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ABSTRACT
Neural networks (NNs) have become a key technology for solving
highly complex tasks, and require integration into future safety
argumentations. New safety relevant aspects introduced by NN
based algorithms are: representativity of test cases, robustness,
inner representation and logic, and failure detection for NNs. In this
paper, a general argumentation structure for safety cases respecting
these four aspects is proposed together with possible sources of
evidence.
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1 INTRODUCTION
Their outstanding performance in complex tasks such as in com-
puter vision suggests that neural networks (NNs) will take a key
role in enabling new technologies like autonomous driving. How-
ever, little experience is available on how to assure safety of NN
based applications, and the existing safety standards give insuffi-
cient guideline on how to treat black-box algorithms which are not
based on expert knowledge but learnt from data [26]. There are
four new aspects of NNs that require consideration in a safety case:

Test case selection. Large and unstructured input spaces as NNs
can be applied to do not admit easy reduction of test cases. A
structured way of test case selection is necessary.

Robustness issues. NNs are prone to adversarial examples [2].
This means an imperceivably small change of a correctly treated
input leads to drastically different, possibly unsafe behavior. Such
a lack of smoothness around a sample invalidates it as a test case.

Black-box character. The black-box character of NNs can hide
faults of the algorithm given by a wrong inner representation or
logic. Such can be wrong causal relations learned from a bias in the
training data.
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Failure detection. NNs require technology specific failure indica-
tors like uncertainty [17] which can be evaluated during runtime
to enable effective risk reduction.

In the following, reusable ways to decompose safety goals related
to NN algorithmic failures are developed respecting above aspects,
and diverse ways to collect evidence are suggested. Safety goals and
strategies are marked as indicated. The focus is solely on functional
safety as in [26]. For safety of the intended functionality see [10].We
only discuss NN algorithms that are deterministic during inference,
especially excluding algorithms learing during operation.

2 ARGUMENTATION STRUCTURE
Consider the traditional decomposition of a safety argumentation
into process compliance and product compliance, which itself is
split into an argument over each hazard [12, p. 14]. We suggest to
argue the low probability of a hazard by exercising through its pos-
sible sources. Our interest lies in such sources that directly emanate
from the algorithm. Due to the determinism assumption these only
are systematic failures, i.e. wrong input to output mappings (errors).
Hence, the base safety goal for our argumentation is that the risk
of (considered) NN algorithmic errors is sufficiently low. Measures
that can be applied can be categorized into error prevention on
algorithm level and prevention and mitigation on system level.

2.1 Prevention of Errors on Algorithm Level
We identified three types of safety issues that can directly em-
anate from the algorithm: performance, robustness, and logical issues.
These outline the pillars for decomposition.

2.1.1 Validation of Inner Representation and Logic. To avoid logical
issues, the NN should correctly use generalizable concepts and
relations. This requires that both the inner representation used
by the NN and the logic applied are sensible in the sense of good
generalization capability. E.g. predicting a pedestrian next to a street
light because of presence of limbs is more generalizable than just
because of the relation to the street light.

We say a semantic concept is internally represented in the NN
if the NN admits an intermediate output which is a prediction of
this concept [8]. Essential concepts are ones considered necessary
or helpful to solve the given task, e.g. because they are used in
natural language descriptions [1]. A way to quantitatively assess or
constructively modify the inner representation of NNs is concept
embedding analysis [8], which finds or trains the neuron vector
that best predicts a given visual semantic concept. Another way
to enforce concepts is by adding functional neurons as in [22].
Qualitative assessments can be done by searching for typical input
patterns activating given parts of the network. Methods for this
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are constructive using feature visualization [20], or analytic using
attribution analysis e.g. heatmapping [13, 19].

A valuable inner representation alone does not ensure a correct
and sensible internal logic. The approaches to ensure that sensible
reasoning is applied are to quantitatively verify sensible domain
knowledge based rules, or to qualitatively analyze whether the
contained rules are sensible. Often, more domain knowledge is
available than is presented to the NN during training, e.g. the phys-
ical extend of cars for trajectory planning or hierarchical relations
like ‘humans usually have heads’. Such domain knowledge rules
can be expressed as first-order or temporal logic statements on the
neurons of the NN given suitable concept embeddings. They then
can either be formally verified using a solver [11]; topologically
enforced [27]; or enforced during training by adapting either the
loss [22], the training data, or by applying model or data repair [11].
Different ways to (partly) grasp the internal logic in an interpretable
form are local approximations via e.g. qualitative attribution anal-
ysis to compare the NN attention with expected relevance of the
input parts, additional output like textual explanations [18], or local
rule extraction [21]; or global approximations by global rule [3]
respectively automaton [28] extraction.

2.1.2 Verification of Robustness. There are several types of robust-
ness in the context of NNs. They require the input and output spaces
to be normed vector spaces. For y in a metric spaceM with metric
d let bα (y) = {x ∈ M |d(x,y) < α }. Then, the NN f is said to be
locally δ -ϵ-robust around an input sample x against a perturbation
P ⊂ bδ (x), which is a parametrized subspace like a hyperplane, if

f (P) ⊂ bϵ (f (x)) (compare [16]).

This means there is an upper bound of 2ϵ to the change of the
output of f between samples in P . f is globally δ -ϵ-robust against
a perturbation P ⊂ bδ (0) with respect to a subspace X of the in-
put space if it is so locally against P + x for all x in X . This is a
weakened form of Lipschitz continuity, which again is a weakened
form of smoothness. Given an ϵ , perturbations, and X , then robust-
ness can be measured as the maximum δ allowing for local/global
δ -ϵ-robustness against the perturbations. Since it is currently com-
putationally impractible to assess robustness for the complete ball,
we suggest to concentrate on and exercise through task specific per-
turbations, e.g. caused by changes in lighting condition, slight shifts
of objects, dirt/rain drops on the camera, or deficiency of isolated
pixels.

Measures to increase robustness against a given perturbation can
be taken during model design, training, or verification: It is shown
that certain network architectures, especially approaches for un-
certainty modeling, yield more robust models [9, 24]. By definition,
this is also the case for smoothing of the NN during training e.g. via
regularization [15]. Retraining on adversarial counterexamples [6]
has a similar, perturbation specific effect. Finally, one can disprove
robustness properties using differential or fuzzy testing [14], or
prove them using SMT-based [5] or MILP-based [7] solvers for
formal verification.

2.1.3 Performance Assurance via Structured Testing. As for tradi-
tional software, the NN performance is measured and judged on a
(representative) test set (different from the training set). It is crucial
to argue the representativity for all available aspects, of which we

identified coverage of previous experience to prevent regression,
of the model behavior range, and of the input space respectively
task in the sense of both completeness and realism.

For input space coverage, assume a formalization function F
exists from the input space to a formal scenario description lan-
guage consisting of countable discrete sets of concepts and relations
thereon. Further a reconstruction function R is needed from formal
scenario descriptions to input space, such that R ◦ F is idempotent,
and F ◦ R does not exceed an expert chosen distance to the identity.
Due to the discreteness, the amount of all scenarios (of interest for
the hazard) is finite by combinatorics admitting a coverage metric,
whilst the small distance to identity ensures realism. This would
make it possible to systematically select or generate a realistic test
set with desired completeness. An example of a formal description
language for autonomous driving is developed in [4].

For model coverage, the test set should be augmented to fully
cover the NN behavior range as measured bymetrics such as neuron
coverage [25]. And invaluable experience can be given as previ-
ously found error cases like adversarial examples or accidents from
accident databases (e.g. [23]).

2.2 Failure Handling
To render remaining algorithm failures harmless, these must be han-
dled correctly. Aspects of failure handling are: Prevention on system
level, e.g. via input quality assurance, redundancy and safe-aware
adaption of operating modes, detection, and mitigation on system
level, e.g. via filtering of intermediate errors and an emergency
backup system.

For the technology specific part of failure detection (logical, ro-
bustness) a couple of indicators are available: Plausibility checks
(e.g. pedestrians usually do not fly) and attention monitoring, which
compares the distance of output and attention positions, can in-
dicate logical failures. Specialized heatmapping assists to reveal
adversarial examples of certain types [13]. And low confidence
respectively high uncertainty [9, 17, 24] can indicate a decision
border respectively samples that are out of scope for the trained
model.

3 CONCLUSION
Generic strategies were described on how to include key issues of
NN algorithms into a safety argumentation by arguing over the
safety relevant NN errors. Together with the diverse suggested
sources of evidence, this promises to enable a complete safety case
for NN based systems. Evaluation of our approach on a concrete
example case is left for future steps.
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