators. Our

paper shows that tools from the field of nonlinear

dynamical systems may foster our understanding of

the functioning of financial markets, thereby enabling

policymakers to design better trading environments in

the future.

To set the stage for our paper, a few remarks are in

order. In the aforementioned asset-pricing literature,

speculators follow simple behavioral trading rules to
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determine their investment positions, an assumption

that is in line with numerous empirical observations.

In particular, Menkhoff and Taylor [59] and Hommes

[46] present empirical and experimental evidence

showing that speculators believe in two contrasting

trading concepts. First, they use technical trading rules

[60], assuming the continuation of the current market

trend. Second, they use fundamental trading rules [39],

believing that asset prices will return toward their

fundamental values. While technical trading rules add

a destabilizing positive feedback effect to the dynam-

ics, fundamental trading rules entail a stabilizing

negative feedback. Since there is widespread empir-

ical evidence that speculators switch between techni-

cal and fundamental trading rules (see, e.g.,

[2, 4, 12, 36], most models in this field possess at

least one nonlinearity, giving rise to the following

stylized boom-bust generating mechanism. Near the

model’s fundamental value, technical trading rules

tend to dominate the market, and their use may initiate

a bubble process. As the price runs away from its

fundamental value, however, fundamental trading

rules become more influential and eventually bring

asset prices back to values that are more moderate.

Unfortunately, this is often the starting point for the

next bubble, as technical trading rules gain in popu-

larity again.

The interplay between destabilizing technical trad-

ing rules and stabilizing fundamental trading rules can

produce complex (chaotic) dynamics that closely

resembles the dynamics of actual financial markets.

Since these models possess a high degree of realism—

they are based on empirical observations, display a

plausible internal functioning, and match important

statistical properties of financial markets—policymak-

ers can use them as artificial laboratories to evaluate the

effects of regulatory policies. In general, we can expect

at least two different types of result from such

exercises: a positive one and a negative one. This is

also the case for our experiments. As we will see, our

analysis reveals that a central authority may stabilize

the dynamics of the model by Brock and Hommes [16]

by adopting a targeting long-run fundamentals strat-

egy, i.e., by buying assets when they are undervalued

and selling them when they are overvalued. However,

our analysis also demonstrates that well-intended

intervention strategies that are plausible, at least at

first sight, may fail. For instance, a central authority

that applies a leaning against the wind strategy by

selling assets when the market is increasing and buying

assets when the market is decreasing does not neces-

sarily bring prices back toward fundamental values.

Elementary insights offered by the field of nonlin-

ear dynamical systemsmay help us to comprehend this

puzzling outcome. The model by Brock and Hommes

[16] creates complex (chaotic) boom-bust asset-price

dynamics via a bifurcation route that first displays a

pitchfork bifurcation and then a Neimark–Sacker

bifurcation. Our analysis indicates that a leaning

against the wind strategy may suppress or reverse a

Neimark–Sacker bifurcation, but has no real power

against a pitchfork bifurcation. In contrast, a targeting

long-run fundamentals strategy may prevent a pitch-

fork bifurcation, therefore allowing policymakers to

establish efficient markets. Simulations reveal that the

stabilizing effect of the latter strategy is quite robust,

e.g., with respect to exogenous noise.Wewould like to

stress that the realization of the negative result is quite

important because it reveals that policymakers must

plan and execute their interventions very carefully, as

remarked by Baumol [8]. Of course, positive results

are also relevant because they may offer policymakers

powerful instruments to stabilize financial markets. In

this respect, we would like to stress that insights from

the theory of chaos control, summarized by Schöll and

Schuster [75], may be worthy of greater attention from

the economic profession.

The rest of the paper is organized as follows. In

Sect. 2, we sketch the literature that addresses non-

linear asset-pricing models and a number of related

policy papers. In Sect. 3, we introduce a popular

specification of the model by Brock and Hommes [16],

and discuss how interventions by a central authority

may affect its dynamics. In Sect. 4, we conclude our

paper. A number of derivations and discussions are

presented in Appendix A.

2 Literature review

In this section, we provide a brief review of nonlinear

asset-pricing models and policy insights derived from

them. For more detailed surveys about nonlinear asset-

pricing models, see, for instance, Chiarella et al. [22],
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Hommes and Wagener [45] and Dieci and He [32].1

Westerhoff [85] andWesterhoff and Franke [87] cover

some of the progress that has been made in recent

years with respect to applying such models to conduct

policy experiments.

2.1 Nonlinear asset-pricing models

Day and Huang [25] develop one of the first nonlinear

asset-pricing models.2 In their seminal work, interac-

tions between chartists (following a linear rule) and

fundamentalists (following a nonlinear trading rule)

may create complex (chaotic) bull and bear market

dynamics. Chiarella [19] studies the equally reason-

able opposite scenario, i.e., chartists adhere to a

nonlinear trading rule, while the trading behavior of

fundamentalists is linear. De Grauwe et al. [27]

propose a model in which the market impact of

fundamentalists is nonlinear since they disagree with

the market’s true fundamental value. In Lux [56] and

Bischi et al. [10], speculators switch between technical

and fundamental trading rules because of herding

effects, while Brock and Hommes [16] assume that

speculators’ rule-selection behavior depends on past

realized profits. He and Westerhoff [40] introduce a

framework in which speculators pick trading rules

with a view toward market circumstances. The market

impact of chartists and fundamentalists may also vary

over time due to different wealth dynamics, as

discussed in Chiarella and He [23], Chiarella et al.

[21] or Anufriev and Dindo [3]. Branch and Evans

[13, 14] introduce models in which speculators

learning about an asset’s risk-return profile may cause

bubbles and crashes.

Rosser et al. [78] consider that the evolution of a

market’s fundamental value may follow a chaotic

process. Taking this idea a step further, de Grauwe and

Grimaldi [29, 30] study a financial market framework

with nonlinear repercussions from the real economy,

while Westerhoff [86], Naimzada and Pireddu [61, 62]

and Lengnick and Wohltmann [55] capture nonlinear

interactions between financial markets and the real

economy. Moreover, Westerhoff [84] and Chiarella

et al. [20] study the case in which speculators switch

across different markets. Schmitt and Westerhoff [71]

and Dieci et al. [33] show that market entry and exit

waves may also lead to endogenous boom-bust cycles.

Similar ideas and modeling concepts have recently

been used to capture the dynamics of housing markets,

see, e.g., Dieci and Westerhoff [34], Diks and Wang

[35], Campisi et al. [18], Bolt et al. [11] and Schmitt

and Westerhoff [73]. Moreover, Huang and Day [48]

develop a piecewise-linear version of the model by

Day and Huang [25]. Studies by Tramontana et al.

[79, 80], Huang et al. [49] and Huang and Zheng [50]

reveal that such models, often deeply analytically

tractable, may give rise to many surprising economic

phenomena. See also the survey by Tramontana and

Westerhoff [81] and the contribution by Avrutin et al.

[7] for in-depth mathematical background information.

2.2 Policy insights

Let us start with the contributions that are most closely

related to our work: central bank interventions. Hung

[51] and Neely [63, 64] report that central banks have

intervened quite frequently in foreign exchange mar-

kets in the past, using two different intervention

strategies. Central banksmay conduct so-called leaning

against the wind interventions, that is, they buy (sell)

foreign currency when the exchange rate decreases

(increases) to diminish or break the momentum of the

current exchange rate trend.Alternatively, they conduct

targeting long-run fundamentals interventions, that is,

they intervene in support of a target exchange rate, e.g.,

the market’s fundamental value. Of course, such

behavior is not limited to foreign exchange markets; it

can also be applied by policymakers to other asset

markets such as stock or commodity markets. This is

precisely what we do in our paper.

Szpiro [77] is one of the first to use a nonlinear

asset-pricing model to explore the effects of such

interventions. In particular, he shows that the targeting

long-run fundamentals strategy may inadvertently

induce chaos. In contrast, Wieland and Westerhoff

[88] show that the targeting long-run fundamentals

strategy is related to certain chaos control methods and

may, if properly executed, stabilize asset markets. See

Westerhoff [85] and Westerhoff and Franke [87] for

further applications. All these contributions are based

1 Our main attention focusses on nonlinear asset-pricing models

that are analytically tractable. However, there also exist more

elaborate nonlinear asset-pricing models, see, e.g., the inspiring

contributions by Palmer et al. [66], Arthur et al. [6] and LeBaron

et al. [54]. See LeBaron [53] for a survey.
2 Some predecessors include Zeeman [90], Beja and Goldman

[9] and Frankel and Froot [37].
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on models in which a market maker adjusts prices with

respect to speculators’ order flow. Within the Brock

and Hommes [16] model—the workhorse for our

analysis—asset prices adjust such that the demand for

the risky asset is equal to the supply of the risky asset.

Moreover, we conduct our analysis taking a dynamical

system perspective, highlighting the role of the

model’s bifurcation structure.

Nonlinear asset-pricing models have also been used

to explore the effects of transaction taxes [57, 83],

trading halts [82, 89], price limits [24, 40], short-

selling constraints [5, 26] and interest rate rules [74].

Scalas et al. [67] addressed insider trading and

fraudulent behavior, while Hermsen et al. [43] explore

the effects of disclosure requirements. Brock et al. [17]

examine problems that may arise due to the increasing

number of hedging instruments. We briefly remark

that similar experiments exist for other markets that

entail nonlinearities. For instance, Schmitt and

Westerhoff [70] show that the nonlinear cobweb

model by Brock and Hommes [15] may be stabilized if

firms have to pay a profit tax. However, Schmitt et al.

[69] warn that profit taxes may also harbor a number of

surprising and possibly undesirable side effects.

3 Stabilizing nonlinear asset-price dynamics:

an illustrative example

In the following, we recap a popular specification of

the seminal asset-pricing model by Brock and

Hommes [16] to illustrate how nonlinear interactions

between heterogeneous speculators may create com-

plex (chaotic) boom-bust asset-price dynamics. How-

ever, we extend their setup by considering a central

authority seeking to stabilize such dynamics via two

different countercyclical intervention strategies.

3.1 Basic model setup

Let us turn to the details of the model. Market

participants can invest in a safe asset, paying the risk-

free interest rate r, and in a risky asset, paying an

uncertain dividend Dt. The dividend process of the

risky asset is specified by

Dt ¼ �Dþ dt; ð1Þ

where dt �N 0; r2d
� �

. While the price of the safe asset

is constant, the price of the risky asset depends on the

trading behavior of the market participants, compris-

ing (heterogeneous) speculators, a central authority,

long-term investors and liquidity trades. Our modeling

of speculators’ demand for the risky asset follows

Brock and Hommes [16].3 Let Pt be the price of the

risky asset (ex-dividend) at time t. The end-of-period

wealth of speculator i can be expressed as

Wi
tþ1 ¼ 1þ rð ÞWi

t þ Zi
t Ptþ1 þ Dtþ1 � ð1þ rð ÞPtÞ;

ð2Þ

where Zi
t represents speculator i’s demand for the risky

asset. Note that variables indexed with t ? 1 are

random. Speculators are myopic mean–variance max-

imizers. Their demand for the risky asset follows from

max
Zi
t

Ei
t W

i
tþ1

� �
� ai

2
Vi
t Wi

tþ1

� �� �
; ð3Þ

where Ei
t W

i
tþ1

� �
and Vi

t Wi
tþ1

� �
denote speculator i’s

belief about the conditional expectation and condi-

tional variance of his wealth, and parameter ai [ 0

stands for his risk aversion. Accordingly, speculator

i’s optimal demand for the risky asset is

Zi
t ¼

Ei
t Ptþ1½ � þ Ei

t Dtþ1½ � � 1þ rð ÞPt

aiVi
t Ptþ1 þ Dtþ1½ � : ð4Þ

To achieve a convenient expression of speculators’

aggregate demand for the risky asset, Brock and

Hommes [16] introduce the following simplifying

assumptions. There are N speculators in total, believ-

ing that Ei
t Dtþ1½ � ¼ �D. Moreover, all speculators hold

the same constant variance beliefs, i.e.,

Vi
t Ptþ1 þ Dtþ1½ � ¼ r2R, and possess the same degree

of risk aversion, i.e., ai ¼ a[ 0. We can therefore

express speculators’ aggregate demand for the risky

asset as ZS
t ¼

PN
i¼1 Z

i
t ¼

PN

i¼1
Ei
t Ptþ1½ �þN �D�N 1þrð ÞPt

ar2R
.

Denoting speculators’ average expectation about the

risky asset’s next-period price by Et Ptþ1½ � ¼
1
N

PN
i¼1 E

i
t Ptþ1½ � and normalizing the mass of specula-

tors to N = 1 yield

ZS
t ¼ Et Ptþ1½ � þ �D� 1þ rð ÞPt

ar2R
: ð5Þ

3 See also the insightful presentations byHommes andWagener

[45] and Hommes [47].
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Note that speculators’ demand for the risky asset

increases with their price and dividend expectations

and decreases with the risk-free interest rate, the

current price of the risky asset, their risk aversion and

variance beliefs.

Speculators may use a technical or a fundamental

expectation rule to forecast the price of the risky asset.

The market shares of speculators following the

technical and fundamental expectation rule are labeled

NC
t and NF

t ¼ 1� NC
t . Speculators’ average price

expectations are defined by

Et½Ptþ1� ¼ NC
t E

C
t Ptþ1½ � þ NF

t E
F
t Ptþ1½ �: ð6Þ

Speculators compute the fundamental value of the

risky asset price by discounting future dividend

payments, that is, F ¼ �D=r. Speculators applying the

technical expectation rule, also called chartists, expect

the deviation between the price of the risky asset and

its fundamental value to increase. Their expectations

are formalized by

EC
t Ptþ1½ � ¼ Pt�1 þ v Pt�1 � Fð Þ; ð7Þ

where v[ 0 denotes the strength of speculators’

extrapolation behavior. Speculators using the funda-

mental expectation rule, also called fundamentalists,

believe that the price of the risky asset will approach

its fundamental value. Their expectations can be

written as

EF
t Ptþ1½ � ¼ Pt�1 þ / F � Pt�1ð Þ; ð8Þ

where 0\/� 1 indicates speculators’ expected mean

reversion speed. Note that both expectation rules

forecast the price of the risky asset for period t ? 1 at

the beginning of period t, based on information

available in period t - 1.

Speculators switch between the technical and

fundamental expectation rule with respect to their

evolutionary fitness, measured in terms of past real-

ized profits. Accordingly, the attractiveness of the two

expectation rules is computed as

AC
t ¼ Pt�1 þ Dt�1 � 1þ rð ÞPt�2ð ÞZC

t�2; ð9Þ

and

AF
t ¼ Pt�1 þ Dt�1 � 1þ rð ÞPt�2ð ÞZF

t�2 � j; ð10Þ

where

ZC
t�2 ¼

EC
t�2 Pt�1½ � þ �D� 1þ rð ÞPt�2

ar2R
; ð11Þ

and

ZF
t�2 ¼

EF
t�2 Pt�1½ � þ �D� 1þ rð ÞPt�2

ar2R
: ð12Þ

Brock and Hommes [16] consider that the use of the

fundamental expectation rule may be costly, so they

subtract constant per period information costs j� 0

from [10]. However, we may also regard parameter

k as a behavioral bias in favor of the simpler technical

expectation rule. See Anufriev et al. [1] for empirical

evidence.

The market shares of chartists and fundamentalists

are due to the discrete choice approach, i.e.,

NC
t ¼

exp bAC
t

� �

exp bAC
t

� �
þ exp bAF

t

� � ; ð13Þ

and

NF
t ¼

exp bAF
t

� �

exp bAC
t

� �
þ exp bAF

t

� � : ð14Þ

The intensity of choice parameter b[ 0 measures

how quickly the mass of speculators switches to the

more successful trading rule. The higher parameter b is,
the more speculators opt for the more profitable trading

rule. In the limit, as parameter b approaches infinity, all

speculators opt for the trading rule that produces the

highest fitness. In this sense, speculators display a

boundedly rational learning behavior.

Let us now turn to the central authority seeking to

offset the destabilizing behavior of speculators by

following two different intervention strategies

[51, 63, 85]. According to the first strategy, called the

leaning against the wind strategy, the central authority

acts against current price trends by buying the risky

asset if its price decreases and selling the risky asset if

its price increases. According to the second strategy,

called the targeting long-run fundamentals strategy, the

central authority seeks to guide the price of the risky

asset toward its fundamental value by buying the risky

asset if the market is undervalued and selling the risky

asset if the market is overvalued. Here, we focus on

simple linear feedback strategies and express the

central authority’s demand for the risky asset as

ZG
t ¼ �m Pt�1 � Pt�2ð Þ � d Pt�1 � Fð Þ; ð15Þ
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wherem� 0 and d� 0 are control parameters, captur-

ing the central authority’s intervention strength with

respect to the market’s momentum and distortion.4

Note that the central authority computes the asset’s

fundamental value in the same way as speculators do.5

The demand for the risky asset by long-term

investors, following a buy-and-hold strategy, is con-

stant and set to

ZI
t ¼ �ZI : ð16Þ

Moreover, the demand for the risky asset by

liquidity traders is random and given as follows:

ZL
t ¼ kt; ð17Þ

with kt �N 0; r2L
� �

. The total demand for the risky

asset by all market participants is

Zt ¼ ZS
t þ ZG

t þ ZI
t þ ZL

t : ð18Þ

Market equilibrium requires that the total demand

for the risky asset by all market participants equals the

total supply of the risky asset, that is

Zt ¼ Yt: ð19Þ

The total supply of the risky asset, i.e., the number

of shares offered by firms, is constant and given by

Yt ¼ �Y : ð20Þ

Brock and Hommes [16] assume that there is a zero

supply of outside shares. For simplicity, we therefore

assume that

�Y ¼ �ZI ; ð21Þ

i.e., the number of shares offered by firms is identical

to the number of shares requested by long-term

investors.

Combining [5] with [15–21] reveals that the price

of the risky asset is determined by

Pt ¼
Et½Ptþ1� þ �Dþ ar2R ZG

t þ ZL
t

� �

1þ r
: ð22Þ

Note that [21] implies thatPt increases if speculators

have bullish price expectations. As suggested by the

leaning against the wind strategy, the central authority

sells the risky asset, which should depress its price.

Likewise, the targeting long-run fundamentals strategy

recommends that the central authority sells the risky

asset if the market is overvalued, which should also

bring its price back to more moderate levels. At least at

first sight, both the leaning against the wind strategy

and the targeting long-run fundamentals strategy sound

plausible. As we will see, however, the model’s

nonlinear price formation process is less trivial to

stabilize as our intuition may suggest.6

3.2 Analytical and numerical results

Before we conduct a detailed numerical analysis of the

impact of the central authority’s intervention strate-

gies on the model’s dynamics, preliminary remarks are

in order. In the absence of exogenous shocks, the

dynamics of the model is driven by the iteration of a

three-dimensional nonlinear deterministic map. In

Appendix A, we show the following results (an

overbar denotes steady-state quantities):

1. Our model possesses a fundamental steady state

according to which �P1 ¼ F ¼ �D=r, implying,

among other things, that �NC
1 ¼ ð1þ

exp �bj½ �Þ�1
and �NF

1 ¼ ð1þ exp bj½ �Þ�1
. Note

that neither the leaning against the wind strategy

nor the targeting long-run fundamentals strategy

influences the model’s fundamental steady state.

Moreover, speculators’ distribution among expec-

tation rules is also independent of parameters m

and d. Of course, the reason for this is that the

central authority is inactive at �P1, i.e., �ZG
1 ¼ 0.

2. The fundamental steady state undergoes a pitchfork

bifurcation if the stability condition �NC
1 v�

�NF
1 /\r þ ar2Rd is violated. Such a bifurcation

may occur if the extrapolation parameter of the

technical expectation rule increases. While the

leaning against the wind strategy does not affect

the stability domain of the model’s fundamental
4 As pointed out by one of the referees, the effect of the first

term of [15] is similar to having an additional group of

contrarians and that of the second term is like a stronger reaction

from fundamentalists.
5 To prevent any kinds of strategic trading, we assume that the

central authority intervenes secretly in the risky asset market, as

central banks usually do in real foreign exchange markets

[64, 65].

6 By excluding the demand of the central authority and of

liquidity traders, we arrive at Pt ¼ Et½Ptþ1ð � þ �DÞ= 1þ rð Þ,
which governs the dynamics of the model by Brock and

Hommes [16].
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steady state, the targeting long-run fundamentals

strategy may suppress or reverse a pitchfork

bifurcation.

3. The pitchfork bifurcation gives rise to two further

steady states. These nonfundamental

steady states are given by �P2;3 ¼ �P1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ar2R

b
2
jþarctanh

v�/�2r�2ar2
R
d

vþ/

h i	 


rb vþ/ð Þ

s

, implying among

others, that �NC
2;3 ¼

/þrþar2Rd
vþ/ and �NF

2;3 ¼
v�r�ar2Rd

vþ/ .

Importantly, the targeting long-run fundamentals

strategy allows the central authority to cut the gap

between �P1 and �P2;3, i.e., to reduce mispricing of

the risky asset. Unfortunately, this increases

speculators’ use of the technical expectation rule

and necessitates permanent interventions, given

by �ZG
2;3 ¼ �d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ar2R

b
2
jþ2arctanh

v�/�2r�2ar2
R
d

vþ/

h i	 


rb vþ/ð Þ

s

:.7

Since the leaning against the wind strategy does

not generate interventions when the price of the

risky asset is at rest, �P2;3, �NC
2;3,

�NF
2;3 and �ZG

2;3 are

independent of parameter m.

4. The nonfundamental steady states may become

unstable due to a Neimark–Sacker bifurcation. For

instance, a Neimark–Sacker bifurcation occurs if

the extrapolation parameter of the technical

expectation rule becomes sufficiently large. Fur-

ther numerical explorations suggest that both

intervention strategies may prevent the emergence

of complex (chaotic) dynamics.

Armed with these insights, we are now ready to

conduct a systematic numerical investigation of our

setup. In doing so, our goal is to show that speculators’

behavior may cause endogenous boom-bust dynamics.

Moreover, we describe how the central authority’s

intervention strategies fare against their destabilizing

trading behavior. The base parameter setting we use for

our simulations closely followsBrock andHommes [16].

To be precise, we assume that r ¼ 0:1, �D ¼ 1, r2d ¼ 0,

a ¼ 1, r2R ¼ 1, v ¼ 0:2, / ¼ 1, j ¼ 1, b ¼ 3:6,

r2L ¼ 0, m ¼ 0 and d ¼ 0. Since �NC
1 ¼ 0:973 and

�NF
1 ¼ 0:027, the fundamental steady state �P1 ¼ F ¼

10 is unstable. For instance, the critical value for the

intensity of choice that would just ensure the local

asymptotic stability of the fundamental steady state is

given by bPFcrit ¼ 2:4. As we will see in the sequel, the

nonfundamental steady states are also unstable, and

the model’s dynamics is characterized by two coex-

isting limit cycles. Numerically, we can compute that

the Neimark–Sacker bifurcation occurs at about

bNScrit ¼ 3:3. Our stochastic simulations always rely on

r2L ¼ 0:0025.

Figure 1 provides an overview of the dynamics of the

unregulated market, i.e., of the dynamics of the original

model by Brock and Hommes [16]. Panels (a) and (b) of

Fig. 1 present the evolution of the price of the risky asset

for 400 periods in the time domain; they differ only with

respect to their initial conditions. Apparently, the model

is able to generate endogenous bull or bear market

dynamics. Depending on the initial conditions, we

observe endogenous fluctuations either above or below

the fundamental value. Panel (c) of Fig. 1 reveals that

minimal random demand shocks, induced by liquidity

traders, are sufficient to create erratic transitions between

bull and bear market dynamics.Moreover, the dynamics

appears less regular. Panels (d) and (e) of Fig. 1 show

routes to complex asset-price dynamics via a pitchfork

andNeimark–Sacker bifurcation. The intensity of choice

parameter b is varied between 2 and 4; the panels rely on
different initial conditions.8 Panel (f) of Fig. 1 repeats

these experiments for a stochastic environment. Consis-

tent with panel (c) of Fig. 1, we observe intricate

attractor switching dynamics.9

7 The reasonwhy speculators relymore strongly on the technical

expectation rule as the gap between �P1 and �P2;3 decreases is as

follows. The more the nonfundamental steady states deviate

from the fundamental steady state, the higher (lower) the

profitability of the fundamental (technical) expectation rule. At

the upper nonfundamental steady state, for instance, going short,

as suggested by the fundamental expectation rule, is more

profitable than going long, as suggested by the technical

expectation rule. (A long position is associated with a relatively

unfavorable dividend–price relation, while a short position

benefits from relatively favorable interest rate payments.)

Hence, if the central authority manages to reduce the market’s

mispricing, the relative fitness of the technical expectation rule

improves, and thus, more speculators employ this rule.

8 Brock and Hommes [16] demonstrate in more detail that their

model exhibits a rational route to randomness, that is, a

bifurcation route to chaos as the intensity of choice parameter

increases. See also Hommes [47].
9 A cautionary note is in order. Due to the interplay of

coexisting attractors, exogenous noise and, possibly, complex

basins of attraction, the visual appearance of panel (f) of Fig. 1

depends on the number of iterations plotted. The same is true for

panels (c) and (d) of Fig. 3 and for panels (c) and (d) of Fig. 6.
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Figure 2 provides examples of time series for the

effectiveness of the leaning against the wind strategy

with m ¼ 0:25 in the deterministic setting, panels (a)

and (b), and m ¼ 1 in the stochastic setting, panels

(c) and (d). The top panels present the evolution of the

Fig. 2 Examples of time series for the leaning against the wind

strategy. Panels a and b show the deterministic evolution of

asset prices and interventions for our base parameter setting,

except that m ¼ 0:25. Panels c and d show the same for a

stochastic environment and m ¼ 1

bFig. 1 The functioning of the unregulated model. Panels a and

b show the deterministic dynamics of asset prices for our base

parameter setting and different sets of initial conditions. Panel

c shows the same for a stochastic environment. The bifurcation

diagrams depicted in panels d and e show how asset prices react

to an increase in parameter b for different sets of initial

conditions. Panel f shows the same for a stochastic environment
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price of the risky asset, while the bottom panels report

the level of the central authority’s interventions. A

comparison of panel (a) of Fig. 1 with panel (a) of

Fig. 2 reveals that the leaning against the wind

strategy manages to reduce fluctuations of the price

of the risky asset. But while a stabilization effect in

Fig. 3 Bifurcation diagrams for the leaning against the wind

strategy. Panels a and b show how asset prices and interventions

react to an increase in parameter m. Panels c and d show the

same for a stochastic environment. Base parameter setting,

except that parameter m is varied as indicated on the axis

cFig. 4 Summary statistics for the leaning against the wind

strategy in a stochastic environment. Panels a, b, c, d, e and

f show how volatility, mispricing, the average absolute level of

interventions, the profitability of interventions, the average

market share of fundamentalists and their average absolute

position react to an increase in parameter m. Base parameter

setting, except that parameterm is varied as indicated on the axis
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terms of a lower price variability is clearly visible, the

price of the risky asset keeps a distance to its

fundamental value. Panel (b) of Fig. 2 indicates that

the central authority has to intervene in the risky asset

market in each time step. Panels (c) and (d) of Fig. 2

suggest that these observations are robust with respect

to exogenous shocks.

Figure 3 provides a more systematic analysis of the

leaning against the wind strategy. Panel (a) of Fig. 3

shows a bifurcation diagram for parameter m and

reveals that the leaning against the wind strategy

Fig. 5 Examples of time series for the targeting long-run

fundamentals strategy. Panels a and b show the deterministic

evolution of asset prices and interventions for our base

parameter setting, except that d ¼ 0:01. Panels c and d show

the same for a stochastic environment and d ¼ 0:1
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stabilizes the dynamics around the upper nonfunda-

mental steady state if parameter m exceeds a value of

about 0.32.10 Such an outcome should be regarded as a

mixed blessing: While the leaning against the wind

strategy enables the central authority to reduce the

risky asset’s price fluctuations, it fails to reduce the

market’s mispricing. Panel (b) of Fig. 3 depicts the

Fig. 6 Bifurcation diagrams for the targeting long-run funda-

mentals strategy. Panels a and b show how asset prices and

interventions react to an increase in parameter d. Panels c and

d show the same for a stochastic environment. Base parameter

setting, except that parameter d is varied as indicated on the axis

10 For other initial conditions, wemay observe that applying the

leaning against the wind strategy leads to a stabilization of the

Footnote 10 continued

price of the risky asset around the lower nonfundamental steady

state.
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central authority’s associated interventions. Note that

if parameterm is set high enough, interventions can be

low or even zero. Panel (c) of Fig. 3 confirms the

stabilizing potential of the leaning against the wind

strategy within a stochastic environment. However,

panel (d) of Fig. 3 suggests that the central authority’s

intervention intensity increases with parameter

m. This is clearly different to what we see in panel

(b) of Fig. 3, where the central authority’s intervention

intensity eventually goes to zero. (There are no price

changes at the nonfundamental steady state.) Of

course, the stochastic environment is the relevant

environment for judging the effectiveness of

interventions.

To be able to quantify the success of the central

authority’s interventions, we introduce six summary

statistics. Let T be the sample length used for

computing these statistics. We capture the risky

asset’s volatility by the average absolute price change

of the risky asset 1
T

PT
t¼1 Pt � Pt�1j j, the risky asset’s

mispricing by the average absolute distance between

the price of the risky asset and its fundamental value
1
T

PT
t¼1 Pt � Fj j, the central authority’s intervention

intensity by the average absolute level of interventions
1
T

PT
t¼1 ZG

t

�� ��, the average profitability of their inter-

ventions by 1
T

PT
t¼1 Pt þ Dt � 1þ rð ÞPt�1ð ÞZG

t�1, the

average market share of fundamentalists by 1
T

PT
t¼1 N

F
t

and their average absolute position by 1
T

PT
t¼1 N

F
t ZF

t

�� ��.
Note that we measure the central authority’s profits in

the same way as we do for speculators. For simplicity,

we ignore the costs associated with conducting these

interventions. There may be fixed costs, for instance,

that could simply be subtracted from our profit

measure. To obtain reasonable estimates of these

statistics, we focus on the stochastic environment and

use T ¼ 10; 000 observations.

Based on these statistics, we can now quantify the

success of the leaning against the wind strategy.

Overall, the results are mixed. According to panels

(a) and (b) of Fig. 4, volatility declines when this

strategy is applied, while mispricing increases. As

discussed above, the leaning against the wind strategy

manages to stabilize the dynamics, albeit around the

model’s nonfundamental steady states. Moreover,

panel (c) of Fig. 4 indicates that the central authority

has to intervene more andmore aggressively if it wants

to reduce volatility. Apparently, the leaning against

the wind strategy also produces losses, as depicted in

panel (d) of Fig. 4. Interestingly, the average market

share of fundamentalists increases (slightly) with

parameterm. The same is true for the average absolute

position of fundamentalists, an outcome that is driven

by an increase in fundamentalists’ average market

share and an increase in the market’s mispricing. See

panels (e) and (f) of Fig. 4. So far, we can thus

conclude that the leaning against the wind strategy

may offset endogenous fluctuations, engendered by a

Neimark–Sacker bifurcation, but has no real power to

fight deviations from fundamental values, as created

by a pitchfork bifurcation.

Figures 5 and 6 show the effects of the targeting

long-run fundamentals strategy. Most importantly, the

bifurcation diagram depicted in panel (a) of Fig. 6

shows that the targeting long-run fundamentals strat-

egy may allow the central authority to reduce volatility

and mispricing of the risky asset. In line with our

analytical results, the price of the risky asset

approaches its fundamental value for d[ 0:68. To

diminish mispricing connected with a bull (bear)

market, however, the central authority needs to go

permanently short (long), as visible from panel (b) of

Fig. 6. Importantly, this strategy also seems to work in

a stochastic environment. Panel (c) of Fig. 6 reveals

that asset prices fluctuate much closer around the

fundamental value as parameter d increases. More-

over, we can conclude from panel (d) of Fig. 6 that the

central authority’s interventions oscillate around zero

if parameter d is set high enough. To illustrate these

findings, panels (a) and (c) of Fig. 5 show examples of

time series for the price of the risky asset when the

targeting long-run fundamentals strategy is applied

with d ¼ 0:01 (deterministic setting) and d ¼ 0:1

(stochastic setting). Panels (b) and (d) of Fig. 5 depict

the central authority’s corresponding interventions.

Figure 7 shows how the targeting long-run funda-

mentals strategy may affect our four policy measures.

As can be seen from panels (a) and (b) of Fig. 7, the

targeting long-run fundamentals strategy allows the

bFig. 7 Summary statistics for the targeting long-run funda-

mentals strategy in a stochastic environment. Panels a, b, c, d,
e and f show how volatility, mispricing, the average absolute

level of interventions, the profitability of interventions, the

average market share of fundamentalists and their average

absolute position react to an increase in parameter d. Base
parameter setting, except that parameter d is varied as indicated
on the axis
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central authority to reduce volatility and mispricing of

the risky asset, provided that it executes its interven-

tions forcefully enough. Interestingly, the absolute

level of interventions shrinks if parameter d becomes

large enough. The reason for this is as follows. For

intermediate values of parameter d, the targeting long-

run fundamentals strategy stabilizes the dynamics

around one of the two nonfundamental steady states. If

parameter d is set high enough, this strategy stabilizes

the dynamics around the risky asset’s fundamental

value. Panel (d) of Fig. 7 suggests that this strategy

may even be profitable. In line with our analytical

results, we can conclude from panel (e) of Fig. 7 that

the targeting long-run fundamentals strategy dimin-

ishes the market impact of fundamentalists. According

to panel (f) of Fig. 7, this also holds for the average

absolute position of fundamentalists, at least if this

strategy is applied forcefully. Nevertheless, and this is

the important message, the targeting long-run funda-

mentals strategy achieves to reduce the market’s

volatility and mispricing.

3.3 Model extensions and robustness checks

Robustness checks are important for policy analysis.

Here, we consider two kinds of robustness checks. As

a first and rather simple robustness check, we explore

the effectiveness of the targeting long-run fundamen-

tals strategy in a stochastic environment for alternative

parameter settings. In panels (a) and (b) of Fig. 8, we

plot how volatility and mispricing react to an increase

in parameter d, assuming different values for specu-

lators’ variance beliefs (red dots: r2R ¼ 0:8, black dots:

r2R ¼ 1, blue dots: r2R ¼ 1:2). Apparently, the target-

ing long-run fundamentals strategy is able to stabilize

the dynamics when speculators’ variance beliefs

change. In panels (c) and (d) of Fig. 8, we assume

that the market impact of liquidity traders is, say, low

(red dots: r2L ¼ 0:001), medium (black dots:

r2L ¼ 0:0025) or high (blue dots: r2L ¼ 0:004). As

can be seen, an increase in r2L, reflecting more

aggressive liquidity traders, shifts volatility and mis-

pricing upwards, yet does not affect the effectiveness

of the targeting long-run fundamentals strategy. In

panels (e) and (f) of Fig. 8, we vary the costs

associated with conducting fundamental analysis

(red dots: j ¼ 0:9, black dots: j ¼ 1, blue dots:

j ¼ 1:25). For all three values of parameter k, the

central authority manages to reduce volatility and

mispricing. Note that by providing better information

about the fundamental value of the risky asset, the

central authority may be able to reduce information

costs. Such a policy has a stabilizing effect too.

As a second and slightly more involved robustness

check, let us assume that the risky asset’s dividend

process follows a random walk. Accordingly, we

specify the dividend process by Dt ¼ Dt�1 þ Dt�1dt,
where dt �N 0;r2d

� �
, implying that Et½Dtþ1� ¼ Dt�1

and, consequently, that Ft�1 ¼ Dt�1=r, i.e., the fun-

damental value of the risky assets follows a random

walk, too. Moreover, the price of the risky asset now

obeys Pt ¼
Et ½Ptþ1�þDt�1þar2R ZG

t þZL
tð Þ

1þr , the technical

expectation rule turns into EC
t Ptþ1½ � ¼ Pt�1þ

v Pt�1 � Ft�1ð Þ, and the fundamental expectation rule

reads EF
t Ptþ1½ � ¼ Pt�1 þ / Ft�1 � Pt�1ð Þ. The attrac-

tiveness of the two expectation rules is due to AC
t ¼

Pt�1 þ Dt�1 � 1þ rð ÞPt�2ð ÞZC
t�2 and AF

t ¼
Pt�1 þ Dt�1 � 1þ rð ÞPt�2ð ÞZF

t�2 � j, where ZC
t�2 ¼

EC
t�2

Pt�1½ �þDt�3� 1þrð ÞPt�2

ar2R
and ZF

t�2 ¼
EF
t�2

Pt�1½ �þDt�3� 1þrð ÞPt�2

ar2R
.

Finally, the central authority’s demand for the risky

asset is given by ZG
t ¼�m Pt�1�Pt�2ð Þ�

d Pt�1�Ft�1ð Þ. The model’s other building blocks

remain as before.

The simulation results depicted in Fig. 9 rely on our

stochastic parameter setting, except that the variance

of the dividend shocks is given by r2d ¼ 0:0001. Panel

(a) of Fig. 9 shows the dynamics of the asset price

(black line) and its fundamental value (red line) when

the central authority is inactive (d ¼ 0). As can be

seen, the asset price fluctuates widely around it time-

varying fundamental value. Panel (b) of Fig. 9 depicts

the behavior of the asset price and its fundamental

bFig. 8 Simple robustness checks. The top, central and bottom

lines of panels show how volatility and mispricing react to an

increase in parameter d, varying speculators’ variance beliefs

(red: r2R ¼ 0:8, black: r2R ¼ 1, blue: r2R ¼ 1:2), the impact of

liquidity traders (red: r2L ¼ 0:001, black: r2L ¼ 0:0025, blue:

r2L ¼ 0:004) and information costs (red: j ¼ 0:9, black: j ¼ 1,

blue: j ¼ 1:25). See Sect. 3.3 for more details. (Color

figure online)
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value when the central authority is active (d ¼ 0:1).

Without question, the targeting long-run fundamentals

strategy manages to push the price of the risky asset

closer toward its fundamental value. Finally, panels

(c) and (d) of Fig. 9 report how volatility and

mispricing react to an increase in parameter d. Once

again, we can conclude that the central authority may

stabilize the risky asset market by using the targeting

long-run fundamentals strategy.11

Fig. 9 Effectiveness of the targeting long-run fundamentals

strategy when dividends follow a random walk. Panel a shows

the dynamics of asset prices (black line) and its fundamental

value (red line) when the central authority is inactive (d ¼ 0).

Panel b shows the same for the case when the central authority is

active (d ¼ 0:1). Panels c and d show how volatility and

mispricing react to an increase in parameter d. See Sect. 3.3 for
more details

11 Hommes [44] studies the case in which the dividend process

follows a random walk with drift. See also Dieci et al. [31], He

and Li [41, 42] and Schmitt and Westerhoff [72] for studies that

consider the intricate interplay between exogenous noise,

fundamental shocks and nonlinear market interactions.
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4 Conclusions

The dynamics of financial markets, in particular their

boom-bust nature, may be quite harmful to the real

economy. Since nonlinear asset-pricing models,

involving the trading behavior of heterogeneous

interacting speculators, have improved our under-

standing of the functioning of financial markets, they

may be used by policymakers to stress-test the

effectiveness of regulatory measures. To illustrate

the potential of this research field, we show that a

central authority may stabilize the boom-bust dynam-

ics of the seminal asset-pricing model by Brock and

Hommes [16] if it follows a so-called targeting long-

run fundamentals strategy. In fact, by buying (selling)

the risky asset when the market is undervalued

(overvalued), a central authority may guide prices

toward fundamental values. As it turns out, however, a

leaning against the wind strategy, which recommends

buying (selling) the asset when its price decreases

(increases), fails to do so. These results may be

understood as follows. The model by Brock and

Hommes [16] generates complex (chaotic) boom-bust

cycles via a pitchfork and subsequent Neimark–Sacker

bifurcation. While the leaning against the wind

strategy may cope with the Neimark–Sacker bifurca-

tion, it cannot offset a pitchfork bifurcation. Note that

the leaning against the wind strategy becomes inactive

at any steady state and therefore also at the model’s

nonfundamental steady states. The targeting long-run

fundamentals strategy, in turn, is able to prevent a

pitchfork bifurcation. In fact, applying this strategy

properly ensures that the model’s fundamental steady

state is at least locally stable. In addition, simulations

suggest that our results are quite robust, e.g., with

respect to exogenous noise.

We conclude our paper by pointing out a few

avenues for future research. In our paper, we study the

effects of simple linear feedback rules. Future work

may explore whether nonlinear feedback rules may do

a better job. For instance, a central authority may only

take action when the asset’s price trend or its

mispricing exceeds a critical threshold value. Avrutin

et al. [7] provide mathematical tools for piecewise-

defined maps. Related to this, the central authority

may encounter speculators who follow nonlinear and

possibly piecewise-defined trading rules. It should be

noted that the results presented in our paper rely on the

assumption that the technical expectation rule predicts

a continuation of the current mispricing. Alternatively,

one may develop a model in which the technical

expectation rule extrapolates past price changes. In

such an environment, the leaning against the wind

strategy may fare much better. In this respect, it also

seems worthwhile to explore in more detail whether a

combined application of the leaning against the wind

strategy and the targeting long-run fundamentals

strategy may improve the effectiveness of the central

authority’s market interventions. Moreover, we focus

on the case where the central authority computes the

fundamental value in the same way as speculators

do—and both groups are right. Future work may

consider the case where speculators and the central

authority have different perceptions of the asset’s

fundamental value. For instance, one may assume that

speculators are too optimistic or too pessimistic when

computing the asset’s fundamental value, as studied

by de Grauwe and Kaltwasser (2012). Such a model

extension would also provide a framework in which

the central authority may convey private information

with respect to the asset’s fundamental value to the

market participants via its interventions. Of course,

nonsecret interventions open up the door for strategic

trading, an aspect that seems to be worth investigating

as well. Despite allowing for some random distur-

bances, in our paper we focus on nonlinear forces that

may create complex (chaotic) boom-bust dynamics.

Future work may use more developed stochastic

models that are able to match the stylized facts of

financial markets. An agent-based version of the

model by Brock and Hommes [16], as proposed by

Schmitt [68], may serve as an ideal starting point for

such an endeavor. We hope that our contribution

stimulates more work in this important research

direction.
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Appendix A

In this appendix, we derive the model’s law of motion,

compute its steady states and demonstrate that the

model’s fundamental steady state may lose its local

asymptotic stability via a pitchfork bifurcation, while

the model’s nonfundamental steady states may become

unstable due to a Neimark–Sacker bifurcation. Finally,

we present a number of simulations which illustrate the

role played by parameters b, m and d in this context.

We are interested in the model’s deterministic

behavior. Excluding random disturbances [21] reads

Pt ¼
Et½Ptþ1� þ �Dþ ar2RZ

G
t

1þ r
; ð23Þ

where Et½Ptþ1� ¼ Pt�1þv Pt�1�Fð Þ
1þexp b AF

t �AC
tð Þ½ � þ

Pt�1þ/ F�Pt�1ð Þ
1þexp �b AF

t �AC
tð Þ½ �,

AF
t � AC

t ¼ Pt�1þ �D� 1þrð ÞPt�2

ar2R
vþ /ð Þ F � Pt�3ð Þ � j,

and ZG
t ¼ �m Pt�1 � Pt�2ð Þ � d Pt�1 � Fð Þ. As can be

seen, [22] corresponds to a third-order nonlinear

difference equation that can easily be transformed

into a system of three third-order difference equations.

In order to facilitate the analysis, however, we

follow Brock and Hommes [16] and rewrite the model

in deviations from the fundamental value, i.e.,

xt ¼ Pt � F, and introduce the difference in fractions,

i.e., NF
t � NC

t ¼ zt ¼ tanh b
2
AF
t � AC

t

� �h i
.12 Our

model can then be expressed by the following

dynamical system

where yt ¼ xt�1 is an auxiliary variable.

To derive the model’s steady states, we apply the

equilibrium conditions to the pricing equation and

obtain

1þ rð Þx	 ¼ 1� z	

2
1þ vð Þx	 þ 1þ z	

2
1� /ð Þx	

� ar2Rdx
	;

ð25Þ

yielding x	 ¼ 0 or z	 ¼ v�/�2r�2ar2Rd
vþ/ . For x	 ¼ 0, we

have y	 ¼ 0 and z	 ¼ tanh � b
2
j

h i
. We call the steady

state �S1 ¼ 0; 0; tanh � b
2
j

h i	 

a fundamental steady

state of our model since x	 ¼ 0 implies that �P1 ¼ F.

Note also that �NC
1 ¼ 1

1þexp �bj½ � and �NF
1 ¼ 1

1þexp bj½ �.

From

z	 ¼ tanh
b
2

x	 � 1þ rð Þx	ð Þ� vþ /ð Þx	
ar2R

� j

� 
� �

ð26Þ

and z	 ¼ v�/�2r�2ar2Rd
vþ/ , we obtain x	 ¼ y	

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ar2R

b
2jþarctan h

v�/�2r�2ar2
R
d

vþ/

h i	 


rb vþ/ð Þ

s

:

Note that [25] only has two solutions � x	 if

b
2
jþ arctan h

v�/�2r�2ar2Rd
vþ/

h i
� 0, implying that

1
1þexp �bj½ � v� 1

1þexp bj½ � � r þ ar2Rd. If this condition

holds, the two nonfundamental steady states �S2;3 ¼

�x	;�y	;
v�/�2r�2ar2Rd

vþ/

	 

exist. From these expres-

sions, we can conclude that �P2;3 ¼ �P1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ar2R

b
2
jþarctan h

v�/�2r�2ar2
R
d

vþ/

h i	 


rb vþ/ð Þ

s

, �NC
2;3 ¼

/þrþar2Rd
vþ/ and

�NF
2;3 ¼

v�r�ar2Rd
vþ/ .

S :

xt ¼
1

1þ r

1� zt�1

2
1þ vð Þxt�1 þ

1þ zt�1

2
1� /ð Þxt�1 � ar2R m xt�1 � yt�1ð Þ þ dxt�1ð Þ

� 


yt ¼ xt�1

zt ¼ tanh
b
2

xt � 1þ rð Þxt�1ð Þ� vþ /ð Þyt�1

ar2R
� j

� 
� �

8
>>><

>>>:

ð24Þ

12 Note that NC
t ¼ ð1� ztÞ=2; NF

t ¼ ð1þ ztÞ=2 and �D ¼ rF.
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To study the local asymptotic stability properties of

the model’s fundamental steady state, we must

evaluate the Jacobian matrix of (23) at �S1, that is,

J �S1ð Þ ¼
2� 2ar2R mþ dð Þ þ v� /þ vþ /ð Þ tanh b

2
j

� �

2 1þ rð Þ
ar2Rm
1þ r

0

1 0 0

0 1 0

2

66664

3

77775
;

ð27Þ

from which we obtain the characteristic polynomial

k k2 � ktr þ det
� �

¼ 0; ð28Þ

where tr ¼ 2�2ar2R mþdð Þþv�/þ vþ/ð Þ tanh b
2
j½ �

2 1þrð Þ and det ¼

� ar2Rm
1þr represent the trace and determinant of the top

left 2 9 2 sub-matrix of J �S1ð Þ. Since one eigenvalue

of (A6) is always equal to zero, the stability of �S1
depends on the two eigenvalues resulting from the

remaining second-degree characteristic polynomial. A

set of necessary and sufficient conditions [58] guar-

anteeing that the remaining two eigenvalues are less

than one inmodulus are given by (1) 1þ tr þ det [ 0,

(2) 1� tr þ det [ 0 and (3) 1� det [ 0. Condition

(3), implying that 1þ ar2Rm
1þr [ 0, is obviously always

true. Rewriting inequalities (1) and (2) using �m1 ¼

�NF
1 � �NC

1 ¼ tanh � b
2
j

h i
and �NF

1 þ �NC
1 ¼ 1 yields

�NC
1 v� �NF

1 /\2þ r þ ar2R 2mþ dð Þ; ð29Þ

and

�NC
1 v� �NF

1 /\r þ ar2Rd: ð30Þ

Since [29] is more stringent than [28], it character-

izes the stability domain of the fundamental steady

state. Note that any violation of (2) constitutes a

necessary condition for the emergence of a pitchfork

bifurcation. Together with the observation of the birth

of the two nonfundamental steady states and the

numerical evidence provided below, we can conclude

that a violation of [29] is indeed associated with a

pitchfork bifurcation.

The characteristic polynomial of the Jacobian

matrix of [23] computed at the nonfundamental steady

states �S2;3 is given by

p kð Þ ¼ k3 þ k2 Z 1þ rð Þ � 1þ ar2Rm
1þ r

� �

� k Z 1þ 2r þ r2
� �

þ ar2Rm
1þ r

� �
� r 1þ rð ÞZ;

ð31Þ

where Z ¼ �
2 rþar2Rdþ/ð Þ rþar2Rd�vð Þ �b

2
jþarctanh

2rþ2ar2
R
dþ/�v

vþ/

h i	 


r 1þrð Þ vþ/ð Þ .

At the pitchfork bifurcation, we have 1
1þexp �bj½ � v�

1
1þexp bj½ �/ ¼ r þ ar2Rd and Z ¼ 0 for which (30) yields

k1 ¼ 0, k2 ¼ 1 and k3 ¼ � ar2Rm
1þr .

13 Now, let us suppose

that parameter v slightly increases. Then, Z becomes

slightly negative and (30) yields three eigenvalues

inside the unit circle, i.e., �S2;3 are initially stable. For

simplicity, recall next that we are back in the original

model by Brock and Hommes [16] if the central

authority is inactive. For m ¼ d ¼ 0, the proof of their

Lemma 3 implies the following. For v ! 1, we have

Z ¼ �1 and at least one of the eigenvalues must

cross the unit circle at some critical value for v.
Moreover, p 1ð Þ ¼ �2Zr 1þ rð Þ[ 0 and p �1ð Þ ¼
2 �1þ Z 1þ rð Þð Þ\0 and, consequently, two eigen-

values must be complex. Accordingly, the two non-

fundamental steady states become unstable by a

Neimark–Sacker bifurcation. Numerical evidence

suggests that this line of reasoning carries over to the

case in which the central authority is active.

With the help of Figs. 10 and 11, relying on our

base parameter setting, we numerically explore how

parameters b, m and d affect the model’s dynamics.

Panel (a) of Fig. 10 shows that the model by Brock and

Hommes [16] first produces a pitchfork bifurcation

and then a Neimark–Sacker bifurcation as parameter b
increases. Panels (b) and (c) of Fig. 10 repeat these

simulations by increasing parameter m from m ¼ 0 to

m ¼ 0:2 and m ¼ 0.4. The following results are

apparent. First, the values of the two nonfundamental

steady states are independent of parameter m. Second,

parameter m has no effect on the pitchfork bifurcation

value of parameter b. Third, parameter m influences

the Neimark–Sacker bifurcation value of parameter b
in the following sense: the larger parameter m is, the

larger the bifurcation value of parameter b is. Fourth,

the amplitude of the oscillations decreases with

parameter m. Note that the oscillatory part of the

13 For obvious economic reasons, we only consider parameter

values for which m\ 1þr
ar2R

is satisfied.
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bifurcation diagram is not only moved to the right, but

also characterized by a lower scale. Overall, these

results seem to be qualitatively robust, at least with

respect to some moderate deviations from our base

parameter setting. Panels (d)–(f) of Fig. 10 show the

bFig. 10 The effects of parameters m, d and b. Panels a–c show
bifurcation diagrams for our base parameter setting using

m ¼ 0, m ¼ 0:2 and m ¼ 0:4, respectively. Panels d–f show the

same, except that d ¼ 0, d ¼ 0:012 and d ¼ 0:024, respectively

Fig. 11 Pitchfork and Neimark–Sacker bifurcations. Panels a–
c show two-dimensional bifurcation diagrams for our base

parameter setting. Parameter combinations depicted in black

and gray yield a convergence toward the fundamental steady

state or to one of the two nonfundamental steady states,

respectively. Parameter combinations marked in red yield

endogenous dynamics. Panel d is based on b ¼ 4
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same, except that the simulations are based on d ¼ 0,

d ¼ 0:012 and d ¼ 0:024, respectively. As can be

seen, parameter d has a stabilizing effect on the

dynamics. First, it delays the occurrence of the

pitchfork bifurcation. Second, it pushes the nonfun-

damental steady states closer toward the fundamental

steady states. Third, it also delays the Neimark–Sacker

bifurcation. In contrast to the role played by parameter

m, however, the region of oscillations is not charac-

terized by a smaller scale. There are even parameter

combinations that generate irregular switching

between bull and bear market dynamics. In fact,

interventions by the central authority may induce an

overshooting of the fundamental value. Further sim-

ulations reveal that these chaotic dynamics are highly

unpredictable.

Panels (a)–(c) of Fig. 11 show two-dimensional

bifurcation diagrams. Parameter combinations

depicted in black and gray yield a convergence toward

the fundamental steady state or to one of the two

nonfundamental steady states, respectively. Parameter

combinations marked in red yield endogenous dynam-

ics. Panel (a) of Fig. 11 reveals that an increase in

parameter b first creates a pitchfork bifurcation and

then a Neimark–Sacker bifurcation. While the pitch-

fork bifurcation value of parameter b is independent of
parameter m, higher values of parameter m increase

the Neimark–Sacker bifurcation value of parameter b.
Panel (b) of Fig. 11 shows that the same is true for

parameter d, except that an increase in parameter d

also increases the pitchfork bifurcation value of

parameter b as predicted by our analytical results.

Panel (c) of Fig. 11 confirms that an increase in

parameters m and/or d can prevent a Neimark–Sacker

bifurcation. However, the emergence of a pitchfork

bifurcation can only be prevented by higher values of

parameter d. Panel (d) of Fig. 11 is based on b ¼ 4

(instead of b ¼ 3:6). A higher value of parameter b
increases the parameter space that yields oscillations.

An increase in parameters m and/or d can stabilize the

dynamics, but only parameter d allows a pitchfork

bifurcation to be countered.
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(eds.) Handbook of Financial Markets: Dynamics and

Evolution, pp. 217–276. North-Holland, Amsterdam (2009)

46. Hommes, C.: The heterogeneous expectations hypothesis:

some evidence from the lab. J. Econ. Dyn. Control 35, 1–24
(2011)

47. Hommes, C.: Behavioral Rationality and Heterogeneous

Expectations in Complex Economic Systems. Cambridge

University Press, Cambridge (2013)

48. Huang, W., Day, R.: Chaotically switching bear and bull

markets: the derivation of stock price distributions from

behavioral rules. In: Day, R., Chen, P. (eds.) Nonlinear

Dynamics and Evolutionary Economics, pp. 169–182.

Oxford University Press, Oxford (1993)

49. Huang, W., Zheng, H., Chia, W.M.: Financial crisis and

interacting heterogeneous agents. J. Econ. Dyn. Control 34,
1105–1122 (2010)

50. Huang, W., Zheng, H.: Financial crisis and regime-depen-

dent dynamics. J. Econ. Behav. Organ. 82, 445–461 (2012)

51. Hung, J.: Intervention strategies and exchange rate volatil-

ity: a noise trading perspective. J. Int. Money Finance 16,
779–793 (1997)

52. Kindleberger, C., Aliber, R.: Manias, Panics, and Crashes:

A History Of Financial Crises. Wiley, New Jersey (2011)

53. LeBaron, B.: Agent-based computational finance. In: Tes-

fatsion, L., Judd, K. (eds.) Handbook of Computational

Economics: Agent-Based Computational Economics,

pp. 1187–1233. North-Holland, Amsterdam (2006)

54. LeBaron, B., Arthur, B., Palmer, R.: Time series properties

of an artificial stock market. J. Econ. Dyn. Control 23,
1487–1516 (1999)

55. Lengnick, M., Wohltmann, H.-W.: Optimal monetary pol-

icy in a new Keynesian model with animal spirits and

financial markets. J. Econ. Dyn. Control 64, 148–165 (2016)
56. Lux, T.: Herd behaviour, bubbles and crashes. Econ. J. 105,

881–896 (1995)

57. Mannaro, K., Marchesi, M., Setzu, A.: Using an artificial

financial market for assessing the impact of Tobin-like

transaction taxes. J. Econ. Behav. Organ. 67, 445–462

(2008)

58. Medio, A., Lines, M.: Nonlinear Dynamics: A Primer.

Cambridge University Press, Cambridge (2001)

59. Menkhoff, L., Taylor, M.: The obstinate passion of foreign

exchange professionals: technical analysis. J. Econ. Literat.

45, 936–972 (2007)

123

Nonlinear asset-price dynamics and stabilization policies 1069



60. Murphy, J.: Technical Analysis of Financial Markets. New

York Institute of Finance, New York (1999)

61. Naimzada, A.K., Pireddu, M.: Dynamic behavior of product

and stock markets with a varying degree of interaction.

Econ. Model. 41, 191–197 (2014)

62. Naimzada, A.K., Pireddu, M.: Real and financial interacting

markets: a behavioral macro-model. Chaos, Solitons Frac-

tals 77, 111–131 (2015)

63. Neely, C.: The practice of central bank intervention: looking

under the hood. Federal Reserve Bank of St. Louis Rev. 83,
1–10 (2001)

64. Neely, C.: An analysis of recent studies of the effect of

foreign exchange intervention. Federal Reserve Bank of St.

Louis Rev. 87, 685–717 (2005)

65. Neely, C.: Central bank authorities’ beliefs about foreign

exchange intervention. J. Int. Money Finance 27, 1–25

(2008)

66. Palmer, R., Arthur, B., Holland, J., LeBaron, B., Tayler, P.:

Artificial economic life: a simple model of a stock market.

Physica D 75, 264–274 (1994)

67. Scalas, E., Cincotti, S., Dose, C., Raberto, M.: Fraudulent

agents in an artificial financial market. In: Lux, T., Reitz, S.,

Samanidou, E. (eds.) Nonlinear Dynamics and Heteroge-

neous Interacting Agents, pp. 317–326. Springer, Berlin

(2005)

68. Schmitt, N.: Heterogeneous expectations and asset price

dynamics. Macroeconomic Dynamics, forthcoming, (2020)

69. Schmitt, N., Tuinstra, J., Westerhoff, F.: Side effects of

nonlinear profit taxes in a behavioral market entry model:

abrupt changes, coexisting attractors and hysteresis prob-

lems. J. Econ. Behav. Organ. 135, 15–38 (2017)

70. Schmitt, N., Westerhoff, F.: Managing rational routes to

randomness. J. Econ. Behav. Organ. 116, 157–173 (2015)

71. Schmitt, N., Westerhoff, F.: Stock market participation and

endogenous boom-bust dynamics. Econ. Lett. 148, 72–75
(2016)

72. Schmitt, N., Westerhoff, F.: On the bimodality of the dis-

tribution of the S&P 5000s distortion: empirical evidence

and theoretical explanations. J. Econ. Dyn. Control 80,
34–53 (2017)

73. Schmitt, N., Westerhoff, F.: Short-run momentum, long-run

mean reversion and excess volatility: an elementary housing

model. Econ. Lett. 176, 43–46 (2019)

74. Schmitt, N., Westerhoff, F.: Pricking asset market bubbles.

Finance Res. Lett. 63(1), 65–69 (2020). (in press)
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