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Abstract

The reverse engineering of binaries is a tedious and time consuming task, yet
mandatory when the need arises to understand the behaviour of a program for
which source code is unavailable. Instances of source code loss for old arcade
games! and the steadily growing amount of malware? are prominent use cases
requiring reverse engineering. One of the challenges when dealing with bina-
ries is the loss of low level type information, i.e., primitive and compound types,
which even state-of-the-art type recovery tools often cannot reconstruct with full
accuracy. Further programmers most commonly use high level data structures,
such as linked lists, in addition to primitive types. Therefore detection of dynamic
data structure shapes is an important aspect of reverse engineering. Though the
recognition of dynamic data structure shapes in the presence of tricky program-
ming concepts such as pointer arithmetic and casts — which are both fundamental
concepts to enable, e.g., the frequently used Linux kernel list® — also bring current
shape detection tools to their limits.

A recent approach called Data Structure Investigator (DSI)*, aims for the detec-
tion of dynamic pointer based data structures. While the approach is general in
nature, a concrete realization for C programs requiring source code is envisioned as
programming constructs such as type casts and pointer arithmetic will stress test
the approach. Therefore, the first research question addressed in this dissertation
is whether DSI can meet its goal in the presence of the sheer multitude of existing
data structure implementations. The second research question is whether DSI
can be opened up to reverse engineer C/C++ binaries, even in the presence of type
information loss and the variety of C/C++ programming constructs.

Both questions are answered positively in this dissertation. The firstis answered
by realizing the DSI source code approach, which requires detailing fundamental
aspects of DSI’s theory to arrive at a working implementation, e.g., handling the
consistency of DSI’s memory abstraction and quantifying the interconnections
found within a dynamic pointer based data structure, e.g., a parent child nest-
ing scenario, to allow for its detection. DSI’s utility is evaluated on an extensive

http:/ /kotaku.com/5028197 /sega-cant-find-the-source-code-for-your-favorite-old-school-
arcade-games

Zhttps:/ /[www.av-test.org/en /statistics/malware/

3https://github.com/torvalds/linux/blob/master /include/linux/list.h
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viii

benchmark including real world examples (libusb®, bash®) and shape analysis”'8
examples. The second question is answered through the development of a DSI
prototype for binaries (DSIbin). To compensate for the loss of perfect type in-
formation found in source code, DSIbin interfaces with the state-of-the-art type
recovery tool Howard’. Notably, DSIbin improves upon type information recov-
ered by Howard. This is accomplished through a much improved nested struct
detection and type merging algorithm, both of which are fundamental aspects for
the reverse engineering of binaries. The proposed approach is again evaluated by
a diverse benchmark containing real world examples such as, the VNC clipping
library, The Computer Language Benchmarks Game and the Olden Benchmark,
as well as examples taken from the shape analysis literature.

In summary, this dissertation improves upon the state-of-the-art of shape de-
tection and reverse engineering by (i) realizing and evaluating the DSI approach,
which includes contributing to DSI’s theory and results in the DSI prototype; (ii)
opening up DSI for C/C++ binaries so as to extend DSI to reverse engineering,
resulting in the DSIbin prototype; (iii) handling data structures with DSIbin not
covered by some related work such as skip lists; (iv) refining the nesting detection
and performing type merging for types excavated by Howard. Further, DSIbin’s
ultimate future use case of malware analysis is hardened by revealing the presence
of dynamic data structures in multiple real world malware samples.

In summary, this dissertation advanced the dynamic analysis of data structure
shapes with the aforementioned contributions to the DST approach for source code
and further by transferring this new technology to the analysis of binaries. The
latter resulted in the additional insight that high level dynamic data structure in-
formation can help to infer low level type information.

>http://libusb.info/

Shttps://www.gnu.org/software/ bash/

’Predator: http://www.fit.vutbr.cz/research/groups /verifit/tools/predator/
8Forester: http://www.fit.vutbr.cz/research/groups/verifit/tools /forester/
http:/ /www.cs.vu.nl/ herbertb/papers/dde_ndss11-preprint.pdf



Zusammenfassung

Reverse Engineering von Bindrcode ist eine schwierige und zeitaufwindige Tatig-
keit, die jedoch unabdingbar ist, wenn das Programmverhalten verstanden wer-
den muss, ohne dass Quelltext zur Verfiigung steht. Fille von Quelltextverlust
fiir alte Computerspiele!® und die stetig wachsende Anzahl von Schadsoftware!!
sind daher prominente Anwendungsfille fiir Reverse Engineering. Eine der Her-
ausforderungen bei der Analyse von Bindrcode ist der Verlust von Typinforma-
tionen, wie zum Beispiel primitiven und komplexen Datentypen. Oftmals kon-
nen diese Typinformationen von den aktuellen Werkzeugen zur Typriickgewin-
nung, die den Stand der Technik reprisentieren, nicht vollumfinglich und korrekt
rekonstruiert werden. Weiterhin verwenden Programme zusitzlich zu den primi-
tiven und komplexen Datentypen meist hohere dynamische Datenstrukturen, wie
zum Beispiel verkettete Listen. Daher ist die Erkennung der Form von dynamis-
chen Datenstrukturen ein wichtiger Aspekt des Reverse Engineerings. Wobei die
Erkennung der Formen dynamischer Datenstrukturen im Kontext von schwieri-
gen Programmierkonzepten, wie Zeigerarithmetik und Typumwandlungen — bei-
des fundamentale Konzepte um zum Beispiel die hdufig verwendete Linux Kernel
Liste!? zu implementieren — aktuelle Werkzeuge zur Formenerkennung von dy-
namischen Datenstrukturen an ihre Grenzen bringen.

Ein aktueller Ansatz (DSI') zielt auf die Erkennung von dynamischen zeiger-
basierten Datenstrukturen ab. Der Ansatz ist generell gehalten, wobei eine kon-
krete Umsetzung fiir C-Programme unter Verwendung von Quelltext durchge-
fuhrt wird, da Typumwandlungen und Zeigerarithmetik als Bestandteil des C-
Sprachumfangs einen Stresstest fiir den Ansatz darstellen. Daher ist die erste
Forschungsfrage innerhalb dieser Dissertation, ob DSI seinen eigenen Anforder-
ungen auch unter der schieren Vielzahl an existierenden Datenstrukturimple-
mentierungen gerecht wird. Die zweite Forschungsfrage behandelt, ob Reverse
Engineering von C/C++ Bindrcode mit DSI erschlossen werden kann, trotz des
Verlusts von Typinformationen und der Vielzahl von C/C++ Programmierkon-
strukten.

Beide Forschungsfragen werden positiv innerhalb dieser Dissertation beant-
wortet. Die erste Frage wird durch eine Umsetzung des DSI Quelltext-Ansatzes er-

http://kotaku.com/5028197 /sega-cant-find-the-source-code-for-your-favorite-old-school-
arcade-games

Uhttps://www.av-test.org/en/statistics/malware/

2https://github.com/torvalds/linux/blob/master/include/linux/list.h
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forscht. Dies umfasst die Ausdetaillierung von fundamentalen Aspekten der DSI
Theorie um eine funktionsfihige Implementierung zu erreichen, zum Beispiel
die Erhaltung der Konsistenz der Speicherabstraktion von DSI und die Quan-
tifizierung von Verbindungen innerhalb einer zeigerbasierten dynamischen Da-
tenstruktur, wie zum Beispiel einer Eltern-Kind-Beziehung, um eine Erkennung
solcher Verbindungen zu erméglichen. Die Niitzlichkeit von DSI wird an Hand
eines umfassenden Testsets untersucht, das unter anderem Praxisbeispiele (lib-
usb!4, bash!®) und Beispiele der Forschungsrichtung der Shape Analysis'®!” bein-
haltet.

Die zweite Forschungsfrage wird durch die Entwicklung eines DSI Prototypen
fiir Bindrcode (DSIbin) beantwortet. Um den Verlust von perfekten Typinforma-
tionen, die bei der Verwendung von Quelltext verfiigbar sind, zu kompensieren,
wird DSIbin mit Howard'® kombiniert, einem Werkzeug zur Typriickgewinnung,
das den aktuellen Stand der Technik in diesem Bereich reprisentiert. Insbeson-
dere verbessert DSIbin zusatzlich die von Howard zur Verfiigung gestellten Typin-
formationen durch eine immens verbesserte Erkennung eingebetteter Strukturen
sowie der Typzusammenfithrung. Beide Problemstellungen sind grundlegende
Aspekte fiir das Reverse Engineering von Binircode.

Der vorgeschlagene Ansatz wird ebenso durch ein manigfaltiges Testset un-
tersucht, das unter anderem Praxisbeispiele umfasst, wie die “VNC clipping li-
brary”, “The Computer Language Benchmarks Game”, den “Olden Benchmark”
und Beispiele aus der Shape Analysis Literatur.

Diese Dissertation verbessert den aktuellen Stand der Technik fiir die Erken-
nung von Datenstrukturen und des Reverse Engineering durch (i) die Umsetzung
und Evaluation des DSI Ansatzes, was Beitrdge zur Theorie von DSI beinhaltet
und in einem DSI Prototypen resultiert; (ii) die Offnung von DSI zur Analyse von
C/C++ Binircode um DSI auf das Reverse Engineering zu erweitern, was ebenfalls
in einem Prototypen fiir DSIbin resultiert; (iii) die Behandlung von Datenstruk-
turen mit DSIbin, die bisher von einiger verwandter Literatur nicht abgedeckt
wurden, wie zum Beispiel Skip-Listen; (iv) eine Verfeinerung der Erkennung von
eingebetteten Strukturen und die Zusammenfithrung von Typinformationen die
von Howard ermittelt wurden. Weiterhin wird der Anwendungsfall der Analyse
von Malware fiir DSIbin im Bereich des Future Work gestirkt, indem die Verwen-
dung von dynamischen Datenstrukturen in verschiedenen realen Malware Stich-
proben nachgwiesen wird.

Zusammenfassend erweitert diese Dissertation die dynamische Analyse von dy-
namischen Datenstrukturen gemif den zuvor aufgefithrten Beitrigen zu dem
DSI Ansatz fiir Quelltext sowie durch den Transfer dieser neuen Technologie auf

4http://libusb.info/

Dhttps://www.gnu.org/software/ bash/

6predator: http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
VForester: http://www.fit.vutbr.cz/research/groups/verifit/tools /forester/
Bhttp:/ /www.cs.vu.nl/ herbertb/papers/dde_ndss11-preprint.pdf




xi

die Analyse von Binidrcode. Letzteres fithrte zu der zusitzlichen Erkenntnis, dass
Informationen von héheren dynamischen Datenstrukturen helfen kénnen prim-
itive Typinformationen abzuleiten.
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1 Introduction

This dissertation is primarily concerned with the reverse engineering of pointer
based Dynamic Data Structures (DDSs) in C/C++ binaries, such as doubly linked
lists or trees. The pressing needs to analyse programs for which source code is
unavailable are manifold. A company might lose its data — as has happened, e.g.,
for SEGA’s “Magic Knight Rayearth” [1,37] — but does not want to completely lose
the engineering effort put into a software. A customer might be forced to maintain
a closed source program after it has reached its end-of-life and need to develop, e.g.,
security patches [99]. In addition, the constantly growing amount of malware [17]
requires security specialists to gain an understanding of malware behaviour.

As DDSs are a fundamental aspect of many programs, it is important to have
information about the therein employed DDSs when conducting reverse engineer-
ing. When knowing the DDS shape one already has an idea of the corresponding
data structure manipulating code sections — e.g., an insert into a Doubly Linked
List (DLL) requires to set at least the previous and next pointers instead of only the
next pointer for an insert into a Singly Linked List (SLL) — and possibly even about
the overall algorithm — e.g., consider a code section performing a search that uses
a Binary Tree (BT) versus a Singly Linked List (SLL). The detection of such DDSs
is pursued by the recent DSI! approach.

Related work. While there already exist Dynamic Data Structure (DDS) identifi-
cation tools for binaries, with DDT [74], ARTISTE [49] and MemPick [69] being
state-of-the-art examples, they have limitations such as regarding recognition pre-
cision or due to strong assumptions. For example, DDT relies on the presence
of well-defined interface functions, which is suitable when, e.g., the C++ STL li-
brary [91] is used in the programs under analysis. But this assumption is not
satisfied for customized DDSs or in the presence of low-level optimizations such
as inlining or macro based interfaces. ARTISTE looses its precision in the face of
degenerate shapes, which occur during DDS manipulation operations. MemPick
cuts connections between data structure nodes, which for now correspond to the
allocated memory for one element of the DDS, of different types. This prevents
MemPick to handle DDSs running through nodes of different types, for which the
Linux Kernel List (LKL) [15] is a prominent example. DDT and ARTISTE also do
not handle the Linux Kernel List (LKL), and all three tools struggle with complex
parent child relations such as arbitrary nesting levels, i.e., where the children of a

!SWT Research Group, University Bamberg, DFG-Project LU 1748/4-1
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next
down down
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__next _
Figure 1.1: Three level skip list with one node per level and all nodes are of the
same type.

parent child relation can have children of their own and which is not limited to a
certain depth. Additionally, tools based on shape analysis [81] exists, which is con-
cerned with statically inferring and verifying data structure shapes and their invari-
ants. Therefore recent shape analysis tools such as Predator [65] and Forester [72]
are of interest to us, though their main difference to DSI is their static analysis
approach that is more conservative than a dynamic analysis [74,81]. Forester han-
dles (cyclic) SLLs and Doubly Linked Lists (DLLs), the LKL, trees and skip lists
in sequential non-recursive C programs, whereas DSI also works for recursive C
programs. Predator’s focus lies on DLLs, especially the LKL, and SLLs. Other re-
cursive data structures like trees, which are supported by DSI, are currently out of
scope for Predator.

DSI goals & approach. The limitations of related work are addressed with the
novel DSI approach [107], authored by Dr. White in the context of the Deutsche
Forschungsgemeinschaft (DFG) project “Learning Data Structure Behaviour from
Executions of Pointer Programs” (LU 1748/4-1). DSI requires C source code to
enable its dynamic analysis, where a concrete execution of a program is precisely
analysed; this is in contrast to a static analysis which conservatively reasons about
all possible executions of a program [66]. In particular, DSI increases the analysis
precision for and the scope of detectable DDSs, such as Skip Lists (SLs) and arbi-
trary parent child nestings. An SL provides fast search capabilities by providing
multiple hierarchical segmented levels on top of a sorted list as shown in Fig. 1.1.
The level segments store information about the underlying list elements reachable
from a segment, which is used to either skip to the next segment if the searched
token cannot be found in the current segment or move down the next lower level
to repeat searching segments until the searched token is either found in the bot-
tom list or is not contained at all. Additionally, DSI makes few assumptions, e.g.,
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Figure 1.2: DSI’s memory abstraction shown for the Linux kernel list. DSI detects
two connected (cyclic) singly linked list (atomic building blocks of a DS,
shown with colored arrows) that form the cyclic doubly linked list by
being connected in reverse order. Additionally, the singly linked lists
run through nodes of different types, illustrating that DSI allows that a
DS node only covers a subregion (dashed boxes) of the same type of the
allocated memory chunk (outermost solid boxes). Figure is reproduced
from our publication [94].

it does not require the presence of interface functions or that a memory chunk,
i.e., memory allocated on the stack or heap, corresponds to a DDS node as a whole.
These properties of DSI have their foundations in the rich type information found
in source code and make DSI highly interesting for automated DDS discovery.
DSI functions by first instrumenting the source code with the C Intermedi-
ate Language (CIL) framework [88] to capture memory changing events, such as
memory (de-)allocations and pointer writes. The instrumented program is then
executed and an event trace recorded. Finally the event trace is analysed offline
by DSI resulting in a named DDS. DSI sets itself apart from related work by the
following novelties:
Novel memory abstraction. DSI uses a novel memory abstraction to represent
the heap/stack state, i.e., the allocated memory and the pointers connecting them,
which allows us to handle data structures such as the LKL, SLs, and arbitrary nest-
ing scenarios. Our memory abstraction is guided by the observation that a DDS
is composed of various SLLs as their atomic building blocks, termed strands, and
their interconnections, termed Strand Connections (SC), as can be seen in Fig. 1.2.
The LKL shown therein is composed of two strands, one for each direction, and
the two strands are connected in a reverse order. Additionally, the nodes of an SLL
are allowed to cover smaller subregions of memory, termed cells, which can either
be a complete struct or only a nested struct. This seamlessly covers DDSs in the
style of the LKL.
Degenerate shapes. DSI takes Degenerate Shapes (DgSs) into account instead
of avoiding them [69, 74, 106]. DgSs occur due to DDS manipulation operations,
where the properties of the true Stable Shape (StS) of a DDS are broken, as shown



XXXV 1 Introduction

Figure 1.3: A singly linked list with two doubly linked list children. The singly
linked lists forming the atomic building blocks of the DS are shown
with colored arrows. The right child doubly linked list is in a degener-
ate shape due to a pending insertion of the last element.

in Fig. 1.3 where one child DLL is in a DgS due to an unfinished insert operation.
DSI does so by gathering evidence for the true StS for a DDS during its analysis.
Data structures and their naming. DSI creates a named output of the DDS pointed
to by a given entry pointer of the program under analysis, e.g., “Binary tree with
nested singly linked list children”. DSI currently supports the following data struc-
tures: (cyclic) singly linked lists and doubly linked lists, skip lists, binary trees and
arbitrary combinations of those DDSs in the form of parent child nesting. Skip
lists and the nesting are not covered by [49, 69, 74].

1.1 Source code: Research question and challenges

This dissertation first contributes to improving upon the state-of-the-art of [49, 69,
74], by realizing the DSI approach on source code. This results in a research tool
for automatically detecting and naming DDSs and allows us to answer the first
research question:

Research Question 1: Isthe DSI approach adequate to reach its goals
of automatically detecting dynamic data structure shapes with high
precision in the presence of degenerate shapes and, in particular, how
far must the DSI concept be refined in order to deal with the wealth of
dynamic data structure implementations employed in real-world soft-
ware?
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0 )L

Figure 1.4: A parent singly linked list with two nested doubly linked list children.

The first part of the question will be answered positively by us by carrying out
a diverse benchmark including real world examples (libusb [13], bash [10]) and
examples taken from the shape analysis literature [65,72] on the realized DSI ap-
proach. Along the way, various problems are resolved within this dissertation,
such as quantifying the interconnections of the atomic building blocks of DSI’s
memory abstraction forming a DDS and guaranteeing the consistency of the cho-
sen abstractions. DSI uses graphs for representing its various employed memory
abstractions; it is vital to keep those graphs consistent during the analysis. The
foundation for DSI is the current heap state, captured by a Points-to Graph (PTG),
where vertices are memory chunks and edges are pointers. Additional abstrac-
tions, i.e., as strands, the Strand Graph (SG), the Folded Strand Graph (FSG), and
the Aggregated Strand Graph (ASG), are layered upon the Points-to Graph (PTG)
and are further discussed in Ch. 2. Therefore a PTG needs to be kept consistent
during memory manipulations and programming errors like memory leaks, lead-
ing to the first challenge:

Challenge 1.1: Can DSI’s graph abstractions be kept consistent in
the face of common memory events such as memory (de-)allocations,
pointer writes and even programming errors?

DSI builds its novel heap abstraction on top of PTGs and deals with programming
constructs offered by the C programming language, such as pointer arithmetic,
type casts, and self controlled memory management including custom memory
allocators [45]. This allows DSI to detect strands as the atomic building blocks of
a DDS. However, DSI still needs to correlate the detected strands by finding the
SCs between the strands in order to identify the various supported DDSs. When
looking at Fig. 1.3, the final interpretation of the DDS as a “SLL with nested DLL
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children” can only be achieved when knowing that the parent SLL and the child
DLLs are connected. More specifically, it becomes evident that the SCs are dif-
terent for the strands forming the parent child relation, which are pointer based,
and the strands of the child DLLs, where both strands reside inside a common
memory chunk. Therefore, the descriptions of SCs need to account for their dif-
ferent nature; they also need to handle situations as shown in Fig. 1.4, where there
are multiple parent child pointer connections. Each child connection needs to be
unique within one node in order to prevent accidental confusion among the chil-
dren when DSI performs its analysis. Yet the SCs need to be general enough to
track the children performing the same role between multiple parent nodes, e.g.,
find the SC pointing to the first DLL in both nodes of the parent SLL. This leads
to the second challenge:

Challenge 1.2: Can DSI’s strand connections be quantified such that
connections performing the same role can be identified robustly even
accross today’s multitude of dynamic data structure implementations?

In summary, part one of this dissertation resulted in a DSI prototype work-
ing on C source code. This requires the realization of the DSI approach, which
includes addressing Challenges 1.1-2 and the evaluation of the prototypic imple-
mentation. DSI is benchmarked with hand-written, text-book [104, 108], shape-
literature [65, 72] and real world examples [10, 13, 38]. The benchmarking of DSI
shows that the general approach including our extensions such as the quantifi-
cation of SCs and the consistency of the PTGs works well on the rich variety of
tested data structures. DSI outperforms related work in terms of detectable data
structures, such as skip lists and arbitrary combinations of data structures such as
those using parent child nestings. Additionally, benchmarking shows that DSI’s
fine grained memory abstraction enables the seamless handling of data structures
running through nodes of different types. Such behaviour is not handled in a gen-
eral manner by related work, and the Linux kernel list is a prominent example for
such a data structure in frequent use today. Some of the benchmarked examples
reveal opportunities for future work, e.g. adding arrays into the detectable units
for DDS (cf. X.Org[38]) and the handling of even more complex nesting scenarios
than currently covered (cf. tsort from coreutils [9]).

While working with the DSI prototype, the algorithm is also inspected for paral-
lelization opportunities, and the resulting parallelized DSI version is also detailed
in this dissertation. Our work on DSI has been presented at the ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA) in 2016 [107].
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1.2 Binary code: Research question and challenges

The second part of this dissertation is concerned with opening up the source code
DSI version, called DSIsrc from now on, to analysing C/C++ binaries, where the
initial focus of DSI on program comprehension shifts to reverse engineering [56].
This main part of the dissertation has primarily been executed by the author of
this dissertation to answer the second research question:

Research Question 2: Can DSI’s concepts and strengths be preserved
when inspecting binaries?

This research question is again answered positively by implementing a DSI ver-
sion operating on binary code as input. One of the problems when dealing with
binaries is the loss of perfect type information found in source code. Therefore, an
important task is to analyse DSI’s source code dependencies and investigate the
implications when type information is lost. Because there exist type recovery tools
for binaries that might alleviate the problem [43,78,80], one of the first challenges
of RQ2 arises:

Challenge 2.1: Can external type recovery tools for binaries excavate
sufficiently precise type information for DSI to function on binaries?

A literature survey of type recovery tools leads us to Howard [98]; this state-of-
the-art tool is suited for DSI as it handles the detection of nested types, which
are important for DSI's memory abstraction. To build a prototypical binary DSI
version, as done by us and called DSIbin, the recovered information from Howard
needs to be included in the event trace recorded by DSI, which leads to the second
challenge of capturing the event trace from binaries:

Challenge 2.2: Can the event trace required by DSI and generated
using CIL, be reproduced with a binary instrumentation framework?

We show that by using Intel’s Pin [82] framework, it is possible for us to imple-
ment the Data Structure Investigator for Binaries (DSIbin) tool and to incorporate
the types recovered by Howard. DSIbin is shown to already outperform related
work MemPick [69], DDT [74] and ARTISTE [49] regarding the detection of data
structure features such as indirect nesting, and data structures not recognised by
the aforementioned tools, such as skip lists. This proves that Howard and DSI
work well together; however, DSI’s full capacity regarding the fine grained cell-
based memory abstraction cannot be unleashed, due to Howard’s limitations in
detecting nested types and type merging. When considering the LKL shown in
Fig. 1.2 it becomes apparent that without this information the DSI algorithm fails
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Source Howard DSlref
struct sraSpan { struct { struct 1176/ .
sraRegion sraSpan
struct sraSpan *_next; 0x0: VOID*; 0x0: VOID*;
struct sraSpan *_prev; 0x8: VOID*; 0x8: VOID*; >
int start; 0x10: INT32; 0x10: INT32; front
int end; 0x14: INT32; Ox14: INT32; <
struct sraRegion *subspan; 0x18: VOID*; 0x18: VOID*; <
} } }
back
struct sraRegion { struct { struct{ m
sraSpan front; 0x0: VOID*; 0x0: struct 1176{
0x8: INT64; 0x0: VOID*;
0x8: VOID*; sraRegion sraSpan
0x10: INT32;
Ox14: INT32; >
0x18: VOID*; front
)
sraSpan back; 0x20: struct{ 0x20: struct 11761
0x0: INT64; 0x0: VOID*;
0x8: VOID*; 0x8: VOID*; 3
}i 0x10: INT32; back
Ox14: INT32;
0x18: VOID*;
’

Figure 1.5: Types for the VNC clipping library as found in the source code, as re-
covered by Howard and as refined by DSIbin (left), and the correspond-
ing VNC data structure (right).

at the strand recognition which often results in diminished precision of the analy-
sis. In the concrete example the head node would not be considered as part of the
remainder of the list by DSI. So missing nested types and not performing proper
type merging might lead to false negatives and positives in the strand creation
phase of DSI. However both nesting detection and type merging are fundamental
problems when dealing with binary code and a must to enable DSI’s rich DDS
detection capabilities. This observation leads to the third challenge for RQ2:

Challenge 2.3: Can the type information recovered by Howard from
binaries be refined with the help of DSI itself?

To address this challenge, a type refinement step is devised into DSI, which im-
proves upon Howard’s excavated type information by advanced techniques of type
merging, nesting detection and, as a byproduct, primitive type detection. To illus-
trate the type refinement, the types of the VNC clipping library [14] are shown on
the left in Fig. 1.5, there the ground truth for the types is given by the library’s
source code. The types excavated by Howard are depicted next to the source code,
where one can see the different limitations: (i) the nested sraSpan front is not
detected by Howard; (ii) the nested sraSpan back is detected, but the type is not
merged with the standalone struct sraSpan; (iii) the primitive types of struct
sraRegion that are not accessed cannot be typed. On the right in Fig. 1.5, the
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actual shape of the data structure is depicted, which is a “Parent DLL with nested
child DLLs".

The main idea behind DSIbin’s type refinement is to exploit pointer connections
between the allocated memory chunks, with the assumption that incoming point-
ers to memory always point to the start of a nested struct, i.e., incoming pointers
at the middle of a memory chunk hint at a nested struct. Additionally, type infor-
mation can be propagated along pointer chains as long as both the primitive types
along the path and the size of the memory chunks are matched. Untyped memory
is treated as a don’t care, which matches all primitive types.

Exploiting the resulting pointer information can lead to multiple possible inter-
pretations of the memory, i.e., the types, as will be explained during this disser-
tation. We term the multiple interpretations type hypotheses. Not all of these hy-
potheses correspond to the actual ground truth, therefore it is required to decide
which of the hypotheses are the best interpretations. In this dissertation, it will be
shown that DSI itself can be utilized to choose among the possible hypotheses by
evaluating these hypotheses with DSI and then selecting the one corresponding
to the most complex DDS interpretation found. The intuition is that, e.g., a skip
list does not appear by chance, but is a strong hint that the hypothesis resulting in
such a DDS interpretation indeed revealed the typing as originally carried out by
the software developer. The resulting types refined by DSIbin can be seen on the
leftin Fig. 1.5, where now the nested sraSpan front is detected, all three sraSpan
instances are merged as indicated by the same name of the structs (struct 1176),
and the missed primitive types of the recovered struct sraRegion are now typed.

Thereby, the nested struct discovery by DSI can be bolstered significantly. The
resulting type information lets DSI play off its strength regarding its memory
abstraction, especially utilizing cells with the improved nesting detection. This
enables DSI to deal with sophisticated data structures such as the Cyclic Doubly
Linked List (CDLL) used in the Linux kernel [15] or complicated nesting scenarios
including arbitrary parent child nesting.

Summarizing part two of this dissertation, the DSI approach is opened up for
binaries in addition to source code. This enables the inspection of not only com-
piled C but also compiled C++ programs, thus widening DSI’s scope. The re-
sulting DSIbin tool is shown to outperform related work [49, 69, 74] in terms of
detectable data structures, e.g., skip lists, and arbitrary nesting. Additionally, the
type refinement step improves upon the state-of-the-art type recovery tool Howard,
making the approach also interesting to software analysts who only require im-
proved primitive and compound type information such as to aid forensics, which
is one of Howard’s intended use cases. Both binary DSI approaches, i.e. with
and without type refinement, are evaluated by hand-written, text-book [104, 108],
shape-literature [65, 72] and real world examples [20, 32, 34]. As a side-effect, the
benchmarking also testifies the robustness of the initial DSI approach. Further,
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more insight into DSI’s core algorithm and design decisions is gained, which can
act as improvements for future work.

1.3 Structure of the dissertation

The structure of this dissertation follows the general division of the DFG project
into Pt. I related to source code analysis and Pt. II related to binary analysis. The
source code part first describes the detailed preliminary work on DSI by Dr. White
in Ch. 2, followed by a discussion on related work in Ch. 3. Subsequently, this dis-
sertation highlights in Ch. 4 the importance of the consistency of the underlying
memory abstraction and how this is achieved by DSI. With the established consis-
tency, higher level abstractions can be modelled on top of the memory abstraction.
Among those is the quantification of SCs, which is central for DSI’s DDS detec-
tion capabilities and detailed in Ch. 5. The quantified SCs also enable the analysis
of repetitive behaviour of DSs, both structurally and over time. An algorithm for
capturing the temporal repetition of a DDS is developed in Ch. 6. To show the fea-
sibility of the whole DSI approach, a working prototype has been implemented.
During the work on the DSI prototype an optimized parallel version of the algo-
rithm has been developed, which is explained in Ch. 7. The DSI approach was
presented at ISSTA in 2016 [107] and is comprehensively benchmarked in Ch. 8
with a focus on the detectable DDSs instead of performance. Ch. 8 also presents
interesting real world examples that are currently out of scope of DSI’s capabilities
and motivate future work. Finally, the results of the source code DSI approach of
Pt. I are summarized in Ch. 9.

The binary part of this dissertation starts out by giving an overview of our ap-
proach for opening up DSI for C/C++ binaries in Pt. II, followed by a survey on
the usage of DDS in malware as a motivational use case for DSIbin in Ch. 10.
With the use case laid out, DSI’s dependencies on perfect type information found
in source code is investigated in Ch. 11. As this type information is unavailable
when dealing with binaries, it needs to be reverse engineered; therefore, existing
type recovery tools are surveyed in Ch. 12. In order to interface with a type recov-
ery tool and to extract the runtime information from the binary required for DSI to
function, DSI’s source code instrumentation with CIL needs to be replaced with a
binary instrumentation framework, which is discussed in Ch. 13. A first DSIbin
implementation with the state-of-the-art type recovery tool Howard [98] and Intel’s
instrumentation framework Pin [82] is then detailed in Ch. 14. Our approach is
benchmarked in Ch. 15, showing the promising potential of the combination of
Howard and DSI. However, it becomes eminent that DSI’s full DDS discovery po-
tential cannot be unleashed due to limitations in Howard’s type recovery. This is
then compensated by a refinement step developed in Ch. 16 and benchmarked in
Ch. 17, demonstrating that DSIbin outperforms related work. The results of the
binary code DSI approach of Pt. IT are summarized in Ch. 18.
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1.4 Methodology

In order to answer the previously stated research questions, the methodology
shown in Tab. 1.1 was applied. The table shows which Methodology was applied to
which research question (RQ). The methodology is divided into theoretical work
(Theory) and practical work (Practical).

For RQ 1 a literate review was conducted, to put the DSI algorithm into the con-
text of the related work. As DSI pseudo code is already available from Dr. White,
the pseudo code is reviewed to get a deep understanding of DSI and to find op-
portunities for improvement. Further both challenging real life DDS as well as
artificially created DDS that aim for white box testing of DSI are identified by the
author of this dissertation. The theoretical work is accompanied by the practical
work of implementing and benchmarking a first DSI prototype. Additionally case
studies are executed to highlight, e.g., further previously unintended use-cases of
DSI. Throughout both challenges the DSI concept gets refined and extended. This
includes the identification of weaknesses within DSI and subsequently working
out the corresponding pseudo code to improve these points. Additional bench-
marks are composed to specifically address the improvements. For all challenges,
a prototype is implemented and tested against the composed benchmarks.

The theoretical work for RQ 2 is again a literature review into various directions.
One direction is related work, another direction is about type information and type
recovery tools. The latter is in the form of a survey. This lays out the foundation
for the theoretical discussion about the loss of type information in binaries com-
pared to source code and the implications for the DSI algorithm. Based on these
findings a first architecture of DSI for binaries (DSIbin) is envisioned and the ini-
tial benchmark from RQ 1 gets extended. This is accompanied by conducting a
survey on real world malware source code to find interesting DDSs and directions
for future work. As is the case with the challenges of RQ 1 all theoretical work on
RQ 2 and its challenges Ch 2.1 to Ch 2.3 is backed up by a prototypical implemen-
tation. The prototypical implementations are all benchmarked to have a proof of
concept and to identify the positive and negative aspects of the approach. Indeed
Ch 2.3 tackles the weaknesses of Ch 2.1, which leads to a whole new approach of
binary type refinement.

1.5 Project context and publications

This dissertation has been carried out in the context of DFG funded research
project “Learning Data Structure Behaviour from Executions of Pointer Programs”
(LU 1748/4-1). As a short historic background, the projectideas are based upon the
research program comprehension tool Data Structure Operation Location and Iden-
tification (dsOli) [105,106] which has been authored and implemented by Dr. Whi-
te. It allows for the identification of dynamic data structures, e.g., lists, and their
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Table 1.1: Methodology for answering the research questions (RQ) and challenges
(Ch) stated in Sections 1.1 and 1.2 of this dissertation.

RQ Methodology
Theory Practical

RQ1 Literature review Implement DSI prototype
Review DSI pseudo code Conduct various benchmarks
Identify real life DDS examples Conduct case studies
Compose challenging artificial DDS exam-
ples

Ch 1.1 | Identify weaknesses of DSI Refine DSI prototype
Refine the DSI pseudo code Conduct benchmark
Setup of benchmark

Ch 1.2 | Identify possible strand connections Refine DSI prototype
Identify possible quantifications of strand | Conduct benchmark
connections
Extend the DSI pseudo code

RQ 2 Literature review Implement various DSIbin prototypes
Create architecture for DSIbin Conduct various benchmarks
Create pseudo code Conduct case studies
Discussion of type information loss
Compose benchmark
Literature and code surveys

Ch 2.1 | Literature review Implement prototype
Literature survey on type recovery tools Conduct benchmark
Malware code survey
Create architecture for DSIbin
Compose benchmark

Ch 2.2 | Literature review Implement prototype
Identify differences between source and bi- | Conduct benchmark
nary instrumentation
Create architecture for instrumentation

Ch 2.3 | Identify weaknesses of Ch 2.1 Implement prototype

Create pseudo code for type refinement

Conduct benchmark
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associated operations when C source code is available. However, dsOli does nei-
ther support nesting nor recursive data structures such as trees.

The main topics of the DFG project have been extending the scope of detectable
data structures, when compared to dsOli and other related work [49, 69, 74], es-
pecially regarding nesting and recursive data structures, handling of real world
examples and moving towards binaries as input instead of source code. As the
research for this dissertation was conducted while working on achieving the DFG
project’s goals, additional contributions for DSI on source code have been made
and a binary version of DSI has been developed. In order to delineate this disser-
tation from the work done by Dr. White, the contributions from the author of this
dissertation for our three jointly authored and peer-reviewed publications within
the DFG project are spelled out in the following:

[ASE17] T. Rupprecht, X. Chen, D. White, J. Boockmann, G. Liittgen and H.
Bos. DSIbin: Identifying Dynamic Data Structures in C/C++ Binaries. In

2017 IEEE/ACM International Conference on Automated Software Engineering
(ASE’17), pp. 331-341. ACM, 2017.

« Analysis of DSI source code dependencies and the implications of type in-
formation loss and weakly robust type information (Ch. 11);

« Survey of type recovery tools and binary instrumentation frameworks suited
for DSIbin (Ch. 12);

« Parallelization of the hot-spot parts of the DSI algorithm (Ch. 7);

« Benchmarking of the first naive DSIbin implementation,
see [CCS16] (Ch. 15);

« Sophisticated DSIbin prototype, which refines Howard’s recovered type in-
formation (see [CCS16]) (Ch. 16);

« Benchmarking of the sophisticated DSIbin prototype on the set of examples
used in the naive approach (Ch. 17).

[CCS16] T. Rupprecht, X. Chen, D. White, J. T. Miihlberg, H. Bos and G.
Littgen. POSTER: Identifying Dynamic Data Structures in Malware. In 2016
ACM SIGSAC Conference on Computer and Communications Security (CCS’16),
pp. 1772-1774. ACM, 2016.

« Survey on the usage of DDSs found in leaked malware source code [34]
(Ch. 10);

« Early on evaluation of DSI’s robustness wrt. completeness of type informa-
tion (Ch. 11);
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« Survey on type recovery tools for binaries, arriving at Howard as a suitable
tool for the combination with DSI (Ch. 12);

« Firstnaive DSIbin implementation with a new binary instrumentation front-
end for DSI (Ch. 13), and the incorporation of Howard’s excavated types in
collaboration with the developers of Howard, Dr. Chen and Professor Bos
of VU Amsterdam (Ch. 14);

« Evaluation of Howard’s type recovery capabilities and the naive DSIbin im-
plementation via benchmarks of extracted components from examined mal-
ware, especially the DLL of child DLLs from HVNC in Carberp and the C++
STL lists in the IRC proxy of AgoBot (Ch. 15);

« Discovery of limitations in Howard’s type recovery algorithm, especially re-
garding nested struct detection and type merging, which hampers DSI’s data
structure detection capabilities (Ch. 16).

[ISSTA16] D. White, T. Rupprecht and G. Luttgen. DSI: An Evidence-Based Ap-
proach to Identify Dynamic Data Structures in C Programs. In International Sym-
posium on Software Testing and Analysis, (ISSTA’16), pp. 259-269. ACM, 2016.

« Algorithms for artificial memory events and memory leak detection (Ch. 4);

« Quantification of strand connections (Ch. 5);

Temporal repetition algorithm (Ch. 6);

Realization of the complete approach resulting in the DSI research tool;

Extensive benchmarking of DSI including real world (libusb [13], bash [10])
and shape analysis examples (Ch. 8).

Additionally, the following two jointly authored but not peer-reviewed publica-
tions resulted through the work on the DSI project:

[KPS17] Rupprecht, T., Boockmann, J. H., White, D. H., and Littgen, G. DSI: Au-
tomated Detection of Dynamic Data Structures in C Programs and Binary Code.
In the 19th Coll. on Programming Languages and Foundations of Programming
(Kolloquium Programmiersprachen, KPS’17). 2017.2

« Wrap up of project status, including DSI on source code, DSIbin on x86
binaries and various future work topics with early on proof of concepts in
the form of bachelor and master theses.

Zhttps://www.swt-bamberg.de/luettgen/publications/pdf/KPS2017.pdf. Accessed:  1st
September 2018
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[KPS15] White, David H., Rupprecht, Thomas and Liittgen, Gerald. dsOli2: Dis-
covery and Comprehension of Interconnected Lists in C Programs. In the 18th
Coll. on Programming Languages and Foundations of Programming (Kolloquium
Programmiersprachen, KPS’15). 2015.3

« Early on prototypical DSI implementation;

« Benchmark of prototype on a small set of examples.

3https://www.swt-bamberg.de/luettgen /publications/pdf/KPS2015.pdf. Accessed:  1st
September 2018
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2 DSI on source code

Data structures are an integral part of a program, making the need to understand
them a necessity. However, the task of program comprehension is challenging
and might not be straightforward, e.g., when the programmer is confronted with
legacy or tricky low-level kernel code. Here code quality and complexity might
burden the programmer with, e.g., wrongly chosen variable names, pointer casts,
sophisticated memory allocations, or the usage of macros. This is especially true
when dealing with C programs, where low level details can distract the program-
mer from gaining a high level understanding of the program. Unfortunately, the
situation worsens with hard to understand data structures such as skip lists and
when documentation is lacking. DSI alleviates the problem by automatically de-
tecting dynamic pointer-based data structures when C source code is available.
With detailed information about the employed data structures, DSI’s use cases
are not limited to program comprehension alone; for example, it is possible to in-
terface with formal verification tools, like VeriFast [73] by automatically generating
program annotations, or to visualize memory graphs [105].

This chapter first elaborates on the general DSI approach explained in the
introduction. Then, specific topics of DSI are highlighted that have been de-
veloped within this dissertation. When looking at the strengths of DSI, three
main aspects not covered by related work become evident: (i) DSI develops a fine
grained heap abstraction surpassing the precision of competing approaches, (ii)
DSI describes arbitrary nesting scenarios and data structures not handled by other
tools [49,69,74], e.g., seamlessly handling the Linux kernel list [15], and previously
neglected data structures like skip lists; (iii) DSI includes degenerate shapes into
its analysis instead of avoiding them [69, 74, 106], thereby allowing for the inspec-
tion of data structure manipulation operations.

DSl is split into a front-end module, performing an online trace recording, and
the core DSI algorithm module, performing an offline trace analysis. This mod-
ularization allows for adapting DSI to different input formats by exchanging the
front-end module, which will be utilized when dealing with binary code in Pt. II
of this dissertation. The modularity shows that the DSI approach is by no means
tied to a specific programming language but is a general concept for analysing dy-
namic data structures. The motivation to analyse C source code is C’s possibility
to create challenging heap states and inclusion of compact but rather hard to read
programming constructs. The Linux Kernel List (LKL) [15] is a prominent example
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for both aspects, as it allows for the connection of arbitrary memory chunks and
uses a macro based interface with extensive pointer casts and pointer arithmetic.

The front-end consists of the CIL framework [88], which instruments relevant
memory events in the C source code, e.g., heap allocations and deallocations, cre-
ation and deletion of stack frames and pointer writes. When running the instru-
mented program, the runtime events are recorded into an event trace thatis passed
to the offline analysis once the inspected program has terminated. DSI can only
analyse executed parts of the program as is the case with any dynamic analysis.
This can be seen as an increased level of precision instead of a limitation, as the
characteristics of a particular program run are revealed. Therefore, DSI itself is
not concerned with the problem of full path coverage. If need be, dedicated tools
like KLEE [52] exist for this purpose. While working with DSI, we guaranteed the
proper utilization of the data structures, i.e., creation and deletion, directly within
the example programs or within the manually developed drivers for those exam-
ples.

We will discuss each step of DSI’s analysis with the example depicted in Fig. 2.1.
The analysis starts by modeling a Points-to Graph (PTG) to represent the memory
layout for each time step, i.e. memory event, within the trace (Fig. 2.1 phase (a)).
In a PTG vertices represent memory chunks and edges are pointers. Note that DSI
relies on sub-regions of memories, called cells, instead of whole memory chunks
for the memory abstraction. The cell abstraction is shown in Fig. 1.2, where the
cells are depicted by the dashed squares, and which is required to seamlessly iden-
tify LKL like data structures. Without the cell abstraction the head node of the LKL
would be missed out, as it is of a different type than the list remainder.

Upon this representation, DSI abstracts the memory by establishing strands,
which are essentially SLLs as shown by S,,. More precisely, a strand requires a
common linkage condition between the cells forming the strand. The linkage con-
dition enforces that all cells of a strand have the same linkage offset for the pointers
connecting the cells and that the cells are of the same type. Strands are intercon-
nected with each other either tightly or loosely. The tight connection is termed
overlay and the loose connection is termed indirect. The strands and their con-
nections are represented in a Strand Graph (SG), where strands are vertices and
their connections are edges (Fig. 2.1 phase (b)). More specifically, overlay connec-
tions are bidirectional edges, as it is possible to get from one strand to the other
by an offset calculation, e.g., between strands Ss and S5. Indirect connections are
directed edges, as they represent the pointer connection from one strand to the
other, thus preventing one to get from the pointer target back to the source, e.g.,
between strands S; and S,. Strand connections are further quantified by describ-
ing the offsets between the strands. This is important to enable DSI’s data struc-
ture detection, which is directly performed on the SG and the follow up phases of
structural and temporal repetition aggregation, as discussed in the following.
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Figure 2.1: Overview of DSI, reproduced from our publication [107].

The data structure detection phase tries to match predicates against the SG,
which rely on the characteristics of the strands, i.e., the type of the cells forming
a strand and the linkage offset that describes the pointer offset of the strand from
the start of the cell. Additionally, the predicates depend on the characteristics of
the edges, i.e., overlay or indirect edges and their specific offsets. Therebyj, it is
possible to precisely select strands and strand connections from the graph that
form a particular data structure, i.e., fetching a nesting on overlay versus a nesting
on indirect parent-child relation. Once a data structure is detected within the SG,
all the strand connections are tagged with the label of the detected DDS, e.g., DLL,
and an evidence count is applied to the edge, thereby quantifying the observed
data structure. The DDS detection is performed exhaustively on the graph. The
labeling and evidence count can be seen in phase (b) of Fig. 2.1 when looking at
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the labels and evidence counts applied at both time steps ¢ and ¢ + 1. The DLL
label gets applied to strands Sy and S5 for both time steps. The evidence count
of 6 stems from the DLL predicate, which weighs each cell pair with 1 with and
additionally 2 for inspecting both cells, resulting in a count of 3 for each cell pair.
The degenerate shape of the second child DLL in time step ¢ results in an evidence
count of 2 as only two cells are intersecting, i.e., each intersecting cell pair has a
count of 1. At time step ¢ + 1 both child elements are in a stable shape of a DLL.

The DDS matching requires detailed knowledge about the different DDSs that
DSI can handle and how they are represented by the strand and strand connec-
tion abstraction. This leads to a taxonomy that describes precisely in what order
the different DDSs need to be matched in order to prevent misclassifications or
less precise classifications. This can best be seen with examples. Consider two
strands which are intersecting (a) in one node and (b) intersecting on the same
head node. In both cases the strand and strand connections are the same, as they
only have one intersection point. But one needs to test for (b) first as this is a
more precise description of the DDS that is also covered by (a). Another example
is overlay nesting (No), e.g., seen when the head node of a child SLL is embedded
inside of a parent SLL, and a Binary Tree (BT). A BT actually shows the character-
istics of No when considering only one branch of the tree with multiple branches
starting from it. Therefore, it is required to test for the BT predicate first to prevent
an early No detection which would hinder the BT detection. These specifics are
actually present across the whole set of DDSs covered by DSI and are captured in
a taxonomy describing the hierarchy for detecting the DDSs. This is however not
important until Pt. IT of this work, where the hierarchy of the taxonomy will be
exploited by DSIbin.

After the DDSs detection phase, we have arrived at a SG that is now decorated
with the labels and evidence counts of the detected data structures for one time
step. Now the structural repetition phase is executed, where parts of the data struc-
ture that perform the same role are aggregated (Fig. 2.1 phase (c)).

The main aspect of the structural repetition is the aggregation of the strands
and strand connections that perform the same role and, thereby, the accumula-
tion of the detected data structures and the applied evidence counts. All parts of
the SG that perform the same role are folded together, resulting in a FSG, as seen
in Fig. 2.1. Once the FSG is calculated for each time step of the event trace, the
temporal repetition phase can be executed by inspecting the FSGs from the point
of view of an entry pointer over its lifetime during program execution. Entry point-
ers can be either a pointer from the stack into the data structure, or an element
of the data structure itself that is stored on the stack. The latter can be seen with,
e.g., the Linux kernel list, where the head of the CDLL can reside on the stack. The
temporal repetition for an entry pointer is performed by incrementally aggregating
the FSGs of each time step until the entry pointer no longer exists (Fig. 2.1 phase
(d)). The resulting ASG will carry the accumulated evidence counts for the struc-



tural and temporal repetitions, where the highest evidence count is considered the
correct interpretation for the data structure. This can be seen by the accumulated
evidence counts shown in phase (d), where the DLL label clearly outnumbers the
12+ label. Finally the label information of phase (d) can be used to name the
whole DDS by subsequently aggregating all the vertices and replacing them with
the attached DDS label (Fig. 2.1 phase (e)).
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This chapter covers closely related work that performs data structure detection
either by a dynamic analysis [49, 69, 74, 106] or static analysis [65, 72]. There ex-
ist further tools that also analyse dynamic data structures, but for other reasons,
e.g., optimization [75, 92] or visualization [39, 85]. Such tools are not discussed
extensively here as they are not primarily in line with DSI, but they are referenced
whenever required. Type recovery tools for binaries focusing on primitive data
types and compound types like structs are presented in Ch. 12 of Pt. II.

In the remainder of this chapter we will discuss the DDS detection tools shown
in Table 3.1. The table shows the main use case of the tool, i.e., Reverse Engi-
neering (RE), Program Comprehension (PC), Signature Generation (SIG), Formal
Verification (FV) or Visualization (VIS). RE and PC are quite similar because, in
both cases, the goal is to comprehend the program, but PC points out that the
approach works on source code as input. The approaches differ in their type of
analysis, i.e., static or dynamic. Laika [60], Heapviz [39] and HeapDbg [85] are also
considered to be dynamic analyses as they take heap snapshots as input, which re-
quires program execution. In contrast to the other dynamic analyses they do not
track the explicit memory (de-)allocations to construct PTGs; instead, they build
the PTGs from concrete heap snapshots as input for their analysis. Other input
formats are binary code or source code. dsOli and DSI also execute a binary for
their analysis, but require the source code to insert their instrumentation routines
prior to compilation. The requirement of source code is relaxed for DSI in Pt. II,
where DSI is opened up for binaries. All input formats differ in the amount of
information they provide, which also correlates with the chosen language that the
analysis supports. Languages such as Java and C# provide meta information in
their bytecode, such as type information including class names and method sig-
natures [12], whereas compiled C code does not provide such information. Source
code provides the most information, but it is less likely that source code is always
available, e.g., when dealing with third party libraries and malware. Because the
Data-structure Detection Tool (DDT) [74] explicitly requires DDSs access through
a well defined interface, which is a limitation when dealing with, e.g., C macros
or inlining, the table below reflects whether an approach depends on interfaces
for its analysis. Most of the related work does not handle nested structs, which
is crucial for LKL like DDSs and is also important for detecting situations where
parts of a child DDS are embedded inside the parent, e.g., the head node of a child
SLL is embedded inside of the parent SLL. In the context of DSI, the latter is re-
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ferred to as overlay nesting. The other possibility of connecting DDSs is simply via
pointer connections, termed indirect nesting. Some of the tools are able to detect
overlayed DDSs, which means that multiple DDSs are combined, e.g., a SLL run-
ning through a BT. The table explicitly lists the detectable DDS, e.g., Cyclic Singly
Linked List (CSLL) and CDLL, and has an additional column other trees, which
sums up all trees that are not a standard BT, e.g., red black trees and n-ary trees.
In the following we will now discuss the different tools shown in the discussed
table in more detail.

3.1 MemPick

MemPick [69] is a dynamic analysis for C/C++ binaries for detecting DDS, like
(cyclic) singly/doubly linked lists and various trees. It tracks the heap states of the
program with the help of a memory graph and performs a classification with a
hand crafted decision tree upon the memory graph in order to detect the DDS.

The memory graph is created by tracking memory (de-)allocations and pointer
writes, tracked by instrumenting the binary with the PIN [82] framework. Mem-
Pick performs type merging of binary types when the same instruction operates
on two objects either as source or target operands. Specifically, MemPick aims
for instructions that connect two heap buffers through a pointer that always origi-
nates at the same offset. It is not fully clear whether this offset is always from the
start of a memory region, which would then prevent MemPick to merge multiple
nodes of the same type in one memory chunk, as the offset would change.

MemPick is aware of degenerate shapes, but it tries to avoid them instead of
including them into the analysis like DSI. MemPick only inspects memory graphs
during quiescent periods, when the DDS is not changed. The assumption is that
the DDS is in a stable shape during quiescent periods. MemPick actually samples
into multiple quiescent periods and interprets the memory graph each time. It
only keeps those hypotheses that are true for all samples. This can be considered
as a sort of temporal repetition, but not as fine grained as DSI, because the decision
for a match is binary whereas partial reinforcements are possible with DSI.

One of the major drawbacks of MemPick is the way it detects DDS. It analyses
the memory graph and creates sub-graphs by clustering connected nodes of the
same type. All linkages between clusters are cut, thus effectively removing the
nesting information. The clusters are then interpreted individually by the afore-
mentioned decision tree. The authors of MemPick never speak about reconnect-
ing the gathered information to identify an indirect nesting scenario. Further,
overlay nesting can never be identified with this approach. As an example, con-
sider that the head of a CDLL child is actually embedded inside of the parent.
The linkages would be cut in both directions, which would lead to a missed cyclic
property. A scenario like this is seen with libusb [13], where the parent LKL con-



3.2 DDT 11

tains child LKL. DSI is capable of detecting those scenarios. In addition, MemPick
cannot handle a DDS running through differently typed nodes.

3.2 DDT

DDT [74] detects high level DDS, such as lists or trees. It is based on a dynamic
analysis of C/C++ binaries, by instrumenting memory events. Data structures
constructed on the stack are not considered. DDT (i) creates a memory graph for
an initial DDS shape detection; (ii) finds DDS interfaces; (iii) detects invariants on
the interfaces; (iv) feeds all the information to a hand crafted decision tree in order
to arrive at the DDS interpretation.

More specifically, DDT builds up a PTG, termed memory graph, for each DDS
in the program by tracking memory events, i.e., (de-)allocations and pointer writes.
Therefore, DDT is also confronted with the problem of typing and merging mem-
ory chunks as type information is lost in binaries. To do so, it uses allocation sites
for initially producing unique types for memory chunks and later on declares and
merges chunks to be of the same type if they are accessed via a common interface
function. Additionally, the graph edges are annotated with information to where
they point, i.e., whether they point to nodes of the same or a different type, or to
static data. This allows DDT to apply graph invariants to initially detect the shape
of the DDS.

Afterwards, DDT searches for common interface functions, which exclusively
manipulate the structure, i.e., no other code sections directly manipulate the DDS.
This assumption works well in the presence of, e.g., the C++ STD library. How-
ever, it fails for instance with compiler optimizations like inlining or macro based
interfaces, as those result in multiple different code sections that are manipulat-
ing the DDS. Once the interface functions are detected, DDT uses them to apply
invariants before and after function calls to determine, e.g., inserts by observing
an additional node in the memory graph when the function returns. With the ba-
sic shape information and the additional interface invariants, DDT then applies a
hand crafted decision tree to arrive from a high level binary tree to, e.g., a more
specific red black tree.

When compared to DSI, DDT makes strong assumptions regarding the pres-
ence of well defined interface functions. It has a node based representation of
DDSs, as it directly works on the PTG, where DSI instead uses its strand abstrac-
tion. Because no notion of cells is present in DDT, the nodes of the DDS need to be
of the same type, and one DDS element always corresponds to one memory chunk.
This prevents the detection of DDSs running through different nodes, for which
the LKL is a prominent example. Additionally, the LKL is usually accessed via
a macro based interface, resulting in difficulties for detecting the interface func-
tions. Further, the head node of the LKL can be placed on the stack, which is not
considered by DDT. Nested DDSs are handled by DDT as long as the connection
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is pointer based, e.g., a vector of lists. Arbitrary nesting scenarios are not handled,
e.g., nesting on overlay with arbitrary depth.

3.3 ARTISTE

ARTISTE [49] automatically creates data structure signatures for DDS such as
(cyclic) lists or trees. The signatures can be used to find instances of these DDSs
in binaries; the targeted use cases are reverse engineering, memory forensics or
game cheat analysis. ARTISTE functions by creating various kinds of trees (a) to
abstract the program heap, (b) to capture different allocation sites for types, termed
callsites, and (c) to merge different callsites in order to refine the results.

ARTISTE infers the primitive types that it uses in its various trees. The trees
for (a) are called buffer tree and track heap allocations, module loads and stack
frames. Callsites are identified by the instruction performing the allocation and
are explicitly used to merge buffer trees resulting in callsite trees for (b). This
implies that no merging is performed between the heap and the stack. Multiple
callsite trees are merged together into type trees if they are considered equivalent
by ARTISTE, taking care of one type being allocated at different callsites. With
every tree merge performed, the resulting trees are getting more refined, as par-
tial information in each tree can be aggregated. Actually, ARTISTE enables the
aggregation of multiple program runs to refine its results further, which is a form
of temporal repetition not unlike to that of DSI. The actual shape analysis utilizes
the type trees and is performed upon PTGs, termed heap graphs, which are sam-
pled periodically, without avoidance strategies for degenerate shapes. The shapes
are matched against a predefined set of predicates, which are then used to form
the data structure signature.

When compared to DSI, there is a similar notion of temporal and structural
repetition, but the knowledge gained is on the level of the various trees, i.e., the
primitive types, and not on the level of the DDSs. This becomes evident in the
context of the predicate for a DLL, which requires a forward and backward pointer
at the offsets oy and o, for each source (src) and destination (dst) memory chunk
of the DLL: V(src, dst, or),3(dst, src, 0p). This fails in case of, e.g., insert opera-
tions. DSI can outnumber the degenerate shape with stable shapes via structural
repetition; in ARTISTE however, the structural repetition treats all DLL children
uniformly despite the current shape. Moreover, ARTISTE only considers heap
graphs, thus leaving out the stack, though parts of a DDS are sometimes placed
on the stack in practice. Additionally, ARTISTE does only consider objects of the
same type when detecting a DDS. Both aspects are key when dealing with the LKL,
which can place its head on the stack and can run through nodes of different type.
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3.4 dsOli

Data Structure Operation Location and Identification (dsOli) [106] is a dynamic
analysis operating on C source code, which identifies DDS and their operations
with the help of machine learning and pattern matching. Thereby dsOli allows to
draw conclusions about DDS semantics, e.g., a list is used as a stack.

More specifically, dsOli instruments the C source code to capture memory
events, then compiles and runs the program, resulting in an event trace. The
trace is analysed offline by first building a PTG for each time step of the trace to
represent the heap state. A time step is defined by various events, such as memory
(de-)allocations and pointer writes. For each time step the changes between the
PTGs before and after the event are recorded, resulting in a feature trace. Exam-
ples for such changes are how many in and out pointers to a vertex exist, or if the
pointer points to the same vertex as before. Subsequently, repetition in the fea-
ture trace is detected by a machine learning approach that essentially finds regular
expressions which capture recurring behaviour in the trace. These repetitions are
potential operations. To determine if a potential operation is a DDS operation a set
of templates are matched against the pre- and post- graphs of the potential opera-
tion. The pre-graph represents the layout of a DDS prior to an operation, whereas
the post-graph represents the layout of the DDS after an operation. The templates
exploit these pre- and post-graphs by describing a DDS operation on behalf of the
changes in the layout of a DDS imposed by the operation. If a template match
was observed, the potential operation is considered as confirmed. Otherwise it is
discarded as being a false positive. After the operations are confirmed, they are
used to actually label the DDS by inspecting which operations manipulate a DDS
over its lifetime by a majority vote, i.e., counting how often each operation was
observed. If the operations are inconsistent, e.g., the same counts for "tree in-
serts” and "SLL inserts into the middle of the list” is observed, this might hint to
a programming error.

3.5 Laika

Laika [60] generates DDS signatures for detecting the usage of the same DDSs
among different versions of a program, so as to recognize different versions of
a polymorphic virus family by their used DDSs. Laika operates by analysing a
memory snapshot with unsupervised machine learning to find the DDSs. This
is already one fundamental difference to DSI; Laika only analyses one heap state,
whereas DSI monitors the complete event trace of a program. Further, Laika does
not label the found DDSs, and thus also does not handle degenerate and stable
shapes as they are not important for its analysis.

However Laika’s general idea is highly interesting for DSI/DSIbin. Laika creates
very coarse grained classification of DDSs for its virus detection, i.e., Laika does
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not apply concrete DDS labels for the structures it detects. With regards to high
level DDS Laika only classifies chunks of memory as being of a certain class and
types pointers as being a pointer to a particular class. Therefore DSI’s much richer
DDS description should allow for more detailed DDS comparisons between dif-
ferent program versions. For example consider the precise differentiation of DSI
between indirect and overlay nesting. Without this information two different list
of lists implementations, one with indirect and one with overlay nesting, appear to
be the same, i.e., as indirect nesting. Such scenarios are discussed in more detail
in Ch. 11.

The very coarse grained primitive type recovery performed by Laika, is mainly
used to ease the feature creation for the machine learning. There are only four
types available: address, zero, string and data. Which is no surprise when only
operating on a memory snapshot, i.e., no additional information of the usage of
the memory is available. As a forward pointer to the second part of this disserta-
tion, DSIbin also offers more detailed primitive types, which in turn should also
be valuable for Laika’s machine learning approach. A combination of Laika and
DSI/DSIbin is left for future work.

3.6 Predator, Forester and ATTESTOR

Both Predator [65] and Forester [72] are prominent examples of static shape anal-
ysis tools. They perform a symbolic execution and target formal verification, in
contrast to DSI’s dynamic analysis focuses on program comprehension. The main
difference between static and dynamic analysis is the generality and precision of
information that can be inferred. Static shape analysis is undecidable, leading to
conservative approximations [74], while a dynamic analysis can offer high preci-
sion regarding a particular execution (or possibly multiple ones as is the case with
ARTISTE, see Sec. 3.3) but lacks generality, i.e., the result of the information can
vary depending on the analysis input.

Predator checks programs that are using linked lists, where the foundation for
its shape analysis are symbolic memory graphs (SMGs), which represent arbi-
trary heap/stack pointer connections. This allows for the handling of lists spread
across both memory regions. Because the central focus of the approach are DLLs,
especially the LKL, and SLLs, other recursive DDSs like trees are currently not
considered. The focus on DLLs is also reflected in some additional abstractions
found in the SMGs, where parts of the lists are represented with (doubly-linked)
list segments (DLS). A DLS represents multiple equal list nodes as one node. With
the LKL where the head is, e.g., placed on the stack and the remainder of the list
runs through equal nodes, this would result in a separated head node connected
to a DLS representing the rest of the list. This is one fundamental difference to
DSI, where all equal subtypes are captured by the strand abstraction, thus DSI
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already includes the head and does not need to check for any special nodes when
analysing the shape.

Forester relies on forest automata for its shape analysis and allows for the de-
tection of (cyclic) SLLs and DLLs, the LKL, trees and skip lists. The considered
programs are sequential non-recursive C programs, whereas DSI can deal with
recursive programs as well. Forester abstracts the heap with tree components, by
splitting the heap, i.e., the PTG, on so called cut-points that are root nodes of a DDS
or nodes with multiple incoming pointers. This results in tuples of trees (forests),
where sets of tree components are encoded with tree automata. Sets of forests are
represented as tuples of tree automata, resulting in forest automata. Unbounded
structures like a DLL can have unbounded cut-points, a problem which is solved
by representing multiple edges, i.e., next and previous edges in case of a DLL,
with just one edge. DSI’s abstraction instead is designed to naturally handle an
unbounded number of nodes per strand.

ATTESTOR ATTESTOR [40] verifies Java pointer programs and provides debug-
ging information, including counter examples, in case of validation errors. This
is contrary to DSI’s main focus of program comprehension. ATTESTOR is based
on symbolic execution, in contrast to DSI’s dynamic analysis, and uses context-
free graph grammars for abstracting the heap. Program specifications, such as
memory shape and heap structure preservation, are defined by linear-time tempo-
ral logic. The analysis is fully automated, except for the manual definition of DDS
shapes on behalf of the graph grammars. The supported DDS shapes are (cyclic)
SLLs and DLLs, SLs, (balanced) trees and lists of lists.

3.7 HeapDbg & Heapviz

HeapDbg [85] and Heapviz [39] are two similar tools, which both focus on the
graphical representation of heap snapshots rather than a fully automated DDS de-
tection. HeapDDbg has more powerful capabilities than Heapviz when abstracting
the heap, e.g., being able to correlate multiple heap snapshots.

HeapDbg [85] summarizes heap snapshots for the purpose of debugging and
profiling by providing an effective visualization and navigation of the heap. A
concrete implementation operating on .Net bytecode is shown, which also allows
for the inspection of Java programs when compiled with ikvm [11].

HeapDbg starts out with a concrete heap that gets abstracted by first aggregat-
ing connected objects of the same type into a recursive data structure (RDS). It
classifies the shape of the RDS as being either tree or any, by analysing the pointer
connections between the aggregated nodes. This is significantly less precise than
DSI’s set of detectable data structures. However, HeapDDbg applies a similar no-
tion of structural repetition, where elements of the same type pointed to by ob-
jects from the same parent RDS are considered equal and are merged. The con-
nections between the parent and child elements are not explicitly labeled as in
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DSI, but are left for interpretation by the analyst. In addition, HeapDbg allows
to merge graph instances, resembling DSI’s temporal repetition, but performs an
over-approximation which leads to information loss.

HeapDbg only deals with heap objects as it analyses .Net bytecode, where all
objects are created on the heap by default!. Therefore DDSs that are spread across
the heap and the stack are not supported by C# by default and are thus out of
scope for HeapDbg. As discussed before, the LKL is a prominent example for
such a programming technique. Other LKL like situations, e.g., linking objects
of different types, can occur with the .Net framework when using inheritance and
casts. When looking at the memory layout in case of inheritance, the memory
layout of the base class gets copied into the inherited class. This resembles the
embedding of the LKL struct into an payload struct. Unfortunately, HeapDbg
is not extensively tested on such situations. It seems only the pmd program, which
is a static code analyzer, exposes HeapDbg to inheritance by modelling an abstract
syntax tree with inheritance. However, it is not explicitly clear, how HeapDbg
represents the inheritance, e.g., which object type is used for HeapDbg’s analysis.
Using the base class would come closest to DSI’s cell abstraction.

Heapviz Heapviz [39] aggregates Java heap snapshots for program understand-
ing and debugging. It functions by creating a graph abstraction where objects are
nodes and pointer connections are edges. It performs a similar structural repeti-
tion technique as HeapDbg, thus the same limitations apply when compared to
DSI. No temporal repetition is executed by Heapviz, nor will the detected DDS be
labeled, i.e, named.

'Exclusively creating objects on the heap in C# is relaxed by using undocumented C# API calls
and manual byte copies for placing objects on the stack [4]. Though this approach is considered a
hack by the author of this dissertation, as the technique is neither part of an official specification
nor an official documentation. Therefore it is not regarded as common practice.
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Table 3.1: Overview of DDS detection tools
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4 Consistency of memory abstractions

DST’s memory abstraction is based on a precise model of the heap, i.e., DSI’s
PTGs, for every time step of the event trace under analysis. The instrumenta-
tion captures all explicit memory manipulating events within the execution trace.
However, events such as a free might have side effects that are not explicitly cap-
tured by the recorded event trace. This is depicted in Fig. 4.1, which shows several
allocated chunks of memory, together with their associated entry pointers. When
freeing the memory in the middle, all incoming and outgoing pointers to the mem-
ory implicitly get broken. The incoming pointers become dangling pointers [61],
i.e., point to deallocated memory. Good programming practice takes care of the
incoming pointers and explicitly sets them to a defined value, though this practice
is not enforced. The outgoing pointers of the freed memory are not of concern
to the software developer, as they are inaccessible after the memory is freed and,
thus, typically are not set to a default value prior to releasing the memory. As DSI
builds its strand abstraction on top of pointer connections, it is vital for DSI to
keep track of all pointer manipulations, even those in deallocated heap areas, in
order to maintain a precise model of the heap, including the described implicit
memory manipulations.

The situation can become worse when programming errors result in memory
leaks, where, in the easiest case, a wrongly set pointer might just leak one element,
thus having similar semantics as an (unintended) free. In the worst case, the leak
might affect all allocated memory, i.e., more than one element becomes unreach-
able. The rationale regarding implicit pointer manipulations for an explicit free
also applies for leaked memory. Therefore, DSI needs to be aware of memory
leaks to track implicit pointer manipulations.

It is of course possible to use already existing memory leak detection tools, such
as [6,22,24,35,55,71,109], to find and correct memory leaks prior to using DSI,
as DSI requires access to source code anyways. The situation changes, when DSI
is opened up for binaries, i.e., DSIbin in part II of this dissertation, where it is
not necessarily possible to correct the described problems of misbehaving mem-
ory handling as this requires patching a binary. Instead DSIbin needs a way to
natively detect and deal with such situations. Therefore the required mechanisms
are already developed and implemented for DSI to let it profit from the require-
ments of DSIbin.

With the knowledge about implicitly manipulated pointers, DSI is able to keep
its subsequent abstractions, in particular the strands, consistent with the heap.
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Figure 4.1: Freeing memory with incoming/outgoing pointers, with all entry
pointers (ep) omitted except for the freed memory.

This is fundamental for the precision of DSI’s analysis. As DSI is a pipelined
approach and the heap handling is implemented in the PTG creation phase, this
phase becomes the producer of this information. The subsequent phases are the
consumer of this information; thus, a way needs to be devised how to pass the
information into DSI’s pipeline.

This chapter describes in Sec. 4.1 the concept of an Artificial Memory Event
(AME) for modeling implicit memory changing events, which are otherwise not
perceptible by DSI. Sec. 4.2 discusses why DSI uses its own memory leak detec-
tion, including related work with regards to memory leak detection tools and algo-
rithms. Additionally, the integration of the leak detection into the AME concept is
presented. A dedicated benchmark with explicit test cases for both the AME con-
cept and our memory leak detection is conducted in Sec. 4.3, though the AMEs
and the memory leak detection are also in use in all benchmarks for Data Structure
Investigator for Source Code (DSIsrc) and DSIbin.

4.1 Artificial memory events

The creation of AMEs is handled in the PTG creation phase. A PTG reflects the
current state of the heap and therefore memory (de-)allocations and pointer writes
alter the layout of the PTG. The handling of a memory dealloction event forces DSI
to cope with a multitude of affected pointers pointing into and out of the released
memory. DSI sets all pointers affected by the event to the value undef, even if the
software developer later on overwrites this value again. This leaves the heap in a
consistent state after the event was executed. Heap memory is usually released
with the free system call. If the memory is placed on the stack it gets released
when ever the stack frame is destroyed. Such an event is called Variable Leaving
Scope (VLS) event when captured by DSI’s instrumentation. When a memory leak
gets detected, DSI collects all the leaked memory and artificially adds a free event.

To handle both situations within DSI, i.e., restoring pointers to undef and free-
ing leaked memory, two types of an AME are defined (i) an Artificial Undef Event
(AUE); (ii) an Artificial Free Event (AFE). The AUE marks a pointer as having an



4.2 Memory leak detection 21

undefined value, the AFE releases a memory chunk. AME are stored inside a
Memory Event (ME) E; of time step ¢ as a sequence of AMEs: E;.artEvents =
< FEarty,...,Eart, >. An ME gets created by memory (de-)allocation events
on the heap and the stack. The syntax shown for E;.art Events, is used in general
within this dissertation for expressing a member of an object, similar to the syntax
of object oriented programming languages: object.member.

The computation of AMEs is described in the following. DSI creates the se-
quence of AMEs when ever it observes a free or vls event. In order to process the
affected pointers, DSI first collects all edges pointing into and out of the released
memory. The resulting edge set is then used to create the sequence of AMEs. In
the case of free/VLS the AMEs are exclusively of type Artificial UndefEvent for re-
setting all incoming pointers to the released memory. In addition to creating the
AMEs, DSI keeps the PTG consistent by removing all the collected edges and the
released vertex from the the PTG of the current time step. When extending the
base case of free/VLS to also handle memory leaks the additional AFE is required,
to release the leaked memory chunks as described in Sec. 4.2.

By storing the created AMEs inside of the MEs all subsequent stages of DSI’s
pipelined architecture are able to access this information. The strand creation
phase (cf. Ch. 2) relies on the presence of AMEs to keep their abstraction in sync
with the heap. The consuming phases cycle through all MEs and check for the
presence of AMEs. If an event has associated AMEs, the consumer cycles through
all AMEs and chooses the appropriate action according to the type of the AME.
Such an action might for example be the cutting of a strand in case of setting a
pointer to undef. After all AMEs are processed, the actual ME itself is consumed.

4.2 Memory leak detection

As the base case of releasing memory on the heap and the stack explained in
Sec. 4.1 requires the explicit handling of the incoming and outgoing pointers, the
situation becomes more critical in case of programming errors. Specifically, the
handling of memory leaks is important for DSI to guarantee that the memory ab-
straction is in sync with the actual heap state. If this is not the case, the true shape
as seen by the program can possibly be not observed. We refer to leaked mem-
ory, when all references to allocated memory is lost, also referred to as a physical
leak [83]. This can happen due to overwriting a pointer or removing a pointer by
(i) tearing down a stack frame holding a pointer, or (ii) freeing a memory region
that still holds live references to allocated memory. If such leaks are ignored, un-
reachable memory will blur the actual DDS shape as seen by the program, i.e., the
PTG and the heap state start to differ.

Other situations in which reachable but unused memory is simply not freed
by the program, are referred to as a logical leak [83], and are of no concern to
DSI. These memory regions will be taken into account by DSI’s analysis. This
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follows DSI’s paradigm to exactly analyse the current heap state: discard unreach-
able memory and include live memory. While including live memory can also
lead to blurring the intended DDS shape, this might very well give a hint to a
software engineer that the software has unintended behaviour. DSI could report
all memory that was not deallocated at program termination, by listing all heap
allocated memory that still resides in the PTG, together with information about
the corresponding allocation sites. Thus DSI would provide the same information
as memory leak detection tools such as Valgrind [35] and Dr.Memory [6]. How-
ever, DSI can even provide more fine grained information such as where and when
memory was leaked, as discussed in the following section. Other forms of mem-
ory errors, such as dangling pointers and double frees, are not considered by DSI.
These errors will most likely lead to undefined program behaviour resulting in
program crashes or are a concern for program security. The related work on DDS
tools [49, 69, 74] does not consider memory leaks; hence the tools are exposed to
precision loss.

4.2.1 Memory leak detection tools

One can think of choosing an existing memory leak analysis that could be either
static, e.g., [55,71,109], or dynamic, e.g.,[6,21,22,24,35,58,83,103,110]. However,
most of these tools do not report exactly when memory is leaked, i.e., in terms
of DST’s event trace the exact event at which a leak occurs. This information is
crucial for DSI to execute its analysis up to the point when memory is lost. Static
analysis is not capable of delivering such information and therefore is no option
for DSI. It is surprising, though that most dynamic analyses also do not offer this
information. Even popular tools such as Valgrind [35] and Dr.Memory [6] only
report that memory was leaked and where the leaked memory was allocated.

Guided by the need of a software developer to fix bugs fast and because the point
of allocation and the cause of the leak can be far apart [58], attempts are made in
the literature to find the location that is causing the leak. For example, Skiff [103]
reports the last valid reference to memory, which narrows down the search space
for the leak but still does not report the exact location and, consequently, also can-
not do so when the reference to memory is lost. Purify [70], LEAKPOINT [58] and
Omega [21] report the exact source code location of the leak, though they still do
not report when the leak occurs. To the best of the author’s knowledge, the only
tool that claims to report when and where memory is lost is Insure++ [22], which
instruments source code, i.e., it is not suitable for binaries (cf. Pt. II).

In summary, the available tools either do not expose the required information
as they are not trace based as is DSI, or they rely on source code which is not an op-
tion, when dealing with binaries. Without suitable tool support being available and
given that all information required for leak detection is already available in DSI’s
execution trace, such as memory (de-)allocations, VLSs and pointer writes, DSI
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is required and capable of executing its own memory leak detection as described
in the following section. As a byproduct, DSI implicitly closes the gap between
dynamic data structure detection tools [49, 69, 74] and memory leak detection and
debugging tools [21, 22, 58].

4.2.2 Memory leak detection algorithms

As DSI cannot rely on available memory leak detection tools, existing algorithms
for memory leak detection might still be suited for DSI’s purposes. Prominent ex-
amples of such algorithms are reference counting [83] and reachability tests such
as the mark-and-sweep and stop-and-copy algorithms [112]. Reference counting is
unsuitable for DSI, because it does not handle leaked cyclic structures [41], which
are supported by DSI.

The mark-and-sweep and stop-and-copy [112] algorithms used by garbage collec-
tors could in principle be employed by DSI. Due to the periodic nature of garbage
collection, where not every instruction is tracked, the algorithms are required to
perform a reachability test on memory, i.e., DSI’s PTGs, by starting out from root
nodes that are guaranteed to be reachable at the point of the analysis, e.g., variables
on the stack and global memory. The mark-and-sweep algorithm marks reachable
objects in a first pass and subsequently performs a second pass through all live
memory to remove all unmarked memory chunks. The stop-and-copy algorithm
instead avoids the sweep phase by operating on two memory areas: (i) the cur-
rent memory to analyse, and (ii) a memory area into which reachable memory is
copied. Therefore, all memory from (i) can be deleted after the reachability phase,
as live objects now reside in (ii).

Both the mark-and-sweep and stop-and-copy algorithms are applicable to DSI,
as DST’s event trace provides all information required by these algorithms. How-
ever, DSI would need to execute either of the algorithms on every memory chang-
ing event which then exhaustively explores all memory. This would be signifi-
cantly more often as with the infrequent executions during garbage collection and
seems an unnecessary overhead, given that DSI is operating on a contiguous event
trace, i.e., exactly one memory changing event occurs between events F; and F; ;.
The affected addresses of an event are also known; therefore, the changes to the
PTG can be located to originate from those addresses. This allows us to turn the
reachability test around and try to find a path to a root element starting from the
altered memory. The memory is considered leaked only if this fails. In this case
the algorithm recursively checks all outgoing pointers of the leaked memory to
find if further unreachable memory in the graph exists. The algorithm is detailed
in the following section.

The advantage of DSI's memory leak detection therefore is that only the linkages
of the particular DDS need to be investigated and not the complete live memory
reachable by all root nodes. The resulting best case is that a root node is found on
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the first incoming pointer of the memory that needs to be checked. In the worst
case, the complete PTG corresponding to the DDS in which the memory change
occurred needs to be investigated. However, this still should be a subset of all
allocated memory. This optimization for the memory leak detection comes at the
cost of DST’s fine grained analysis that is quite heavy-weight and, as a reminder,
performed offline after program termination. However, approaches such as [90]
offload their memory leak detection onto a shadow process that is executed on
a dedicated core of a multicore system. DSI could well be changed to a similar
architecture, which would enable DSI for online monitoring. This topic seems
quite promising for future work: the rich information that DSI provides, i.e., the
exact location and time a leak occurs, in addition to DSI’s ability to replay the
program execution might help a lot for understanding the cause of a memory
leak. A case study has been conducted within this dissertation that demonstrates
the debugging capabilities of DSI in the case of memory leaks in Sec. 4.4.

A limitation of DSI’s memory leak detection approach is pointer arithmetic.
Changes to a pointer value can leave objects without an explicit reference, as is the
case when XOR-ing pointers as used, e.g., with a XOR linked list [44, 76]. These
scenarios are out of scope for DSI and, therefore, are also not considered by the
memory leak detection, so that these lead to false positives.

4.2.3 DSI’'s memory leak detection algorithm

This section describes the devised memory leak detection algorithm for DSI and
how it is integrated into the AME algorithm of Sec. 4.1. In the Sec. 4.1, only the
incoming and outgoing edges to one freed memory chunk have been calculated
and linearized as AMEs. Now, the memory leak detection algorithm can result in
a set of memory chunks that are unreachable and for which all outgoing pointers
need to be cut.

The leak algorithm detection is based on a reachability problem inside a PTG G;
for some time step i. Each vertex in the set of vertices (v € V) of each PTG in the
set of all PTGs of the program execution (G € G) is annotated as being either heap
or stack allocated memory. The algorithm tries to find a path in the PTG of time
step ¢ (Gj) from a vertex v to a stack allocated root v,. The algorithm considers
pointer writes (ptrWrites) in addition to free and vls events in line 7 of Alg. 1.
This is required, because every pointer write can cut the last reference to allocated
memory, resulting in unreachable memory. The memory leak detection operates
on three global variables as seen in Alg. 1: (i) Q contains all vertices that need to
be checked for a leak (line 6). The function VErTEXx fetches the vertex by looking
up the vertex inside of V with the help of the vertex start address stored inside of
the current event (£;.sAddr); (ii) P records visited nodes to avoid cycles (line 2),
and (iii) £ stores all leaked vertices (line 4). The algorithm starts out with calling
function INTTCHECKLEAK (line 8), which is shown in Alg. 2.



4.2 Memory leak detection 25

/| Bread crumb for all processed vertices following the outgoing nodes
global P + {}
/] All leaked vertices
global £ + {}
/] Vertices that still need to be processed (queue)
global Q «+ {}
foreach E; € E | E;.kind = (ptrWrite| free|vls)
INTTCHECKLEAK(E);)
CHECKLEAK()
LINEARIZEASEVENTS(
CALCULATEEDGESINTOLEAKED(F;, 7) U
CALCULATEEDGESOUTGOINGFROMLEAKED (), E;, 7)

R B AN A S >

_ e =
N 2 2

end

—_
oo

Algorithm 1: Main part of memory leak detection.

Function IN1TCHECKLEAK first resets the global variables (i)—(iii) and initializes
them according to the event: (a) in case of a free and vls event, all vertices reach-
able from the freed memory are calculated and enqueued into the process queue
Q (line 6) as they are suspect to being also leaked. Additionally, the freed element
itself is placed into the leaked set £ (line 8), in order to indicate that this node is
definitively lost, and into the processed set P to avoid cycles (line 10). (b) In case
of a ptrWrite, the memory, to which the pointer previously pointed to, is put into
the process queue Q (line 18). The pointer write event is only considered, if (i) the
pointer write event did not relocate the pointer within same target vertex, i.e., the
vertex produced by the previous pointer target (tAddr) is different from the current
pointer target (tAddr’) (line 15); and (ii) the pointer was not a vertex self reference
before, i.e., the vertex holding the source address of the pointer (sAddr) and the
vertex of the previous pointer target address (tAddr) are not identical (line 16). As
a side note, the sAddr member of the event F; is overloaded between free, vls and
ptrWrite events.

With the initial set of vertices that require testing now being set up, the memory
leak detection takes place in function cHeckLEAK of Alg. 3, which processes the
input queue Q of unprocessed vertices (lines 4 and 5) and then does the recur-
sive reachability test by calling function REACHABILITYTEST (line 8). Note that the
reachability test operates on a local bread crumb, i.e., the empty set passed in as a
second parameter, for cycle avoidance, i.e., different from the global P that globally
indicates that a particular vertex has already been leak checked. If the reachability
test fails, the vertex is marked as such (line 10) and all vertices reachable by its
outgoing edges are enqueued for the leak check (line 12).

The recursive reachability test in function REACHABILITYTEST() in Alg. 4 keeps
track of visited nodes first (line 3). Then it checks whether the current vertex is
annotated as a root vertex (line 4), i.e., the positive base case of the recursion. If
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1: function INITCHECKLEAK(E))

2: /] Reset all global variables

32 P+ L+~ Q9+ {}

4. if B kind = (free|vls)

5 /| Mark elements reachable by freed element for leak detection
6 ENQUEUE(GETOUTGOING VERTICES( VERTEX( E;.sAddr)), Q)
7 /] Add the freed element to the leaked set

8 L < L U {VerTEX(F;.sAddr)}

9: /| Add the freed element to the processed set

10: P < {VErTEX(F;.sAddr)}

11: else // ptrWrite

12: // No need to process:

13: /] 1) if pointer has been moved inside of same vertex
14: /] 2) if pointer has been a vertex self reference before
15: if (VERTEX(FE;.tAddr’) # VERTEX(E);.tAddr)

16: AVERTEX(E;.sAddr) # VErTEX(FE;.tAddr))

17: /| Mark the element for leak detection to which
18: // the pointer previously pointed to

19: ENQUEUE(VERTEX(E;.tAddr), Q)

20: end

21:  end

Algorithm 2: Calculation of the initial set of vertices on which the recursive mem-
ory leak detection algorithm operates.

this is not the case, all incoming vertices to the current vertex are selected that are
not in the leaked set £ and not in the local bread crumb set P, (line 9). Then all
incoming vertices are processed recursively. If no vertex is reachable the method
returns that the current vertex is also unreachable, i.e., the negative base case.
Once cHECKLEAK returns, all leaked vertices are stored in the global leaked set £
which is now used to calculate the incoming and outgoing edges to and from the
leaked set, as shown in Alg. 5 and Alg. 6. As an optimization an empty set for the
incoming edges is returned in Alg. 5 in case of a pointer write that causes aleak. In
this case all pointers from reachable memory into the leaked set must have already
been cut, otherwise no leak would have occurred. The union of the incoming and
outgoing edges is passed to function LiNEARIZEASEVENTS in Alg. 7. The modified
LINEARIZEASEVENTS also creates .artEvents for all edges incoming and outgoing to
the freed/leaked memory, i.e., the memory leak detection is transparent for this
part of the algorithm as the edges are calculated as previously discussed. In line 10
of Alg. 7 only in the case of free and vls events the vertex is explicitly removed
from the current PTG, i.e., the vertex set of the current time step V(t), and the leak
set L. The freed memory needs to be removed from the leaked set £, as otherwise
an artificial free event would be created though the original event E; already is
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1: function cHECKLEAK

2:  while v < DEQUEUE(Q)

3 /| Skip processed elements

4 ifvog P

5: P+ PuU{v}

6 /| Check if vertex is reachable.

7 /| Note the empty bread crumb set {}

8 if IREACHABILITYTEST(v, {})

9: /| Vertex is not reachable
10: L+ LU{v}
11: /] Store connected vertices for leak detection
12: ENQUEUE(GETOUTGOING VERTICES(v), Q)
13: end
14: end
15:  end

Algorithm 3: Memory leak detection on the outgoing edges.

a free event. In contrast, in case of a memory leak due to a ptrWrite event, all
vertices are implicitly removed by the leaked set L.

Complexity wise, the computational costs heavily depend on the layout of the
DDS, especially the number of the vertices and edges. As all edges of the graph
need to be evaluated in the worst case, the reachability check is a combinatorial
problem. As an example we consider a cyclic list, where on average each vertex has
o outgoing edges. The number of vertices is n. Therefore, the number of possible
pathes through the cyclic graph is 0". In a cyclic graph one needs to follow n
edges on each of the possible pathes to arrive at the the initial vertex where the
search started. Without further optimizations the reachability test needs to be
conducted for each of the n vertices in the graph, resulting in O(0"n?). Thus the
computational costs can become expensive, depending on the size of o or n.

However, our benchmark did not suffer from significant high computational
costs for the memory leak detection algorithm, even though it is not optimized,
yet. This is not surprising, as for most real world DDS the linkages are chosen to
cut the search space of the stored data, e.g., a BT or a SL. Such implementations are
also beneficial for the memory leak detection algorithm, as not all of the vertices
of the DDS need to be inspected. Consider cutting the entry pointer to a BT as an
example. When computing the reachability of a node of the BT, the memory leak
detection algorithm will only iterate "upstream” towards the root node, but will
never branch into a "downstream” part of the BT.

If the need arises in the future, the algorithm can be optimized to collect both
a set for vertices which are already found to be leaked and one for vertices that
are found to be reachable during the exploration of the graph. Those sets can be
used to cut the search short in either way. Another possibility is to implement
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1: function REACHABILITYTEST(v, Pin)
2: // Bread crumb to avoid cycles
3 Pin — Pin U {U}

4:  if 1sSTATICMEMORY (V)

5 /| Vertex is reachable

6 return true

7. end

8: /] Fetch incoming pointers for reachability test

9:  Vin < {v; € GETINCOMINGVERTICES(v) | v; & L AN v; & Pin}
10: foreachv; € Vi,

11: /| Recurse on surrounding vertices
12: /] Stop on the first reachable vertex
13: if REACHABILITYTEST(v;, Pin)

14: return true

15: end

16:  end

17: /] Vertex is not reachable
18: return false

Algorithm 4: Search for a static vertex on incoming edges.

: function cALCULATEEDGESINTOLEAKED(FE;, 1)
if £;.kind = (free|vls)
return {(vs, _,v,_) € E(t) |vs € L Nvp € L}
else
/| Pointer write: All incoming edges must
/| already have been cut
return {}
8: end

Ny ke

Algorithm 5: Calculation of all edges that point into the leaked memory and that
need to be removed.

a breadth first search, i.e., check through all immediately neighbouring vertices
first, which point into the potentially leaked vertex, in order to find, e.g., a stack
allocated pointer. This aims for the best case, where the reachability is verified by
only checking one incoming pointer and the corresponding vertex.

4.2.4 CIL: Creation of temporary pointers

While implementing our memory leak detection, a severe design decision of the
CIL framework was observed. CIL splits direct assignments of function calls to
variables into two statements if the types of the assignment differ, i.e., when a cast
is required. To illustrate the problem the C code as given by the programmer is
shown in Fig. 4.2 and the resulting code generated by CIL is shown in Fig. 4.3.
The initial code shown in Fig. 4.2 allocates an integer on the heap with malloc. A
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1: function cALcULATEEDGESOUTGOINGFROMLEAKED (i)
2. return {(vs,_, v, ) € E(t) |vs € LA & L}

Algorithm 6: Calculation of all edges that point outwards from the leaked memory.

1: function LINEARIZEASEVENTS(E, E, )
2: foreachec &

3 E;.artEvents < E;.artFEvents ++ ArtificialUndef Event(e.sAddr)
4: /| Remove the edge from the PTG
5: E(t) « E(t) — {e}
6: end

7: /] In case of free:

8: /] 1) Remove the freed vertex from the PTG

9: /] 2) Remove the freed vertex from the leaked set

10.  if B;.kind = (free|vls)

11: V(t) < V(t) — {VErTEX(FE;.sAddr)}

12: L < £ — {VerTEX(FE;.sAddr)}

13:  end

14:  // Remove all vertices of the leaked set from the PTG

15 // and record an artificial free event

16:  foreachv e L

17: V(t) « V(t) — {v}

18: E;.artEvents < E;.artEvents + +Arti ficial Free Event(v.bAddr)
19: end

Algorithm 7: Creation of artificial memory events to cut incoming and outgoing
edges to a freed/leaked memory and to remove leaked vertices.

cast is required, because the return value of malloc is void* and the type of the
assigned variable is int*. The resulting CIL code shown in Fig. 4.3 thus generates
a temporary variable tmp to which the result of malloc is assigned. Next, the
assignment takes place, including the pointer cast. Note that tmp is never reset to,
e.g., NULL.

The CIL source code contains the variable doCollapseCallCast! which can be
only manipulated directly in CILs source code. Setting the variable should change
CILs behaviour to a direct assignment without an intermediate pointer. However,
setting the variable does not trigger the desired effect, at least for CIL version 1.7.3
employed by us. This problem is also reported on a CIL mailing list [2] for CIL
version 1.3.6. The suggested workaround in the mailing list is apparently not
implemented in CIL version 1.7.3. The discussed patch in the mailing list did also
not work when patched manually by the author of this dissertation.

With full access to the (instrumented) source code, this situation might still be
solvable by preventing the instrumentation of these void pointers; however, when
dealing with just the binary produced when compiling with CIL, false negatives

'Variable located in file stc/frontc/cabs2cil.ml in CILs repository [3]
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#include<stdlib.h>

void main(void) {
int *ptr = malloc(sizeof (int));

v s w N —_

}

Figure 4.2: C code performing an allocation of an integer on the heap.

1 /* Generated by CIL v. 1.7.3 */

2 /* print_CIL_Input is true */

3

+ typedef unsigned long size_t;

s extern _ _attribute__ ((__nothrow__)) void *( <«
__attribute__((__leaf_ _)) malloc)(size_t _ _size ) <
__attribute__((__malloc__)) ;

¢ void main(void)

7 {

8 int *ptr ;

9 void *xtmp ;

10

11 {

12 tmp = malloc(sizeof (int ));
13 ptr = (int *)tmp;

14 return;

15

16 }

Figure 4.3: CIL: Artificial temporary pointer.

are inevitable. Therefore, CIL should either avoid the usage of additional void
pointers or reset them to NULL immediately after use, as every dynamic memory
leak detection algorithm should suffer from CILs artificially created pointers.

For memory leak detection, CILs artificial void pointer thus imposes a prob-
lem, because it is inaccessible by the programmer but still is a valid reference to
the memory. This leads to false negatives for the memory leak detection if the
artificial pointer is the only reference to memory. Especially when dealing with
DLLs, memory leak can thus be missed, as both directions of the memory graph
are usually accessible in a DLL by following the next and prev pointers. Thus, if
one element of the DLL has an artificially created pointer by CIL attached, a po-
tential memory leak is missed. This problem is not only limited to DSI, but to
any memory leak detection algorithm that follows pointer chains to reach stack
allocated memory. Hence, the design decision taken by CIL is severe.
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4.3 Benchmark

In this section the benchmark for the AME and memory leak detection algorithms
is discussed, which consists of 6 synthetic self written examples (leak[0-5]), 1 mem-
ory leak example from [18] (leak6), and 2 examples (leak7 and leak8) taken from
threads on stackoverflow.com [27,28]. Those examples are specific for benchmark-
ing the AME and memory leak detection, and are not used in other benchmarks
of this dissertation. Additionally, some selected examples from the benchmarks
used to test DSI are shown here, in order to testify that the previously described
scenarios exist and must be handled. These examples are from the literature
(lit[1,5,8]) [23, 65, 72], real world (rosetta-dll) [5] and a text book (tb4) [108].

All benchmarks are listed in Tab. 4.1. The (ID) gives a unique name for the
examples which is consistent throughout this dissertation. The column (strands)
indicates, whether strands are created within the example, i.e., if AMEs will be
consumed by the strand creation phase. The columns (free), (vls) and (ptrWrite)
are used to list the events which occur in the example that trigger the AME cre-
ation and memory leak detection. Column (leak) shows if a leak occurs or not.
The columns (incoming ptr) and (outgoing ptr) indicate if there are incoming
and, resp., outgoing pointers to and from the freed/leaked memory area, because
some of the examples only test the AMEs and some test the memory leak detec-
tion together with AMEs creation. The column (cyclic) states, whether the pointer
connections are cyclic. The remaining columns give information, whether the
test succeeded in detecting a memory leak (leak detected), whether all pointers in-
coming and outgoing to freed or leaked memory were detected and cut (all in/out
pointers cut), whether all freed/leaked vertices were removed from the graph (all
vertices removed) and if there were any false positives or false negatives.

leak0, leak1 and th4. Both examples consist of an SLL as the main data structure
and both trigger a memory leak by setting the next pointer of one element inside
of the SLL to NULL, while no stack based references exist for the elements in the
cut off list segment. In case of leakO, the last two elements of the list are cut off.
No pointer exists that points from the leaked area back into reachable memory.
Example leakl has an additional SLL child element hanging off from the leaked
element, where one element of the child SLL points back into reachable memory,
i.e., has an outgoing pointer. This pointer forms a cycle, and thus tests that our
algorithm terminates. For both examples, the leaks are detected, all incoming and
outgoing pointers are cut, and all leaked vertices are removed from the graph. An-
other SLL implementation is taken from a text book implementation (tb4) [108],
which does not expose a memory leak, in order to vary the implementation tech-
niques for SLLs. Again, the test passed by detecting the freed memory together
with the incoming and outgoing pointers.
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Table 4.1: Results for artificial memory event and memory leak detection

benchmark

s |
- | e = ; % 2| &
IR AR R IR - A
Ib SE52 2 E g B is|eg R
g = S |5 S8 E 8| Y
g 19 = T2 E|E

= |3

(3]

leakO IV X N NX XXX
leak1 VIVIX |V NN XX
leak2 VIV X X (VXXX
leak3 SIVIX X\ XX
leak4 SN N XN XX
leak5 VX I\ VIX VNN XX
leak6 [18] XX | X |V |/ |V X | X | V|V |/ |X X
leak?7 [27] X | V| X | X |/ |V [ X | X | V|V | /X | X
leak8 [28] XX | X |V |V |V |V | X | V|V /X X
lit1 [23] VIV X X XV |V VXV VXX
1it5 [23] VIVIX X XV VXXX
1it8 [23] VIVIX X XV |V VX VXX
rosetta-dll[5] |V |V | X | X | X |V |V |V | X |/ |V X | X
tb4 [108] VIV X X XV VXXV XX

leak2 and leak3. Both examples are identical to leak0 and leak1, respectively, with
the only difference that the leak is now caused by a free instead of overwriting the
element. Again, all pointers that need to be cut are detected, and the freed and
leaked vertices are removed from the graph.

leak4. This example consists of an SLL and tests various VLS situations by insert-
ing two static SLL nodes into the list. The last static SLL node is again connected
to an allocated SLL node. Here, the specifics of the CIL framework of setting an
explicit pointer to the allocated memory is utilized to check that the memory leak
detection is triggered when this pointer goes out of scope. The test consists of
three VLSs events, two for the SLL nodes and one for the artificial pointer inserted
by CIL. At first, the last element allocated is explicitly cut off by setting the corre-
sponding next pointer to NULL. However, this does not result in a leak, because
there exists the artificial CIL pointer as discussed previously. This can be consid-
ered a false negative, due to the CIL pointer being out of reach of the programmer,
which makes the memory effectively lost. However, the memory leak detection al-
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1 typedef struct sample_help {

2 int *value;

3 void **pointers;

4 } *sample, sample_node;

5

6 sample foo (void)

7 {

3 sample ABC=NULL;

9 sample XYZ=NULL;

10 sample kanchi = NULL;

1

12 ABC = malloc(sizeof (sample_node));

13 XYZ = malloc(sizeof (sample_node));

14 ABC—>pointers = malloc(5*sizeof (void *));
15 XYZ—>pointers = malloc(5*sizeof (void *));
16 ABC—>value = malloc(5*sizeof (int));

17 XYZ—>value = malloc(5*sizeof(int));

18

19 ABC—>value [0] = 10;

20 ABC—>value[1] = 20;

21

22 XYZ—>pointers [0] = ABC;

23 kanchi = XYZ—>pointers [0];

24

25 printf(”::::%d\n” ,XYZ—>pointers [0]) ;

26 printf (”kanchil:::::% d\n” ,kanchi—>value [0]) ;
27

28 return XYZ;

29 }

Figure 4.4: Source code excerpt of leak7 [27].

gorithm has no information about this situation, and therefore correctly reports
no leak. The leak detection will again be triggered as soon as the CIL pointer gets
out of scope.

All three static nodes are teared down when the stack frame is removed. At
first, the two static SLL nodes are removed in the order of creation, i.e., the first
inserted element is removed first. This tests that the algorithm correctly identi-
fies the static successor SLL node, i.e., it immediately stops after removing the
first node and cutting the corresponding next pointer. Subsequently, the second
static SLL node is removed, which has no further connections; thus, the algorithm
terminates immediately. Finally, the artificial CIL pointer is removed, which still
holds the reference to the allocated memory leading to a leak. The leak is detected,
demonstrating that the memory leak detection also works in case of VLS events.

leak5. With this example, the cycle detection is tested more extensively with a
DLL, as all nodes in the list expose a cycle with their predecessor and/or successor.
Note that no CDLL is used as the cyclic nature prevents a leak. The DLL tests both
cycle detection algorithms, i.e., the global cyclic test that keeps track of nodes that
have already been classified as leaked or not, and the local cyclic test that is used
to prevent cycles in finding the path to the root nodes, as described in Sec. 4.2.
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leak6 and leak7. Both examples do not create strands. Example leak6 was taken
from [18] and simply allocates memory in a loop where the receiving pointer is
constantly overwritten. leak7 was taken from [27] and modified to trigger a leak
via a call to free. Both examples are also used to rule out bias in the test set, as they
are taken from the Internet. Especially the latter example makes use of arbitrary
mallocs as seen in Fig. 4.4. The returned reference XYZ is simply freed, without
freeing the references to ABC, value and pointers. Again, the leak is detected
and all leaked vertices are removed from the PTG.

lit1, lit5, lit8 and rosetta-dll. All examples are DLLs. Examples lit1, lit5 and 1it8
are taken from the shape analysis literature [65, 72], while the rosetta-dll example
is taken from [5]. Example litl exposes no memory leak, but it has an extensive
amount of incoming and outgoing pointers to the freed memory because two DLLs
run in parallel through each node, i.e., two next and previous pointers exist per
node. Again, the cyclic nature of the DLL tests, whether the algorithm terminates,
but in this case with the presence of multiple cycles between nodes. The remain-
ing dll implementations, i.e., lit5 and rosetta-dll, are used to apply the algorithms
against different DLL implementations techniques. In both cases, no false posi-
tives and false negatives are created, all edges are cut and all vertices are removed
from the points-to graph. Both examples also expose the already stated fact that the
programmer typically does not explicitly cut any references of the freed memory,
i.e., making the handling of those implicitly cut pointer connections mandatory
for DSI. The same is true for lit8 that is employed to test a LKL implementation,
i.e., a CDLL. The points-to graph created by the example is quite challenging, be-
cause it is comprised of a CDLL parent element, with two CDLL child elements
each. Interestingly, this code does not explicitly reset pointers into freed mem-
ory, which highlights that even a proper cleanup of pointers that are exposed to
potential use-after-free cannot be expected.

4.4 Case study

In this section, we discuss example leak8 in a case study like fashion, as it demon-
strates the debugging capabilities of DSI with regards to memory leak detection.
The example is taken from a real world thread posted on stackoverflow.com [28],
where a custom SLL implementation is given in which a memory leak has been
identified by Valgrind as reported by the thread starter. Interestingly despite
the reported leak by Valgrind, the cause of the leak could not be found by the
thread starter. When using DSI the leak can be precisely correlated with the line
temp->next = ptr;, see line 10 in Fig. 4.5, and even the precise time step within
the concrete execution of the program is identifiable, when the leak occurs. Addi-
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1 node *deletemultiples (node *head, int a){

2 node *ptr = head, *temp = head;
3 while (ptr != NULL) {

4 if (ptr—info % a > 0){

5 ptr = ptr—>next;

6 temp = temp—>next;

7 }

8 else{

9 ptr = ptr—>next;

10 temp—>next = ptr;

11 }

12 }

13 return (head);
14}

Figure 4.5: Source code excerpt of 1eak8 [28].

tionally, DSI can play back the steps prior to the leak, which helps the developers
in understanding the problem.

This can be seen throughout Figs. 4.6— 4.12, which show the steps leading to the
leak within method deletemultiples of Fig. 4.5. The figures show stack variables
in blue, the special purpose target UNDEF indicating that a pointer has an undefined
value, and heap allocated nodes in orange. The method deletemultiples hastwo
parameters: (i) the head pointer, which points to the head of the SLL and (ii) the
integer a, which is used to select if a node of the SLL should be skipped or deleted
by computing the modulus on the info property of each SLL node (line 4). Fig. 4.6
shows the state after initializing the two variables ptr and temp to the head of the
list (line 2), followed by iterating variable ptr to the next element (line 9) in Fig. 4.7
and setting temp->next = ptr; (line 10) in Fig. 4.8. The lasteventis interesting: it
executes line 10 that actually exposes the leak, but not within the current iteration,
i.e., DSI’s timing information is valuable in narrowing down the situation of the
leak. In the following two events, both ptr and temp are iterated one element
turther (lines 5 and 6) as seen in Fig. 4.9 and Fig. 4.10, resp. The following event
shown in Fig. 4.11 now is the predecessor step of the actual leak, where ptr is
again iterated (line 9), leaving vertex 17 with only the incoming pointer of the SLL.
The subsequent execution of line 10 now unlinks vertex 17 from the SLL, resulting
in the leak of the vertex. The solution for this problem is to perform a free on
temp->next prior to the assignment of the variable ptr to it.

This stepwise debugging demonstrates that DSI’s fine grained analysis does
not only help in detecting a data structure, but also acts as a debugging tool for
memory leaks. DSI has a higher precision than other memory leak detection
tools [6, 21, 24, 35] with regards to when and where exactly a leak occurs. Tools
like [22] that supposedly also provide the time step when the leak occurs, still do
not record a trace to replay the execution and visualize the PTG as is possible with
DSI. The precision of DSI comes with the fine grained trace recording, where each
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memory manipulating event gets recorded. This of course makes DSI’s analysis
more resource consuming in terms of memory and runtime consumption.
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5 Strand connections

The connections between the memory comprising DDSs is a fundamental prop-
erty of a DDS, which will be both identified and quantified in this chapter. The
memory connections are both important within one particular DDS, such as the
connections of the left and right pointers of a binary tree, as well as for the com-
position of various DDSs, such as in parent child nestings. Being able to precisely
describe those connections plays an important role with regards to the expressive-
ness of the detectable DDSs. Typically, related work only considers pointers for
those connections as discussed in Sec. 5.1. This does not support parent child
nestings as shown in Fig. 5.1, where each head node of both child elements is em-
bedded inside of the parent. Therefore, DSI considers two types of connections
instead of just pointers: (i) classical pointer connections, which are termed indi-
rect connections, and (ii) tight connections, where parts of the DDS are reachable
by offset calculation with a memory vertex, termed overlay connections.

C node[<€>»|node<€«3¥»node )

ep >

C node|43>»node D

Figure 5.1: Parent child nesting, with two child Linux kernel lists running through
a common parent node. Figure reproduced from our publication [107].

As the memory abstraction used by DSI are cells, i.e., (sub-)regions of memory,
which subsequently form strands, it is required to express the connections be-
tween strands. This is done by calculating the connections between cells, which
naturally quantifies the connections between strands as strands are composed of
cell sequences. The interconnection between strands are called SCs, which are
used in all of DST’s strand graphs, i.e., SG, FSG and ASG. Thus, the expressive-
ness of the SCs developed in this chapter are mandatory for DSI’s concepts such
as structural and temporal repetition.
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Strandl

Strand?2

Figure 5.2: DSI’s memory abstraction shown for the Linux kernel list. DSI detects
two connected (cyclic) singly linked lists that form the cyclic doubly
linked list by being connected in reverse order. Figure is reproduced
from our publication [94].

The next step in quantifying the connections is to identify the requirements of
both overlay and indirect connections. The requirements for overlay connections
are discussed first by analysing the LKL example, already shown in the introduc-
tion, and consisting of two strands, Strandl and Strand2 running in opposite
directions, see Fig. 5.2. The LKL runs through nodes of different types, leading
to the important requirement that the relative connection between Strand1 and
Strand? is independent of the placement of those strands inside of the surround-
ing struct. This situation is shown in isolation in Fig. 5.5. An additional require-
ment is to capture changes in the connection between two strands, as shown in
Fig. 5.6 and Fig. 5.9, as soon as their relative offset changes. This is mandatory
because the predicates used by DSI for detecting DDSs requires elements per-
forming the same role to have identical connections between them. For example,
a DLL requires all connections between the cells of the strands to be the same,
e.g., it is not allowed to form a DLL in cases where the distance between the two
strands vary. This is a design decision, which could be further investigated in fu-
ture work, whether relaxing this requirement leads to higher abstractions in the
detected DDS, i.e., finding data structure patterns not intended originally by the
programmet, or to a loss of precision.

The same requirements hold for overlay parent child nesting scenarios, where
the same connections between the parent and the children allows one to unify
children performing the same role. When looking at Fig. 5.5 again and imagining
a parent child nesting relation, such a relation needs to be unaffected of the place-
ment of a nested element inside the surrounding memory region, as long as their
relative offsets stay the same. In Fig. 5.8, a situation is shown, where the parent
is connected to two different child elements, each with another offset within the
surrounding memory region. Again, both scenarios need to be expressible and
detectable as discussed in the previous section.
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When looking at indirect connections instead of the overlay connections, it be-
comes clear that the same requirements apply as well. The only difference is that,
in case of overlay connections, one deals with nested structs, whereas with indi-
rection connections, one deals with pointer connections. In case of indirect parent
child nesting, it is also mandatory to be able to unity over child connections that all
originate at the same offset relative to the parent strand. Thus, the placement of a
nested struct inside of the outer memory region should not affect the connections,
as is shown in Fig. 5.7. If changes in the connections occur, they need to be rec-
ognized, as seen in Fig. 5.8, but which also applies to indirect connections. These
requirements apply to both indirect and overlay connections and allow us to detect
repetitive behaviour in (parts of) the DDS, exposing connections that perform the
same role within the DDS. At the same time the abstraction is fine grained enough
to detect differences in the SCs, e.g., when multiple different child elements are
present simultaneously.

Regarding the implementation, the above requirements cannot be achieved im-
mediately. One option to precisely describe connections is by using absolute start
addresses of cells. However, this would be too specific as addresses are unique
within a program, thus preventing the unification of connections that perform
the same role. This would effectively disable the structural and temporal repeti-
tion detection. Another option would be to classify connections between cells as
either overlay or indirect, without additional information. However, this would
lead to an over-generalization; it would not be possible to differentiate, e.g., be-
tween different children of a parent, which diminishes the precision of the anal-
ysis. Therefore, the solution needs to be precise enough to distinguish between
different roles of connections, yet uniformly enough to be able to detect common-
alities between identical connections. Additionally, the abstraction needs to be
chosen in such a way that DSI’s capabilities to let strands run arbitrarily through
memory vertices are still preserved. This imposes problems such as having mul-
tiple cells of one strand within one vertex, thus rising the need to choose which
cells are considered when computing the connections.

With these prerequisites in mind, the remainder of this chapter is structured
as follows. First the techniques to describe connections used by related work
are discussed in Sec. 5.1. Thus, the discussion of how DSI describes the over-
lay connections found in DDSs in Sec. 5.2 follows. This includes how overlay
connections are detected (Sec. 5.2.1), how they are quantified to meet DSI’s re-
quirements (Sec. 5.2.2) and presents pseudocode for the actual implementation
(Sec. 5.2.3). Subsequently, indirect strand connections are discussed in Sec. 5.3.1,
including pseudocode for the actual implementation (Sec. 5.3.2). The chapter con-
cludes with Sec. 5.4 that describes entry point connections, which are the handles
into the DDS, i.e., they are the only way how a programmer can access the DDS.
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5.1 Related work

The dynamic analysis tools [49, 69, 74] and heap snapshot tools [39, 85], discussed
in Ch. 3, also deal with connections between (parts of) the DDSs they support. In
the following, the tools will be analyzed according to this specific aspect.

Heapviz. Heapviz [39] uses connections between objects located on the heap to
fold the graph, so as to ease understanding of the heap. The stack is not taken
into consideration. Most interestingly, Heapviz uses pointer connections to fold
two objects (01 and 0;) of the same type having a common set of parent objects.
It is sufficient for the folding that a pointer connection exists between the objects.
It is not required that both objects 0, and o0y are connected by the same pointer
type. Thus, the two objects are merged, even if they are connected by multiple
different pointers, say childl and child2, which generalizes multiple different
parent child connections to just one. DSI instead wants to be precise enough to
be able to explicitly speak about all child elements. Further, nested objects are not
supported by Heapviz, in contrast to DSI.

HeapDbg. HeapDDbg [85] also folds the PTG of the heap as does Heapviz. The
major difference is that HeapDbg is more precise with regards to the parent child
relation, as they require the connections between the parent and the child ele-
ments to be of the same label and both children of the same type. Again, the
connections are only pointer based, i.e., no overlay connections are considered.
The label of a connection is specified as being either a variable name, a field name
inside an object, or an array index. This information requires access to the names
of the variables, e.g., source code or Java bytecode. Binary code does not provide
this information, which is discussed when opening up DSI for binaries in Pt. II
of this dissertation.

Mempick. Mempick [69] cuts pointers between nodes of different types, which is
not desired by DSI as this prevents us to reason about parent child nestings, both
in the nesting scenario and with pointer connections. MemPick handles PTGs
comprising of nodes of the same type; the pointer connections are identified by
their offset within an allocated memory chunk.

ARTISTE. ARTISTE [49] has the same notion for merging PTGs as HeapDbg,
but the pointer edges between objects are now described by their offset relative
from the start of the allocated memory chunk, as does Mempick, rather than a label
as in HeapDDbg. Besides that, the merging is comparable to HeapDbg. Again, the
nesting case is not considered and the offsets are calculated from the beginning
of the enclosing memory, i.e., ARTISTE has no notion of nested structs.
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DDT. DDT [74] creates a PTG similar to the tool RDS [92], but does not clearly
state, if it stores pointer offsets on the edges. In either case, the offset mentioned
by the authors of DDT is given relative from the start of the enclosing memory
region. DDT decorates the edges with three high level labels (i) the child label for
edges between nodes of the same DDS; (ii) the foreign label for marking edges
between nodes of different data structures; (iii) the data label for identifying static
data associated with a data structure node. If the pointer offset is indeed missing,
the high level labels will result in the same limitations as for Heapviz. If the offset
is present, the same limitations apply as with ARTISTE and HeapDbg.

Summary. All related tools do not explicitly consider the nesting case, where part
of a data structure is nested inside another, for which the LKL is a prominent exam-
ple. In such scenarios, the nested element would just be ignored by related work,
as all of the approaches only consider pointer connections between data structures.
Heapviz and (supposedly) DDT only use a high level description of pointer con-
nections, which, e.g., does not allow one to distinguish between multiple parent
child relations where the child elements all have the same type. The remaining ap-
proaches [49, 69, 85] are more descriptive on the edges by using either labels [85],
which are unavailable when dealing with binaries, or offsets [69, 85], which are
always from the start of the enclosing memory chunk, i.e., offsets alone do not
support the fine grained cell abstraction of DSI. To tackle these limitations overlay
connections between strands are discussed further in the following section. Sub-
sequently, indirect connections between strands are introduced in Sec. 5.3.1. For
both type of connections, the key insight are relative offsets between the involved
strands within a memory region.

5.2 Overlay strand connections

The process of forming an overlay connection is twofold. Firstly, a decision needs
to be made during the build up phase of the SG, whether two strands are actually
connected via overlay and which cells are involved. Secondly, the connection needs
to be quantified. The first aspect will be described in Sec. 5.2.1, the second will be
discussed in Sec. 5.2.2.

5.2.1 Detecting an overlay connection

As discussed in Sec. 5.1, the related work does not explicitly model connections in
case of nesting scenarios that occur, e.g., in certain parent child relations, where
parts of a child are directly embedded inside of the parent. Such a situation is
shown in Fig. 5.1, where a parent node contains two embedded head nodes of
the LKL children. The connection between those two children cannot be captured
when only pointer connections are considered. A connection between two cells
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Figure 5.3: The maximum enclosing memory sub-region in case of a surrounding
struct (solid line on the left) and a custom memory allocator (dotted line
on the right) highlighted in grey. The strands are indicated as block
arrows and the resulting overlay connection as a bidirectional arrow.

residing in the same memory chunk is termed overlay connection, i.e., they are
reachable from each other through offset calculations within a common memory
region without following pointers. As DSI is based on strands, which are made out
of cell sequences, the connection between strands can be calculated by considering
connections between cells. Therefore, cell connections also describe strand con-
nections. Overlay connections are always computed pairwise between cells of the
strands residing in the same memory chunk with respect to a common Maximum
Enclosing memory sub-Region (MER) for both cells. In terms of the C programming
language, this is the maximal enclosing struct containing both cells.

This notion establishes connections between all cells of different strands within
one enclosing struct, but prevents connections between cells of unrelated structs
within a common memory region, which might be the case with Custom Memory
Allocators (CMAs) as depicted in Fig. 5.3. Here two structs are seen, each con-
taining one cell. The inner structs are once surrounded by an enclosing struct
(left) and once embedded inside a chunk of memory allocated by a CMA (right).
Therefore, the Maximum Enclosing memory sub-Region (MER) will find a com-
mon struct containing both cells in case of the surrounding struct, but none in
case of a CMA. The result is an overlay connection in case of the enclosing struct
and no connection in case of the CMA. This semantics prevents the creation of
arbitrary connections between strands in case of a CMA.

As strands are designed to run through memory regions in arbitrary fashions,
it is possible that multiple cells of one strand reside within the same memory re-
gion. To avoid clutter of possible connection combinations between cells in such
a scenario, the most upstream cell (A,p) of each strand still within this memory
region is used, see Def. 1. An example requiring the selection of the most up-
stream cell is shown in Fig. 5.4, where the most upstream cell of the lower strand
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Figure 5.4: Overlay connection between the most upstream cell of a strand with
multiple cells per vertex and another strand with only one cell per
vertex.

I o
Iy I

Figure 5.5: Strand position changes within vertices, with unchanged relative off-
sets of the overlay connections.

is selected to form the overlay connection with the only cell of the upper strand
present inside the vertex.

Definition 1. The most upstream cell A, of a strand S inside a vertex V is defined as
A,p < minIndex({cell € S | cell € V})

Where minIndex returns the cell with the minimum index within the sequence of cells
as defined by S, where the first cell of the strand starts out with the lowest index.

5.2.2 Quantifying an overlay connection

Once the cells forming the overlay connection are found, the connection needs to
be quantified. This is important to be able to unify or differentiate connections.
To quantify the connections multiple possibilities exist:

i) One could use the start addresses of cells to quantify their positions in memory.
However, this will prevent any unification of cell positions, as addresses are unique
within the address space of the program.

ii) Another possibility is by using the offsets of the cells relative from the sur-
rounding memory region. This will produce the same offsets as long as the mem-
ory regions and the position of the cells within the memory region are the same.
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Figure 5.7: Parent child relation on indirect nesting, with parent strand changing
position within vertices. Child strands are indicated with two vertical
grey arrows only, without cells or vertices.

Therefore, it is possible to unify over connections to a certain extent. As soon, as
strands run through different positions of a memory region, this approach pro-
duces different start offsets, even though the relative distance between the strands
is actually the same, as is seen in Fig. 5.5.
iii) This problem is similar to the problem of the linkage offset for strands, which
is solved by calculating the linkage offset from the start of a cell and not from
the surrounding memory region. This insight leads to describing the relative dis-
tance, or offset, between cells. This will give the same connections even when
the position of the strands inside of the memory region change, as can be seen in
Fig. 5.5, and capture changes between the strand distance as shown in Fig. 5.6.
For these reasons, the third option is chosen as the solution. However, there are
three different possibilities how to express the relative distance between the cells,
as shown in Fig. 5.10. The same vertex is shown three times with two cells and with
two different linkage offsets, resulting in four strands (S;—_4, S5-s and Sg_11). For
each distance possibility, the corresponding offsets are shown. The possibilities
are as follows: (left) relative from the start of the cells, (middle) relative from the
linkage offsets of the cells, (right) relative from the start of the source cell to the
linkage offset of the target cell. Though not all three approaches do fulfill the
requirement of capturing the relative changes between two strands, as shown in
Figs. 5.5, 5.6 and 5.9. The difference lies, e.g., in the precision of quantifying the
parent child relations, as seen in Fig. 5.8, and the switching of strand connections
within a vertex, as see in Fig. 5.9. This can be seen, when looking at Table 5.1,
which shows the possible strand combinations of the connections of Fig. 5.10.
The columns and rows of Table 5.1 labelled S, identify the strands of Fig. 5.10.
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Figure 5.8: Parent child relation on overlay nesting, with child strands changing
position within vertices. Child strands are only indicated with two ver-
tical grey arrows, without further cells besides the head cell.
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Figure 5.9: Strands switching positions within vertices.

The offset between the strand pairs are listed as tuples consisting of the offset
from the start strand to the target strand as the first element of the tuple, and
the backwards direct as the second element of the tuple, e.g., (a, —a). The tuples
below the diagonal of the matrix is left empty (—), as those tuples will just have
flipped elements as the source and the target are reversed.

The table reveals that the information density varies between the differently cho-
sen offset calculations. Starting out on the left, it becomes eminent that this is the
least precise solution. The offsets are either (0, 0) for the strands residing inside
of the same cell, or (a, —a) for the other combinations. Especially strand connec-
tions within the same cell are problematic, because the offset will always be (0, 0),
thus making DSI agnostic of the situation shown in Figs. 5.9 and 5.6, where the
positions of the strands are changed. The abstraction also imposes the problem
of not being able to detect different parent child relations as shown in Fig. 5.8, as
the tuple for both connections would again be (0, 0). This in turn would lead DSI
to consider both parent child relations as performing the same role, which is not
true because clearly different elements are participating in the parent child nest-
ing. Thus this solution works only when the strands participating in the overlay
connection reside in different cells. And even in this case, multiple strands with
different offsets within the source and target cells would not be distinguishable,
leading to a loss of precision. This solution is not an option, because we want to
overcome this limitation, from which related work suffers as well.

The approaches in the (middle) and the (right) of Fig. 5.10 are more descriptive;
they can both handle all situations described previously. The (middle) solution
works by directly calculating the offsets between the strand pairs, whereas the
(right) solution takes the surrounding cells into consideration as well. In both
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Figure 5.10: Relative offset calculations between strand connections: beginning
of cells (left), between linkage offsets (middle), beginning of cells to
linkage offsets (right).

cases, information about the positions of the strand pairs relative to each other are
encoded through the sign of the offsets within the tuples. Though in Table 5.1 no
signs show up explicitly for the right most solution, as all of the variables are as-
sumed to be unique in this case, i.e., no variables are the same when considering
their absolute values. Further, the variables shown for the (right) solution follow
the pattern, seen on the right in Fig. 5.11, whereby the offset from the source (up-
per) strand to the target (lower) strand are always calculated from the start of the
enclosing cell to the linkage offset of the target strand. However, other possibili-
ties for calculating the offsets are conceivable, e.g, the left side of Fig. 5.11 where
the offsets are always calculated from the start address of the source cell to both
the source and target strand linkage offsets. The difference to favour the right
solution becomes eminent when considering how the offsets will change in case
of alternations in either the strands within the cells or the distance between the
cells. As an example consider that the lower strand changes its linkage condition
within its surrounding cell. This might happen in a parent child nesting situation
with different children hanging off different pointers. Indeed, both approaches
again detect the differences in the connections, but the right solution is more de-
scriptive in what exactly changed. In this particular example, the offset from the
start of the upper cell to the linkage offset of the target strand would change, the
backward offset would remain equal. This indicates that the distance between the
cells has remained stable and only the linkage offset of the target has changed.
With the left solution, the distance from the start of the source cell to the linkage
offset of the target cell would also change, but this change cannot only happen due
to a change in the linkage offset, but also due to a change in the relative distance
of the surrounding cells. This makes the left solution more ambiguous. For the
right solution, both of the relative offsets change when the relative distance be-
tween cells changes. Though the (right) solution is also not completely immune
to ambiguity, e.g., when it comes to changing both linkage offsets and cell posi-
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Figure 5.11: Two possible implementations shown for calculating the relative off-
sets between two strands in an overlay connection. On the left the
offset calculation always starts from the start address of the cell of the
top strand to the linkage offset of both strands. On the right the cal-
culation is performed once from the start address of the cell of the top
strand and once from the start address of the lower strand.

tions simultaneously. However, the increased precision of the right most solution
leads us to choosing this offset calculation strategy.

While constructing the strand connections, all connections of the same configu-
ration are combined to just one connection in the SG, FSG and ASG. However, the
set of source and target cells for each connection between strand pairs are stored
so that they are available for further calculations.

The general definition for overlay and indirect strand connections is given in
Def. 2. The definition of an overlay connection is given in Def. 3 (both definitions
are reproduced from our publication [107]).

Definition 2. A strand connection (SC) Sy % Sy between two strands, Sy and Ss,
describes exactly one way in which a subset of the cells of Sy are related to a subset of the
cells of So. An SC is defined by the set of cell pairs, consisting of cell ¢y of S1 and cell
co of Sy that establish the relationship: PAIRS(S, % S3) = {(c1,¢2) € cELLs(Sy) X

Definition 3. The overlay relationship between two cells ¢; and o, connecting two strands
Sy and Sy resp., form a cell pair: ¢, & ey if S1 # Sy A MER(c1) = MER(cy), where

x = (c1.baddr + LINKAGEOFFSET(S1)) — C2.baddr and

w = (cg.baddr + LINKAGEOFFSET(S2)) — ¢1.bAddr



5 Strand connections

56

— — — — NMMJ — — — — wa — — — — wm.u
(woo)y | = | = | =g | (6=15)| ~ - |- || (00 | - - ||
(wry) | (W) | = | = || (f=)| (=) - | -|%|(="0)|(0="0)| - | -]|%
() | 0 [ (w9 | - ]% | (p="P)|(=2) @9 | - || (=) |(®="2)](00)]|-|'S
mﬂ@ :Mu OHM« @Mu w.mq n.mq @M« mMu wmq mMu m.mq HM.u

‘(69 utunjod

yim Sumnaels) s}esyo a8equl] 03 s[[ed jo Suruurdaq ‘(¢ uwmnjod yim Suniels) sjesyo a8exul] usamiaq ‘(I9 uwnjod Yim
dumnzeys) sy Jo Suruurdaq :01°G “SL] Ul U3 SE SUOHIIUU0D PUBIS UdAMIdq SUONIE[NI[D 19SJJO JATIE[AI JO MIIA Te[NqE], :T°S [qEL.



5.2 Overlay strand connections 57

5.2.3 Pseudocode for calculating overlay strand connections

Because the SCs are created when building up the SG, the pseudocode contains
some parts of the build up phase of the SG as well, though they were developed
by Dr. White. These parts are greyed out in function CALCULATESTRANDGRAPH,
see Alg. 8. This function calculates the SG for one timestep ¢ of the event trace,
including both overlay connections and indirect connections. Overlay connec-
tions are discussed within this section, while indirect connections are discussed
in Sec. 5.3.1.

1: function cALCULATESTRANDGRAPH (t)

2: /] Create strand vertices

5 Vsolt) < {{S} | S € S(t)}

4: |/ Set of edges, i.e., strand connections

5. &sq (T) 0

6: /] Add entry point vertices

7:  ADDEPVERTICES(t)

8: // Cycle through all pairwise strand combinations
9: foreach (5,,5) € S(t) x S(t)

10: /] Calculate vertices for strands

11: Vo <~ {veV(t)]|3CeS, | VErtex(C) = v}
12: Vy < {v e V(t) | IC € S | VErTEX(C) = v}

13: // Indirect strand connections

14: /| Get edges between source and target strands

15: Eap  {(vs, sAddr, vy, tAddr) € E(t) | (vs € Va A v € V)
16: /| No linkage condition between the strands

17: AlLINkCoND(sAddr, tAddr, G(t))}

18: ADDINDIRECTSCS(Eap,S4,50,t)

19: /| Overlay based strand connections

20: ADDOVERLAYSCs({V, NV}, Sq, Sp, t)

21:  end

22:  return (Vsg(t), Esg(t))

Algorithm 8: Calculation of the strand graph vertices and edges for a time step

Initializethe SG. 'The SG algorithm starts out by creating the set of vertices Vs (¢)
of the SG, each consisting of a set of strands and initially containing one strand
per vertex. When merging elements of the SG later on, i.e., creating the FSG or
subsequently the ASG, the strands of the merged vertices are unioned, leading to
more elements in the set. The edge set s (%), i.e., the strand connections, is ini-
tially empty. Then, the entry point vertices and the offsets for those are calculated,
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as explained in Sec. 5.4. Entry point connections can be seen as specialized strand
connections.

Strand combinations and connections. Following the previous step one needs to
process all pairwise strand combinations of the strands for the current time step
S(t) from the strand creation phase and calculate the strand connection between
each source and target strand. Note that the algorithm always calculates directed
strand connections from the source to the target, but as all pairwise strand con-
nections are processed, the backward direction of overlay strand connections is
also created, thus forming the bidirectional property of the connection. The SG is
calculated on top of the PTG,; thus, it requires information about the vertices and
edges of the PTG. Therefore, the set of vertices through which each strand is run-
ning is determined by fetching the vertices from the memory vertices V(t) of the
PTG in which a cell of the strand resides. The vertices are used to define the edges
of the PTG, i.e., pointer connections, with the source and target vertices and ad-
dresses (vs, SAddr, v, tAddr). Thus, all edges where the source and target vertices
are in the set of vertices through which the strands are running are selected. An
additional restriction being that the edge does not fulfill a linkage condition itself,
as this would mean both strands are connected via a strand instead of a pointer.
This is computed with the function LiNnkConD, which takes the source (sAddr) and
target (tAddr) address of the pointer and the PTG of the current time step (G(¢)) as
parameters. The edges can be extended to arbitrary pointer chains without form-
ing a linkage condition. This is left for future work. The edges &,;, found are used
to calculate the indirect strand connections, while the intersection of memory ver-
tices (V, and V) select all vertices that potentially have an overlay connection, i.e.,
at least both strands run through the same vertex. The M ER function later on
makes the final decision if an overlay connection is actually present.

Overlay strand connection. Function ADDOVERLAYSCs in Alg. 9 calculates the ac-
tual connection configuration as discussed previously, by cycling through each
vertex containing both the source and target strands and first calculating the most
upstream cell of each strand to handle CMA-like situations. Then, the MER of
both cells need to match. If this is the case, the forward and backward distances
of the cells are calculated as described in Sec. 5.2.2. The result is stored in a key-
value set (KCV), termed connection configuration. The key value is composed of the
overlay label and the offsets. The value consists of a set of tuples of source and tar-
get cells forming the connection. Thus, all equal connections between strands are
unified to one connection configuration that carries a set with the corresponding
cell pairs. Then, the actual strand connections are created in function ADDSTRAND-
ConnNEectIONS in Alg. 10. The algorithm fetches all key values by calling the func-
tion DoM(KV) and iterates over them to create a set of strand connection edges.
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1: function ADDOVERLAYSCS(V,p, S, Sb, t)

2:  foreachv € V,,

3 /| Vertices might contain multiple cells of a strand,

4 /] thus the most upstream cell needs to be fetched

5: C, < GETToPMoOSTSTRANDCELL(S,, v)

6: Cp < GETToPMOSTSTRANDCELL(S), v)

7 /] Maximum Enclosing memory Region needs to be equal
8 if (Mer(C,) = MER(Cp))

9: /| Offset calculation

10: Caoff < (Cp.bAddr + Sp.linkageOffset) — C,.bAddr

11: b off < (Cq.bAddr + S, .linkageOffset) — C;.bAddr
12: /] Record the overlay connection configuration

13 cc < (“overlay”, (Ca off; Cb off))

14 KV(cc) <~ KV(ce) U{(Cq, Cp)}

15: end

16:  end

17:  ADDSTRANDCONNECTIONS(KV, S, Sp, 1)

Algorithm 9: Calculation of the overlay connection configurations

A strand connection edge is a five-tuple, which holds a set of source strands S,, a
set of target strands Sj, connection configurations cc, a set of the source and tar-
get cells forming the strand connection, and an empty set that holds the different
classifications for this particular connection during the lifetime of the data struc-
ture used by the final naming algorithm of DSI. The classification and naming
algorithm is not part of this dissertation.

1: function ADDSTRANDCONNECTIONS(KCV, S, Sp, t)

for each cc € Dom(KV)
// Add the edge, and store the connection configuration and
/] an empty set for storing the classification information
/] used during the naming process. Additionally, the set of
/] cell tuples forming the connection is stored.
flsc(t)  Esa(t) U{({Sa}, {Sb}, ce, KV(ce), {})}

8 en

AN A A

Algorithm 10: Calling the classification routine on configuration sets. Addition-
ally, the edges are being stored
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5.3 Indirect strand connections

In the following the detection of an indirect strand connection is discussed in
Sec. 5.3.1, the pseudocode is given in Sec. 5.3.2.

5.3.1 Detecting an indirect strand connection

Indirect strand connections are formed by pointer connections between strands
that do not fulfill a linkage condition as this would lead again to an overlay con-
nection. The pointer does not need to originate directly from the source cell, nor
does it directly need to link to the target cell. It is only required that the source
and target cells have the same MER. Indirect connections face the same problem
of calculating the connection offsets as is the case with the overlay connections,
see Sec. 5.2. With the knowledge gained from overlay connections, indirect con-
nections are also expressed using relative offsets. The difference between overlay
and indirect connections is that, for overlays, two cells form the connection and,
for indirect connections the source and target cells are put in relation with the con-
necting pointer to form the connection. More precisely, indirect connections form
the offset on the source side of the pointer connection between the start address
(bAddr) of the source cell and the start address of the outgoing pointer (sAddr).
On the target side, the start address of the target cell plus the linkage offset is cor-
related with the target address of the outgoing pointer (tAddr). This is formalized
in Def. 4 (reproduced from our publication [107]), and the memory layout and
addresses are shown in Fig. 5.12.

Definition 4. The indirect relationship between cells ¢, and o, connecting two strands
Sy and Sy resp., form a cell pair: ¢; L ¢y if Je = (_,sAddr, _ tAddr) € & :
as € MER(c1) N ay € MER(c2) and there is no linkage condition on edge e, where

y = sAddr — cq.badir and

2 = (Cg.baddr + LINKAGEOFFSET(S2)) — tAddr.

Implications for connections. As is the case with overlay connections, the relative
offsets allow changes of the position of the strands and pointers as seen in Figs. 5.7
and 5.13. In the latter, a more detailed view of the source strand switching the
position within the vertex is given. Additionally, the dotted lines indicate where
the relative offsets are calculated. As the layout of the smaller parent vertices on
the left and the right is duplicated within the bigger middle one, the corresponding
pointer resides at the same relative offset as seen in the smaller vertices. Thereby,
the source side computes the same relative offset for all three parent vertices. The
target side is also shown in Fig. 5.13, where the distance between the address of
the incoming pointer to the linkage offset of the child element is shown. The same
logic as on the source side applies, i.e., relative offset changes can be captured.
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Figure 5.12: Memory offsets used for computing an indirect strand connection.

c1.bAddr marks the start address of the the first cell, and ¢,.bAddr the
start address of the second cell. sAddr is the source address of the
outgoing pointer and tAddr is the target address where the pointer
points to.

As is the case with overlay connections, all possible combinations between the
pointers and the strands residing inside both the source and the target vertex are
computed. In contrast to the strand creation, it is not mandatory that the pointer
on the target side is incoming to the head of a (nested) struct. This relaxation
makes the detection of parent child relations more generic.

In Def. 4 it can further be seen that the offset y on the source side is between
the start of the cell of the source strand and the start of the pointer connection.
This implies that, on the source side, all strand connections running through the
same cell, i.e., with different linkage offsets, still have the same offset y. This is
not a problem as we do not have a situation like with the overlay connections as
seen on the left in Fig. 5.10 where this leads to ambiguous connections in parent
child nesting scenarios, as seen in Fig. 5.8.

On the target side an ambiguity can arise if both the cell position and the linkage
condition of the target strand change simultaneously in such a way that the relative
offset z stays the same for different parent child relations. This problem is solved
by taking the linkage offset into the predicate for matching the same parent child
relations, i.e., the connection configuration needs to match among the children
and, additionally, all child elements need to be of the same type and have the same
linkage offset.

5.3.2 Pseudocode for calculating indirect strand connections

The function ADDINDIRECTSCs of Alg. 11 processes all pointers (€,,) found earlier
between two strands S, and S, for a timestep ¢. Again, the top most upstream cell,
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\

Figure 5.13: Relative offsets for an indirect strand connection both on the source
(top vertices) and the target side (bottom vertex). The parent strand
(source) switches position within a vertex without changes in the rel-
ative offsets (between parent strand and outgoing pointer).

C, and G, of each strand still residing in the source vertex v, and target vertex v,
is chosen for the offset calculation to account for CMA cases. The MER is also
obeyed, and connections of the same type are unified by creating a key-value store
KV, where the key is a connection configuration cc with the label indirect and the
corresponding offsets. The value is a set of tuples with the source and target cell,
as seen with the overlay connection. In the end, the actual strand connections are
recorded by calling AbpSTRANDCONNECTIONS of Alg. 10, i.e., the same function
can be used for both overlay and indirect connections.

5.4 Entry point connections

The chapter on strand connections is concluded with a specialized case of con-
nections, namely from entry points to strands. An entry point is a handle into a
data structure, which can either be on the stack or in global memory and holds
a heap reference pointing to a strand or contains a cell participating in a strand.
Therefore, entry points also have connections to the strands. Entry points are the
stable view point into a DDS, with the intuition being that the longest running
entry point reports the correct interpretation of a DDS. As with the overlay and
indirect connections before, the entry point connections are quantified by offset
calculations. The big difference to the connections before is the now absolute off-
set calculation instead of relative offsets. For entry point connects, the offset is
given from the start address of the memory chunk. In the following both cases
forming an entry point, i.e., a pointer and a cell, are discussed.
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1: function ADDINDIRECTSCS(Eyp, Sa, Sh, t)

2. for each (v, sAddr, vy, tAddr) € &,

3 /] Calculate source and target cell

4; C, < GETToPMOSTSTRANDCELL(S,, v5)

5: Cy < GETToPMOSTSTRANDCELL(S}, v4)

6 /| Maximum Enclosing memory Region needs to be equal
7 if (Mer(C,) = MER(Cy))

8 /] Target offset: relative to incoming pointer

9 Coff < (Cp.bAddr + Sy linkageOffset) — tAddr

10: /| Record the pointer connection configuration
11: /| Source offset: relative to cell

12: cc < (“indirect”, (sAddr — C,.bAddr, c.))

13 KV(cc) < KV(ce) U{(C,, Cp) }

14: end

15:  end

16:  ADDSTRANDCONNECTIONS(KV, S, Sp, 1)

Algorithm 11: Calculation of the indirect strand connections.

Entry point: pointer. 'The pointer based entry point as described in Def. 5 (repro-
duced from our publication [107]), has two offsets. The first offset x is given as the
offset between the entry point vertex v, start address and the start address of the
pointer, resulting in an absolute offset for this particular v,,. The second offset y
is given analogous to the second parameter of the indirect strand connections in
Def. 4, thus making the offset relative again.

Definition 5. A pointer based entry point connection v., — S from an entry point
Vep € V to a cell ¢ € ceLLs(S) via a non-linkage condition edge (vep, as, vi, ar) € € is
defined by two parameters & = a;—ep.baddr andy = (c.baddr+LINKAGE OFFSET(S)) —ay.

Entry point: cell. The cell based entry point as described in Def. 6 (reproduced
from our publication [107]) only has one absolute offset = from the start of v, to
the linkage offset of the cell.

Definition 6. A cell based entry point connection v., — S from an entry point v, € V
to a cell ¢ € ceLLs(S) such that ¢ C v, is defined by one parameter z = (c.badar +
LINKAGEOFFSET(.S)) — Vep.baddr.






6 Temporal repetition

DSI reinforces the shape of a DDS by taking temporal information into account for
its analysis, i.e., it analysis the DDS over its lifetime. DSI does this by inspecting a
DDS at each time step of the execution trace and aggregating the results over time
to arrive at a final DDS interpretation at the end of DSI’s analysis.

More specifically, the stepwise inspection of the DDSs is enabled by DSI’s evi-
dence based DDS detection, where each heap state is interpreted individually for
each time step according to DSI’s DDS taxonomy. Each detected DDS label is
accompanied by an evidence count to quantify the interpretation. Then two prop-
erties of a DDS are exploited: (i) structural repetition, where certain parts of a
data structure perform the same role, e.g., all children of a parent-child list (i)
temporal repetition, as a DDS typically exists over a longer time period during
program execution and thus can be monitored continuously. The previously de-
scribed quantification of strand connections in Ch. 5, is mandatory to find parts
of a DDS that perform the same role, both structurally and temporally.

With DSI’s ability to inspect each time step of the DDS evolution, no coun-
termeasures to avoid degenerate shapes need to be taken, e.g., finding operation
boundaries [74, 106] or quiescent periods where a DDS is not changed [69]. DSI
also does not become more conservative when including degenerate shapes as is
the case for other tools, e.g. [49, 67]. Additionally, each time step of a DDS can be
inspected without missing interesting behaviour during data structure manipula-
tions. This chapter describes the temporal repetition algorithm.

6.1 Algorithm

The temporal repetition is part of DSI’s data structure detection algorithm; hence,
it relies on intermediate results calculated in previous steps, i.e., the PTGs,
strands, SGs and FSGs. The overview of the DDS detection is given in Alg. 12,
where the first f or-loop shows the previous analysis steps, which are not discussed
in this dissertation. The second for-loop performs the actual temporal repetition
for each entry pointer (ep) beginning from its time of creation (fgrt). Both are
artifacts from the previous analysis steps, i.e., the trace generation and strand cre-
ation.
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6 Temporal repetition

Table 6.1: Symbols used in the temporal repetition algorithm

Symbol/Term | Explanation |

eps Set of entry pointer tuples: (start time, entry pointer vertex)

asgs Set of aggregated strand graphs

F Sequence of folded strand graphs

Fi Folded strand graph for time step 4

fsg Reference to a folded strand graph

S; Set of strands for time step ¢

g Sequence of points-to graphs

Gj Points-to graph for time step ¢

E Sequence of events

E; Event for time step i

Cfsg Edge of the folded strand graph

Casg Edge of the aggregated strand graph

asg Aggregated strand graph

subgraphceom | Graph containing the common elements of a folded strand
graph and an aggregated strand graph

subgraphnew | Graph containing the new elements when comparing a folded
strand graph and an aggregated strand graph

v Vertex of a strand graph

cc The quantified strand connection

CCllassified Label and evidence count for a strand connection

be Set of visited vertices when iterating a graph, i.e. a bread crumb

SG Strand graph
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// Global variables
/| Sequences of points-to graphs, folded strand graphs and events
G, F.E
// Initialize sets of entry pointer tuples and aggregated strand graphs
eps < )
asgs < ()
/| Processing of all events
foreachi € 0... E.length
/] Strand graph creation, including entry point calculation
SG < carLcuraTESG(Gj, S;, eps)
// Naming of the data structure
pETECTDS(SG, Gi, i, E;)
/| Folded strand graph creation
/| Store the resulting folded strand graph in a sequence
F < F++cALcULATEFSG(SG, 1)
end
/| Aggregated strand graph calculation from the point of view
/| of each entry pointer
for each (tgprt, €p) € eps
asgs < asgs U {cALCULATEASGFOREP (tgtart, €p) }
end

Algorithm 12: Main part of DSI’s data structure detection algorithm, including
the strand graph creation, the naming of the data structures, and the structural
and temporal repetitions
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1: function cArcULATEASGFOREP (tgtart, €p)

2: // Initialize ASG and store entry pointer as start point

3:  asg < NEWGRAPH()

4: /] asg.V is analogous to the notation of object

5. /] oriented programming languages: object.property

6. asg.V « asg.V U{ep}

7 (R tstart

8:  while PTcCoNTAINSEP(Gj, ep)

9 if VERTEXISEP (F;, ep) A E;.kind = memoryWrite Event

10: // Find common subgraph between ASG and FSG
11: subgraphcom < NEWGRAPH ()

12: subgrapheom.V < subgraphcom.V U {ep}

13: // Note that the alignment starts out on ep for both
14: /| graphs. Hence, ep gets passed twice initially

15: ALIGNASGANDFSG(asg, ep, Fi, ep, subgraphcom )

16: /] Find new elements between ASG and FSG

17: subgraphyey < NEWGRAPH()

18: // Initialize a bread crumb set to detect cycles

19: be 0

20: /] The computed difference gets stored in subgraphpew
21: GRAPHDIFFREC(F, ep, subgraphcom, Subgraphpew, bc)
22: /| Add new elements to ASG

23: CALCULATEASG(asg, subgraphpey)

24: end

25: 1+—1+1

26: end

27:  return asg

Algorithm 13: Computation of an aggregated strand graph from the point of view
of a given entry pointer (ep)
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6.1.1 Main algorithm for temporal repetition

The main part of the temporal repetition calculation is shown in Alg. 13, where the
high level overview is as follows: iterate over all time steps where the entry pointer
vertex is alive and actually acts as an entry pointer and aggregate all elements of
all inspected FSGs during program execution into one ASG. But the ASG is not
simply the "union” of all FSGs, as only the parts that are reachable from a given
entry point are aggregated. Hence, the ASG contains all elements reachable by the
given entry pointer over its life-time. Note that elements are only added to the ASG
but never removed, because the ASG represents what is observed over one entry
pointer’s lifetime. Hence, the method combines the three phases of the temporal
repetition algorithm, namely (i) computing commonalities between the FSG and
the ASG (line 11), (ii) computing differences between the FSG and the ASG (line
15), and (iii) extending the ASG with newly found elements (line 21).

When discussing Alg. 13 in more detail, first a new and empty ASG gets created
(line 3). As the aggregation of all FSGs is always from the point of view of a given
entry pointer (ep), the created ASG gets initialized with the current ep (line 6).
Recall that entry pointers are the stable anchors into a DDS; thus, they are used to
perform the temporal repetition of the DDS. The aggregation phase is performed
iteratively starting at the given time step (fstrt), Which is the creation time of the
entry pointer. The iteration continues until the entry pointer is not present in the
current PTG (Gj;) in line 8. As an optimization step, the temporal repetition is only
performed, when the ep is currently connected to the data structure (VERTEXISEP())
and the current event (E;) is a memory write event (line 9). The latter avoids events
that are recorded by the instrumentation, e.g., entering or leaving a function, but
are not actually considered an event that (potentially) interferes with the DDS,
such as pointer writes or memory (de-)allocations.

The specific functions of the above mentioned steps (i), (ii) and (iii) are described
in Secs. 6.1.2, 6.1.3 and 6.1.4,respectively.

6.1.2 Aligning ASG and FSG

In this section, Alg. 14 is discussed, which recursively compares the FSG of the
current time step (fsg) and the ASG aggregated so far, starting out with an ASG
that only contains the current ep. The algorithm operates from the point of view
of the given ASG, as each FSG potentially carries changes to the previous time
step, i.e., the FSG is unstable. This could result in missing elements in the FSG
that would make an alignment of the ASG and the FSG impossible. The current
entry pointer is used as an anchor point into both the ASG and the FSG, as this
vertex is the initial commonality between both graphs. This can be seen in line 15
of Alg. 13, where ep is passed into the recursive function twice, once for the ASG
and once for the FSG. Because the algorithm recursively explores both graphs, the
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1: function ALIGNASGANDFSGREC(as¢, Vasg, [5G, Vfsg, Subgraphcom)
2: /] Inspect outgoing edges
3: foreach e,y € a59.€ | €asg-S0UTCE = Vygq
4: if Jegg € f59.€ | (€asg-cC = eggg.C)
N(efsg.50UTCE = Vfgy)
A\(STRANDPROPERTIES (€45q.target) =
STRANDPROPERTIES (eggq.target))

5 // 1) Does target exist in the common subgraph

6: target Exists <— (v € subgraphcom.V | v = easq.target)
7: // 2) Does the edge exist in the common subgraph

8: if Aecom € subgraphcom.€ | €com = €asg

9: €asg-CCclassified <

AGGREGATELABELEVIDENCE (easg.CCdaSSiﬁed, efsg.CCdaSSiﬁed)

10: if ~target Exists
11: subgraphcom.V < subgrapheom.V U {easg.target}
12: end
13: subgrapheom.€  subgraphcom.€ U {€asq}
14: end
15: /] If target was not present, recurse
16: if ~target Exists
17: ALIGNASGANDFSGREC(asg,easg.target, f sg,eqg.target,subgraphcom)
18: end
19: end

Algorithm 14: Recursive alignment of the aggregated strand graph and folded
strand graph for computing a common subset of both graphs
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vertices forming the anchor points into the ASG (v4sq) and FSG (vy,) are selected
from both graphs.

The algorithm follows the chain of outgoing edges inside the ASG, starting from
the given entry pointer, to explore both graphs (line 3). Whenever an edge from
the ASG is inspected, a lookup of a corresponding edge in the FSG is performed
(line 4). The first test ensures that the connection configurations of both edges in
the ASG and FSG are equal. Thus the algorithm again relies on the quantification
of strand connections as discussed in Ch. 5. Further, the target vertices of the
edges need to have the same strand properties, i.e., the same linkage offset and
cell types.

If the criteria are matched, line 6 tests whether the target vertex already exists
inside the common subgraph (subgraphcom) that contains the commonalities be-
tween the FSG and the ASG. In line 8, the presence of the edge inside the common
subgraph is tested, in order to prevent multiple aggregations of the same edge. If
the edge does not exist, yet, the evidences on the ASG edge is aggregated with the
new evidence from the FSG edge and gets stored inside the ASG (line 9). Hence,
line 9 computes the actual temporal repetition. Then, the target and the edge are
recorded in the common subgraph (lines 11 and 13). Finally, if the target of the
edge is not yet present inside of the common subgraph, i.e., has not been visited
before, the algorithm recurses to continue its exploration from the targetin line 17.
Thus, the algorithm performs a depth first search. Note that the search is contin-
ued on the current target vertices of the ASG and FSG. The difference between
the ASG and FSG is computed upon the result of the previous calculation. The
difference corresponds to the new elements in the FSG, as described in Sec. 6.1.3.

6.1.3 Finding differences between ASG and FSG

In Alg. 15 the difference between the ASG and the FSG is recursively calculated
upon the common subgraph (subgraphcom), which represents the common ele-
ments in both graphs. By comparing the FSG with the common subgraph, the
elements new to the FSG are detected and stored into a subgraph containing the
new elements (subgraphnew)-

More precisely, the exploration of the FSG starts from the ep and follows only
outgoing edges, analogously to the previous alignment between ASG and FSG (line
2). This can be seen in line 17 of Alg. 13, where ep is passed into the function as a
starting point together with the current FSG (F;). Additionally the previously dis-
cussed common subgraph and graph for holding the new elements is computed.
Additionally a set is passed into the function, which contains the visited vertices
to account for cyclicity (bc).

In lines 3-11, the source and target vertices and the edge of the FSG as seen
by the ep are added to the subgraph containing the new elements, provided they
where not yet present. In line 12-15, the algorithm recurses if no cyclicity is de-
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1: function GRAPHDIFFREC(f5g, Vtsg, SUbgraphcom, subgraphnew, be)
2. foreacheg, € fs59.€ | egg.50urce = vy

3 if ~GRAPHCONTAINSVERTEX(5ubgraphcom, efg.s0UTCe)

4 subgraphpew.V < subgraphpey.V U {egg.s0urce}

5: end

6 if ~GRAPHCONTAINSVERTEX(subgraphcom, efsg-target)

7 subgraphpew.V < subgraphpey.V U {egg.target }

8
9

end
: if Aesu, € subgraphcom.€ | esuh = efsg
10: subgraphney.€ < subgraphney.€ U {egg}
11: end
12: if Av € be | v = egg.target
13: be < be U {egg.target }
14: GRAPHDIFFREC( [ sg, egg.target, subgraphcom, subgraphnew, be)
15: end
16: end

Algorithm 15: Computation of new elements inside of the folded strand graph

tected. The exploration continues on the target vertex of the currently processed
outgoing edge (eqg.target).

Because the FSG can potentially contain more elements than are visible from
the point of view of the ep, a simple difference between the FSG and the common
subgraph might result in too many elements being considered as being new. The
resulting graph containing the new elements is subsequently used to extend the
ASG. The last step is discussed in Sec. 6.1.4.

6.1.4 Extending the ASG with new elements

The ASG is extended with the new elements by merging both the vertices
(asg.V < asg.V U subgraphnew.V) and edges (asg.€ < asg.E U subgraphyey.E) of
the two graphs. This is shown in Alg. 16, where each edge of the subgraph con-
taining the new elements is iterated in line 2. The source and target vertices are
only added, if they are not present inside of the ASG before (lines 3-8). Because
the subgraph only contains edges that have not been present before, each edge
(enew) can always be added to the ASG (line 9).

6.2 Summary

In this chapter, the temporal repetition algorithm was discussed. The algorithm
explores how a data structure, as seen by a particular entry pointer, evolves over
time by aggregating all FSGs seen by an entry pointer into an ASG. In addition,
the evidence counts of the FSGs are accumulated over time, thus reinforcing the
evidences. The benchmarking of the algorithm is done both in the benchmark of
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1: function carcurATEASG(asg, subgraphpew)

2:  for each eney € subgraphpey.€

3 if "GRAPHCONTAINSVERTEX(AS(, Epew.S0Urce)
4 asg.V < asg.V U {enew.source}

5: end

6 if "GRAPHCONTAINSVERTEX(GS(, €new.target)
7 asg.V < asg.V U {epew.target}

8 end

9 asg.E < asg.E U {enew}

10: end

Algorithm 16: Calculation of additions to the aggregated strand graph

DSI working on source code in Ch. 8 and DSIbin working on binaries in Chs. 15
and 17 in Pt. IT of this dissertation. The pseudo code in the current chapter was
more driven by a programmers notation, resembling the DSI source code pub-
lished online [31].






7 Parallelization

The initial DSI approach is designed as a pipeline, i.e. it is sequential. Therefore,
the first DSI implementation has also been sequential, in order to focus on the
correctness of the approach and avoid being side-tracked by premature optimiza-
tion [77]. With the correctness of the results validated in [107] (see also Ch. 8), the
focus has been shifted to cover speed improvements.

This chapter first analyses the pipelined DSI approach for parallelization poten-
tial. Then, a hot-spot analysis is discussed to evaluate which parts of the theoreti-
cally discussed computation steps take longest to execute. Based on the outcome
of the hot-spot analysis, a parallel implementation of DSI is presented in Sec. 7.2
and benchmarked in Sec. 7.3.

7.1 Possibilities for parallelization

This section discusses the individual steps of the DSI pipeline with regards to
speed improvement potential. This section is a theoretical discussion of paral-
lelization possibilities, together with empirical data which steps of the pipeline
are actually worth while to parallelize.
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7 Parallelization

Figure 7.1: Overview of DSI with respect to sequential/parallel execution.
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FEvent trace parsing. DSI starts out by parsing the event trace stored as an XML
file. Because traces can be long, parallel parsing of the XML file could be an op-
tion. This is inspired by techniques such reported in [111], which parallelizes XML
parsing at arbitrary points inside an XML file. Due to the simplicity of the XML
Schema Definition (XSD) used by DSI, i.e., just storing a sequence of event ele-
ments, parallelization could be achieved by jumping to arbitrary locations inside
the XML file and then search for the next begin/end of an event element. Thus,
it would be possible to split the XML into individual valid XML file chunks for par-
allel processing, which is different from [111] where the parsing of the individual
chunks can start at an arbitrary position. The latter does not guarantee that the
parser starts at a valid element boundary, requiring additional complexity for the
parser. As event elements are short, the preprocessing for creating valid XML
slices that are parsable by a standard XML parser is not too time consuming.

PTG creation. The next step is the creation of a sequence of PTGs, with one PTG
representing the memory state per event. The algorithm for calculating the mem-
ory state depends on the previous time step. This does not hinder the paralleliza-
tion in principle, but requires an extensive sequential post-processing step where
the information of each parallelized part needs to be distributed to its successor.

Strand creation. On top of the PTGs, the strands are computed for each time step,
where information from time step t,,.1 is required for time step ¢,,. Thus, the strand
creation suffers from the same problem as PTG creation regarding parallelization.
However, it is possible to turn strand creation into a producer consumer problem,
where PTG creation is the producer and strand creation is the consumer. This
allows us to parallelize these two processing steps, where the strand creation will,
at best, be only one time step behind PTG calculation.

SG creation, DDS detection and FSG computation. The computation of the follow-
ing three steps of the analysis have in common that they only require the informa-
tion about the current time step on which they are operating. In particular, these
steps are: (i) the creation of the SG, where the strands and their interconnections
are calculated; (ii) the detection of the DDS based on the SG; (iii) the structural
repetition performed on the decorated SG from (ii). The last step, i.e., Step (iii),
creates the FSG. Note that Steps (ii) and (iii) require information from their re-
spective predecessor step. This either requires a sequential execution of the steps
or a producer consumer pattern among them.

The parallelization for Steps (i)-(iii) can primarily be done along two axes which
are discussed in the following. Both options are shown in Fig. 7.1, with the hori-
zontal parallelization shown with blue and the vertical parallelization shown with
gray shaded boxes. The first option parallelizes each step individually. The second
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option parallelizes each Step (i)-(iii) as one computational unit. As already men-
tioned, it is also possible to add a producer consumer pattern into the paralleliza-
tion, which allows us to parallelize on both axes, but also increases the complexity
of the scheduling and the implementation.

The vertical parallelization seems to be the most promising, as the whole pipe-
line for one time step can be computed independently with no need for further
synchronization or additional setup of threads.

When looking at the horizontal parallelization, i.e., the parallelization of each of
the individual steps, Steps (i)-(iii) need to be discussed individually. This is done
in the following.

Step (i): SG computation. For computing the SG, strand combinations need
to be inspected for connections between them. This problem is embarrassingly
parallel, because all the strand combinations can be computed independently. The
results only need to be collected with a barrier and aggregated into the final SG.

Step (ii): Naming phase. For detecting the DDS the SG from Step (i) is explored
exhaustively, starting from one edge. Once all edges belonging together are found,
those are sequentially tested against a DDS taxonomy. All processed edges are
removed from the graph once they are classified. Thus, a parallel processing would
need to synchronize the exploration of the graph in order to avoid conflicts when
processing the edges.

The classification of the edges according to the taxonomy could indeed be run
in parallel. However, this would require a speculative processing of all edges in
parallel, as described in the following with the best and worst case scenarios. For
both cases the classification runs in parallel, i.e., each label of the DDS taxonomy
is tested against the SG by an individual process. In the best case, the result for
computing the label with the highest priority is finished first and gives a match. In
this case the algorithm could discard the remaining parallel computations. In the
worst case, one would need to wait for all levels of the hierarchy to finish before
being able to make a decision. Both collecting the edges and classifying them thus
requires substantial synchronization effort, which makes the naming phase less
attractive for parallelization.

Step (iii): FSG computation. Folding takes place when two child elements of
the SG have the same type and have a common parent. The folding is done ex-
haustively until no more options for folding are present in the SG. The exploration
of finding folding opportunities can be carried out in parallel, because the graph
only needs to be read in parallel, i.e., no synchronization is required. This allows
for parallel graph exploration. When it comes to the actual folding, things become
more complicated, as the graph then would be manipulated in parallel. This re-
quires higher overhead for keeping the graph in sync, similar to Step (ii).

In summary Step (i) is suited for parallelization, as the parallel distribution of
the computations is straightforward. The result only needs to be collected with
the help of a barrier. Steps (ii) and (iii) are parallelizable in principle, though the
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overhead for a parallel version of the algorithms is much more complex and re-
quires more synchronization between threads to allow for parallel manipulation of
the graph. Thus, the vertical parallelization is favoured over the horizontal imple-
mentation. This allows for an embarrassingly parallel implementation of (i)-(iii)
because one computational block is executed with one thread, i.e., each time step
can be run in parallel. The final result of computing all three steps is then collected
with the help of a barrier and passed to the final ASG computation.

ASG computation. The final phase of DSI’s analysis is the ASG computation, i.e.,
the temporal repetition. This phase inspects the DDS from the point of view of an
entry point over the lifetime of the entry pointer, i.e., all time steps of the analysis
where the entry pointer is alive are processed iteratively. In each time step, the
information of the FSG is accumulated into the current ASG, to arrive at the final
ASG that represents the DDS.

The inspection of multiple entry points is embarrassingly parallel as no depen-
dencies exist between the entry pointers. The previously discussed steps, e.g., SG
computation, naming phase and FSG computation, conduct their computations
on individual time steps and are independent from the other time steps. Instead,
the temporal aggregation naturally depends on the results of all other time steps.
Therefore, the ASG requires the results of the previous computation steps for all
time steps. In particular, the ASG process the results sequentially and in ascend-
ing order according to the time steps.

Thus, one can put a synchronization point, i.e., a barrier, in front of the ASG
computation that ensures that all results are available. Alternatively, a producer
consumer pattern can be applied to process available time steps required for an in-
dividual ASG computation as soon as they are available. In this case, each thread
computing the ASG for an entry pointer would wait until the required time step
arrives. This requires more complex synchronization mechanisms to inform all
waiting threads, which in turn need to decide if they newly arrived time step is
the one the thread is waiting for, obeying the ascending order of the time steps.
Additionally, the producer consumer pattern is only beneficial when enough pro-
cessing units are available, i.e., enough threads and free Central Processing Unit
(CPU) cores both for the producer and the consumer side.

Inspired by the synchronization overhead required by the ASG for ordering the
computed results, it might be interesting to study the behaviour of the ASG, both
conceptually and empirically, when it is applied on non sequential ordering. As
the aggregation of the FSGs over time only ever adds elements to the ASG, it might
be possible to aggregate the FSGs out of order and arrive at the same result as the
in order processing. If out of order aggregation is possible, it could speed up the
analysis because the individual results from the previous time step would not be
required as one chunk, i.e., be collected with a barrier, but could be processed as
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they are finished by the individual threads. Of course, synchronization overhead
increases as all ASG threads would need to be informed of newly arriving FSGs.

General parallelization.  As the discussion shows, the ways to parallelize DST are
manifold in principle. However, it only makes sense to parallelize if enough idle
threads are available to perform the tasks. Thus, overly complex parallelization
approaches might simply suffer from the limited resources and are thus not worth
the added complexity and synchronization efforts.

When looking at producer consumer patterns, threads that are not needed any-
more by the producer can subsequently be used by the consumer, which would
indeed be beneficial, e.g., the PTG creation phase with the subsequent strand cre-
ation phase. In other situations like with the individual parallelization of the SG
creation, it is questionable if there are actually free threads available because the
number of time steps for which the SG needs to be computed exceeds the number
of available cores by far.

14
12

10

time [s]

dsEvents time dsPTG time dsStds time dsNaming time

Figure 7.2: Hot-spot analysis of example binary-trees-debian (sequential
execution).
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Figure 7.3: Hot-spot analysis of example five-level-sll-destroyed-top-down (sequen-
tial execution).

In the following, the considerations up to this point are accompanied by an em-
pirical hot-spot analysis that quantifies which parts are worthwhile for a parallel
implementation. The hot-spot analysis is conducted on the sequential implemen-
tation of DSI. The timings are done from a high level perspective, i.e., the total
execution time of each computation step of DSI’s pipeline was measured. Two
examples were measured and averaged over five runs each. The timing results
for the individual computation steps of the binary-trees-debian example are
shown in Fig. 7.2 and those for the five-level-destroyed-top-down in Fig. 7.3.
The timings are (i) for the parsing of the XML trace file (dsEvents), (ii) the cre-
ation of the PTGs (dsPTG), (iii) the creation of the strands (dsStds) and, (iv) the
SG, detection of the DDS, FSG and ASG computation (dsNaming) as one timing
block. Timing block (iv) is chosen as one block as all the steps together form the
core of DSI’s analysis. The steps are later on split up timing wise when conducting
the benchmark of the parallelization in Sec. 7.3. The results reveal that the time
consuming part is indeed part (iv). This part of the analysis contains the most
complex calculations, e.g., the creation of the various graphs (SG, FSG and ASG)
and the labeling of the DDS. As part (iv) consumes over 80% of the computation
time in both examples, it is the hot-spot of DSI’s analysis and thus is parallelized
first by us.
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7.2 Parallel implementation

The hot-spot analysis, together with the aforementioned possibilities how to par-
allelize DSI’s pipeline approach, result in the described parallel implementation.
DSI is written in Scala, which runs on top of a Java Virtual Machine (JVM). Scala
offers Futures for parallelization. The code sections that should be parallelized are
encapsulated by a Future. All data required by the Future can be passed, e.g., by
reference. The created Futures are then processed by a set of worker threads. The
amount of workers can be controlled both programmatically and via command
line parameters to the JVM.

As has been stated previously, the pipeline approach of DSI is well suited for
parallelization after the strands are created, i.e., starting from the SG computation.
From this point onwards, each time step can be processed independently up to the
point of the ASG creation, which requires all results of the previous time steps. To
avoid the overhead of generating and synchronizing a set of Futures three times,
i.e., the horizontal parallelization, the vertical parallelization is implemented. This
allows a worker thread to execute all three steps within one Future. The results
of the Futures are then collected by setting up a barrier. Once all time steps are
collected, a new Future is spawned off for each entry point to compute the ASG.
The results are again collected with a barrier to have them available simultaneously
once all ASG computations have finished.

All data required by the Futures is held in program memory, thus no disk-I/O
is performed. The Futures also don’t write their results onto the disk, or perform
other blocking I/O operations. Thus it is best to utilize as many threads as cores
are available [7].

7.3 Benchmarking

To show the effect of the implemented parallelization, a benchmark is conducted
on two machines: (i) Laptop: DELL Precision M4800 with one Intel(R) Core(TM)
i7-4800MQ CPU @ 2.70GHz and 32GB of RAM; (ii) Compute Box: HP ProLiant
DL580 with 8 x E7520 Processor CPU @ 1.86GHz and 128GB of RAM. The tests
are conducted on two different machines to compare the various hardware char-
acteristics and in how far DSI benefits from them. For the laptop, the employed
software is Ubuntu 14.04, Scala in version 2.11.0 and Open]DK version 7. The
compute box uses the same Scala and Open]DK version, but runs on Debian 7.
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Figure 7.4: Laptop: Total runtimes for long running examples.
14
12
10
== hinary-tree
8 binary-trees-debian
% jonathan-skip-list
£

6 == mbg-dll-with-dll-children
\ mbg-skip-with-dil-children
4

: + mbg-sll-with-slls
O =t s||-with-two-dlls
2 S vi - - ® o irecadd
0
1 2 4 6 8

No. of threads

Figure 7.5: Laptop: Total runtimes for short running examples.

The benchmark is composed of long running examples (total execution time
>90s) and short running examples (total execution time <12s). The long running
examples include a real world example CDLL (bash-pipe), two examples from the
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literature: a five level parent child nesting with SLLs (five-level-destroyed-
top-down) and a sorted BT (sorted-binary-tree-verifast), and three synthetic
examples. The three synthetical examples include a DLL with two nested DLL
child elements (d11-with-two-d1l1l-children) and two examples where the SGs
are homogeneous, i.e., the strands are all of the same type, (homogeneous-sg) and
heterogeneous, i.e., the strands are of different types, (heterogeneous-sg).

The short running examples include BTs implementations taken from the real
world (binary-trees-debian), a benchmark (treeadd) and a synthetic handwrit-
ten example (binary-tree). The SLs implementations are composed of an ex-
ample from the literature (jonathan-skip-1list) and a synthetic example (mbg-
skip-with-d1ll-children). Additionally, synthetic examples comprised of vari-
ous combinations of (nested) SLLs and DLLs are part of the short running exam-
ples. Thus, the selection of the benchmark covers realistic DDSs both with and
without nesting scenarios. The different runtimes of the examples demonstrate,
whether the parallelization scales for both situations.

7.3.1 Laptop

This section discusses the timing results computed on the laptop. All examples
have been averaged over ten runs. For all examples, the disk-I/O is disabled to
measure the computational time only. The disk-1/O of the results is done sequen-
tially, but is embarrassingly parallel, given parallel storage devices.
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Figure 7.6: Laptop: Runtimes for strand graph, DS detection and folded strand
graph creation for the long running examples.
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Figure 7.7: Laptop: Runtimes for strand graph, DS detection and folded strand
graph creation for the short running examples.

The benchmark on the laptop shows that the total runtime of the examples in-
deed scales well for the long running examples as seen in Fig. 7.4. The figure
shows the number of threads used for the ForkJoinPool on the x-axis and the
runtime in seconds on the y-axis. As the laptop has a quad-core CPU with Hyper
Threading (HT), up to eight threads are evaluated, i.e., the maximum number of
available cores for the operating system including HT.

The Futures of Scala are mapped onto the threads available via the
ForkJoinPool of the JVM, which has been set statically to the number of desired
threads!. That the specified number of threads is obeyed by the JVM is manually
verified with htop, which shows the number of running threads.

'This can be done via a command-line parameter passed to the JVM. The parameter used to
set worker threads is a follows: -Dscala.concurrent.context.numThreads
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Figure 7.8: Laptop: Runtime for the longest running aggregated strand graph cre-
ation of the benchmark (bash-pipe example).
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Figure 7.9: Laptop: Runtimes for short running aggregated strand graph cre-
ations. This chart combines both long and short running examples
of Figs. 7.4 and 7.5; note that the aggregated strand graph runtimes
are equally short for most of the examples.
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The charts for the long running examples in Fig. 7.4 show performance gains.
This indicates that the JVM indeed follows the thread requests as listed by htop.
The performance gain is higher when operating on the real cores, which are four.
The execution time is nearly cut in half, when doubling the amount of used cores.
There still is a performance gain when HT [84] comes into play, but the improve-
ments are naturally less than with a dedicated physical CPU core.

When considering the short running examples shown in Fig. 7.5, the same as
for the long running examples is true for the physical cores. However the perfor-
mance either stagnates or even gets worse when using HT. This is not surprising,
as the run times are quite short; thus, the overhead for setting up the parallel ex-
ecution and considering the overhead for scheduling the threads cannot be com-
pensated with the HT approach.
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Figure 7.10: Laptop: Details of runtimes for the strand graph, DS detection and
folded strand graph creation, both for a selection of long (left) and
short (right) running examples.

The actual parallelized parts of the DSI approach are shown in Figs. 7.6- 7.9.

Again the figures are split between long running and short running examples.

Specifically the two parallelized blocks are shown as discussed previously, i.e.,

the parallelization of the SG creation, the DDS detection and the FSG creation as

one parallelized block (see Figs. 7.6 and 7.7), and the ASG creation as the second

parallelized block (see Figs. 7.8 and 7.9). Again, in both cases, the long running

examples benefit from the parallelization even when HT sets in, but the short run-
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ning examples stagnate and some even suffer from a performance loss. Note that
only the bash-pipe example takes a significant amount of time for the creation of
the ASG, which stems from the multitude of entry points in this example and the
long trace. In general, the ASG creation is not too time consuming.

In order to get an even more fine grained view into the first parallelized block,
the SG creation, the DDS detection and the FSG creation is timed individually.
The run time consumed by each thread per computation step gets collected at
the barrier, where the times are summed up and then divided by the number of
threads, in order to arrive at the mean time for completing each step. The results
are shown in Fig. 7.10. One can observe a couple of things from these graphs:
(i) the most time consuming step is the creation of the strand graph where all
strand combinations need to be processed in order to calculate the connections
between the strands; (ii) the overall runtime of the short running examples does
not improve or even gets worse when using more than four threads. However, the
individual steps of the short running examples benefit from parallelization when
eight threads are used, although the overall runtime increases. This leads to the
assumption that the increased overhead for the scheduling between six and eight
threads cannot be countered by the performance gains. Note, however, that the
differences of the runtimes are in the range of half a second.

In order to show scalability, a second machine (HP ProLiant DL580) has addi-
tionally been used. The scalability of the implementation can be seen in Fig. 7.11,
which shows the bash-pipe example with a stepwise increasing number of
threads up to 64 threads. The limit of 64 threads correlates with the 32 physi-
cal cores of the machine multiplied by two for HT. The test in Fig. 7.11 is executed
twice, as is explained below.

The timings shows that the approach also scales on the second machine, at least
for the first 16 threads. After this, the performance does not improve, although
32 real cores are available and 64 cores with HT. When comparing the total run
time of the example on the compute-box in Fig. 7.11 and on the laptop in Fig. 7.4,
it is surprising that the laptop indeed outperforms the compute-box. This phe-
nomenon has been observed independently from the measurements for the DSI
project by other researchers using this machine. Besides the effects of the schedul-
ing overhead, which will eventually slow down every parallelized application, the
bus speed might be the bottle neck.
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7.3.2 Computebox
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Figure 7.11: Computebox: Example bash-pipe with two governor strategies for
scaling the CPU frequency: ondemand and performance.

Some attempts have been undertaken by the author of this dissertation to improve
the performance of the computebox in the context of the DSI project, to counter
the measured unimpressive performance of the computebox give the hardware of
the machine (observed independently by others researchers as well, as discussed
in the previous section). One was to set the governor of the Linux kernel that con-
trols the CPU frequency from on-demand frequency scaling to full clock speed
permanently?. Indeed, this gave some performance gains as seen in Fig. 7.11
which shows the execution times for the bash-pipe example with the Linux ker-
nel governor set to performance and ondemand. The speed-up is not much, with
the best performance gain of nearly 6% being at 16 cores, as seen in Fig. 7.12
where the execution times of the ondemand and performance strategy are cor-
related. Additional tests of pinning® the worker threads onto dedicated cores to

2Scheduling strategies can  be  influenced by  setting  either  the
ondemand or performance option in the Linux system configuration file:
/sys/devices/system/cpu/cpux/cpufreq/scaling_governor

3Information about the threads: jstack -1 “pgrep --exact java"; Pin threads toa CPU
core: taskset -c -p cpuid threadpid
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avoid scheduling overhead between the cores has also been performed, but did
not reveal any performance gains; thus, no figures are shown.

=p== performance gain [%]

performance gain [%]
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No. of threads

Figure 7.12: Computebox: Performance gains (in percent) for the bash-pipe
example between the Linux kernel performance governor and the
ondemand governotr.

7.3.3 Optimizations

During the analysis of parallelization opportunities, it has become evident that
the current FSG creation implementation can be optimized as it considers En-
try Pointers (EPs) when performing the folding. In short, the folding is per-
formed whenever two vertices are of the same type and are connected with the
same strand connection configuration to a common parent vertex (called three-
vertices-condition). The implementation checks for the first condition, i.e., equal-
ity of the vertices, and if true performs the check of the three-vertices-condition.
When comparing two EPs, they are considered equal and thus trigger the three-
vertices-condition check. However, two EPs can never be folded and therefore can
be excluded from the analysis.
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With the theory of the DSI approach explained in the previous chapters, this chap-
ter describes the benchmarking of the DSI prototype, which is implemented in
Scala comprising ~10k LOC. The DSI benchmark is composed of real world ex-
amples, e.g., bash, X.org and tsort, examples taken from other benchmarks,
e.g., [20], examples taken from the literature, e.g., from Predator[65] and Fores-
ter [72] and synthetic hand written examples. The benchmarking assembled for
this dissertation contains examples from our previous publication [107], which
have been conducted by the author of this dissertation. The benchmark is dis-
cussed in more detail than in our publication, and additional examples are added
to the benchmark that where also evaluated by the author of this dissertation. The
chosen set of examples covers a good variety of data structures and implementa-
tion techniques. In order to give an overview of how the benchmark is set up, the
examples are categorized in Sec. 8.4 which also gives an overview of the additional
examples added to the benchmark that where not part of [107].

The benchmark itself'is discussed in Sec. 8.2, where certain aspects of the exam-
ples are highlighted. This includes more high level discussions of the usefulness
of DSI when the readability of the source code is poor or the code base is simply
huge and thus hard to comprehend. However, low level details are explained as
well, such as comparing connections between strands and how they evolve over
time in various nesting scenarios.

Further, the diversity of the benchmark also revealed limitations of DSI. Hence,
these examples are discussed in more detail to motivate future work. Specifically,
these real world examples are X. org [38] and tsort from coreutils [9].

Interestingly, one literature example shows that DSI cannot only be used as a
program comprehension tool, but can be used as a tool for debugging as well.
This turns DSI’s idea of pure program comprehension of unknown code around.
Instead, in the debugging scenario a priori knowledge about the example is avail-
able, but which does not match with the outcome of DSI. Thus, DSI is used to find
the mismatch between intended and actual program behaviour, instead of com-
prehending unknown code. The exploration of the example is a case study how
DSI performs in such a scenario and is detailed in Sec. 8.3.

All experiments were computed on an Intel i7-4800MQ with 32GB of RAM.
The results take in the order of tens of minutes to compute. For a more in depth
analysis regarding the timing behaviour of DSI, see Ch. 7.
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8.1 Compiling the DSI benchmark

This section first discusses in Sec. 8.1.1 the various categories of the examples
comprising our benchmark and, subsequently, gives a brief overview of the exam-
ples in Sec. 8.1.2 that are added within this dissertation but were not part of [107].

8.1.1 Categorization of examples

The benchmark for DSI is set up to cover a wide variety of DDSs and to maximize
the variety of implementation techniques employed in practice. This is achieved
by either testing the DDSs exclusively or by creating benchmarks with arbitrary
combinations of the DDSs with multiple nesting scenarios. Hence, the bench-
mark comprises real world examples (e.g., libusb, bash, rosetta-dll, xorg, tsort
and benchmarks: Olden/Debian), examples from the shape analysis literature
(Predator/Forester [65, 72]) (lit) and from textbooks [104, 108] (tb) and synthetic
self-written examples that test certain features of our approach not covered by oth-
ers [65,69,72], e.g., nesting on overlay or skip lists with additional nested payload.
The examples and results are shown in Tabs. 8.4, 8.5 and 8.6.

To minimize the bias in the synthetic examples, various implementation tech-
niques are covered by also adding synthetic examples from other authors, namely
from a master thesis [62] (mt) and a bachelor thesis [46] (bt) which are both con-
ducted in the context of DSI and supervised by the author of this dissertation.

All examples can be classified first by their source (real world, 1it, tb, syn, mt
and bt), then the contained DDS, and finally by the categories of Tables 8.1 and 8.2.
In the following, the purpose of the categories is discussed. The benchmark ex-
amples are classified according to the categories given in Tables. 8.1 and 8.2.

Nesting. This category aims at various nesting scenarios, such as arbitrary parent
child combinations. The nesting is tested both for indirect and overlay nesting
scenarios and with multiple numbers of children. Additionally, the parent and
child DDS are varied.

(C)/(DS) implementation sophisticated. Two implementation aspects are shown
by this category: (i) whether sophisticated C programming constructs are used
(C), such as pointer casts, e.g., employed by the LKL, or placing multiple parts of
one DDS inside a struct, simulating a CMA like behaviour; (ii) whether the DDS
implementation itself is sophisticated (DS), such as a complex SL implementation.

Cyclicity. Cyclicity, states whether the example contains cyclic strands. This is
important to study the strand handling of cyclic DDSs over their lifetime, as cyclic
strands require dedicated handling in the DSI implementation. Additionally,
DSI’s nesting predicates are tested in case of cyclicity.
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Table 8.1: Benchmarks (Part I) (see Table 8.2 for Part II of the benchmarks)
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syn2 BT I
lit6 BT I
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lit7 BT nst. ind. | v/ | DS v no I
CSLL
tsort BT nst. | v v I
ind./ovl. SLL
synl CDLL C/DS | / C M|/
synil CDLL C/DS [/ C M/T |/
bash CDLL v I
libusb CDLL (nst. |v | C/DS |V C M/I1
ovl. CDLLx 2)
tb2 DLL I
syn7 DLL I
lit5 DLL I
rosetta-dll | DLL C I
mtl DLL DS v |1
mt2 DLL DS an!
bt11l DLL C v |1
bt12 DLL C v |1
bt13 DLL C v |1
bt14 DLL C an!
bt15 DLL C I
syn5 DLL nest. ovl. | vV C no I
DLL
Xorg Hash Map v v I
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Table 8.2: Benchmarks (Part II) (see Table 8.1 for Part I of the benchmarks)
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bt2 SLL C IV
bt3 SLL v I/
bt4 SLL IV
bt5 SLL C RN
bt6 SLL C IV
bt7 SLL C RN
bt8 SLL v
bt9 SLL C IV
bt10 | SLL IV
lit4 SLL (3 x nst. ind. | v/ I
SLL)
lit3 SLL (nst. ovl. | v | C v C M/I
CDLLx 2)
synl0 | SLL (nst. ovl. SLL | v/ no |
X 2)
mt3 | SLLind. ovl. DLL | v | DS I
syn3 | SLLnst. ind. SLL | v/ | C S/C v | nol
syn8 | SLLnst. ind. SLL | V/ no I
syn4 | SLLnst. ovl. SLL | v/ | C S/C v |nol
syn9 | SLLnst. ovl. SLL | V/ no I
lit2 SLo2 DS I
syn6 | SLo2nst. ovl. DLL | v/ I
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Table 8.3: Additional benchmarks that test either previously untested DS or dif-
ferent programming constructs (tests where DSI detects the underlying
DS but not it's semantics, e.g., stack or queue, are denoted with v)

=
]
Type/ID Named DS B Reason for test
g
1it5 DLL v | break strands in the middle of DLL
rosetta-dll | DLL v | casts enclosing node to DLL node
syn7 DLL v | break strands in the middle of DLL
syn8 SLL + nest. SLL v | base case for nesting on
indirection one child
syn9 SLL + nest. SLL v | base case for nesting on
overlay one child
syn10 SLL + 2 xnest. SLL | v | base case for nesting on
overlay two children
synll CDLL v | stack based LKL through different
sized nodes
syni2 SLL v | SLL (strand) with two nodes (cells)
per vertex
tb3 SLL (V') | tests SLL with stack usage pattern
tb4d SLL (V') | tests SLL with queue usage pattern
mt1 DLL v | create different EPs
mt2 DLL v | handover DDS between EPs
mt3 SLL + nest. DLL v | create EP with partial
view upon DDS
bt1-10 SLL v | various SLL implementations
bt11-15 DLL v/ | various DLL implementations
1it6 BT v | alternative BT implementation
tsort BT + nest. SLLs X | BT implementation with sophisti-
cated
nesting showing limitations of DSI
Xorg Hash Map X | Hash Map implementation with ar-
rays
showing limitations of DSI
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Table 8.4: Results obtained from the prototypical DSI implementation (Part I)
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tb1l [104] SLL None/no SCs present
tb2 [108] DLL DLL: 1440, [2+0: 220 87%
tb3 [104] SLL I2+0: 38, 110: 3 93%
tb4 [108] SLL 12+0: 36, 110: 1 97%
synl CDLL CDLL: 15, 12+0: 10, DLL: 6 48%
syn2 Binary Tree BT: 248, No: 6, [10: 3 97%
syn3 SLL + nest. SLL Ni: 6,11;1: 2 75%
syn4 SLL + nest. SLL No: 10, SHN: 6 63%
synb DLL + nest. DLL Avg. 84%
syn6 Skip List + nest. DLL Avg. 89%
Np: 35,| Np:32,I1;: 15
A 17 TR T R -
syn7 DLL DLL: 273, I2+0: 22, No: 2 92%
syn8 SLL + nest. SLL Ni: 21, 111: 6 79%
syn9 SLL + nest. SLL No: 236, SHN: 27 90%
syn10 SLL + 2 x nest. Same-head-node SLL Avg. 99%
Ny: 5748, SHN: MNO: 5958, SHN: 123
synll CDLL CDLL: 27, 12+0: 21, DLL: 6 50%
syni2 SLL None/no SCs present
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Table 8.5: Results obtained from the prototypical DSI implementation (Part II)
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1lit1 [23] DLL of (DLL, DLL) OR Intersecting(2xDLL) Avg. 96%
DLL: 1818, 12+: 108, SHN: 9
DLL: 1623, DLL: 1980,
12+¢: 725, 12+,: 162, SHN: 9 124¢: 54, SHN: 9 |12+¢: 703,
SHN: 9 SHN: 9
DLL2fwqd
DLL: 1785, 12+: 108, SHN: 9
1it2 [23] SL SLoz: 1242, BT: 72, No: 58, 11o:8, SHN:3 90%
1it3 (23] SLL + nest. Intersecting(2x CDLL) Avg. 88%
1it4 [23] SLL (+ nest. SLL)x 3 Avg. 85%
NI 54,11:28 Ny 136, I1;: 14 NI 286, I1;: 7
1it5 [23] DLL DLL: 22422, 12+0: 1974, SHN: 30, No: 24, I10: 1 92%
1it6 BT BT: 180, No: 96, I1o: 15, SHN: 9 60%
1it7 [23] BT + nest. CSLL Avg. 94%

BT: 14454, N: 810, SHN:489

Parent BT\ Parent BT,y

Np: 11253, I1;: 208 Np: 11704, I1: 996
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Table 8.6: Results obtained from the prototypical DSI implementation (Part III)
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bash [10] CDLL CDLL: 68529, I2+¢: 72, DLL: 6 ~100%
treeadd [20] BT BT: 256 100%
treebnh [32] BT BT: 930 100%
1libusb [13] CDLL + nest. Intersecting(2xCDLL) Avg. 88%
DLL: 21789, I24: 15
"""" SNy 1975,  Ng:3945,— 7 f
No: d0a3, 192 10l T 742 Tos 742 0% T8 v g,
Ilo: 742 Ilo: 742
CDLL: 126963, CDLL: 24291,
,,,,,,,,,,,,,, 4o 318\ Mo:2720 \/ A2 N
rosetta-dll [5] DLL DLL: 276, 12+0: 27, No: 26, SHN: 12 81%
bt1-10 SLL None/no SCs present
bt1l DLL DLL: 138, [2+0: 18 88%
bt12 DLL DLL: 84, 12+0: 9 90%
bt13 DLL DLL: 246, I2+0: 9 96%
bt14 DLL DLL: 165, I2+0: 9 95%
bt15 DLL DLL: 165, 12+0: 9 95%
mtl DLL DLL: 30 100%
mt2 DLL DLL: 636, [2+0: 14 98%
tsort BT with nest. ind. bidirectional SLL ambiguous nesting detected

xorg

Hash Map not detectable by DSI
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Limitations. This category explicitly marks examples that show the limitations of
DSI. By researching these examples, directions for future work are opened up, and
ways of solving these limitations are discussed theoretically.

(S )trands winding through vertex / (C)ell abstraction. Two aspects are covered by
this category: (i) the cell abstraction is required for detecting the DDS (C); (ii)
the strand runs through one vertex multiple times (S). Both (i) and (ii) are tightly
coupled as (ii) requires (i) to function.

Base case strands.  This category covers the base cases for the strands, i.e., the tests
only contain an SLL which is the basic building block of DSI. These examples show
various usage patterns for the SLLs, such as different insertion patterns.

Short running. Short running examples are interesting for verifying whether the
correct label is still detected in such situations, i.e., if the evidence reinforcement
strategies of DSI allow for a quick convergence of the accumulated evidences.

(M)acros/ [no] (I)nterfaces. This category shows, whether the example uses ma-
cros (M) and whether the DDS is accessed via an interface ([no] I), e.g., functions
for insertion /removal of elements into lists. Both aspects are a problem for related
work such as DDT [74], which requires well defined interfaces.

Stack only. This category indicates, whether the DDS is placed completely on
the stack, which mainly acts as a corner case to show that the allocation site is
transparent to DSI.

Master and bachelor theses. This section offers some insight into the master [62]
and the bachelor [46] theses that emerged within the DSI project and from which
examples have been compiled in our benchmark. The examples used in both the-
ses, i.e., bt1-15 and mt1-3, were run through DSI. The DDS shape was given to
the authors of the theses as a requirement, e.g., SLL, DLL or the specific shape of
mt3, while the actual implementation was not enforced. This includes both the
coding style and the way operations are implemented. The results obtained by
running the examples through DSI were analysed by the author of this disserta-
tion with regards to the correctness of the identified DDS. The results of DSI were
then passed to the authors of both theses for input into their tool chain.

The master thesis [62], for which tests mt1-3 were created, generalizes the tem-
poral repetition of Ch. 6 to be able to match arbitrary FSGs and does not require
FSGs to be consecutive. The main intention for the examples are situations where
there exist multiple EPs that do not show the correct DDS label, but where it is pos-
sible to transfer the DDSs over time between various EPs to arrive at the correct
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DDS interpretation. This is accomplished by applying a generalized graph match-
ing between the various FSG seen by the different EPs.

Such a matching algorithm might be useful for increasing the performance of
DSI by not considering every event, but instead sample at non-contiguous time
points of an execution. For the core DSI implementation such tests are interesting,
because they add more variety to the benchmark (mt1-3), which further reduces
any bias in the test set and shows the generality of the approach, e.g., it is not
bound to any specific ordering of DDS operations.

The bachelor thesis [46], for which tests bt 1-15 were created, automates the cre-
ation of annotations for data structures that are verifiable by VeriFast [73], a formal
verification tool. Examples bt1-10 employ different implementation techniques
for an SLL. As SLLs are DSI’s atomic building blocks, i.e., strands, those examples
actas a base case benchmarks for DSI. The examples include, e.g., insertion of new
nodes into an SLL at different positions, e.g., head or tail, which investigates DSI’s
strand detection. Further, DSI’s cell detection is required by some of the exam-
ples, by placing the linkage struct inside a wrapper struct, making DSI’s cell ab-
straction mandatory. Additionally, multiple DLL implementations are evaluated,
which also use different implementation techniques such as a global pointer to the
DLL head and single or double pointers, e.g., passed as references to the insertion
function. In summary, the examples employ different DDS usage patterns and C
implementation techniques, showing DSI’s robustness to handle these situations.

8.1.2 Discussion of additional benchmarks

This section introduces additional examples added to the benchmark of this disser-
tation. It is mainly intended to clearly separate what has already been published,
though the examples are discussed in more depth than in [107]. The examples are
listed in Table 8.3, together with a short description for each example. This table
accompanies the classification of the examples presented before.

8.2 The DSI benchmark

A full instrumentation is performed upon all examples, with the exception of
bash, where only array.c and xmalloc.c are instrumented, and xorg, where
only the subcomponent div/resource.c is analysed. The bash real world exam-
ple uses a CDLL that is not a LKL. All examples focus on one main data structure
for evaluation purposes; however, our approach is not limited to the detection of
only one DDS.

We provide self-written drivers for the DDSs whenever required. The bash ex-
ample is triggered with a piped command in the fashion of 1s | grep <pattern>
and the 1ibusb example uses the listdevs utility provided with 1ibusb. The ex-
amples exercise a great variety, e.g., SLs, (cyclic) lists, BTs and combinations of
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those with various nesting scenarios of the 18 memory structures of DSI’s taxon-
omy, as shown in [107].

The results are summarized in Table 8.4, where ID gives a unique identifier for
each test. tb stands for text-book, syn for synthetic and 1it for literature used be-
fore. The real world examples each contain their name in the ID column. The col-
umn Named DDS shows the name of the DDS, according to the naming module
as described in [107]; the naming module is not part of this dissertation. The col-
umn Evidence count gives the label together with the observed evidence counts for
the strand connections over program execution. The highest ranked label found
for the DDS is highlighted in blue. Whenever the structure is too complex to be
described textually, the resulting ASG is shown, where vertices are strands and
edges are SCs. Finally, column % Supporting evidence states the percentage be-
tween the correct interpretation, i.e., the stable shape, and the interpretations of
the Degenerate Shape (DgS). In the following we will step through the table and
discuss selected aspects of the benchmark.

8.2.1 First SLL and DLL examples

Example tbl is a SLL, and thus, corresponds to a strand. This is the minimal
example that DSI can detect. As there are no other strands, no SCs and therefore
also no evidence counts exist. More specifically, the insertions into the strand are
always at the end of the strand, i.e., the strand is only extended without creating
multiple overlapping strands during the operation. This can be observed when
looking at example tb2 that shows a DLL. The shape is correctly identified by DSI,
as can be seen by the blue DLL label. However, the 12+¢ label is observed, which
indicates that the DLL is manipulated, i.e., is in a DgS during DDS operations,
where two strands exist that overlap at multiple intersection points but do not
fulfill the DLL label.

8.2.2 Short running example

The lowest evidence count is encountered with example syn1, which is a self-
written example utilizing the LKL. It only creates a short CDLL and then stops,
thus lacking any usage of the DDS that is not the common case, as DDSs nor-
mally exist for a longer period and are not constantly in a DgS. However, it is still
possible to detect the true CDLL shape of the LKL despite its short lifetime. Ad-
ditionally, the example consists mainly of DDS operations, which force the DDS
into DgSs but which does not hinder DSI to detect the correct DDS shape.

One might wonder, why a DLL label is observed without the cyclic property.
This stems from the implementation of the insert operation, where the previous
pointer of the first element is set first and the next pointer of the second element
is set next. So when inserting into the empty list, i.e., only the head exists, the
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newly added element results in a DLL that subsequently is turned into a CDLL
when setting the remaining previous and next pointers.

8.2.3 Skip list implementations

Example syn6 exercises the skip list detection of DSI in combination with nesting.
Skip lists are not covered by related dynamic analysis approaches [49, 69, 74], and
the shape analysis literature that covers skip lists [65,72] does not benchmark skip
lists with nested payload. The example shows that the nesting relation does not
interfere with the detection of the skip listand the DLL detection of the nested child
elements. It also demonstrates that the quantification of the strand connections
allows us to detect the nesting.

When considering the results of the 1it2 skip list example, one observes a mul-
titude of DDS interpretations (BT, No, 1o, SHN) that are all ruled out by the SL¢,
label. This stems from the complexity of the SLy, label according to DSI’s taxon-
omy. Hence, the skip list label outnumbers the DgS interpretations by magnitudes
when evidence counts are accumulated. The same behaviour is encountered with
the syn6 example.

8.2.4 Revealing unintended data structure semantics

1it1 is interesting, because it is comprised of two DLLs that run in parallel inside
one struct. As can be seen in the ASG, the DLL label is detected four times, which
can be interpreted as a DLL of two DLLs. Interestingly it is possible to detect the
DLLs in the various combinations of the forward and backward strands of the two
DLLs. Additionally, an interpretation as two intersecting DLLs is possible. The
multitude of interpretations are revealed by DSI but might not be immediately
visible to the programmer.

8.2.5 Structurally complex examples

Both libusb and 1it3 use the LKL; they are the most challenging examples, as
can be seen by the complex ASGs in Table. 8.4. Example 1ibusb has an LKL as
its parent list, while 1it3 has a SLL. Both examples have two LKL children, where
the list heads are embedded inside the parent struct. Both examples are discussed
in more detail in the following. In Sec. 8.2.5 DSI’s usefulness is shown when the
readability of the code is poor, as is the case with example 1it3. Subsequently, in
Sec. 8.2.5 DSI is discussed in the context of a huge code base, as is observed with
example 1ibusb.
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Usefulness of DSI: Poor code readability

The code for 1it3 is shown in Fig. 8.1. We consider even this small example
from [65, 72] hard to read, thus emphasizing the need for DSI’s program com-
prehension capabilities. When using DSI the overall DDS shape becomes clear
immediately, without studying the source code, just by looking at the graph for
1it3 in Table 8.4.

1 /* 40 #define create_sll_item (sll) {\
2 * Linux kernel doubly linked lists 41 pm = malloc(sizeof *pm) ;)\
300 42 pm—next = sll;\
4 * boxes: test —0098.boxes 43 lh = &m—>nestedl ;)\
5 %/ 44 create_dll (lh);\
6 45 lh = &m—>nested2 ;)\
7 struct my_item { 46 create_dl1l (lh);\
8 struct list_head link; 47 lh = NULL;\
9 void *data; 48 sll = pm;\
10 }; 49 pm = NULL;\
11 50 }
12 #define append_one(head)) 51
13 {\ 52 #define destroy_sll_item (sll) {\
14 now = malloc(sizeof *now);\ 53 pm = sll;\
15 now—>data = NULL;\ 54 sll = sll —>next;)\
16 lh2 = &now—>link ;)\ 55 lh = &m—>nestedl ;)\
17 lh3 = (head)—>prev;\ 56 destroy (1h);\
18 __list_add (lh2, 1h3, head);\ 57 lh = &m—>nested2 ;)\
19 lh2 = NULL;\ 58 destroy (lh);\
2 1h3 = NULL;\ 59 lh = NULL;\
21 now = NULL;\ 60 free (pm) ;\
2} 61 pm = NULL;\
23 62 }
24 struct master_item { 63
25 struct master_item *next; 64 int main ()
26 struct list_head nestedl; 65 {
27 struct list_head nested?; 66 struct master_item *sll = NULL;
28 }; 67 struct master_item *pm;
29 68 struct list_head *lh,*1h2,*1h3;
30 69 struct my_item *now,* next;
31 #define create_dl1l(dll)\ 70
32 {\ 71 /* Manually controlled number of <«
33 (dll)—>prev = dll;\ sll items */
34 (dll)—>next = dll;\ 72 create_sll_item (sll);
35 append_one (dll) ;)\ 73 create_sll_item (sll);
36 /* Manually controlled child <« 74
elements */ 75 return 0;
37 append_one (dl1l) ;)\ 76 }
38\
39 }

Figure 8.1: Source code excerpt of 1it3 [23] with the Linux kernel list macros and
dead code sections removed. Manually adjusted number of elements
are indicated by comments.

When consulting the code, this shape is much harder to infer manually. The
inner workings of the macros are dominated by cryptic variable names, where the
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semantics can only be guessed, e.g., pm (line 67) or 1h (line 68), and the lack of
documentation. The (nested) usage of macros additionally refers to the variables
similarly to global variables, because all of them are placed inside of main. All
macros are also used inside of main, which makes reading the code even harder.
One general problem when dealing with the LKL becomes evident with the structs
my_item (lines 7-10) and master_item (lines 24-28), as it is not clear how the
nested LKL structs are meant to be connected without looking at the code. This
stems from the generality of the LKL that can link arbitrary elements. Therefore,
this example also shows where the cell and strand abstraction is required to find
the commonality when linking elements of different types, i.e., master_item ele-
ments with my _item child elements. For example, MemPick [69] cuts connections
between nodes of different types, which will diminish the precision of its analysis
in scenarios where the DDS is composed of nodes of different types.

The heavy macro usage of Lst. 8.1 is not only hard to read for the programmer,
but even is a problem for related work, such as DDT [74], because it relies on
well defined interface functions. For DSI, this is not a problem as such strong
assumptions are not present. The topic of interface functions is also addressed
within this dissertation when dealing with binaries in Pt. II (see Sec. 12.2); inlining
performed by a compiler might prevent well defined interface functions.

Usefulness of DSI: Huge code base

Example 1ibusb is a C user space library that provides access to USB devices [13].
Contrarily to example 1it3 regarding code quality: the code is well structured and
documented, but overwhelms the developer by its sheer length of about 7k LOC.

libusb allows for multiple simultaneous usages within one executable, by orga-
nizing multiple struct libusb_contexts in a LKL parent CDLL. This behaviour
is simulated by us by modifying the 1istdevs example, contained in the 1ibusb
source code, to use three contexts instead of one. In our scenario, each 1ibusb_-
context records an LKL of USB devices and an LKL of associated file descriptors,
which corresponds to the ASG displayed in Table 8.4. The knowledge of the under-
lying DDS representation should be of much help when diving into the thousands
of lines of C code.

Both 1ibusb and 1it3 also show the 11 connections between the parent and
child strands, because each child strand has exactly one cell inside the parent, i.e.,
namely the child CDLL's head node. The cyclicity of the children results in the 114
label; otherwise, the same-head-node label (SHN) would have been applied.

Additional benchmarking is conducted in Sec. 8.2.7 to prove that DSI correctly
identifies the SHN label in the absence of cyclicity.
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8.2.6 DLL implementations

Examples 1it5, rosetta-dll and syn7 all implement a DLL. The difference
among them is the way in which the DLL is implemented, e.g., where new nodes
are added into the list. Example syn7 inserts an element in the middle of the DLL,
thus breaking the strands instead of just extending them as is the case when in-
serting to the head or the tail of a DLL. Example 1it5 is chosen, although it also
inserts into the middle of the DLL; however, it is an example from the literature
and thus eliminates bias. Additionally, the insertion takes place behind and in
front of a fixed element of the DLL, which resembles an insert after the head el-
ement of the list but in two directions. The third DLL example rosetta-dl1l is
chosen because it also embeds the linkage struct inside of the payload element,
as does the LKL. Therefore an alternative implementation to the LKL technique
is tested but without cyclicity. The results show that DSI is still able to detect the
correct shape for all three examples, which emphasises the robustness of DSI, in-
cluding temporal and structural repetition that are based on the quantification of
strand connections, see Ch. 5.

Additionally to the above examples, a real world CDLL example has been taken
from the bash source code. The example is chosen as it exposes a non LKL-like
CDLL implementation. Again, the labels show intersecting on multiple nodes
overlay, as example tb2, as well as a standard DLL label. The latter is introduced
when connecting the first two nodes of the CDLL without the cyclic links being
established. After the cyclic links are set, further list manipulating operations
only show intersecting on multiple nodes. The overall evidence for the CDLL is
overwhelming and outnumbers both degenerate shapes.

8.2.7 Nesting scenarios

The examples sny8-10 all target the nesting behaviour, with only SLLs for the par-
ent and the children. The difference lies in the nesting relation, which is either
overlay or indirection. Further, the number of children per parent node is either
one or two. The examples run longer than examples syn2 and syn3, where the
DDS is placed inside of one enclosing vertex, i.e., inside a struct. Example syn8
tests the indirect nesting relation to one child and syn9 the overlay nesting to one
child, where the parent node type is also used for the child nodes, thus resulting
in nesting on overlay. Example syn10 creates a parent SLL with two SLLs nodes
embedded inside the parent, which function as the head of the child lists. This
test again aims at the nesting-on-overlay scenario, but it also shows the relation
between the two child SLLs as being of type SHN (same-head-node), which is cor-
rectly identified by DSI. This demonstrates the precision between the different
connection types that are detectable, as a comparison with the examples 1it3 and
libusb from Table 8.4 reveals that the connections for those examples are detected
as I1p. This difference stems from the cyclicity of the child elements in the lat-
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ter examples, which eliminates the notion of a head node. Again, syn8-10 are
correctly identified by the DSI tool.

With example syn5, the nesting on overlay case is tested with DLL child el-
ements connected via nesting on overlay to the parent DLL. For both the parent
and child elements, the DLL connections are discovered by DSI. Both connections
record the 12+¢ label, indicating the degenerate shape during list manipulation,
where the forward and backward strands of the DLL intersect on more than one
node, but not in all nodes, e.g., during insertion where one strand is temporar-
ily longer than the other. When considering the parent child connections, three
different labels are recorded: (i) nesting on overlay, (ii) intersecting on one node,
and (iii) same-head-node. The last label is only present on the first connection
shown on the left of the corresponding ASG in Table 8.4. This connection is be-
tween the first element of the forward strand of the parent and the first element
of the forward strand of the child strand, which indeed share the same enclosing
struct. The remaining connections are correctly classified as intersecting on one
node overlay. Overall, the correct nesting on overlay relation dominates.

Example 1it4 tests multiple nesting levels, where each parent and child relation
has a different data type, i.e., there only exists a nesting on indirection relation.
When observing example 1it4 in Table 8.5 indeed the SLL strands can be seen
for the various nesting levels. Additionally, the nesting on indirection relation
dominates at all levels. The evidence counts for nesting on indirection increase
top down, while the intersecting on one node indirection decreases top down. This
reveals two things: (i) the longest running EP is not attached to the finished DDS
but has observed both the stable and degenerate shapes; (ii) the nesting relations
for the child elements accumulate faster due to more child elements being folded
during FSG creation, i.e., the child elements show more nesting evidence when
compared to the top-level parent strand.

8.2.8 Data structures on the stack

Two corner cases are tested with examples syn11 and syn12. The first creates an
LKL CDLL on the stack, similar to syn1 from Table 8.4 but with differently typed
payload nodes, which results in three differently typed nodes in total: the struct
list_head plus the two payload nodes. In fact, those scenarios are transparent to
DSI due to its cell abstraction.

The example shows that the placement on the stack imposes no problem for
DSI and that the cell abstraction allows for the detection of the CDLL even when
more than two differently typed elements are present. Two differently typed el-
ements are tested with examples syni, 1it3, 1ibusb from Table 8.4. Example
syn12 creates a short SLL that is composed of four cells, where the first two cells
reside in one vertex and the last two cells reside in another vertex. The setup is
chosen to focus on the correct cell detection and subsequently the strand creation.
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8.2.9 Binary tree implementations

Both examples treeadd and treebnh exclusively show the binary tree label, which
happens when the longest running EP gets attached to the BT after it is con-
structed, i.e., there are no more DDS operations. This is in contrast to, e.g., the
previously discussed example 1it4, where the EP observes both stable and degen-
erate shapes.

Test 1it6 is another BT implementation taken from the VeriFast [73] test cases.
[t adds to the number of different binary implementations tested by DSI to demon-
strate that DSI can cope with a wide variety of BT implementations.

8.2.10 Limitations of DSI revealed by X.Org

The Open source X Window System implementation (X.Org) has over 380k lines
of C code. Therefore, only an interesting subcomponent is analysed (div/resour-
ce.c) that handles client resources with a hash map. Clients are represented as
an array of struct _ClientResource pointers, with one entry for each client. In
turn, each struct _ClientResource struct has a pointer to an array of struct
_Resources, which functions as the bucket array of the actual hash map. The
struct _Resources are organized as anSLL in order to handle key collisions.
This is a prominent example of how a DDS not only comprises strands but a
combination of arrays and strands. The case study shows that DSI is capable of
detecting both the bucket array and the bucket SLLs as strands. The final detection
of the hash map however fails, as DSI only recognizes the SLL strands but not the
array as part of the DDS. This hash map implementation is thus a motivation for
modeling arrays into the strand abstraction, although they are not an SLL.

8.2.11 Discussion of arrays and strands

As pointed out by the xorg example discussed in the previous section, DSI does
not consider arrays for building a DDS. A straightforward implementation of this
would be to model each array as a strand. This requires the detection of arrays
by the instrumentation. Then, the array could be transformed into a strand by
treating each element of the array as a cell.

One fundamental difference to the current strand implementation would be
that a strand of arbitrary length can be created within one time step. When track-
ing pointer writes, the strand develops over time, where the initial length is always
two. For arrays, the linkage offset would need to be simulated, as no pointer con-
nections between the elements are present. This can be simulated by choosing
an arbitrary yet consistent offset among arrays of the same type, e.g., zero. One
needs to pay attention to special cases, where the elements of the array get linked,
as is the case with the cache optimized singly linked list [47]. Here, a design deci-
sion would need to be made, whether arrays are always treated as strand entities,
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leading to intersecting list interpretations when such additional linkages within
the array occur. Alternatively, the array strand could be discarded, when linkage
conditions inside the array are observed that lead to the creation of strands. The
latter choice can be seen as treating the array creation as a custom memory alloca-
tor. With this abstraction, it would be possible to also handle situations where an
array is directly embedded into a struct, as is the case with a flexible array member?,
which requires one to find the first cell element of a strand. When modeling each
element of the array as one cell, the calculation of the SC as described in Ch. 5 is
also transparent to DSI.

8.2.12 Requiring semantics to reveal true shape

The two textbook examples tb3 and tb4 are similar to tb1 from Table 8.4 in that
the underlying DDS is an SLL. They differ in the way the SLL is used: tb3is a stack
and tb4 a queue. Because the semantics are not detectable by DSI, the results in
Table 8.3 are in brackets, as DSI indeed detects the underlying SLL but does not
report a stack/queue. The semantics detection could be enabled by adding opera-
tion detection in the future. It would then be possible to take pre/post-conditions
for the operations into consideration. However, both examples show that the way
in which the DDS is used (stack vs. queue in this case) does not influence the
detection of the correct underlying data structure, i.e., the SLL.

Another example is the hash map implementation of X.Org. In this case, given
that pointer arrays would be turned into strands as discussed previously, the re-
sulting interpretation of the DDS would be parent child nesting on indirection.
The array would be the parent strand and the bucket SLLs are the child elements.
Thus the interpretation of a hash map in the X.Org example and the general par-
ent child nesting scenario is ambiguous. Hence, the shape would be detectable
by DSI, but the semantics, i.e., the usage as a hash map, would escape DSI. This
problem is analogous to the stack (tb3) and queue (tb4) examples, where the un-
derlying DDS is detectable but the final interpretation as stack/queue cannot be
made by DSI. However, the problem of observing a hash map with DSI is even
harder than detecting an SLL functioning as a queue or stack. For the hash map,
the detection of the DDS operations is insufficient, because the insertion/removal
characteristics are not as revealing as is the case with a queue, i.e., the insertions
and removals into/from the hash map are more vague. One might need to fall
back to less revealing patterns such as inserts following the pattern of indexing
into the array, first and then iterating the bucket to find the place for inserting the
element. Also array iterations should occur less frequently, because the buckets
are indexed by the hash value which makes the accesses non-sequential. Only spe-
cial cases dealing with the consistency of the hash map, e.g., rebuilding the hash

https://en.wikipedia.org/wiki/Flexible_array_member last accessed 4th of November 2018,
http://www.open-std.org/jtcl/sc22/WG14/www/docs/n1256.pdf last accessed 4th of November
2018
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map, might fall back to iterative accesses. This type of analysis is not considered
in this dissertation and is left for future work.

8.2.13 Limitations of DSI revealed by tsort

Another case study is that of tsort from the GNU Core Utilities (coreutils) [9]
which performs a topological sort. The underlying data structure consists of a
binary tree of type struct item, and SLLs of type struct successor running
between the nodes of the tree. Additionally, an SLL is directly traversing the binary
tree nodes on the struct item *qlink pointer. This layout can be seen in Fig. 8.2.

DSI correctly identifies all strands and strand connections as shown by the ASG
in Fig. 8.3. This leads to the correct identification of the following two parts of the
overall DDS: (i) The two strands for the binary tree (struct item field left and
right) are detected and DSI infers the BT label between them; the two additional
SLLs are also detected, with strand struct itemon field qlink and strand struct
successor on field next (ii) The connection between the qlink and the next field
is indeed on indirection, as there exists the top pointer inside the struct item,
which connects to the struct successor. Therefore, the qlink strand has a
pointer connection to the next strand, where the qlink acts as the parent and the
next strands act as children, resulting in the indirect nesting detection.

Ambiguous nesting cases

However, the following two problems arise with the current DSI approach: (i)
The connections between the qlink strand and the left and right strands are
identified as No, because all three fields run through the binary tree nodes of type
struct item. This results in overlay connections where the qlink acts as the
parent, from which the 1eft and right strands are hanging off as children. As we
consider the main DDS to be the binary tree, this makes a nesting interpretation
where elements of the binary tree act as children of the qlink strand misleading;
(ii) An ambiguous nesting on indirection (Nj) is detected between the right and
next strand (and in principle between the 1eft and next strand, but this situation
is discussed separately below). Here, both interpretations are valid, as the right
strands act as a parent from which multiple next strands are hanging off. But
since the next strand points back to multiple right strands, it also acts as a parent
for the right strands.

The ambiguities of (i) and (ii) stem from the initial assumption that the nesting
direction automatically infers the correct parent child relation. While this works
for many examples, the assumption does not hold for tsort. Therefore, the main
data part of the data structure, i.e., the parent, needs to be detected separately from
the DDS detection, in order to arrive at a consistent naming. In this case, we would
consider the binary tree as the parent, thus choosing the nesting from the binary
tree to the SLLs.



112 8 Benchmarking

Data type [Size] Address [Boxes|

ictitem *[8 | 76fd67c89a0]
| 7#ffd67c89a7]
o
Field name Size[Address| Boxes|
memory region 1H11d0[4
str 1£F11d0
b left 11148
Ficld name | Data type [Size] Address |Boxes| right 1£f11e0
[memory region| struct item *[8 [ 7fffd67c8%a8 balance int 161 1e8
memory region end || compiler padding|byte 1ff1 lec
count 11110
qlink 11158
op 111200
[memory region end 161207
17
Field name Data type__[Sice]
[memory region _[struct item 56 [1ff12a0[4,7
str [charconst_* |8 [1ff12a0
leit Structitem * 8| 11128
right Structitem * |8 | 161200
balance int 4 [1f1208
mpil y 4 [1ffi2be
..... « unsigned long_[8_| 11712c0
qlink Structitem * 8| 1112c8
op struct successor ¥[8 | 11120
[memory region end 11127

e [Data type]Size[ Address|Boxes|
[memory region|char |8 [1f12¢0]
[memory region end [1r2e7]

]
161360 e | Datatype [Size] Address |Boxes|
11360 [mem structiitem *[8 | 7fffd67c89b0]
11368 [memory region end | |
11361

Ficld name Datatype _[Size] Ficld name Data type _[Size] Address| Boxes|
[memory region_|struct item 56 [1111300[4 [memory region_|struct item 56 [111380[7
st charconst_* |8 [1111300) st charconst_* |8 [111380)
leit truct item 8 [1f1308 left structitem * |8 | 1171388

ht Suwuctitem |8 [1f11310) right structitem * |8 | 171390
balance int 4 [imi3is balance int 4 [1f1398
[compiler padding|byte 4 [imiie compiler 4 [1f139¢
[count 8 [0 || [comn 0 u 5 [1ff13a0
[qtink 8 [1fr1328 qlink E 5 [iffi3a8

8 [1171330] top E 11130
161337 [memory region en 161307

50

Field name_[ et type[Size] Addrew[Borey
[memory region|char |8 [Iff13c0]
| memory region end [1r3e7]

Field name _[Data type]Size[ Address| Boxes|
[memory region|char |8 [1f1340]
| memory region end 11347

Figure 8.2: A points-to graph for one time step, when running tsort. The bi-
nary tree nodes are formed by struct item nodes, the singly linked
list is formed on struct successor nodes. Blue nodes are pointers
into the data structure. Moreover, blue nodes referenced by the data
structure (by field str of struct item) are abstracted char arrays.
structs are indicated by orange fields marking the start and end of
the struct memory region. Pointer members of a struct are colored
as follows: (i) uninitialized pointers are grey; (ii) pointers pointing to
valid memory are blue. Paddings added by the compiler are yellow.
The remaining primitive types are colored pinkish.
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A way to tackle this situation might be to track the access patterns to the data
structure, where traversal patterns should start inside the parent and then con-
tinue to the child elements. Such a traversal detection might also help one to per-
form a hot-spot analysis within the DDS, for finding which areas are frequently
accessed. This might enable performance bug detection similar to Travioli [89]. In
order to increase the confidence level for the parent, one could additionally mon-
itor to which parts of the DDS the EP is connected first; the intuition is that the
parent part of the DDS is created prior to the child elements.

8.2.14 Segmentation of event trace and convergence of evidence counts

The tsort example shows one additional aspect for future work, which is choosing
the most complex DDS interpretation even though it has not accumulated the
highest evidence count. This can be seen when looking at the connection between
the left pointer field back to next pointer. This setting shows the "intersecting
on one node indirect” (I1;) label as the highest ranked label. Nevertheless the
structurally more complex Ny label is present as well, but is not able to outperform
the I1; label. One could think of segmenting the trace into subparts, in which
another label than DSI’s final interpretation dominates. This could be helpful in
situations where DDSs are short lived, i.e., where the buildup phase showing a
degenerate shape likely outnumbers the Stable Shape (StS).

The additional information about time periods in which the DDS is in a struc-
turally more complex state might help the developer to gain a deeper understand-
ing of the DDS, by inspecting those time steps. This information should be seen
as an addition to DSI’s final interpretation that reports the highest ranked label,
as only the overall interpretation of the DDS reflects that the DDS was in a DgS
most of the time.

The segmentation could be performed by observing each label of the final in-
terpretation that contains all labels collected by means of temporal and structural
repetition, individually over time. The idea is to start monitoring each label from
the time step of its first occurrence in order to see how the ranking of the observed
label develops. The problem lies in the question when to stop this intermediate
analysis. If one lets the analysis run until the last occurrence of the inspected label,
the segmentationwise interpretation might suffer from the same problem as the
global analysis, i.e., a long period where the DDS is in a DgS again outnumbers the
StS. When considering short time periods that show a structurally more complex
label than the final interpretation, might result in noise during the creation of the
DDS and cause too much attention. Here, one could think of parameterizing the
inspected interval similar to the quiescent period detection done by MemPick [69],
where the DDS is only inspected during certain intervals.

This future work topic is somewhat connected to the question when DSI will
converge to the correct DDS label. By allowing timewise segmentation with dif-
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ferent interpretations of the DDS, the problem of when the evidence collected
by DSI converges to the true DDS shape might be alleviated to a certain extend.
The general problem of not knowing when to stop the analysis still remains, as
changes can happen at any time to the DDS. For example, consider a DLL where
the forward linkage is created first, i.e., only one SLL exists. The backward linkage
is created subsequently and thus, when stopping the analysis short, the true DDS
might never be observed. However, with the finer grained examination of how
labels evolve over time, one could visualize the rise of a label that is just not able to
ultimately outweigh the other interpretations, e.g., due to cutting the trace short.

The previous discussion and the rather short running syn1 example also raises
the question, whether one can make a statement about how fast a DDS converges
to its StS. This question cannot be answered in general. The characteristics of a
dynamic analysis is to analyse exactly what it records. Therefore, one always gets
additional approximations when trying to cut the analysis short and stopping at
a random point of the recorded trace, because arbitrary changes to the DDS can
happen at every time step. Consider the creation of a parent DLL with child SLLs.
It may well be the case that the parent DLL is created first, without any children.
Thus the evidence for the DLL might already be overwhelming, which could be
used as an indicator to stop the analysis. This would then lead to missing the
nesting relation to the child SLLs, which are created and/or connected later. Even
when exploring the complete execution trace, one cannot generalize that the ob-
served data structure is the only possible shape exposed by the particular program.
It is only a precise representation of the recorded trace.

One aspect that could be used as a hint to make an educated guess, whether a
DDS has reached a StS is the monitoring of the available pointers within a detected
DDS. If all pointers are assigned and an overwhelming evidence for a particular
DDS was found, one might consider to stop the analysis short. Again, this is only
an approximation as restructuring of the DDS can happen at any time during
further program execution.

8.2.15 Removing parts from a data structure

The discussion of the previous section must also be considered when elements
are being removed from a DDS. This additional aspect is currently not covered by
DSI, i.e., the removal of elements from the ASG is not supported. The current
implementation only aggregates elements into the ASG, but never removes parts
from the ASG. This is beneficial as the DDS is covered completely over its life-
time, as we have seen with the multitude of examples discussed in this chapter.
However, this neglects the collection of evidence for the absence of parts of the
DDS once they have been recorded. Consider the example where a parent child
relation is present for sufficiently many time steps for DSI to accumulate enough
evidence for the detection of nesting on overlay. This relation will thus be reflected
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by the ASG, however, if the majority of the lifetime of the DDS does not have this
particular parent child relation, e.g., because the child elements are removed, this
fact is neglected.

Therefore for future work, it will be interesting to also gather evidence for the
absence of elements within the ASG. This will give the analyst an even more fine
grained insight into the usage patterns of the DDS.

8.3 Case study: Debugging with DSI

This section shows how a programmer is supported by DSI to gain insight into
the behaviour of a program, and how this can help in debugging source code. The
example is taken from Predator [23] and is described within the test case (called
1it7) as “A tree of circular singly linked lists”. The intuitive expected behaviour
would be that each element of the binary tree has a CSLL child as payload. There-
fore, the test case is of interest as it targets DSI’s nesting detection in a previously
untested combination, i.e., a binary tree with nested CSLLs. When executing the
test with DSI, the expected DDS as stated by the test is not observed. Instead, the
reported DDS is a binary tree with one CSLL child element, as can be seen by DSI’s
ASG in Fig. 8.4. Here, the 1left and right strands of type struct TTreeNode are
connected with a BT label, but the next strand of type struct TListNode forming
the CSLL is connected to the binary tree strands only via I1;. Further investigation
reveals that this is indeed the correct interpretation of the DDS as produced by
the example. Because the unexpected behaviour occurs with the creation of the
child elements, the programmer is pointed to the code sections dealing with the
child creation, which are lines 20-26 and 35-46 of Figure. 8.6, (Note that this listing
includes both versions of the test, the original and the modified).

When inspecting the source code in more detail, one observes that the tree
pointer points to the first element of the tree, and the first element of the CSLL
is allocated and assigned to the tree node in line 20. Line 21 initializes the child
CSLL to point to itself. Note that DSI does not recognize a strand for an element
pointing to itself, because a strand requires at least two distinct cells. Then, lines
22-26 insert more nodes into the CSLL, where the first insertion results in a strand
creation by DSI, which gets extended with subsequent inserts.

In order to avoid side tracking of the reader, some code sections for building
the tree is truncated in Figure 8.6 as indicated by line 31. The skipped routines
include, e.g., iteration of the tree and decision routines where to insert a new tree
element, are not of interest for the child creation. The child CSLL of the new
node newNode is initialized in lines 35 and 36, which is analogous to lines 20 and
21. Then, the remaining elements are inserted inside a loop (line 38, analogous
to line 22). The original implementation is shown in lines 41 and 42, which are
identical to lines 24 and 25; thus, the tree pointer is used instead of the newNode
pointer. The tree pointer is not updated elsewhere; therefore, the CSLL elements
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are inserted into the tree element instead of the newNode. Whether this behaviour
is intentional or a bug, cannot be said.

However, the usage of DSI quickly reveals the specifics of the code, which in this
case is not exactly the behaviour expected when reading the test case description
“A tree of circular singly linked lists”. The analysis of the code with DSI leads to the
code changes as seen in line 44 and 45, which actually uses the newNode pointer
for inserting the new CSLL elements. The resulting ASG for the modified code is
shown in Fig. 8.5, which now shows the Nj label from the 1eft and right strands
pointing to the next strand.

In conclusion, this example shows how DSI helps programmers to quickly com-
prehend program behaviour. It also points out that DSI is not only helpful for a
programmer who is confronted with unknown code, but also for a programmer
who is looking to verify program behaviour that he or she expects. Because the
ASG represents the DDS the misbehaving part can in this case be narrowed down
to the child creation, which guides the programmer to the corresponding code
sections. This can either be done by reading the code, or by using the informa-
tion stored inside of the event trace generated by DSI, as the instrumentation also
records line numbers for pointer manipulations.

8.4 Summary of benchmarking

The benchmarking results show that DSI can cope with a large variety of DDS
shapes and implementations. We have seen various implementation techniques
of data structures, ranging from real world examples, examples from the litera-
ture, textbook and synthetic hand-written examples from the author of this disser-
tation and authors of two student theses. This underlines the robustness of the
DSI approach. Especially, the limitations of related work, e.g., [49, 69, 74], with
regards to the handling of nested structs as used by the Linux kernel list imple-
mentation were verified. Additionally overlay nesting was successfully identified
by DSI, which is also not covered by related work. DSI was exposed to difficult ex-
amples, such as very short running examples, in order to prove that the evidence
reinforcement, i.e., structural and temporal repetition, works.

Additionally the benchmark revealed open areas where DSI can be improved.
These became evident, when benchmarking DSI on prominent examples from
the open source community such as X.Org [38], which creates a hash map out of
an array with SLLs. DSI does not handle arrays and, thus, is not able to identify the
hash map. A possible way to handle arrays as strands was discussed as a direction
for future work. With the tsort example from the coreutils [9], which performs
a topological sort, the shortcoming of DSI not being able to handle ambiguous
nesting scenarios, was exposed. A possible solution for future work was discussed
to tackle this problem by, e.g., tracking the usage patterns of the data structure.
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Overall, it was shown that DSI’s novel memory abstraction in the form of cells
and strands works well in practice. Multiple different data structures such as
(cyclic) DLLs, SLs and BTs and various combinations in the form of overlay and
indirect nesting are correctly identified by DSI. Additionally, the discovered short-
comings seem to be not a general problem of the approach, but they are rather an
interesting topic for future work to extend DSI’s capabilities.

Further, it was shown by a case study that DSI cannot only be used to gain insight
into an unknown code base, but can also be used to analyse code with a priori
knowledge, so as to find unexpected program behaviour. This opens perspectives
for DSI being used as a debugging/manual verification tool by a developer during
program development.
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EP

t: 92 tag: ptr off: 0:8

strand
struct TTreeNode: field(@8): right

t: 51 tag: ptr off: 0:0

t: 92 tag: ovl off: 0:8
N: 72->68, 68->72

BT 660 (330)
SHN 345 (115)
t: 92 tag: ptr off: 16:0 strand
I1i 253 (253)
ccNoClassificatior0 (253) struct TTreeNode: field(@0): left
t: 51 tag: ptr off: 16:0
I1i 271 (271)
strand

struct TListNode: field(@0): next

Figure 8.4: 11t7 [23]: DSI’s aggregated strand graph showing the BT label for the
parent and the I1; label for the child element, which hints at a differ-
ent implementation of the test case than has been expected: not every
binary tree node has a nested cyclic singly linked list.
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EP

t: 162 tag: ptr off: 0:8

strand
struct TTreeNode: field(@8): right

t: 91 tag: ptr off: 0:0

t: 162 tag: ovl off: 0:8
N: 260->518, 518->260
BT 14454 (7227)

strand

struct TTreeNode: field(@0): left

t: 162 tag: ptr off: 16:0

208 (208)

t: 91 tag: ptr off: 16:0

I 996 (996)

strand

struct TListNode: field(@0): next

Figure 8.5: 11t7 [23]: DSI’s aggregated strand graph showing the BT label for the
parent and the expected Nj label for the child elements, after modifying
the initial test case.
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1 /% A tree of circular singly linked<
lists */

2 typedef struct TListNode ({

3 struct TListNode* next;

4 } ListNode;

5 typedef struct TTreeNode {

6 struct TTreeNode* left;
7 struct TTreeNode* right;
8 ListNode* list;

9 } TreeNode;

10 #define DSI_TREE_ELEMS 20 // DSI

11 #define DSI_LIST_LENGTH 7 // DSI

12 int main () {

13 int i,e; // DSI

14 TreeNode* tree =
tree));

15 TreeNode* tmp;

16 ListNode* tmplList;

17

18 tree —>left = NULL;

19 tree—>right = NULL;

malloc (sizeof (¥«

20 tree—>list = malloc(sizeof (+
ListNode));
21 tree—>list —>next = tree —>list;
22 for(e = 0; e < DSI_LIST_LENGTH; e«
++){//DSI
23 tmpList = malloc(sizeof (+
ListNode));
24 tmpList—>next = tree —>list —>«
next;
25 tree —>list —>next = tmpList;
%}

36

37
38

39
40
41

42
43

44
45
46

47
4}

121

while (i < DSI_TREE_ELEMS){//DSI

}

tmp = tree;

TreeNode* newNode;

/* Skipped tree iteration for <«
newNode insertion */

newNode—>left = NULL;

newNode—>right = NULL;

newNode—>1list = malloc(sizeof (*+
newNode—>1list));

newNode—>list —>next = newNode—><«—
list;

for (e = 0; e < DSI_LIST_LENGTH; <«

e++){//DSI

tmpList = malloc(sizeof (+
ListNode));

// Original: insertion
first node

tmpLlist—>next =
next;

tree —>list —>next = tmpList;

// Modified: insertion into <
newNode

tmpList—>next = newNode—>list «
—>next;

newNode—>list —>next = tmpList«

}

into <«

tree —>list —>«

H

Figure 8.6: Source code excerpt from example tree-with-cslls taken from Pred-
ator [23], with modifications done to control the number of created
elements. In addition the code section responsible for the creation
of a child cyclic singly linked list for each binary tree node has been
changed from the original example which created a child cyclic singly
linked list only for the first node in the tree.






9 Conclusions

In Pt. I of this dissertation, our first research question was addressed:

Research Question 1: Isthe DSI approach adequate to reach its goals
of automatically detecting dynamic data structure shapes with high
precision in the presence of degenerate shapes and, in particular, how
far must the DSI concept be refined in order to deal with the wealth of
dynamic data structure implementations employed in real-world soft-
ware?

This question was answered positively by deepening and realizing the DSI ap-
proach to arrive at a research tool comprised of ~10k LOC of Scala. The tool was
evaluated by a diverse benchmark including real world examples (libusb, bash),
hand-written and text-book examples, and examples taken from the shape anal-
ysis literature. The performed benchmark showed that DSI outperforms related
work [49, 69, 74] regarding, various nesting scenarios including arbitrary nesting
combinations of DSs, previously unhandled DSs such as skip lists, and when run-
ning through nodes of different types such as in the Linux kernel list.

On the way of realizing DSI, Challenges 1.1-1.2 were solved:

Challenge 1.1: Can DSI’s graph abstractions be kept consistent in
the face of common memory events such as memory (de-)allocations,
pointer writes and even programming errors?

This first challenge was tackled by the introduction of artificial memory events,
which are injected into the event trace if (i) an event implicitly cuts pointers
to/from a memory region or (ii) memory is leaked as observed by our memory
leakage detection algorithm that is able to report the exact instruction that caused
the leak. Both (i) and (ii) together guarantee the consistency of DSI’s memory ab-
stractions, i.e., keeping DSI’s points-to graphs and the associated strand graphs
in sync with the heap state. This is fundamental for DSI’s analysis in order to
handle common programming situations such as frees, and to be resilient against
programming errors. During the memory leakage analysis, design decision of the
CIL framework became evident, which introduces temporary pointers inaccessi-
ble by the programmer when allocating memory. This behaviour can lead to false
negatives of the memory leakage detection algorithm because the temporary ref-
erence might still be in place when performing the analysis. This is a severe side



124 9 Conclusions

effect introduced by the CIL compiler writers. Except for this aspect that is out of
reach for DSI, the memory consistency can be guaranteed, leading to our second
challenge:

Challenge 1.2: Can DSI’s strand connections be quantified such that
connections performing the same role can be identified robustly even
accross today’s multitude of dynamic data structure implementations?

This question was answered positively by using the distance between strands if
both reside in one memory chunk or, otherwise, by using the offset of a pointer
connection between strands. The idea is that the same offsets are found repet-
itively across strands performing the same role, as is the case when studying a
list of lists, i.e., parent child nesting. The robustness of the abstraction is given
by DSI’s structural and temporal repetition, which is implemented on top of the
chosen abstraction. DSI is able to inspect DDSs even during degenerate shapes,
which occur when a DDS looses its shape due to manipulation operations such
as list inserts or deletions, and is still able to detect the true shape. This approach
separates DSI from related work which either avoids degenerate shapes [69,74] or
looses precision by being conservative when observing degenerate shapes [49].

This dissertation contains a benchmark comprised of 49 examples including
real world examples (libusb, bash, tsort, X.org, Olden benchmark, and The Com-
puter Language Benchmarks Game: Binary Tree), examples taken from the shape
analysis literature [65, 72], textbook examples [104,108], and synthetic self written
examples both from students in the context of a bachelor thesis [46] and a master
thesis [62] and from the author of this dissertation. The variety of the benchmark
shows that DSI detects a large variety of data structures and can cope with a lot of
different DDS implementation techniques. To highlight the program comprehen-
sion capabilities of DSI, it was shown that an unexpected behaviour of one of the
literature examples (11t7 [23]) was quickly revealed by DSI’s analysis. The corre-
sponding code section could then easily be fixed to show the desired semantics.
This example points out that DSI is not only useful for comprehending unknown
code but can also help a programmer to test intended program behaviour.

As an aside, the DSI approach was parallelized, which decreased its execution
time significantly and showed that the approach does indeed scale. The parallel
version is used in Pt. II to speed up the analysis of binary code, which makes the
therein developed DSIbin approach far more usable.

Future work. With the foundations of DSI being settled, DSI’s capabilities could
be extended in various ways. At the moment, the analysis does not consider any
payload information within DDSs, which would be necessary to detect the seman-
tics of a DDS, e.g., sortedness. Such an analysis could be devised by taking non-
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pointer manipulating events into consideration when performing the instrumen-
tation and, thus, the event trace generation. With this information, executed in-
structions prior to DDS manipulations could give a hint on the inspected payload
and the operations performed on the payload.

Another path to explore relates to the precision of DSI in nesting scenarios; it is
not always clear how a nesting situation needs to be interpreted, because the role
of the parent and child are not straightforward to detect. An example for this is
tsort from coreutils [9], which performs a topological sort. The underlying data
structure comprises a tree with various SLLs running through it. DSI already de-
tects the strands and the interconnections for this scenario, as was demonstrated
in this dissertation via a small case study. However, the final interpretation is
ambiguous: is the nesting from the lists to the tree or vice versa? Situations like
these should be solvable by tracking access patterns to a DDS, such as traversals
through the DDS or to which strand the longest running entry point is attached.
Such in-depth information may also help performing a hot-spot analysis of the
DDS, e.g., finding areas of a DDS that encounter a lot of insertions, analogous to
TRAVIOLI [89], which operates on JavaScript instead of C source code.

Further, DSI currently cannot handle arrays, which are used in sophisticated
DDSs such as hash maps. For example, the classical hash map implementation
found in dix/resource. c from the X.org server [38] stores buckets as an array of
pointers to SLLs for handling key collisions. A case study of the particular DDS
showed that the current instrumentation, trace generation and analysis by DSI
already detects the strands for the SLLs, and even the array for the buckets is de-
tected. However, because DSI only analyses interconnections between strands,
the final DDS interpretation is impossible. A straightforward solution would be
to model arrays as strands and to simulate the linkage offset with a predefined
value common to all array-strands, so as to seamlessly handle strand connections,
both indirect and overlay.
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DSIbin

As the IT industry starts to age, today’s developers might be confronted with situ-
ations like SEGA’s loss of source code for old arcade games [26], where corporate
know-how is only available in a binary format. Additionally, the amount of mal-
ware is steadily growing [17], where analysts need to understand their behaviour
without source code being available. Both situations are prominent use cases re-
quiring reverse engineering [56]: (i) to not loose the previously performed engi-
neering effort completely, and (ii) to understand the behaviour of an unknown
binary file.

Most prominently, a hard challenge is the recognition of dynamic data structure
shapes in the presence of tricky programming concepts like pointer arithmetic and
pointer casts. Both are fundamental concepts to enable, e.g., the frequently used
LKL [15], and bring current shape detection tools to their limits. To tackle the
challenge of recovering DDSs in binaries, one needs to solve the loss of low level
type information, like primitive and compound types, which even state-of-the-art
type recovery tools, e.g., [43,78,80,98], cannot reconstruct with full accuracy.

With DSI developed in Pt. I and working on source code, which already im-
proves upon the related work [49, 69, 74], the second research question follows
naturally:

Research Question 2: Can DSI’s concepts and strengths be preserved
when inspecting binaries?

With the limited information available in binaries, the rich DDS analysis of DSI
would help in gaining a more precise insight into the program behaviour for the
reverse engineer. For example, automatically detecting the cyclicity of a DLL that
was previously missed reveals much information about the underlying DDS ma-
nipulating code, and relieves the reverse engineer from manually trying to com-
prehend the binary. Thus, the second part of this dissertation opens up DSI for
binaries. The resulting approach/tooling is called DSIbin. DSIbin still relies on
the core algorithms of DSI, which we call Data Structure Investigator Core Algorithm
(DSIcore) from now on. As the ultimate use case for DSIbin might be the reverse
engineering of malware, a survey on leaked malware source code is conducted to
answer the question if current malware actually uses complex DDSs. The survey
presented in Ch. 10 reveals that malware indeed uses DDSs.
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The process of opening up DSIbin for binaries comes with quite some chal-
lenges. One of the first obstacles is the loss of perfect type information found in
source code, such as information about (nested) structs that correspond to DSI-
core’s cell abstraction and is thus vital for the precision of the DSIbin approach.
If such information is unavailable or is imprecise, DSIbin fails with different
outcomes, e.g., DSIbin cannot establish the linkage condition between cells and
thus misses strands, i.e., false negatives, or DSIbin establishes strand connections
where it should not, i.e., false positives. Those source code dependencies are dis-
cussed in Ch. 11.

To remedy the type loss, one can fall back to an existing dedicated type recovery
tool for binaries such as [43,78,80,98]. Therefore a literature survey on type recov-
ery tools is conducted in Ch. 12, which yields Howard [98] as a suitable candidate
for integration into DSIbin as it detects (nested) structs that are vital for DSIcore.
In order to perform DSIcore’s analysis and to incorporate the information from
Howard, DSIbin needs to capture the same events as the CIL instrumentation
does for source code but now for a binary. The task of performing such a binary
instrumentation is shown in Ch. 13 and, once accomplished, enables the integra-
tion of Howard’s type information into the event trace, i.e., combining Howard
and DSIcore in Ch. 14.

With the development of a first DSIbin tool, it is possible to benchmark the
new tool-chain, which is conducted in Ch. 15 for examples taken from publicly
available malware samples. The results of this naive approach already show that
DDS can indeed be detected out of the box. This includes DDSs not covered by
related work [49, 69, 74] such as skip lists and nesting relations. However, some of
Howard’s limitations become evident, like missing nested structs and not merg-
ing types, which prevent DSIbin to fully utilize its fine grained cell abstraction
and leads to the aforementioned precision loss when detecting strands. To tackle
these limitations, an additional type refinement step was incorporated into DSI-
bin, which exploits pointer connections in memory to find nested types or to find
candidates for type merging. More specifically, type merging aims at unifying
allocated memory regions to the same type as long as some predefined merge
conditions hold. As an example, consider the static and dynamic allocation of a
struct. With source code available it is immediately clear that both memory re-
gions on heap and stack are of the same type. Within a binary, this information
gets lost and needs to be recovered. To unify both memory regions an exemplary
merge condition can be the size and binary compatibility of the allocated memory.

Both the detection of nested types and type merging are fundamental problems
when dealing with binaries. As the lack of information in the binary is insuffi-
cient to draw definitive conclusions from pointer connections at this point, it is
necessary to create a set of type refinement hypotheses that all need to be evalu-
ated according to their plausibility. As we are interested in DDSs, this plausibility
check can be performed with DSIcore itself, by interpreting the resulting DDS of
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each type hypothesis with DSIcore. The creation of the hypotheses is explained in
Ch. 16, and the benchmarking of the sophisticated tool-chain including the refine-
ment is done in Ch. 17. Interestingly, the refinement not only improves upon the
nesting detection and type merging of Howard, but also improves upon the primi-
tive type detection. This increased precision, which could be seen as an improved
version of Howard, should be of interest even to a reverse engineer whose pri-
mary focus is not the detection of DDSs. The exploration of DSIbin is concluded
in Ch. 18 which also gives an outlook on future work.






10 Dynamic data structures in malware

To give a motivating use case for the analysis of binaries regarding DDSs, publicly
available source code (C/C++) of real world malware [34] was inspected within this
dissertation. This determines the ground truth that DDSs are indeed used in mal-
ware, and further that DDSs are reused in different malware. Both aspects stem
from the increasing complexity seen with malware, where (i) DDSs are required to
handle the growing amount of data that is processed and (ii) malware also starts to
reuse components and libraries among different malware, both within one family
and across families, as is the case with benign software projects.

The fact that components are reused in different versions of one particular mal-
ware, in malware families or even across malware families gives rise to interesting
use cases that exploit information about the used DDSs. This is in the line with
Laika [60], which uses DDS information to create malware signatures used by a
virus scanner. While the aim of DSIbin is the detection of the DDS in binaries,
the resulting information could be used to enrich malware signatures.

The malware samples are shown in Tab. 10.1, together with a short description
of the malware and its relation to other malware. Additionally, the components
that use potentially interesting DDSs for DSIcore/DSIbin are shown and where
they are used. In the following, the analyzed malware of Table 10.1 is discussed
together with the DDSs that we have found. A short summary of the analysis is
published in [95].

10.1 Carberp & Rovnix

Carberp is malware designed to target bank accounts and can be extended with
various features such as bitcoin mining and backdoors [63, 64]. The latter employs
the component HVNC, as found in [34], which constructs a hidden desktop to
which one may connect via VNC [14]. The VNC code appears to be taken as-is from
the VNC repository [14], as the server contains a region clipping library also found
in the VNC repository. The clipping library relies on a complex DDS consisting of
a DLL parent with indirect nesting on DLL children, which are of the same type as
the parent, as shown in Fig. 10.1. Interestingly, the head (front) and tail (back) of
the list are embedded inside the struct sraRegion. This makes the detection of
the DLL challenging, as it requires DSIcore’s notion of cells to be able to recognize
the head and tail node of the list, which is missed by type recovery tools such
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Table 10.1: Overview of the analysed malware, including which malware is based
upon each other (if applicable) and which components are reused (only
with regards to the DS of interest to DSI/DSIbin)
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Rovnix scareware and bootkit used by Carberp v
Carberp | banking trojan a4
MyDoom | worm with backdoor for DNS attack a4
HellBot3 | worm with backdoor partially based on My- a4
Doom
Grum spam botnet v
Agobot | modular IRC bot v

as [49, 69, 74]. The detection of this particular DLL with DSIbin is discussed in
more detail later in this dissertation in Chs. 15 and 17.

Another component used by Carberp is IwIP [16], which is an independent
TCP/IP stack implementation written in C with a focus on resource usage. In
the context of Carberp IwIP is used to construct a hidden TCP/IP stack for hiding
the communication of the malware. IwIP makes use of multiple independent lists,
such as SLLs and DLLs. IwIP also forms a component of the scareware malware
Rovnix, which in turn is used as a bootkit by Carberp, see Tab. 10.1.

10.2 MyDoom, HellBot3 & Grum

MyDoom is a worm that initiated a Distributed Denial of Service (DDoS) attack
against the website of the SCO Group [68]. Additionally, MyDoom offers a back-
door for remote control [42]. MyDoom uses an SLL that implements a priority
queue to store and process mail addresses, see massmail.c in Tab. 10.1. The
DNS MX records are stored in an SLL of child SLLs, see struct mx_list_t in
Tab. 10.1. Identical functionality is also present in HellBot3, which has its roots
in MyDoom, as MyDoom was reused in MYTOB that was subsequently used in
HellBot3 [19,29, 36]. Additionally, struct mx_list_t was partially reused in the
spam botnet Grum [50].
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Figure 10.1: The source code of the VNC clipping library doubly linked list on the
left and an example instantiation on the right (figure adopted from
our publication [94]).

10.3 AgoBot

AgoBot [87] is a modular IRC [97] bot. It obfuscates its connections with an IRC
proxy component, which employs C++ std::lists that are CDLLs. The implementa-
tion [30] is similar to that of the LKL, but uses C++ programming constructs, i.e.,
the DLL linkage is encapsulated inside a base struct from which the specialized
list node carrying the payload is inherited. The actual head node is of the base
struct type and, therefore, requires DSIcore’s cell-based heap abstraction to detect
the list as a whole.

10.4 Conclusions

We have seen that malware indeed uses DDSs and that it gets re-used due to the
component based structuring of malware projects. The implementations range
from standard linked list implementations, where the linkage pointers are of the
type of the payload struct, e.g., IWIP, to standard containers such as C++ std::list
implementation in Agobot, to highly customized parent child lists as seen with the
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VNC component in Carberp. As the last two examples require the heap abstraction
introduced by DSIcore, those are examined further during the benchmarking of

DSIbin in Chs. 15 and 17.



11 DSI source code dependencies

This section covers the implications of the loss of perfect type information found
in source code and the implications for DSIcore, which relies on this detailed in-
formation to function.

DSlcore requires type information to establish a linkage condition between
cells, i.e., two cells connected by a pointer need to be of the same type and the
pointer needs to be incoming at the start of the cell (see Ch. 2). As cells can ei-
ther occupy a whole memory chunk or a sub-chunk, DSIcore requires knowledge
about structs and nested structs. The information about nested structs can also
be applied to CMAs implementations to detect a DDS running through a memory
chunk allocated by a CMA. When this type information is unavailable, DSIcore is
not able to reliably establish the linkage condition.

This can be seen in Fig. 11.1 that shows a LKL-like linked list implementation
with type information present at the top. Only the next pointer is set, and the
linkage offset o is represented relative from the start of the enclosing nested link-
age struct shown in blue. As the available type information allows one to identify
the commonality between the linkage structs even if they are embedded inside of
differently typed list elements, e.g., the head node and the remainder of the list,
the full list length can be identified, including the cyclicity of the list.

The same list as shown above but with the type information removed, can be
seen at the bottom of Fig. 11.1. The only type information available is the size of
the memory chunks. This prevents DSIcore from detecting any linkage condition,
as neither type equivalence can be established, e.g., between the head node and
the remainder of the list, nor does any incoming pointer point to the start of a
cell. This prevents a linkage condition between the head node and the nodes of
the remainder of the list.

In this example, the loss of type information leads to false negatives for the link-
age condition, i.e., less strands are detected than with type information available.
The same is true for the example shown in Fig. 11.2, where a list runs through one
memory chunk by means of several nested structs. Again, with the knowledge of
the nested structs, the strands can be established as DSIcore can verify the type
commonality, the linkage offset and that the incoming pointer enters at the start
of the nested struct. This is shown on the left of Fig. 11.2. Without the type in-
formation of the nested structs, the list cannot be detected by DSIcore, as seen on
the right of Fig. 11.2
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next next next next

Figure 11.1: A Linux kernel list implementation with type information (top) and
without type information (bottom).

Other than false negatives, it is also possible to encounter false positives when
perfect type information is lost. This is due to the fact that the missing type in-
formation cannot be guaranteed to be recovered with full accuracy, as shown in
Fig. 11.3. Here, the ground truth as given by source code shows a different True
Type (TT), i.e., True Type (TT)1 and TT?2, for the two memory chunks respectively.
This implies DSIcore’s linkage condition is not fulfilled and no strand gets de-
tected. Suppose that a type recovery tool is able to recover the type information;
this recovered type information is called a Logical Type (LT). As perfect type infor-
mation of the TT is lost, it might be possible that the Logical Type (LT) is inferred
incorrectly, e.g., the LT is identified to be the same for both memory chunks, i.e.,
I'T1 in Fig. 11.3. DSIcore now detects a fulfilled linkage condition and, thus, cre-
ates a strand, resulting in a false positive.

Similarly to Fig. 11.3, it is also possible that the inferred types are considered
differently, though the ground truth is not, as shown in Fig. 11.4. This would again
lead to a false negative, as was the case with the missed nested structs in Figs. 11.1
and 11.2.

The implications for DSIcore’s analysis are manifold. For one, the precision of
the strands gets diminished, as strands might become shorter or longer than their
true length, depending whether false negatives or false positives occur. Strands
can also suffer from both effects at the same time, where a strand is cut short at
one side and extended at the other. The consequences are a loss in precision of
DSIcore’s analysis. This can result in either the creation of noise that can lead to
misinterpretations, e.g., detecting nested child elements where none are present,
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Figure 11.2: A linked list running through multiple nested structs inside an en-
closing struct, both with type information (left) and without type in-
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Figure 11.3: Different true type as given by source code versus identically inferred
logical type.

and blurring the shape such that the true shape is not recognizable as DSIcore’s
predicates for the shape fail.

Further, some characteristics of a strand can get lost, such as cyclicity if the head
node of the strand is cut off. The opposite is less likely to occur, i.e., introducing
cyclicity by wrongly extending a strand. The reason for this is that, in order to
detect cyclicity, an explicit pointer would need to be present from the last element
to the head element, which is less likely to occur if cyclicity is not explicitly desired
by the programmer.

The problem might get worse, if false positives lead to the detection of more
strands or, vice versa, if false negatives lead to the detection of less strands. In the
case of missed strands, the analysis might be rendered useless in the worst case
as no DDS might be detected, or that at least parts of a DDS are missing, leading
again to misinterpretations. Examples of such a loss of precision are, e.g., missed
parent-child relations or wrong classifications, such as detecting only a nesting
relation instead of a Binary Tree (BT).

The final aspect that heavily suffers from imprecise type information is the de-
tection of the connections between strands. Consider a typical parent-child rela-
tion on indirect nesting as the ground truth, as seen on the left in Fig. 11.5. Here
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Figure 11.5: Memory chunks with a parent (big chunks at the top) child (blue
chunks) relation. On the left, no nested child element inside the par-
ent is present; on the right, a nested child element inside the parent
1s present.

the head element of the child list lies outside the parent. If a wrong LT is inferred
inside of the parent, which happens to be of the same type as the child element
with which the child list is extended to start inside of the parent, as shown in
Fig. 11.5 on the right. This not only wrongly extends the child strand by one el-
ement, but also changes the nesting relation from indirect to overlay. The same
can also happen vice versa, resulting in indirect instead of overlay nesting.

In summary, lost type information can have a severe impact on DSIcore’s anal-
ysis. The effects can have different severity levels. In the least severe case, the
strand length is wrong, but the overall data structure gets detected, e.g., only ex-
tending or shortening the SLL in a parent-child relation without other side effects
such as influencing the parent child connection. Therefore, the analyst would
still get the right high-level view upon the data structure and draw the right con-
clusions regarding the implementation details of the DDS operations. As soon
as properties such as cyclicity of the strands or the connections between strands
are affected, the impact becomes more severe, as this sets an analyst on the wrong
track not only with the high-level interpretation of the DDS, but also when drawing
conclusions about the operations performed on the DDS. For example, consider
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an insert into a DLL, which most likely differs from that into a CDLL. In the worst
case, the analysis either shows no DDS at all or a plain wrong interpretation of the
DDS. The effects of lost type information have been confirmed during the bench-
mark of DSIbin and, thus, are also discussed in the benchmarking chapters, i.e.,
Chs. 15 and 17.






12 Data type recovery tools

Aslaid outin Ch. 11, perfect type information is crucial for DSIcore’s analysis and,
thus, also for the analysis of binaries with DSIbin. As no type information is avail-
able in binaries, the type information needs to be inferred separately. This chapter
surveys some of the available data type recovery tools, which can potentially assist
DSIbin to recover the type information needed by DSIcore. The tools differ in var-
ious aspects, e.g., on which input they operate, what kind of analysis they perform
and what kind of type information is recovered, as shown in Tab. 12.1. There are
two factors when choosing a type recovery tool which are important to DSIcore’s
analysis. The first is the quality of the recovered type information and the second
is the input format, as the latter has implications on the quality of the analysis
that can be performed by DSIbin. This means that even if the recovered type in-
formation is acceptable, the tool might not be suited if it operates on the wrong
input format. This aspect is analysed in Sec. 12.1. The quality of the recovered
type information is discussed in Sec. 12.2.

12.1 Input formats of the type recovery tools

There are various possible input formats used by the type recovery tools. As the
input format required by the analysis tools should be used by DSIbin as well, it is
important to analyze which limitations upon DSIcore’s analysis are imposed by
the different input formats. The reason for choosing the same input format for
both the type recovery tool and DSIbin lies in the fact that it is not easily possi-
ble to mix the different levels of information given by different input formats. A
concrete example for such an information mismatch is the absence of informa-
tion about allocation sites in memory snapshots, in contrast to the availability of
this information when instrumenting binary code. Allocation sites are the places
during program execution where chunks of memory get allocated. The allocation
site can for example be expressed by the call stack leading to a malloc.

The implications imposed upon DSIcore’s analysis given a concrete input for-
mat concern either engineering aspects or conceptual limitations specific to DSI-
core’s analysis, which are explained in this section. The input format used by a
type recovery tool is shown in Tab. 12.1 under column Input format. The input
can either be a memory snapshot (m), which is discussed in Sec. 12.1.1, or binary
code (b), discussed in Sec. 12.1.2.
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Table 12.1: Overview of type recovery tools: the analysis can be static, dynamic or
both; the input is either binary code or a memory snapshot; features
marked with a ? are not clear from the literature
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12.1.1 Memory snapshots

This section discusses the challenges for DSIbin when considering type recovery
tools that operate on memory snapshots as an input for the analysis, such as [39,60,
101] of Table 12.1. Those analysis techniques take a snapshot of the live memory,
i.e. the Random Access Memory (RAM), during runtime. Afterwards the memory
layout is inspected to infer the data types and DDSs. The advantage of taking
snapshots is that it is even possible to recover volatile memory to a certain extend
after a warm reboot [102]. This renders countermeasures of malware useless to
detect running anti-malware software.

In order to discuss the implications of using memory snapshots for DSIbin,
let us briefly recap the structural and temporal repetition as applied by DSIcore,
because especially temporal repetition is affected by the limitations imposed by
using memory snapshots. We do this by looking at a SLL parent with indirect
nested child DLLs as seen in Fig. 12.1. Here the heap is shown at time step ¢ and
t+1. Attime step ¢, one child DLLis in a degenerate shape. Attime step ¢, DSIcore
performs structural repetition over all child DLLs. But only with the knowledge
about the heap state at step ¢+ 1, DSIcore is able to perform the temporal repetition
to outweigh the degenerate shape of the child DLL. Without this contiguous heap
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Figure 12.1: Temporal repetition between time step ¢ and ¢ + 1 used to outnumber
the degenerate shape of the child double linked list at time step ¢.

state information the chances increase that misinterpretations of the DDSs occurs
due to information sampled during periods of degenerate shapes. We can now
discuss the various aspects when using memory snapshots as input for DSIbin.
One of the key challenges is that DSIcore operates on a trace of contiguous
memory changing events, where at every such event the type information is re-
quired. Thus, using memory snapshots can be viewed from two possible direc-
tions when using them with DSIcore. One would be to make the type informa-
tion available to DSIcore for each instruction within the event trace, to be able to
perform DSIcore’s analysis "as-is”, i.e., to analyse the complete instruction trace.
However, this is contrary to the coarse-grained sampling rate of memory snap-
shots, which normally are only taken once or at most sparsely during program ex-
ecution. Therefore, the type information is unavailable for each memory changing
instruction as required by DSIcore. This imposes a problem for DSIcore’s tem-
poral repetition approach to accumulate evidence for the true DDS shape, as ex-
plained with Fig. 12.1. To remedy this limitation of memory snapshots, one could
simulate the contiguous trace generation by taking memory snapshots analogous
to DSIcore’s instrumented source code, i.e., at every memory manipulating event.
This imposes a huge overhead in terms of execution time and memory consump-
tion, which seems impractical. Further, a literature review could not answer the
question, whether the type information would be stable across all taken snapshots.
This could lead to false positives and negatives, which might even alternate over



146 12 Data type recovery tools

the program analysis. Additionally, memory snapshot tools normally operate on
WinDbg memory dumps [60,101], TEMU snapshots [101] and Sun’s HPROF tool
format [39]. Relying on special memory snapshot formats is a strong assumption
and limits the generality of DSIbin. The only advantage is that more (meta) in-
formation is available within those snapshots than within DSIcore’s trace, e.g.,
HeapViz uses the rich meta information found in Java heap snapshots.

The other possible direction is to let DSIcore operate exclusively on the taken
snapshots for which type information is available. The problem here is that the
PTG represented by a snapshot is not tracked over time, i.e., the instruction trace
leading to the current PTG layout is unknown. Thus, in order to let DSIcore oper-
ate on the PTG, an event trace would need to be created artificially by recording a
malloc event for every identified memory chunk within the snapshot and a pointer
write for every pointer that connects those memory chunks. The sequence of such
events can only be chosen arbitrarily, as timing information is unavailable within
one memory snapshot. Therefore, the evidence accumulation could be led astray
by the arbitrarily chosen sequence of events; for example, the cyclicity connection
of a CDLL is only established with the last event of the trace, which would then
lead DSIcore to outweigh the CDLL with a DLL. This comes to no surprise, as
sequentializing a memory snapshot removes all in-between states of the DDS.

In summary, both available directions for utilizing memory snapshots with DSI-
bin challenge DSIcore’s temporal repetition approach. The possibilities to remedy
this problem as discussed are not an option for DSIbin, as they are either imprac-
tical or could easily lead to falsely detected DDS. Relying on structural repetition
alone, which is still available with both approaches, is insufficient to reliably detect
the true DDS shape, e.g., when sampling only degenerate shapes.

Therefore, the disadvantages of memory snapshots outweigh the advantage of
malware forensics; thus, memory snapshots are not considered as a suitable input
format for a first implementation of DSIbin. This rules out the tools that operate
on memory snapshots as seen in Tab. 12.1, i.e., [39,60,101]. However, snapshots
could be used as input to DSIbin as future work, where the shortcomings could
be investigated more thoroughly in order to see if they can be mitigated.

12.1.2 Binary code & byte code

Binary code can be instrumented directly and executed to record a trace of memory
events, similar to the source code instrumentation performed by DSI. This can be
achieved with instrumentation frameworks such as Intel’s Pin framework [82] and
DynamoRIO [48]. Binaries can provide different levels of information: (i) debug
information, e.g., variables and functions, (ii) symbol tables where function names
are still present, and (iii) stripped binaries, where unneeded symbols are removed
from the symbol table of the binary as well. DSIbin aims for stripped binaries
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to be more generally applicable, as (i) and (ii) cannot be taken for granted when
dealing with binaries that are created outside of the control of an analyst.

For completeness, byte code is also considered as an input format, though it is
basically subsumed in the already discussed memory snapshots and binary code,
as both techniques can be applied to byte code programs. Byte code has the ad-
vantage that it carries more meta information, e.g., type information, class and
method names, similar to debug information in binary code [53]. However, rely-
ing on such information would hinder the general applicability of the approach
and is thus avoided for DSIbin. Actually, none of the listed tools of Tab. 12.1 ex-
plicitly uses byte code as input, with the exception of HeapViz [39] that operates
on Java-based heap snapshots. In this case, the usage of such additional informa-
tion found in the snapshot might be imprecise, as a DLL is labeled LinkedList
as found in the class name of the objects [39].

12.2 Recovered type information

As seen in Tab. 12.1, the different tools provide different granularity of type infor-
mation. As discussed in Ch. 11, this has implications on the precision of DSIcore’s
analysis. In the following, we discuss the type information provided by the tools of
Tab. 12.1 and how this influences the precision of the analysis. First, we have the
Memory chunk size, which means that allocated memory is tracked and at least the
size information is available, i.e., no type information within the allocated mem-
ory is available. As can be seen in Tab. 12.1 all tools provide this information.
However, no linkage condition can be established by DSIcore with this informa-
tion alone, as there is no information about how memory is linked together. This
information comes with knowledge about pointers (Pointer detection). As soon as
the linkages between memory are present, it is possible to correlate the memory
chunks accordingly. However, for DSIcore, these two kinds of information are
not necessarily enough to establish a linkage condition leading to a detected DDS.
This comes down to a design decision whether one wants to consider two chunks
of memory as being of the same type because they have the same size and they
are linked by a pointer. Due to the already discussed aspects of false positives and
negatives in Ch. 11 that come with such an assumption, this level of information
is not considered to be sufficient for an analysis by DSIcore.

The next step is to determine a logical type of the Outermost struct. This can
be done by various techniques, e.g., applying a Logical Type (LT) to all memory
chunks allocated at the same allocation site, i.e., the unique position of themalloc
as given by the callstack leading to the allocation [49, 69, 74,98]. Another possibil-
ity is the usage of type sinks, where well known interface functions, e.g., from
libraries or system calls, are used to type operands [49,80,98]. It is also possible to
use meta information directly [39], but this is not desired by DSIbin as it restricts
its generality. With the information about outer structs being available, DSIcore is
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now able to perform a useful DDS analysis, though it can still only deal with DDS
that occupy the memory chunk as a whole, i.e., DSIcore’s notion of cells is not
yet fully supported. In order to exploit DSIcore’s fine grained cell abstraction, the
type recovery tools are required to detect Inner structs. As can be seen in Tab. 12.1,
only Divine and Howard reveal information about inner structs.

Additional information about the Type of the struct members, such as the primi-
tive types, is important when considering binary compatibility of memory chunks.
This can be an indication for type equivalence between memory chunks, if it can-
not be determined by other means as discussed previously. Such low level infor-
mation can be inferred by the type of operands when looking at CPU instructions,
or again by using type sinks. The latter can also reveal the Semantics of the re-
covered type information, such as revealing that a struct is used for establishing
a network connection. The primitive types are indeed already utilized by the ac-
tual DSIbin implementation, as discussed in Ch. 16. The information about the
semantics can easily be added to decorate the created SGs of DSIbin to further
enhance their usability, though this is out of scope of this dissertation.

As DSlcore’s memory abstraction allows us to handle CMAs transparently, it
would be beneficial if the recovery tool would support CMAs. However, we leave
this for future work. As shown in Tab. 12.1, none of the tools explicitly men-
tions CMAs. However, in conjunction with tools, such as [54] that explicitly detect
CMAs, type recovery tools could be made aware of the presence of CMAs, which
might help in performing their analysis.

When looking at Tab. 12.1, almost all type recovery tools can provide the type
of the outermost struct. From those candidates, the ones operating on memory
snapshots have already been eliminated, as discussed previously. The remaining
candidates do not deal with inner structs. Only two recovery tools mention them
explicitly, namely Howard and Divine. As the detection of inner structs is highly
desired by DSIbin to get as close as possible to the precision of DSIcore, those two
tools are in the main focus for DSIbin.

12.3 Comparison between Howard and Divine

Due to Divine’s [43] and Howard’s [98] capability to deal with nested structs, they
are the first choice for combining them with DSIbin. In this section, we discuss
which alternative is most suited for DSIbin.

We start with Divine, which statically analyses Windows binaries. It is able to
type memory regions both on the heap and the stack. Types can be either primitive
or complex data types, e.g., arbitrarily nested structs. Divine employs a value-set
analysis [43] in combination with an algorithm for aggregate structure identifica-
tion, and exploits how memory is accessed in a binary to infer how the data is laid
out in memory. One can think of a code instruction that accesses eight bytes in a
sequence at a particular offset within a memory region. This information would
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lead Divine to assume that this eight byte sequence corresponds to a variable or
field within the memory region. However, according to Howard [98], memcpy-like
functions can hinder Divine’s utility, as these bulk memory accesses used, e.g.,
for initialization, blur the actual usage patterns of the memory.

Howard instead handles memcpy-like functions in C/C++ binaries when per-
forming its dynamic analysis. It infers types for local variables in stack frames
and monitors heap allocations for typing dynamically allocated memory. For this,
Howard collects: (i) pointer information that is also used subsequently to reveal
nested structs information, and (ii) infers primitive types by monitoring instruc-
tions and type sinks. Howard identifies allocation sites to apply LTs to heap mem-
ory and uses function addresses to identify stack frames. The results of the anal-
ysis are reported for each allocation site and stack frame.

While both tools offer a similar level of type information to exploit DSIcore’s fine
grained heap abstraction, the following engineering aspects favored Howard: it
(i) operates under Linux as does DSIbin, which avoids the time-consuming porting
of Divine or DSIbin to the corresponding platform, and (ii) deals with memcpy-like
functions in C/C++ binaries, where Divine seems to focus on C++.

In the following chapters we show Howard and DSIbin can be combined. It
however becomes eminent that Howard still has some limitations relevant for
DSIbin. Additionally, we demonstrate how DSIcore’s algorithm itself can be em-
ployed to improve Howard’s type information.






13 Binary code instrumentation

In the previous chapter it was laid out that the type recovery tool Howard is being
used to infer the missing type information from binaries. Howard works by con-
ducting a dynamic analysis on binary code; thus, DSIbin also has to operate on
binary code so that it can be combined with Howard. This chapter discusses the
technical aspects of the binary instrumentation used to generate an event trace
for DSIbin, similar to that created by the source code instrumentation used by
DSI. While DSI employs CIL for instrumenting the source code, DSIbin uses the
industrial strength Intel Pin framework [82] for dynamically instrumenting x86
C/C++ binaries. In the context of DSIbin, pointer reads and writes and mem-
ory (de-)allocations both on the heap and the stack are monitored in x86 C/C++
binaries. For this purpose, a socalled Pintool, i.e., a program that uses the Pin
framework, is created within the context of this dissertation. The Pintool is pub-
licly available at https://github.com/uniba-swt/DSIbin-inst. In the next section,
a short overview of Pin is given and, subsequently in Sec. 13.2, instrumentation
details relevant for DSIbin are discussed.

13.1 General overview of Pin

The architecture of Pin is divided into two parts: (i) the general Pin frame-
work which provides routines for instrumenting the binary, and (ii) the part for
analysing the executed binary. The instrumentation routines are used to decide
where to insert an instrumentation into the binary. The actual instrumentation
code that gets executed are the analysis routines. As the name implies, they per-
form the analysis logic during execution of the instrumented program.

An actual tool implementation is done in a Pintool. Pin performs a dynamic
instrumentation, i.e., no recompilation of the code under analysis is necessary.
This is crucial for DSIbin; otherwise, source code would again be required. The
availability of source code is a very strong assumption, and this case is already
covered by DSI.

13.1.1 Instrumentation and analysis routines

The instrumentation routines are registered for different events during execution
of a binary. For example, one can register an instrumentation function that is
called whenever a binary image, e.g., a library, is loaded into the main executable
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during execution of the binary. The registered instrumentation routine then in-
spects what type of image is loaded, and, e.g., searches for special routines such
as main to find the entry point of a program. Further instrumentation routines
are available to inspect each instruction of the binary. Again, the instrumentation
routine can then implement the logic to decide which instruction to instrument.

In general, the instrumentation routines are not called periodically, but only
once for each event, e.g., only once for each instruction. Each instrumentation rou-
tine then installs the call back, i.e., the analysis routine, which will subsequently
be called whenever an event for which it was registered is processed during execu-
tion of the binary. The instrumentation routines can pass an arbitrary amount of
parameters to the analysis functions. This can be Pin-specific information, such
as the value of the stack pointer, or custom parameters.

The registered analysis routines can be configured to happen before or after an
event occurred. The analysis routines implement the actual logic of performing
the desired functionality when analysing a binary. As the analysis routine is called
during execution of the binary the execution time of the analysis routine has an
impact on the overall slowdown of the binary under analysis.

13.2 Instrumentation details for DSIbin

This section presents some of the specific implementation details for the instru-
mentation used by DSIbin, such as the tracking of heap allocated memory and
registers. The latter is unique to DSIbin, as DSI operates on source code level,
where such low level details are abstracted away by instrumenting the high-level
C code. The instrumentation part for DSIbin consists of 2800 lines of C++ code.

13.2.1 Instrumentation of malloc and free

In order to trace the malloc and free routines, an instrumentation function is in-
stalled to monitor the loading of images such as a the 1ibc standard C library. The
instrumentation function is registered with the method call IMG_AddInstrument-
Function. For every loaded image, the specific keywords malloc and free are
searched and the appropriate callback methods are installed. Thus, more stan-
dard memory management functions can easily be added, if the need arises. It
should even be possible to use MemBrush [54] to detect CMAs inside the binary
and hook specifically into those routines to deal with non-standard allocators, but
this has not been further investigated.

Once the callbacks are installed, they are used to monitor the dynamic memory
behaviour of the binary.
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13.2.2 Startup and shutdown of the program under analysis

The startup and shutdown phase of the program is skipped from the analysis, as a
lot of boiler plate code gets executed, which obviously includes memory operations
such as background data structures for bookkeeping purposes. With DSIbin we
are interested in the DDSs as used by the programmer. Therefore, the analysis
starts with the call to main, as found by searching for the specific string within the
loaded images, as described in Sec. 13.1.1. Additionally, the analysis stops after
the main function terminates.

13.2.3 Tracking the stack and the heap

DDSs can be distributed across the heap and the stack, e.g., the head node of a
LKL can be placed on the stack with the LIST_HEAD macro found in list.h [15].
Therefore, the stack needs to be monitored by the Pintool, too. The stack frames
are also shadowed and contain information about the function address to which
a particular stack frame belongs, the start and end address and the size of a stack
frame. Additionally, the inferred type from Howard is stored. Thus, the shadow
stack allows one to keep track of the live stack variables; and handle situations like
the red zone optimization [86].

The red zone is a 128 byte area beyond the current stack pointer. It is required by
the x86-64 Application Binary Interface (ABI) [86], and it s not modified by signal
or interrupt handlers. This optimization is used in cases where a callee is a leaf
function. In this case, the red zone can be used as the local stack of the callee
without the need to adjust the stack pointer. As this technique is required by the
x86-64 ABI, compilers such as GCC [8] adhere to the standard and enable the red
zone by default, which makes handling such situation mandatory for DSIbin.

The heap is tracked by recording each allocated heap memory. The memory is
identified by the call stack leading to its allocation site. The call stack is constructed
by pushing the current stack pointer value when a call instruction gets executed
and, conversely by popping the last value when a return statement is executed.

For this, the heap memory is shadowed, as all allocated live memory chunks
are being tracked by the Pintool. The shadow heap carries the information about
the start and end addresses, the chunk size, the call stack where the memory has
been allocated and the type inferred by Howard. Whenever memory is accessed,
the shadow heap is queried to ensure that live heap memory is addressed and
manipulated. If memory inside the live heap is manipulated, the shadow heap
is used to get information about the field type that was accessed, i.e., the type
information retrieved by Howard. Additionally, the shadow heap allows sanity
checks, such as avoiding double frees and the usage of unallocated memory.
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13.2.4 Modeling registers

When inspecting a program at binary level, the only valid reference to live memory
might be inside of a register. This differs slightly from inspecting source code,
where such low-level details are abstracted away by dealing with pointer variables
directly. Therefore, registers need to be treated analogously to variables; otherwise,
the memory leak detection algorithm of DSIcore, as described in Ch. 4, would
report a false positive on leaked memory and remove the memory.

Again, the registers need to be shadowed to keep track of their state, i.e., whether
they are currently storing a pointer value or not. Therefore, each register gets the
attribute POINTER or NOPOINTER attached to it, depending on its current value.
Then, each register manipulation is monitored by checking, whether a register
stores a live heap address. The live heap address is determined with the help of the
shadow heap as described in Sec. 13.2.1. Whenever a live heap address is stored,
the pointer connection is recorded, otherwise the pointer connection is removed.
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This chapter brings together the discussion of the last three chapters by actually
combining DSIcore and Howard [98] to create a first naive implementation of DSI-
bin. In this implementation, CIL is replaced by Intel's Pin framework [82] to exe-
cute the instrumentation as discussed in Ch. 13. The type information demands of
DSIcore are contained in Ch. 11 and are provided, to a certain extend, by Howard.

One of the fundamental problems when recovering type information in binaries
is that of type merging, which occurs when the same type of memory is allocated
at different allocation sites, i.e., the allocation sites have different call stacks. This
results in a many-to-one relationship between allocation sites and a type, which
imposes a problem for DSIcore’s strand detection, as each allocation site would
be treated as a separate type leading to missed strands as discussed in Ch. 11. The
problem is shown in Fig. 14.1, where struct type_a is given by source code,
which then gets allocated twice inside the program by the two callgs to malloc.
When using a type recovery tool that does not support type merging, the result-
ing types might look like the inferred types, i.e., structs Ti1-4. Only with
type merging, the four types are combined again as seen on the right in Fig. 14.1.
Because there is no explicit type information available in a binary that explicitly
indicates type equivalence, a separate inference step is required.

Despite all advantages of Howard as discussed in Ch. 12, type merging was not
performed in the version of Howard described in [98]. Therefore, the authors of
Howard thankfully modified the initial version of Howard mildly for us to perform
type merging between structs identified by Howard. This is done by tracking in-
structions and pointers with a taint analysis algorithm [96] to monitor which heap
memory chunks they access. If memory chunks allocated at different allocation
sites are touched by the same instructions or pointers and if they are binary com-
patible, i.e., have the same size and the same inferred primitive types, then they
get merged. Note, however that this does not cover all situations, e.g., Howard
does not merge nested types and misses nested structs if they are placed at the
head of the surrounding struct. How these limitations are overcome by DSIbin is
discussed in Ch. 16.

This chapter first presents in Sec. 14.1 the overall architecture of DSIbin, as
shown in Fig. 14.2, and subsequently zooms into the binary frontend Pintool,
called DSI binary frontend, in Sec. 14.2.
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Figure 14.1: Type merging in binaries (figure reproduced from talk at ASE2017
on [94]).

14.1 DSIbin: Combining Howard and DSlcore

This section discusses the naive tool chain as depicted in Fig. 14.2, without the
component DSIref that is explained in Ch. 16. The three main components are
(i) the core algorithm of DSI, i.e., the offline part of the analysis that performs
the DDSs detection, what we have already introduced as DSIcore, (ii) the Pin DSI
binary frontend that replaces DSI’s source code CIL frontend, and (iii) Howard
to infer lost type information from binaries. As with DSI, the result of executing
the tool chain are the identified data structures. DSIbin uses the core algorithm
DSIcore of DSI as-is.

Both the DSI binary frontend and Howard take the stripped binary under analy-
sis as input for their dynamic analyses. The main synchronization point between
these two components are the call stack for typing heap allocated objects and func-
tion addresses for typing the local stack of functions. Howard provides the already
merged type information to the DSI binary frontend.

The binary frontend takes Howard’s type information and produces the execu-
tion trace analogous to the DSI source frontend. To do so, it creates explicit events
in the execution trace whenever memory, i.e., stack frames or heap objects, gets
allocated and deallocated. It also tracks pointers that are written and destroyed on
the heap, the stack and in registers. The type information from Howard is directly
embedded inside the generated event trace and gets passed to the DSI core algo-
rithm. DSIbin consists of 3K LOC of C++ and interfaces with DSI and Howard.

14.2 Technical details of DSIbin’s binary frontend architecture

This section gives a short summary of the architecture of the Pintool implement-
ing the binary frontend for DSIbin that replaces CIL. The binary frontend uses
the techniques discussed in Ch. 13 to generate an execution trace analogous to
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Figure 14.2: Overview of our DSIbin tool chain (figure reproduced from our pub-
lication [94]).

CIL, which subsequently gets passed to DSIcore for executing the DDS analysis,
as shown in Fig. 14.2.

Type parser. The type parser creates two lookup tables for the types inferred by
Howard, one for the heap and one for the stack. The lookup is a key-value store that
uses the callstack as the key into the lookup for heap allocated memory. Howard’s
type merging information is reflected within this lookup table, as each merged
callstack by Howard gets the same type assigned as a value. For stack memory,
the key into the lookup table is the function address.

The call stack, the stack and the heap. We present some low-level implementation
details regarding the handling of memory both on the heap and the stack by the
DSI binary frontend. The main concept is to shadow the various components,
which means to duplicate the states of the components within the DSI binary
frontend for the analysis.

The main synchronization point between Howard and DSIbin is the call stack.
Howard identifies heap allocated memory by its call stack leading to the allocation
site, e.g., amalloc. Further the call stack holds the last address of a function for
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which a stack frame has been created. This is required as the stack memory is
identified to Howard by the function address to which a stack frame belongs.

We now consider briefly how DSIbin handles the call stack in order to syn-
chronize with Howard. DSIbin tracks the call stack by a shadowed call stack that
records the execution of the program. Thus, the shadowed call stack is designed
to grow and shrink analogous to the call stack of the program under analysis. This
means, whenever a call occurs during program execution, a push of the current
program address is performed on the shadow call stack, and whenever a return
occurs, a pop gets performed.

Now that the main synchronization point between Howard and DSIbin is cov-
ered, we detail the handling of the stack memory, as the call stack is closely inter-
woven with the stack memory. The DSI binary frontend again models a shadow
stack, which duplicates the stack frames of the program under analysis. Each al-
located stack frame created by the program under analysis gets duplicated by the
DSI binary frontend; it is pushed onto the shadow stack when a function call oc-
curs and popped from the shadow stack upon a return. A shadowed stack frame is
identified by its function address, which is retrieved from the shadowed call stack.
The function address of the stack frame is subsequently used to fetch type infor-
mation from Howard for a particular shadowed stack frame. This information is
stored in the previously discussed type parser. Further, a shadowed stack frame
keeps its size and its start and end addresses. This allows us to compute the type
information from Howard, given a concrete local stack address.

With the call stack and shadow stack now being covered, the heap memory needs
to be modeled. As before, the DSI binary frontend shadows the heap memory.
In case of an allocation, a new shadowed heap memory element gets created, by
querying the shadowed call stack for the sequence of functions calls that lead to
the allocation site. This information is stored within the shadowed heap chunk,
together with the information about its size and its address on the heap. The call
stack is used to again query the type parser, which stores Howard’s type informa-
tion for heap memory as well as the stack memory. With this information, the
shadowed heap provides type information for a concrete heap address.

In summary, those three components, i.e., the call stack, the shadow stack and
the shadow heap, form the backbone of the binary frontend Pintool, as they allow
to obtain detailed information about the live memory and the call stack at every
important time step of DSIbin’s analysis during program execution. It is also
possible to conduct certain sanity checks upon the live memory, e.g., whether a
referenced heap memory chunk is still live, or whether a red zone optimization
for the stack is present.

Main component of the Pintool. The main component brings together the previ-
ously discussed components by hooking into the appropriate machine instruc-
tions, e.g., the call and return statements for monitoring the call stack and the
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functions modeling the heap. The main part of the binary frontend first sets up
the type parser in order to have the type information available. Subsequently, it in-
jects the callback hooks for the monitored machine instructions and, afterwards, it
monitors the running executable, e.g., for changes of the call stack, heap and stack
allocations and pointer writes. The information is recorded into an XML trace file,
analogous to that provided by the CIL source code instrumentation. After record-
ing the file, the Pintool stops executing and passes the file onwards to DSIcore for
further processing, as seen in Fig. 14.2.






15 Benchmarking of naive combination

The implementation of our naive combination of Howard and DSI is bench-
marked in this chapter, by applying the tool chain of Ch. 14 against real-world
examples [20, 32, 34], standard textbook examples [104, 108], examples taken from
the shape analysis literature [23], and hand-written examples. The hand-written
examples challenge our tool chain in a white box fashion. In total the resulting
benchmark comprises 30 examples. Our tool chain is able to already correctly
identify 10 of the benchmark’s examples. The successful examples improve upon
related work [49, 69, 74], e.g., by the recognition of SLs and various forms of nest-
ing.

A general overview of the benchmark is given in Sec. 15.1, and the positive ex-
amples are discussed in Sec. 15.2. Following this, a detailed analysis of the 20 neg-
ative examples is presented in Sec. 15.3, which reveals that most of the recognition
failures result from insufficient and imprecise type information. In Sec. 15.3.4, it
is discussed how the theoretical discussion about the loss of type information in
Ch. 11 is confirmed in practice by the failed recognition of DDSs.

15.1 Benchmark: General overview

The prototypical tool chain is benchmarked against C/C++ code samples. The di-
versity of the examples is chosen to evaluate the robustness of the approach in the
light of various implementation techniques of DDSs. Specifically the benchmark
consists of four text book examples (tb-1,tb-2[104] and tb-3, tb-4 [108]), which
cover SLLs and DLLs, including higher level concepts such as a stack built on top
a SLL. Five examples are taken from the shape analysis literature, i.e., from the
Forester/Predator Git repository [23] (lit), which feature various LKL implementa-
tions. Further, five (extracted) real-world examples ((e)r) are chosen, namely the
region clipping library of VNC (hvnc2/1ibs/libvncsrv/rfbregion.c found in
Carberp [34], r-3), the benchmarks treeadd [20] (r-2), and binary-trees-debian [32]
(r-1). Finally 16 self-written synthetic programs (syn) are selected to perform a
white box testing of our approach. The source code of the synthetic examples is
available from https://github.com/uniba-swt.

As the benchmark is composed of common DDS, such as (cyclic) lists and trees,
and arbitrary interconnections of those components, e.g., indirect and overlay
nesting, the overall variety of the benchmarked DDS is guaranteed. The examples
each contain a single DDS, which might be composed of multiple different DDS,
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for convenience of the evaluation to isolate interesting aspects of the analysis. The
general approach can handle more than one DDS per source code file.

The ground truth of the examples is determined by manual source code inspec-
tion and is listed under the Code section. As DSIbin operates on binary code, it is
natural that it can handle not only C code, as does DSI, but also C++ code. In order
to prove this, the examples are a mixture of both C and C++, as listed in the lang
column of Tab. 15.1. The shape of the DDSs, including their interconnections,
are listed in the DS column. The examples range from SLs to BTs to (cyclic) lists.
The interconnections are either established via indirect nesting (Ni) and overlay
nesting (No) from parent to child. As DSIbin is a dynamic approach that creates
its evidence for a DDS over the lifetime of a DDS, we report the trace length of
the examples in Tab.15.1. The programs are run until termination. For complete-
ness, the Lines of Code (LOC) for the examples are also listed in Tab. 15.1, though
this is not a measure of the complexity of a DDS. For example, when looking at
1it-5, one can see that a quite complex and challenging DDS consisting of two
DLLs running in parallel, can be constructed with only 36 LOC.

The important characteristics of the programs are listed as well, as they have an
impact on the detectability of the DDS such as flattened access of struct members
(flat). As the placement of the nested structs inside the enclosing node influ-
ences, whether Howard can detect the nested struct the nesting of a struct at the
head of the surrounding struct (n@h) is reported. Further, the placement of some
other struct not at the head of the surrounding struct (n) is indicated. Column m
lists the possibility to merge allocation sites, where some DDS only provide partial
(pt) merge opportunities. Because the related work discussed previously in Ch. 3,
does not merge DDS distributed across the heap and the stack, column h/s indi-
cates whether the DS is distributed across the heap and the stack. Such a behaviour
can be seen with the LKL, when the head node of the list is stored on the stack,
and the remainder of the list is dynamically allocated on demand during program
execution. Some of the examples have nested structs that are only payload, i.e., do
not participate in the linkages of the DDS. These examples are marked by (p), as
these access patterns do not influence the detection of the DDSs.

The next columns are divided into the columns under the headings Naive Com-
bination and Sophisticated Combination. The first describe the performance of
using Howard’s type information ‘as is’, which is discussed in the current chap-
ter. The sophisticated combination is discussed in Ch. 16. The naive combination
cannot deal with nesting at head (n@h), does not merge neither heap and stack
allocated nodes of the same type (h/s) nor nested elements. These scenarios are
left for the sophisticated combination in Ch. 16. Thus, the naive combination con-
centrates on the correct identification of the DDS (rec), as well as the detection of
structs that are not located at the head (n-d). Additionally, the merging of alloca-
tion sites is reported (m). The only difference between the naive and sophisticated
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combination sometimes lies in the length of the detected DDS. In such cases, the
length is reported in brackets behind the DDS shape.

The tool chain is executed on a PC with an Intel CORE i7-4800M Q with 2.70GHz
and 32GB RAM for all examples of the benchmark.

15.1.1 Dynamic data structure interconnections

As already mentioned, the synthetic examples are specifically implemented to
“stress test” various features of DSIbin. There are mainly two axes for the de-
sign of the synthetic examples. Firstly, interesting interconnections of the DDSs
are considered, such as indirect and overlay nesting situations that could lead to
wrongly detected connections between the DDSs. Additionally, interesting com-
binations of DDSs such as a skip lists with nested DLLs (syn-9) are added to see
whether the nesting relationship is side effect free with DSI’s skip list detection.
Notably, the related work from the shape analysis literature [65, 72] only contains
skip lists as benchmarks without any parent-child relation (1it-3). Additionally,
skip lists are out of scope for the other dynamic analysis tools [49, 69, 74].

Secondly, the synthetic examples try to avoid the detection of the used DDS,
which can be seen as DDS obfuscation. Such techniques could be used by malware
authors to further stealthen the footprint of their software.

15.1.2 Dynamic data structure obfuscation

For a long time, code obfuscation techniques [59] are applied on a regular basis
for malware families. These techniques are not in the focus of this discussion,
as our approach is resilient against this by design. As an example, consider the
creation of a SLL. No matter how many code transformations are performed, the
final result still is a linked list. As long as the memory is allocated properly and
the pointers are not obfuscated, e.g., by XOR-ing two pointer fields into one as
applied by the XOR-list [44,76], such a DDSs is still detectable by DSIbin. Instead,
the intention is to perform DDS obfuscation similar to [79]. In [79] the memory
layout of the structs gets permutated, by reordering struct members and adding
random padding.

Again DSIbin/DSIcore is resilient against the techniques of [79] as the shape of
the DDS is not obfuscated. Consider the SLL example where its shape remains sta-
ble no matter where the linkage pointer is placed within the data type forming the
SLL. Such layout permutations further need to be stable for all instances of a par-
ticular data type, i.e., all allocated structs forming the DDS, if runtime overhead
should be avoided. If runtime is not of concern, the memory layout permutations
could be done on a per instance basis. This would require similar techniques
as runtime type casting and thus increases the required logic for accessing type
members. Instance based layout permutations would be a problem for DSIcore as
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no linkage conditions could be established. This technique is however not applied
by [79].

In contrast, the obfuscation approach taken by us avoids list traversals and per-
forms flattened access of nested struct elements to prevent type merging and the
detection of nested structs by Howard. More specifically, Howard tracks instruc-
tions and pointers that operate on binary compatible memory chunks to merge
different allocation sites. Therefore, we introduce artificial pointers and functions
in examples syn-10, syn-12 and syn-13 to prevent type merging. This triggers
the situations described in Ch. 11 when type information is lost. Especially when
using such techniques in more complex data structures, such as SLs, this could
blur the overall shape as parts of the DDS might never be traversed, thus leaving
regions of a DDS unrecognized and leading to failed DDS predicates.

Obfuscation might also be triggered implicitly by compiler optimization tech-
niques. The examples were compiled with the default optimization settings for
gcc and -00 for g++.

As a side note, some of the standard implementation techniques used within
the benchmark, such as nested elements, also implicitly obfuscate data structure
shapes, as Howard does not detect all nested elements, e.g., nesting at the head
and also does not merge nested types, which leads DSIcore to miss such DDS. As
our toolchain is split into the part involving Howard and the part involving DSI, we
need to separate the implications of optimizations for both approaches. The au-
thors of Howard looked into various compiler optimizations, such as data layout,
function frame, and loop optimizations [98]. Howard is able to cope with such
situations. As already mentioned DSIbin is immune to optimizations that only
change the layout of the used data types or rearrange the scheduling of program
instructions, similar to polymorphic code. The only requirement is proper mem-
ory allocation and that pointers forming the DDS are kept intact. The examples
syn-04, syn-05, syn-06, and syn-14 all perform a flattened access of the relevant
linkage addresses, i.e., from the base address of the enclosing struct, to prevent
their detection.

15.1.3 Allocations on the heap and the stack

Interestingly, the distribution of a DDS across the heap and the stack, which is
not uncommon for the LKL, implicitly obfuscates a DDS, as type merging is not
performed by related work across the heap and the stack [51]. This is both true
for our aforementioned competing dynamic analysis approaches as well as the
discussed pure type recovery tools, i.e., type merging between the heap and the
stack is also not done by Howard. This lacking feature is tested with, e.g., example
syn-07 for a cyclic DLL and with example syn-16 for a non cyclic SLL.

When looking at syn-07 more closely, missing the type merging between the
heap and the stack results in cutting off the head node of the LKL. This prohibits
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DSIbin to detect the cyclic property of the DLL, as seen in Tab. 15.1. The resultis in
line with the predicted behaviour of DSIbin suffering from false negatives for its
strand detection, as discussed in Ch. 11. To be able to detect a DLL already points
the reverse engineer in the right direction of the used DDS. However, the result
might also lead to some effort in analysing the routines that modify the DDS, as
an insert into a CDLL might differ much from an insert into a DLL. In example
syn-16, the overall shape of the DDS is detected correctly, i.e., an SLL, but the
wrong length is reported, i.e., the DDS gets cut where the link between the heap
and the stack occurs.

15.1.4 Nested structs

With examples syn-05 and syn-06 the same technique of embedding a struct
inside another is used with slightly different implementations. This approach is
similar to the LKL, but the nested elements do not only have linkage pointers but
also payload elements. The used version of Howard does not consider reading
payload information when performing its nesting detection. This information
could be exploited for nesting detection in a future version of Howard.

Both examples try to hide their shape by connecting differently typed nodes.
Example syn-05 is similar to a skip list with only one level, i.e., there are a couple
of barrier nodes that represent check points for a comparison criterion. If the
criterion is matched, one can iterate onwards to the payload nodes to find the
corresponding node. If the criterion is not matched, one can iterate to the next
barrier node. As barrier nodes and payload nodes are of different types, DSIbin
can only detect the payload nodes as an SLL. The payload SLL gets cut at every
connection between differently typed nodes, i.e., between the payload and barrier
nodes. The result in Tab. 15.1 reports the longest running SLL as multiple SLL
fragments exist due to the cutting between differently typed nodes.

With example syn-06 an SLL is created that consists of alternating types, which
effectively hides the complete SLL as DSIbin has no opportunity to correlate the
list nodes. This is a quite effective, yet simple example to prevent the detection
of DDSs. To make the example practically useful, each of the embedded structs
has a flag that indicates the type of the enclosing node to be able to react on the
individual nodes.

15.2 Discussion of positive examples

Ten out of the 30 examples are detectable out of the box with our naive Howard an
DSIcore combination. Specifically, the positive examples are 1it-2,3,5; r-1,2;
syn-01,03,08,14 and tb-3. This is an encouraging result, as DDSs are sup-
ported by DSIbin which are not considered by related work with regards to dy-
namic analysis [49,69,74], e.g., SLs and interconnections such as nesting on over-
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lay. Static analysis tools such as Predator and Forester consider SLs in their exam-
ples, but not with nested child elements, as seen with syn-09. As a short summary
ahead of the following detailed discussion of the examples, the naive combination
correctly identifies the DDS, whenever Howard is able to fully merge the alloca-
tion sites that form the DDS. Additionally, the cells forming the DDS are required
to cover the whole memory chunk, which rules out LKL like implementations.

None of the ten positive examples has nesting, thus no flattened accesses of the
struct members and no nesting at the head of the surrounding struct (n@h) occur.
The ten DDSs are also not spread across the heap and the stack, but are exclusively
heap allocated. However, type merging (m) of the allocated nodes is required for
some of the examples.

As can be seen by the variety of the examples, the naive combination is robust
against different implementation techniques of the various DDS. This is further
demonstrated by examples r-1,2 and syn-01 that implement a BT, although with
different implementation techniques as indicated by the LOC and the trace length
of the examples. Note that the LOC is only reported in Tab. 15.1 for completeness,
as this is not primarily an important criterion for measuring the complexity of an
example in the context of a dynamic analysis.

1it-2 consists of multiple levels of nesting on indirection of SLLs, where each
level has a unique type. Hence, no type merging is required as indicated by the
different types found in the source code, although all of the types are binary com-
patible. The access patterns of the DDS do notlead Howard into merging the types
of the different levels, which are all allocated at different allocation sites. This is the
case as the DDS is not accessed, e.g., by one generic iteration pointer. Therefore,
the inferred types by Howard match the ground truth found in source code, which
results in the correctly identified nesting on indirection on multiple levels. In gen-
eral, situations where types are binary compatible and are only distinguished by
their naming in source code, Howard and DSIbin have difficulties in telling them
apart, whenever those types allow Howard’s and DSIbin’s type merging strategies.
The latter will be explained in Ch. 16.

DSIbin also produces the correct interpretation for 1it-5, which are four DLLs
in parallel, as Howard is able to merge the multiple allocation sites forming the
DDS and typing all of the pointers that establish the linkage of the DDS. This in
turn allows DSIcore to identify the four DLLs. Most likely, the initial intention
of the programmer were two DLLs running in parallel instead of four. DSIcore,
however, considers all possible combinations of the next and prev strands when
performing its analysis, resulting in four DLL combinations, which we also con-
sider to be the correct interpretation intuitively.

As a preview, interestingly the two examples 1it-2 and 1it-5 are detectable
exclusively by the naive implementation and not by the sophisticated approach
discussed in the subsequent chapters. For this reason, the sophisticated approach
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treats types inferred by Howard equally to those inferred by the sophisticated ap-
proach as is explained in Ch. 16.

1it-3 and syn-09 are both detected out of the box by the naive implementation.
Both examples implement an SL, although syn-09 adds additional child elements
to see, whether the SL detection of DSIcore is affected by the child elements. Both
examples require type merging, which is successfully accomplished by Howard.
This in turn allows DSIcore to detect the true DDS shape. The nesting scenario of
syn-09 does not interfere with the SL predicates used by DSIcore. More specifi-
cally syn-09 is composed of nodes of different types, which leads MemPick [69]
to even cut the connections between the parent SL and the child DLLs. The next
positive example is syn-15, which also has a parent child nesting relation as has
syn-09. However in contrast to syn-09, syn-15 shows nesting on overlay. Nest-
ing on overlay is also not supported by related work.

The two remaining correctly identified examples only contain lists, i.e., no fur-
ther parent child relations. These are tb-3 and syn-03. Example tb-3 shows a
DLL that is fully detected by DSIbin with the help of the types inferred by Howard.
Example syn-03 represents the base case for DSIcore as itis an SLL, i.e., a strand.
While the other examples are implemented in C, syn-03 is implemented in C++,
showing that the usage of binaries as input allows DSIcore to transparently op-
erate on both these related languages. Therefore, making our DSIbin approach
more generic than the initial source code only version of DSI.

15.3 Discussion of negative examples

While our naive approach already shows encouraging results, the majority of the
30 examples can however not be identified correctly by the naive combination of
Howard and DSIcore. Here "not identified” is interpreted quite strictly, e.g., an
off-by-one in the length of a strand is considered as not detected by the naive ap-
proach. This strict interpretation is chosen, as some of the off-by-one results could
be extended to miss more than only one element. As an example, consider that
Howard does not merge heap- and stack-allocated memory chunks of the same
type. While in syn-16 only the stack allocated head gets cut off from the remain-
der of the heap allocated list, an list where each element is allocated alternatingly
on the heap and the stack will not be detected at all with the naive implementation.

15.3.1 Loss of cyclicity property

Examples er-1, er-2, 1it-1, 1it-4 and syn-07 all suffer from a diminished pre-
cision due to our toolchain missing the cyclicity property of the CDLLs. However,
for all examples a DLL gets detected, i.e., only the cyclicity part is lost. In each of
the examples, one element of the DLL is cut off for various reasons, which conse-
quently destroys the cyclicity property. This implies that the length of the detected
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DLL is always one less than that of the CDLL. For examples er-1,2, the CDLL is
implemented using a C++ std::list, which is similar to that of a LKL. The CDLL is
not spread across the heap and the stack, but the head node of the CDLL is placed
outside of the remainder of the payload carrying part of the list. The CDLL link-
age struct is embedded at the head of the payload struct. Howard never merges
memory chunks of different sizes, thus missing the opportunity to merge the ex-
ternal head node of the CDLL with the remainder of the list. Additionally, n@h
is never detectable by Howard, which makes it impossible to apply DSIcore’s cell
abstraction in such scenarios.

When looking at the next example, 1it-1, where cyclicity is missed, the reasons
are cut off head nodes. In this case, the head nodes are cut off both for the parent
and the child lists. Example 1it-1 employs the LKL both for the parent and the
child. The parent head node is cut off, as it is placed on the stack while the remain-
der of the list is heap allocated. Howard does not merge heap and stack allocated
types. Additionally, the head and the remainder of the list are again of different
sizes as with the previous example. The head nodes of the two child elements are
nested within the parent. One child is nested at the head of the parent, the sec-
ond child is nested below the first. Again, nesting at head is missed entirely by
Howard. The nested head of the second child element gets detected by Howard
but, unfortunately, Howard again does not perform the type merging between the
nested type and its exclusive instantiation outside a surrounding struct. This re-
sults in detecting three DLLs. The problem of a head and stack allocated CDLL is
also present with syn-07.

15.3.2 Changes in connections

The imprecision of the inferred types also affects the detected connections be-
tween strands, as can be seen with examples 1it-1, 1it-4, syn-02, syn-10 and
syn-14. These examples have in common that the ground truth has nesting on
overlay. With the types inferred by Howard, the revealed connections by DSIcore
all degenerate to nesting on indirection. The main problem is closely related to the
loss of cyclicity in the case where the head nodes are not detected and not merged
with the remainder of the list. In such cases a missed nested head node leads
to a loss of the nesting on overlay property. This is the case, as DSIcore simply
does not observe that two cells of two different strands, i.e., the parent and the
child strand, actually occupy the same memory chunk, as the child strand does
not include the cut off head element anymore. However, the connecting pointer
from the parent head to the next element of the child is still present, leading to the
nesting on indirection connection. This can, e.g., be seen from examples 1it-2,
1lit-4, syn-02 and syn-14.

No CDLL is present in example syn-10. Instead, the parent SLL is created at a
different allocation site than the child SLL, although both are of the same type. No
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iteration is performed after connecting the child with the parent , which prevents
Howard’s merge strategy. Thus, DSIcore is unable to extend the strand of the child
SLL back to the parent. Again, this cuts off the head node of the child SLL, leading
to indirect instead of overlay nesting being detected.

Example r-3 is part of the VNC implementation used by the Carberp malware,
as discussed in Ch. 10. The parent DLL consists of a head/tail node that nests both
the start and the end nodes inside one struct. The actual payload nodes are out-
side the head/tail node, as shown in Fig. 10.1. Each element of the outer payload
nodes has a pointer forming a parent-child relation to the next DLL level, which re-
cursively uses the parent DLL. Again, Howard does not detect the nesting at head
inside of the head/tail node of the parent and again does not merge the head/-
tail node with the remainder of the list. In this case, DSIcore can only detect the
payload DLL, which in this case has a length of three. The ground truth reports a
length of five, as the nested start/end nodes are counted as well.

15.3.3 Obfuscation

As already discussed, some of the examples apply obfuscation techniques to hide
the true shape of the DDS. During the discussion this far, we have already seen
implicit obfuscation techniques. For example, missing nested elements and not
performing type merging already obfuscates the true shape of the DDS, e.g., hid-
ing cyclicity. Now, the obfuscation techniques are made more explicit by exploiting
the merge strategies employed by Howard, e.g., introducing more allocation sites
and preventing iteration pointers. Example syn-13 creates an SLL with the help
of a macro that performs the malloc of the SLL node and establishes the pointer
connection between the previous and the newly allocated node. When using the
macro, the code is effectively replicated at each usage pointer, resulting in a mul-
titude of allocation sites and resembling loop unwinding. Thus, Howard detects a
unique type for each allocation site and the lack of an iteration pointer prevents the
type merging of Howard. This in turn prevents DSIcore from creating a strand,
thus failing to detect the SLL completely.

Examples syn-05 and syn-06, which both implement SLLs that connect nodes
of different types. The linkage struct is nested inside of the payload nodes, thus
DSIcore’s cell abstraction is required. The difference to the previously discussed
LKL examples is the absence of the cyclic property. The two current examples
exploit flat access of their nested elements and nesting at the head which again
leads Howard to miss those types. DSIcore only identifies the SLL partially in ex-
ample syn-05 and not at all in example syn-06. Example syn-05 shows partial
sequences of the same type within the list, which are identified correctly by DSI-
core, i.e., an SLL of length two gets reported instead of the ground truth of five.
syn-06 is more generic and allows one to link arbitrary types within a list, which
is used to create a list of alternating types. This in turn obfuscates the SLL com-
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pletely. In those examples no restrictions upon the usage patterns of the DDS are
present, e.g., the list gets iterated within the example but still Howard does not
merge the alternating types for the already discussed reasons. A similar obfusca-
tion technique is used with syn-04, although the linkage pointers are more com-
plex, as the example uses a DLL as its main DDS with an additional SLL running
in parallel. The example aims more to test the following DSIbin implementation
as discussed in Ch. 16, which tackles the observed shortcomings with the current
naive implementation.

15.3.4 Conclusions

In summary, the naive Howard and DSI combination works well on examples for
which nesting does not play a crucial part for forming the DDS and for which it
is possible for Howard to fully merge the types that form the DDS. In this case
the naive combination can even detect DDS, such as SLs and connections such as
overlay nesting, which are not supported by the related work regarding dynamic
analysis [49, 69, 74]. The naive combination struggles whenever the type infor-
mation obtained from Howard is too imprecise. This includes nested types, e.g.,
when nested structs are missed or type merging is not performed. Missing nested
elements happens, e.g., due to flattened access of nested struct members or when
nesting at the head of the surrounding struct occurs. These scenarios are impos-
sible to resolve for Howard as its nesting detection relies on the offset calculation
of the compiler, which uses a base pointer and applies an offset to access a struct
member. Whenever a nested struct is exactly located at the beginning of the base
pointer, the situation is ambiguous resulting in the limitation of Howard to miss
structs nested at the head of the surrounding struct. The situation is worsened
by the flat access of struct members, where the access pattern to a nested struct is
always relative from the start of the enclosing struct, resulting in the same problem
as with nesting at the head. Further, the naive combination cannot handle DDSs
spread across the heap and the stack, as current type inference tools including
Howard do not merge types between the heap and the stack.

Although some of the negative examples’ results are encouraging, their ground
truth are missed. The naive combination at least points an analyst towards the
right direction of the used DDS, e.g., when a DLL gets detected instead of CDLL.
However, these very similar DLL implementations my differ significantly, e.g.,
when considering an insert into a CDLL and a DLL. Therefore, an analyst might
understand certain DDS related code sections faster when precise DDS informa-
tion is available.

The limitations and assumptions of the naive Howard and DSIcore combina-
tion, e.g., Howard requires the presence of an iteration pointer to perform its type
merging, can be exploited to hide DDSs completely from being detected. This
results in DDS obfuscation, which is a severe situation for an analyst as no in-
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formation about the used DDS is available. This requires more manual reverse
engineering effort. As it is also thinkable to pass the inferred information by DSI-
bin of the used DDS to virus detection tools that operate on data structure signa-
tures, e.g., Laika [60], missing out a data structure completely hampers such an
approach. Because of both these aspects, i.e., loss of precision and obfuscation,
the need arises to enhance the naive combination to overcome these limitations.
This is discussed in Ch. 16.

As a conclusion of the benchmarking of the naive approach, the discussed ex-
amples prove our theoretical considerations of type information loss in Ch. 11.
Specifically, loosing type information leads to diminished precision. The preci-
sion loss is mainly due to false negatives, if (nested) structs are not typed and
merged correctly. False positives do not occur, which results from the restrictive
merge strategies of Howard, e.g., requiring binary compatibility together with a
common iteration pointer. The drawback of this conservative approach are some-
times completely missed DDSs, e.g., as is the case for example syn-13.
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16 Refinement

This chapter tackles the aforementioned problems of the naive combination of
DSIbin and Howard, namely (i) detecting nested structs independently of their
placement inside the enclosing struct and their access patterns and (ii) perform-
ing type merging between nested and non-nested struct instances that can be dis-
tributed across the heap and the stack. This is accomplished by adding a new
component to DSIbin, called Data Structure Investigator Refinement Component
(DSIref), as shown in Fig. 14.2. The component implements the novel approach
developed within this dissertation that refines the types generated by Howard and
uses DSIcore itself for evaluating the inferred types. The general approach is pre-
sented in Sec. 16.1, an algorithmic view upon the approach including pseudocode
is discussed in Sec. 16.2. The implementation and benchmarking details are ex-
plained in Ch. 17.

16.1 Refinement approach DSlref

DSIref uses Howard’s inferred types as a baseline for further type refinements.
Howard’s nested struct detection and type merging strategies have already been
applied to form the baseline for DSIref, i.e., the types from Howard are exhaus-
tively merged according to Howard’s type merging strategy. DSIref improves
upon these results by exploiting pointer connections between types. As pointers
follow strict conventions, such as incoming pointers point to the head of a linked
target object [60], those connections can reveal the layout of the linked objects,
e.g., a pointer that points into the middle of a memory region might indicate a
nested struct. Further, a link between two binary compatible memory regions, for
which Howard does not infer the same type, might hint at mergeable objects. Bi-
nary compatibility exists between objects of the same size and the same primitive
data types as inferred by Howard. As these information can be ambiguous, as is ex-
plained later in this chapter, DSIref creates a set of type hypotheses upon which the
best hypothesis needs to be determined. This is accomplished by evaluating each
of the hypotheses with DSIcore itself, resulting in a DDS interpretation for each
hypothesis. Subsequently, the most complex DDS interpretation is chosen, as the
intuition is that only correctly identified nested structs and type merging increases
the complexity of a detected DDS. For instance, example 1it-1 of Tab. 15.1 indeed
reveals the cyclic property of the DLL, which was otherwise missed. We have not
observed artificially created complex DDS, such as an SL, as this would require that
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the memory layout and pointer connections coincidentally form a more complex
structure than intended by the programmer.
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The refinement process consists of eight phases (Phases (a)—(h)) as shown in
Fig. 16.1. The refinement starts out in Phase (a) by generating PTGs for each
event of the execution trace recorded by the DSIbin binary frontend (Fig. 14.2).
The trace uses the type information inferred by Howard “as is”, i.e., Howard’s type
merging is already applied and the type sizes, the primitive types of the fields and
the nested structs are used as observed by Howard. This sequence of PTGs is then
used to construct a Merged Type Graph (MTG) in Phase (b). A MTG is similar to a
PTG where types are represented as vertices and pointers as edges. The difference
between a PTG and MTG is that each type and pointer observed in Phase (a) is only
recorded once in the MTG, similar to [39,49,92]. Thus, all PTGs are combined into
one MTG, which consequently is a compact representation of the DDSs over their
lifetime. The MTG represents both heap and stack types, which allows for the
uniform processing of both memory regions. This enables type merging between
the heap and the stack, which is not done in the literature [51].

Figure 16.2: Illustration of possible mappings. Figure reproduced from our pub-
lication [94].

The following Phases (c)—(f) operate on the created MTG to generate new possi-
ble type hypotheses, by exploiting pointer connections and the binary compatibility
between the types. In Phase (c), subregions of memory are mapped along pointer
connections, where the source and the target need to be binary compatible. Binary
compatibility is given if (i) the size of the memory regions match or the source can
subsume the target, and (ii) the primitive types inferred by Howard are identical.
The latter is relaxed such that it is possible to match typed memory to untyped
memory, called don’t cares. This is important as the lack of access patterns might
prevent Howard from typing each field of memory regions. An example of such
an scenario can be seen in Fig. 10.1, where the head and tail elements of the DLL
only have a typed next and previous pointer field, as the other one is not used. The
remainder of the list has fully typed previous and next fields, as the list is traversed
in both directions. Thus it gives DSIref more merge opportunities.
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Unfortunately, such mappings may not be unique, as has already been men-
tioned. This can be seen in Fig. 16.2 that shows, on the left, two memory regions
consisting of only pointers and, on the right, two memory regions consisting of
different primitive types. The indented primitive types indicate a nested struct.
On the right-hand side, the nested linkage struct is framed by different primi-
tive data types, which only allows one specific mapping from the target to the
source. On the left-hand side instead, we have the pointer-only memory layout in
the source and the target. This results in an ambiguous situation as it is not clear
where to place the nested struct within the source of the pointer, as indicated by
the four colored bars. The variations now come from the size of the mapped re-
gion, as shown by the bars of size two and three, as it cannot be determined where
the nested struct stops. The only fixed boundaries on the target side are that the
nested struct starts on the incoming pointer and can span only until the end of
the surrounding struct. On the source side, it only needs to be guaranteed that
the mapped region still encloses the linkage pointer and that the mapped mem-
ory does not exceed the boundaries of the enclosing struct, both at the start and
the end.

Phase (d) handles this situation by brute force as it creates all hypotheses that
cover the possible struct sizes and offsets that are mappable between target and
source, as indicated by the shaded colors. As the possibility is high that a pointer
points to another pointer field, the size of the mappable memory regions is chosen
to be at least two. Although this avoids the creation of single-element pointer
chains, it decreases false mappings and noise.

Once the mappable regions are detected, the next step in Phase (e) is to prop-
agate the mappable region maximally along the incoming and outgoing pointer
connections pointing into and out of the detected region. As a design decision, it
is only possible to propagate the region along the pointers as long as the linkage
offset is the same, i.e., the offset from the start of the mapped struct to the linkage
pointer. This is analogous to the linkage condition used by DSIcore, as discussed
in Ch. 2. This step actually performs the discovery of more nested structs along
the pointer chains and performs the type merging. The propagation of the re-
gion stops when no more incoming or outgoing pointers fulfill the linkage offset
condition, or when the source or target of a followed pointer already contain a type
instance of this particular type. The latter can happen, e.g., with cyclic pointer con-
nections. Note that it is important to distinguish between a type and a type instance.
The type is discovered by following the pointers and obeying binary compatibility
as discussed previously. A type instance is a concrete occurrence of a type within a
vertex and is thus defined as a tuple (type, offset), i.e., a type with the corresponding
offset within the vertex in which it resides.

Getting back to type propagation, don't cares are treated as mappable memory
regions, as discussed before. This allows us to type previously untyped memory
regions with the primitive types inferred by Howard. An example of such an addi-
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tional primitive type refinement is displayed in Fig. 1.5 on the left-hand side, where
the right column shows the refined type information as discovered in Phase (e).
As both types from the heap and the stack are part of the same MTG, arbitrary
merging scenarios between the heap and the stack are possible. Additionally, the
mapping of subregions between types allows us to merge both outer structs and
nested instances of those structs. This is in contrast to ARTISTE [49], which re-
fines types as a whole according to their notion of allocation site and call site tree.
Instead, DSIref cannot only refine complete memory chunks, but also only sub-
regions of memory across different types and memory regions.

Hypothesis 1

TYPE B

TYPE B

Merged type graph

Hypothesis 2

Figure 16.3: Motivation for globally consistent types. Figure reproduced from our
publication [94].

Phase (f) depicts another problem when creating possible type hypotheses: dif-
ferent hypotheses as introduced by multiple pointer connections can lead to in-
consistent combinations among those hypotheses. Such inconsistencies arise ei-
ther due to overlaps in mapped memory regions, as it is not possible that nested
structs overlap. Thus, overlaps are removed immediately from the set of possible
hypotheses. This property is local to a given type vertex, although global inconsis-
tencies can occur as well. This can be seen on the left-hand side of Fig. 16.3: the
MTG displays two nested structs of TYPE A, where only one instance contains a
nested struct of TYPE B, which is linked to an outer instance of TYPE B. Thus,
two different manifestations of TYPE A exist, leading to the need to equalize those
instances. This is done by creating different hypotheses, one for each possible
interpretation, as shown on the right-hand side in Fig. 16.3. Such scenarios can
again arise due to different access patterns, e.g., for the head and tail nodes of a
linked list, as discussed previously.
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In addition to the described creation of a set of possible type hypotheses, the ini-
tial types inferred by Howard are also added to the set of possible type hypotheses.
This makes all detected type hypotheses from both DSIref and Howard equal and
lets the most complex inferred DDS decide which one is the correct interpretation.
This avoids discarding valid hypotheses prematurely. More precisely, removing
Howard’s inferred types from the set of type hypothesis corner cases would need
to be introduced for the case when DSIref does not find further type refinements,
i.e., only Howard’s inferred types exist. Further, DSIref finds possible type sce-
narios, which still need to be verified. If the types inferred by Howard would be
discarded, false positives regarding the type merging introduced by DSIref could
not be detected.

Finally Phases (g) and (h) determine which type hypotheses are the best inter-
pretation of the MTG in terms of the detected DDS. For this, we use the DSIcore
algorithm itself by letting it perform its DDS detection with each of the created
type hypotheses, as shown in Phase (g). In the two concrete examples, one sees
that the initial types from Phase (a), i.e., those inferred by Howard, only create
two SLLs. The other interpretation depicted indeed shows that both nested types
of the embedded linked lists are propagated back to the head node, thus revealing
the CSLL property and making the SLL one element longer. Thus, in Phase (h),
the most complex interpretation is selected according to a hierarchy similar to the
DDS identification taxonomy employed be DSIcore [107]. The main idea here is
to rank the DDSs from most complex to least complex: skip list overlay (SLo), binary
tree (BT), cyclic doubly-linked list (CDLL), doubly-linked list (DLL), cyclic singly-
linked list (CSLL), nesting-on-overlay (No), nesting-on-indirection (Ni). The cho-
sen DDSs is the subset of the available DDSs of DSIcore’s taxonomy [107] that was
benchmarked within DSIcore in Ch. 8.

Additionally, the number of occurrences of the most complex data structures
that are detected via the best interpretation is taken into account by DSIref. This
favours situations such as in example 1it-5, where both Howard and DSIref pro-
duce the same most complex DDS. Thus, Howard’s and DSIref’s type hypothesis
only differ in the maximum count of recovered DDS. If the count of recovered
DDS instances does not favour a hypothesis, Occam’s razor is used to choose the
least amount of refined structs. Here, the rational is that additional refinements
that do not alter the overall structure of the DDS are superfluous. In situations,
where only an SLL is observed, the longest strand length succeeds. Additionally,
evidence counts among the different hypotheses that are within 85% of each other
are considered equivalent. This counters noise in the evidence and labeling pro-
cess. This strategy often results in a single interpretation, and its general applica-
bility is discussed in Ch. 17.2.
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16.2 DSlref in pseudo code

This section discusses the pseudo code for the algorithm presented in the previ-
ous section. The main algorithm, as shown in Alg. 17, is divided into two main
parts (i) the detection and propagation of DSI Types (DSItypes) and (ii) the cre-
ation of consistent type hypotheses. Note an important aspect of the algorithm,
which distinguishes between a DSltype and an instance of a DSItype. A DSI-
type gets created when mapping memory regions along edges as done in function
cALCcULATED SITyPESFOREDGE in Alg. 18. The propagation of those DSItypes along
the edges of the MTG via function PROPAGATED SITyPEONMAXPATH, as shown in
Alg. 20, creates instances of those DSItypes. The subsequent parts of the algo-
rithm operate on those type instances, and only in the end of the algorithm those
type instances are mapped back into types.

16.2.1 Main function of algorithm

The main algorithm, as shown in Alg. 17, operates on the MTG that is represented
by the set of type vertices (V) and a set of edges (£) which is copied into the working
set Eype. Those variables are treated as global variables. Each edge (e) of Eype is
processed iteratively in line 6 to create DSItypes (DSITypes) in line 8. A DSItype
is defined as a tuple consisting of the actual DSItype and the offset (offsetInSrc) at
which the type occurred inside the type vertex. The created DSItypes are iteratively
distributed across the vertices of the MTG, starting out with the source vertex of the
currently processed edge (e.source) in line 11. All detected DSItypes are collected
inside a set (allDSITypes), which is used to create the possible type combinations
in line 20.

16.2.2 Creation of DSI types

The creation of DSItypes is conducted in carcuLATEDSITYPESFOREDGE, as shown
in line 8 of Alg. 18. The algorithm creates the binary compatible subregions of
memory between the source (S) and the target (T) vertex of the connecting edge
(e), including the possible start points of the subregion (Phase (d) of Fig. 16.1)
together with the different possible sizes of the memory subregions.

The algorithm operates on the primitive types inferred by Howard, which are
attributes of the source and the target vertex as a sequence (primitiveTypes). A
working copy for the source and the target sequence is stored inside of source-
TypeSequence and targetTypeSequence. The index inside the sequence is de-
fined as being the offset of the primitive type within the corresponding type ver-
tex. For the source, the complete sequence is required, i.e., starting from offset
zero to the end (end) of the sequence, as seen in line 6. For the target, the type
sequence is sliced, starting from the incoming pointer offset into the target ver-
tex (e.targetOffset) until the end of the sequence, as seen in line 9. This reflects
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1:  // Operating on merged type graph (Phase (b) in Fig. 16.1)
20 Eype +— &
3:  allDSITypes < ()
4: /] Part (i): Detection and propagation of DSItypes
5. /] Processing of all edges
6: foreache € Eype
7: /] Calculate the possible types per edge (Phase (c) in Fig. 16.1)
8: DSITypes < cALCULATEDSITyPESFOREDGE(e)
9: for each (DSIType, offsetInSrc) € DSITypes
10: /| Label the vertices with DSI type instances (Phase (e) in Fig. 16.1)
11: PROPAGATED SITYPEONMAXPATH (D SIType, e.source, £, offsetInSrc)
12: end
13: /| Keep track of processed elements
14: Eiype + Exype — {€}
15: allDSITypes < allDSITypes U DSITypes
16:  end
17:  // End of Part (i)
18:  // Part (ii): Create type combinations in
19: /] preparation for Phase (g) in Fig. 16.1
20:  carcUrATETYPECOMBINATIONS(V, allDSITypes)

Algorithm 17: Main part of the DSIref algorithm

the assumption that pointers always point to the start of a struct, as observed by
the authors of Laika [60]. Initially, the subregions are both extended to the end of
the source and target vertices to aim for the maximal subregion. Subsequently,
the memory region is shrunk until the maximal common subregion between the
source and the target is found.

First the possible pointer offsets are calculated within the subregion inside of
the target vertex in line 10 and are stored inside of pointerOffsetsInTarget. The off-
set corresponds to the linkage offset of the strands. Further, pointerOffsetsInTarget
implicitly stores the currently used offset and produces the next offset that
needs to be inspected. Both are produced by cURRENTPOINTEROFFSET and
NEXTPOINTEROFFSET. The main idea here is that type equivalence between the
source and the target can only be established by aligning the pointer fields between
the source and the target. The remaining primitive types surrounding the pointer
then need to match, which is done by iteratively checking all primitive types and
building up the found DSItype. This is done throughout lines 16-36. The first
while loop ensures that the mapping does not exceed the start of the source vertex.
The nested loop then collects the slice of mappable primitive types between source
and target. Thus, the loop terminates early, if either the type sequence length
exceeds the source vertex size starting from the edge offset (line 21) or a mis-
match between source and target types occurs (line 23). The comparison between
source and target implicitly treats untyped memory as a "match all” in the compar-
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1: function carcuraTEDSITYPESFOREDGE(e)

2. // Init

3: S < e.source; T + e.target; foundDSITypes < ()

4: /] Get the primitive types inferred by Howard

5. //a)inthe source, starting from first element to the end of the type sequence
6:  sourceTypeSequence < S.primitiveTypes|0. .. end]

7. // b) in the target, starting from the incoming pointer

8: // to the end of the type sequence

9: targetTypeSequence < T.primitiveTypes|e.targetOffset . . . end]

10:  pointerOffsetsInTarget <— CALCULATEPOINTEROFFSETS(targetTypeSequence)

11: i < e.sourceOffset — NEXTPOINTEROFFSET(pointerOffsetsInTarget)
12:  // The target subregion needs to be mappable into the source
13:  // 1) Start of target needs to be in range with source: i > 0

14: /] 2) Length of source type sequence is not exceeded

15 // (see check in line 21)

16:  while: >0

17: foundDSIType <>

18: /] lterate through the target sequence of primitive types and

19: foreach u € 0. . .targetTypeSequence.length

20: /] 2) Stop, if length of source type sequence is exceeded

21: if i +u > sourceTypeSequence.length then break

22: /] Extend type if source and target sequence match

23: if targetTypeSequence[u] = sourceTypeSequenceli + u|

24: foundDSIType < foundDSIType + +targetTypeSequence|ul
25: else

26: /| Stop, if source and target sequence do not match anymore
27: break

28: end

29: end

30 // Continued in Alg. 19

Algorithm 18: Calculate the possible DSI Types for an edge (part 1)

31: /] Continuation of Alg. 18
32: /] Save tuple: ((found DSI type, linkage offset), source offset)
33: foundDSITypes < foundDSITypesU

{((foundDSIType,
CURRENTPOINTEROFFSET(pointerOffsetsInTarget)), i) }
34: // Continue with the next offset
35: i < e.sourceOffset — NEXTPOINTEROFESET(pointerOffsetsInTarget)
36: end

37: /] Slice found types into smaller pieces
38:  return CREATEALLPOSSIBLESUBTYPECHUNKS( foundDSITypes)

Algorithm 19: Calculate the possible DSI Types for an edge (part 2)
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ison, i.e., as don’t cares. In the best case, the loop terminates after the complete
target sequence was processed. The resulting type sequence, i.e., a DSItype, is
stored inside foundDSIType. All DSItypes found are stored in a set as a tuple to-
gether with the corresponding linkage offset: ((foundDSIType, linkageOffset), i)
in line 33. The linkage offset is important, as this is the same offset that is used
in the linkage condition by DSIcore. Remember that type instances are only prop-
agated along pointer chains by DSlIref as long as the linkage offset remains the
same. Additionally, the source offset is stored in line 33.

Finally, the possible memory sub chunks are created from all the collected type
mappings. This is required as it is not immediately clear, whether a maximally
mapped subregion is the correct mapping or just coincidence. Thus the types are
sliced into chunks ranging in size from two elements to the size of the complete
memory chunk, in steps of size one. The regions are iteratively cut after each prim-
itive type, which is computed in function cREATEALLPOSSIBLESUBTYPECHUNKS in
line 38. Note that the memory sub chunks are each treated as a valid DSItype
but they are considered incompatible to each other. This is required, as only one
type interpretation per edge is allowed. Without this restriction, multiple of those
sub chunks could be used at the same time to built a type hypothesis. The actual
pseudocode of creating the memory sub chunks is not presented in this work, as it
does not add significant value to the overall understanding of the algorithm. The
implementation is publicly available at https://github.com/uniba-swt/DSIbin.

16.2.3 Propagation of DSI types

After the creation of the DSItypes, these need to be distributed over the MTG by
maximally propagating each DSItype along the pointer edges, corresponding to
Phase (e) in Fig. 16.1. This is computed in Alg. 20. Each propagated DSItype is
an instance of such a DSItype. The instances are stored inside each vertex (v) to
which they correspond. The vertices are from the set of vertices (V) of the MTG.
The set holding these instances is called dsiTypelnstances.

At first, the given DSItype (DSIType), passed into the function as a param-
eter, is decomposed in line 2 into the actual type (type) and the linkage offset
(linkageOffset), i.e., the offset where the linkage pointer resides relative to the en-
closing struct. The type then gets assigned to the set of type instances of the source
vertex (S), by creating a tuple containing the type and offset within the source
(sourceOffset), which is the absolute offset of the type from the beginning of the
memory chunk (see line 3).

Subsequently all outgoing edges (out EdgesForType) from the particular type
and all incoming edges (inEdgesForType) to this type are computed in lines 4
and 5, respectively. The set of edges (£) used for the computation is passed as a
parameter into the function PrROPAGATEDSITYPEONMaxPaTH. For both directions,
the linkage offset is considered, i.e., only pointers at this particular offset are taken
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1: function PROPAGATED SITYPEONMAXPATH(DSIType, sourceOffset, source, £)
(type, linkageOffset) <— DSIType
3:  source.dsilypelnstances — source.dstT'ypelnstances U
{(type, sourceOffset) }
out EdgesForType <— ouTGOINGEDGESFROMTYPE(type, linkageOffset,
source, sourceOffset, £)
5. inFEdgesForType < INCOMINGEDGESFROMTYPE(type, linkageOffset,
source, sourceOffset, £)
/| Process outgoing edges
for each e € out EdgesForType
if TyPECANBEPROPAGATED TOTARGET (e, type)
PROPAGATED SITYPEONMAXPATH (D SIType, e.targetOffset, e.target, £)
10: end
11: end
12: /] Process incoming edges
13:  for each e € inEdgesForType

N

R

14: sourceOffset! <— TYPECANBEPROPAGATEDTOSOURCE(e, type)

15: if sourceOffsetr # ()

16: PROPAGATED SITYPEONMAXPATH (D SIType, sourceOffset!, e.source, E)
17: end

18: end

19: return

Algorithm 20: Recursive propagation of a DSI type along pointer connections
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into consideration. The outgoing edges are processed first (lines 7- 11), by testing
if the type can be propagated to the target; again binary compatibility is checked
(line 8). If this is the case, the propagation continues recursively on the target
(line 9). Next, the incoming edges are processed (lines 13- 18), where again it is
tested whether the current type can be propagated onto the source (line 14). The
function TyPECANBEPROPAGATEDTOSOURCE returns "()”, if propagation is not pos-
sible or, otherwise, it returns the corresponding offset within the source, which is
stored into sourceOffset/ (line 14). If the type is mappable, the propagation contin-
ues recursively on the source (line 16).

To guarantee termination of the algorithm, the distributed type instances are
also used to terminate the propagation of a type if a vertex has already stored an
instance of this particular type, i.e., the same type at the same offset.

1: function TYPECANBEPROPAGATEDTOTARGET(D ST ype, €)

2:  target < e.target; targetOffset < e.targetOffset

3. targetTypeSequence « target.primitiveTypes|targetOffset . . . end]
4:  return targetTypeSequence = TYPETOSEQUENCE(DSIType)A

5 B(type, offset) € {target.dsiTypelnstances | DSIType = typeA
6 e.targetOffset = offset}

Algorithm 21: Test whether type can be propagated to target vertex

The test for the propagation of a type (DSIType) onto the target vertex of an
edge (e) is shown in Alg. 21. The test ensures binary compatibility between the
target at the offset of the incoming pointer and the given DSItype. In line 2, the
algorithm initializes the target vertex (target) and the target offset (targetOffset)
with the passed parameters. Subsequently the sequence of primitive types in the
target (targetTypeSequence) at the offset of the incoming pointer is fetched until
the end of the primitiveTypes sequence (see line 3). Then, the type sequence is
compared with the type sequence of the given DSItype in line 4. The function
TYPETOSEQUENCE hereby linearizes a given DSItype into a sequence of primitive
types that is used within the comparison to ensure binary compatibility. Only if the
sequences match and there does not already exist an instance of this particular type
inside the target vertex can the type be propagated onto the target vertex (lines 5- 6).

Analogous to the propagation of a type to the target, the propagation of a type
onto the source needs to be checked. This is done in Alg. 22, where first the possi-
ble types for the given edge (¢) are calculated by reusing function carcurateDSI-
TyreEsForEDGE which was already discussed and that returns all possible DSItypes
for the edge that are stored in the set of DSItypes (DSITypes) in line 4. The given
DSltype (DSIType) first needs to be present in the set of returned types (lines 6-8).
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1: function TYPECANBEPROPAGATEDTOSOURCE(DSIT ype, €)

2. (type, linkageOffset) <— DSIType

3: /] Reuse calculation of DSI types to get types for the current edge

4. DSITypes < cALCULATEDSITyrPESFOREDGE(e)

5. // Type must be mappable to source

6: it I((DSITypel, linkageOffsetr), offset) € {DSITypes |

7 TYPETOSEQUENCE(DSITypel) = TYPETOSEQUENCE(DSIType) A

8 linkageOffset! = linkageOffset }

9 // No such type instance should already exist in the source. This

10: // implicitly acts like a breadcrumb algorithm to guarantee termination.
11: if A(types, offsetOfInstInVertex) € {e.source.dsiTypelnstances |

12: typel = type A offsetOfInstInVertex = offset}

13: return offset

14: end

15:  return ()

Algorithm 22: Test if type can be propagated to source vertex

Subsequently, the algorithm checks for the presence of an instance of the partic-
ular type inside of the source vertex, which is the same as for the check for the
target propagation (lines 11 and 12). If the type can be propagated, the offset of
the type inside of the vertex is returned in line 13. Otherwise () gets returned in
line 15.

16.2.4 Creation of DSI type combinations

The final step, which is composed of several sub-steps, is the creation of the possi-
ble type combinations that are consistent within each other and is listed in Alg. 23.
This includes Phase (f) of Fig. 16.1, where local compatibility among the created
type instances is ensured. Local compatibility guarantees that types are not over-
lapping, as this is not allowed for nested structs. This is the first compatibil-
ity check in Alg. 23 in line 3. The implementation of this step is discussed in
Sec. 16.2.5. Subsequently, the global type compatibility is computed in line 5 of
Alg. 23. This step captures type combinations, which are incompatible on a global
scale, by ensuring that all type combinations are locally compatible. This is re-
quired, as it might be possible that a mapping reveals a locally valid type com-
bination, but further propagation of the types creates invalid overlaps. This con-
sistency check is discussed in Sec. 16.2.6. With only valid type combinations left,
line 7 of Alg. 23 now computes all possible type hypotheses. This includes nesting
the types as much as possible and is explained in more detail in Sec. 16.2.7. The
type combinations lead to the final compatibility check, which is required as even
among all valid type combinations, it might be the case that not all types spread
across the MTG are identical. Consider an example of a SLL with a parent-child
relation with overlay nesting. If not all of the elements of the parent SLL behave



16.2 DSIref in pseudo code 187

uniformly, they might not reveal the same type, e.g., the head node of the SLL
does not carry a child element. Thus, all possible combinations regarding nested
elements need to be created as well, as it is not immediately decidable which type
is correct. The compatibility check is invoked in line 9 of Alg. 23 and is detailed
in Sec. 16.2.8.

1: function carcurATETYPECOMBINATIONS(V, allDSITypes)
2: /] Local type compatibility. Information stored inside V
3:  COMPATIBLETYPESSTAGEONE())
4: /] Global type compatibility. Information stored inside globalTypeMatriz
5. globalTypeMatriz < coMPATIBLETYPESSTAGETWO(V, allDSITypes)
6: /] Creation of type hypothesis, including nesting.
7:  allHypotheses <—
CALCULATEALLHYPOTHESES(allDSITypes, global Type M atriz)
/] Final global compatibility check of created nested types
9:  coMPATIBLETYPESSTAGETHREE(all Hypotheses, V, allDS1Types)

®

Algorithm 23: Calculation of the possible type combinations

16.2.5 Local type compatibility

This section discusses the local type compatibility computation shown in Alg. 24.
The algorithm receives the set of vertices (V) of the PTG passed as a parameter
and, subsequently, iterates through each vertex (v) of the set to calculate the type
compatibility in line 3. The results for each vertex are stored in a matrix, which
holds each type combination, i.e., not type instance combinations. The initializa-
tion of the matrix (typeMatriz) is in line 6. The matrix stores all type combi-
nations; thus, it stores both (A, B) as well as (B, A) tuples, where A and B are
types. On line 8, all type instances for the current vertex are fetched and stored
into a set (instancesPerTypes). The elements of the set are tuples defined as
(type, typelnstance), i.e., the type and the concrete instantiation of the type. In
line 10, all combinations of the type instances are iterated, and these are checked
for local compatibility in line 12. The check itself is detailed in Alg. 25 and will
be discussed below. The results of the compatibility check are stored into the ma-
trix in lines 16 and 18. Finally, the matrix is stored inside the currently processed
vertex in line 22, for later usage.

The aforementioned local compatibility check is computed in Alg. 25, and is de-
tailed in the following. The algorithm receives two type instances as parameters
(typeInstnc and typelnstncl). First, a self test of the type instances is conducted,
which checks if both types and the offsets are identical (line 5). This allows us to
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1: function coMPATIBLETYPESSTAGEONE(V, allDSITypes)

2: /] Cycle through each vertex and check type instance compatibility locally

3: foreachveV

4: /] Cartesian product of all types per vertex

5: // to hold compatibility information

6 typeMatrixz < ()

7 // Fetch all type instances for a type vertex

8 instances PerTypes <— GETALLINSTANCESFORTYPES(v, allDSITypes)

9: // Check all type instance combinations

10: for each ((type, typelnstances), (typel, typelnstancest)) €
nstancesPerTypes X instances PerTypes

11: /] Calculate compatibility information

12: if VtypelInstnc € typelnstances | Vtypelnstncl € typelnstances! .
1SCOMPATIBLE(typelnstnc, typelnstncl)

13: /| Previous type combination could already be false.

14: // Thus, an logical AND is required between the current

15: // and previously calculated compatibility flag.

16: type M atrix[type, typel] < true & type Matriz|type, typel|

17: else

18: type M atriz[type, typel| < false

19: end

20: end

21: /| Save compatibility information in vertex

22: v.typeMatrixz < typeMatriz

23:  end

Algorithm 24: Check local compatibility of type instances
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treat each type combination uniformly, i.e., it is not required to keep type combi-
nations of the same type out of the type compatibility matrix type M atriz. Instead,
the primary diagonal of the matrix becomes true. Subsequently, the remaining
combinations of types and offsets are considered, i.e., types are either the same
or different, and offsets are either identical or different. In lines 7 and 9, the
combination of different types at the same offset is computed. First, in line 7, bi-
nary compatible duplicates are removed by conducting the type equivalence test
(ryPEEQUIVALENCE). If the types are not binary compatible, two different types at
the same offset should always be nested, which is examined in line 9. The next
combination in line 11 ensures that the same type found at different offsets is
neither nested nor overlapping. Finally, in line 13, different types with different
offsets are computed, for which only overlaps are forbidden, i.e., no explicit nest-
ing test is required.

1: function 1sComPATIBLE (typelnstnc, typelnstnct)

2:  (type, offset) < typelnstnc

3. (typel, offsetr) < typelnstnct

4: |/ Same type and offset: self test

5. if type = typel A offset = offset! return true

6: // Different types at same offset: prevent binary compatible duplicates

7. if type # typel A offset = offset’ AN TYPEEQUIVALENCE(type, type!) return false

2

/| Different types at same offset: should always be nesting
9: if type # typel N offset = offset! return (1SNESTED(type, offset, typel, offset!) A\
—1SOVERLAPPING (type, offset, typel, offsetr))
10:  // Same type and different offset: no nesting and no overlap
11:  if type = typel A offset # offset! return (—1SNESTED(type, offset, typel, offset!) A

—1SOVERLAPPING (type, offset, typel, offsetr))
12: // Different type and different offset: no overlap

13:  if type # typel A offset # offsets

14: return —1SOVERLAPPING (type, offset, typel, offset))
15:  // Default

16: return false

Algorithm 25: Calculate compatibility of types

16.2.6 Global type compatibility

The main goal of this computation is to create a lookup of globally consistent types
across the MTG. In contrast to the previous section, the local type compatibility
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with regards to one vertex is computed. This is insufficient for capturing possi-
ble inconsistencies among type instances across the graph. Inconsistencies might
come into existence during the propagation process that propagates types across
the MTG. This propagation is speculative and pointer connections might differ
even within one particular DDS, e.g., varying usage patterns for the head and the
remainder of a SLL, where only the remainder of the SLL has child elements.
This might lead to both locally compatible and incompatible types within differ-
ent vertices of the MTG. The local compatibility check only computes compatibility
within one vertex. In contrast, the global compatibility takes all local type infor-
mation into consideration.

1: function comPATIBLETYPESSTAGETWO(V, allDSITypes)

2. globalTypeMatriz < ()

3. for each (type, typel) € allDSITypes x allDSITypes

4 globalType M atriz|type, typel] < true & globalType M atriz|type, typel]
5: if Jv € V . TyPESARELOCALLYINCOMPATIBLE(type, typel, v)

6 globalType M atriz[type, typel| < false

7 end

8: end

9: return globalTypeMatrix

Algorithm 26: Conducting a global compatibility check of the types

The global compatibility operates on the vertices of the MTG (V) and all found
types (allDSITypes), which are passed as parameters in Alg. 26. A matrix for
storing the global type compatibility is created in line 2. Each type combination
is stored inside the matrix and records if the types are compatible (true) or not
(false). The algorithm processes all possible type combinations and marks two
types as being incompatible, if there exists a vertex of the MTG that is locally in-
compatible (lines 3-6). The computed matrix is returned for further usage.

16.2.7 Compute all type combinations

With the global type compatibility computed, we are now able to create all possi-
ble type hypotheses among types that are compatible with each other. It is impor-
tant to create all type combinations that are compatible, as no combination can be
ruled out prematurely to being a wrong interpretation of the MTG, as discussed
previously in Sec. 16.1. The actual decision of which combination is the best in-
terpretation of the MTG, is postponed to a later step, i.e., Step (g) of Fig. 16.1.
The algorithm for computing the possible compatible hypotheses is shown in
Alg. 27. The main idea is to create a power set of all previously detected types
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1: function carcuraTEALLHYPOTHESES(allDSITypes, globalType M atrix)

2. typesPowerSet <— P(allDSITypes)

3: return {typeSet | typeSet € typesPowerSet .

4 /] All types of the subset must be compatible among each other

5 (V(type, typet) € typeSet x typeSet . globalTypeMatriz|type, typel] =
true) A

6: // Only choose the maximal subset of compatible types
7: ( AtypeSet! € typesPowerSet .

8: (V(typeTwo, typeTwor) € typeSet! X typeSet! .

9: globalType M atriz[typeTwo, typeTwol| = true)A
10: typeSet C typeSetl)}

Algorithm 27: Create all valid combinations of types, such that each hypothesis
contains the maximal amount of possible type combinations

(allDSITypes) in line 2 and, subsequently, rule out all type subsets that contain
types that are incompatible with each other (see line 5) by looking up the compat-
ibility between types in the global type matrix (globalType M atrix). Additionally,
only the maximal subset of compatible types is chosen, which is ensured in lines 7-
10. Note line 10, which selects the maximal subset of compatible types.

16.2.8 Compute all valid type combinations with nesting

After all hypotheses are created as described in the previous section, one addi-
tional computation step is required for guaranteeing consistency among the cre-
ated types. This step includes verifying the nesting of all type instances of the
computed type hypotheses. As the creation of types depends upon the usage pat-
terns of the vertices of the MTG, situations that result in different nested types as
shown on the left in Fig. 16.3 can occur. Here, the same rationale applies as dis-
cussed in Sec. 16.2.7: it is not immediately clear which type mapping is the correct
one. Thus, multiple hypotheses need to be created, which either show nesting or
remove the nesting, as displayed on the right in Fig. 16.3.

The algorithm for computing the nesting and ensuring consistency among the
nested types is shown in Alg. 28. The function retrieves all computed hypotheses
thus far (allHypotheses) and the set of vertices of the MTG (V) as parameters.
Each hypothesis of all computed hypotheses is processed sequentially (line 3).
First, all types instances that show nesting are computed in line 4. The function
returns all type instances of the same type, which show both nesting and non-
nesting behaviour. The returned instances are stored in all N stdTypeInstncs.

The specifics are detailed in Alg. 29 which computes types that show both nest-
ing and non-nesting. The presence of types that show both nesting and non-
nesting might sound counter intuitive, but can happen due to different usage pat-
terns of certain parts of an DDS, as discussed previously. The function of Alg. 29
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1: function coMPATIBLETYPESSTAGETHREE(all Hypotheses, V)
2:  allNstdHypthss < ()
3:  for each type Hypothesis € all Hypotheses
4 allN stdTypelnstncs <— cOLLECTALLNESTEDTYPES(V, type Hypothesis)
5 allIntrnsForType <+
GROUPNESTEDTYPEINSTANCES(all N stdTypelnstncs)
6: allN stdHypthss < all N std Hypthss U
CREATEANDCOMBINEPOSSIBLETYPECOMBINATIONS (all Intrns ForType)
end
return allN stdHypthss

®

Algorithm 28: Check global compatibility of nested types

: function corrEcTALINESTEDTYPES(V, type Hypothesis)
allN stdTypelnstncs < ()
/| Fetch all type instances that show immediate nesting
foreachv € V
all N stdTypelnstncs < allN stdT'ypelnstncs U
{oneN stdTypelnstnc € NEsTIYPES(v, type Hypothesis) |
HASNESTING (one N stdTypelnstnc})

AN S

6: end
7: /] Fetch all nested type instances, where nesting
8: // has been recorded elsewhere
9: foreachv eV
10: /| Compute nesting (again) first
11: nstdTypelnstncs <— NESTIYPES(v, type Hypothesis)
12: /| Cycle through each computed type instance
13: for each one N stdTypelnstnc € nstdTypelnstncs
14: /] Check, if the computed type instance has no nesting
15: // on this vertex, but has observed nesting elsewhere
16: if {-HASNESTING (oneN stdTypelnstnc) A
JoneN stdTypelnstnct € allN stdTypelnstncs |
oneN stdT'ypelnstncl.type = oneN stdTypelnstnc.type
AHASNESTING (one N stdTypelnstnct)}
17: /| Save the type instance showing both nesting and non-nesting
18: all N stdTypelnstncs — allNstdTypelnstncs U
{oneN stdTypelnstnc}
19: end
20: end
21:  end

22:  return allN stdT'ypelnstncs

Algorithm 29: Collect all nested types
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takes the set of vertices of the MTG (V) and one type hypothesis (type Hypothesis)
as arguments. In line 2 a set (allNstdTypelnstncs) holding all nested type in-
stances is initialized. The computation of those nested instances is done through-
out lines 9-6, where each vertex (v) is iterated and all type instances are nested per
vertex based on the current type hypothesis (line 16) by calling function NEsTTYPEs.
This method uses the offsets of the type instances within a vertex and the size of
a type to compute the type nesting, and is not shown in more depth. After the
first nesting computation, a second iteration of all the vertices is required to select
all type instances that have not shown nesting themselves, but an instance of the
same type has shown nesting elsewhere in the MTG. The resulting set of nested
type instances (allN stdTypelnstncs) is returned to the main algorithm.

1: function GROUPNESTEDTYPEINSTANCES(all N std1ypelnstncs)

2: // Initialize a key-value store.

3: /] Key: type

4: /] Value: set of nested type instances for the key type

50 KV« 10

6: |/ Process all nested type instance combinations

7. for each (typelnstnc, typelnstnct) € allN stdTypelnstncs x all N stdType-
Instncs

8: /] Check if type instances are of the same type
9: if typelnstnc.type = typelnstncl.type
10: /| Store all nested type instances for this particular type
11: KV (typelnstnc.type) < KV (typelnstnc.type) U
{{typelnstnc.instances} U {typelnstncl.instances}}
12: end

13:  return VY

Algorithm 30: Collect and group all nested type instances

The returned nested type instances are processed further in the main algorithm
in line 5. Here, the computed nested type instances are made consistent, by ag-
gregating all nested type instances for a particular type, i.e., creating a superset
of the nested type instances. This is detailed in Alg. 30, which receives all nested
type instances (all N stdTypelnstncs) as an input parameter. The algorithm com-
putes a key-value store (K'V) where a type (typelnstnc.type) is used as a key and
all the corresponding found nested type instances (typelnstnc.instances) for this
particular type are stored as a set. The resulting key-value store holding all the
interpretations per type gets returned and is stored within the main algorithm
(allIntrnsForType).

Finally, in line 6, the possible combinations of the previously aggregated nested
type instances (allIntrnsForType) are computed. This means to create all com-
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1: function = cREATEANDCOMBINEPOSSIBLETYPECOMBINATIONS(allIntrnsFor-

Type)
2: /] Key-value store: key (DSIType) - values (set of DSIType sets)
3 KV« 10
4: |/ Cycle through the previously calculated interpretations
5. for each intrnsForType € alllntrnsForType
6: /| Set holding the DSIType combinations
7: DSITypeCombinations < ()
8: /| Fetch key (type) and values (interpretations)
9; keyType < xeY(intrnsForType)
10: valIntrns < VALUES(intrnsForType)
11: /] Map the type instances back into DSITypes
12: nstdDSIType < mar(vallntrns)
13: /| Create the power set of the nested DSITypes
14: types PowerSet <— P(nstdDSIType)
15: /| Cycle through the power set and check pairwise type compatibility
16: for each typeSet € typesPowerSet
17: /| Store the result for one combination, if all
18: /] DSITypes are pairwise compatible
19: if V(type, typer) € typeSet x typeSet |
—1SOVERLAPPING (type, typel) V 1sSNESTED (type, typel)
20: DSITypeCombinations < DSITypeCombinations U {typeSet}
21: end
22: end

23: KV (keyType) < KV (keyType) U {DSITypeCombinations}
24:  end

25: /] Compute all combinations:

26: /] n-ary cartesian product between all sets for each type

27:  wallntrns < VALUES(KV)

28:  return {vallntrnsg x vallntrns; X - -+ X vallntrns,}

Algorithm 31: Create the type combinations
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binations, where each nested element is either present or absent. Again, the
consistency of the nested type instances needs to be ensured, as the aggregation
step might possibly introduced inconsistent nested type instances. The function
CREATEANDCOMBINEPOSSIBLETYPECOMBINATIONS is shown in Alg. 31. The func-
tion takes all interpretations for a type (allIntrnsForType) as an argument. One
important aspect of the function is the mapping between the type instances back
into types (line 12). The different interpretations of the nested types are held in
a key-value store, where the key is a particular type and the value is a set of type
sets. The set of sets represents every combination of nested types for the particular
parent type. The function iterates all interpretations for a type and computes the
power set to account for all possible nested type combinations (line 14). Each set
of the power set is checked for compatibility of all nested types (line 19). If this is
the case, the nested type combination is stored. This possibly results in multiple
nested type combinations for each type of the MTG. Therefore the n-ary cartesian
product needs to be computed between all nested type combinations, to arrive at
all possible valid type combinations for a MTG (line 28). This is again a set of type
sets and gets returned as the result.

In the main algorithm (Alg. 28) the returned result is stored within a set of all the
refined hypotheses (allNstdHypthss). After all hypotheses (all Hypotheses) are
processed, the resulting set of all refined hypotheses is returned. This result (all-
NstdHypthss) is subsequently used by DSIbin to compute the DDS (Phase (g) of
Fig. 16.1) for each combination and finally select the best interpretation according
to the previously described taxonomy (Phase (h) of Fig. 16.1).

16.3 Complexity of the DSlref algorithm

This section discusses both the runtime and space complexity of the algorithm
from a high level perspective, while in Ch. 17 figures are presented, which are
measured with our prototype implementation. For the DSIref algorithm nearly all
values are specific to particular instances of the MTG, e.g., the number of types per
edge. To arrive at a worst-case classification, this aspect is abstracted and always
the maximal number of a particular property across all instances is assumed.

Runtime complexity. The DSlref algorithm is split into two main parts, as shown
in Alg. 17: (i) the type creation and propagation phase, and (ii) the type compat-
ibility and hypotheses creation phase. These parts are discussed individually, in
the following.

Part (i) has a quadratic runtime complexity in the worst case, if each DSItype
can be propagated maximally along the edges of the MTG. The size of the pro-
cessed type set depends on the size of the memory chunks, and whether the types
match between the source and the target memory chunks for an edge. The edge
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and type sets are typically limited by the small size of both the MTG and the mem-
ory chunks. Further, the worst case cannot happen, as it is impossible that with
each edge processed new types are discovered that haven't been discovered and
propagated before.

Part (ii) calculates the type compatibility among the types and computes the var-
ious type hypotheses. The first compatiblity stage can have a quadratic complexity
due to the computation of a cartesian product. The second compatibility stage
computes the global type compatibility by comparing the local type instance com-
patibility for each vertex. This computation depends upon the cartesian product,
i.e., quadratic complexity, and the power set, i.e., expontential complexity. The fol-
lowing third compatibility stage ensures the global compatibility of nested types by
computing the following steps for each previously created type hypothesis: (a) col-
lecting and nesting all nested type instances in a loop over the set of MTG vertices;
(b) collecting and grouping all found nested type instances per type; (c) mapping
the type instances back to types and computing the various type permutations.

Step (a) requires to iterate the set of MTG twice, where the second loop requires
more computational steps, as for each vertex the nested type instances need to
be iterated and checked against all the already computed nested type instances.
This results in a linear runtime complexity. The following step (b) iterates the
cartesian product of all nested type instances, leading to a quadratic complexity.
Finally, step (c) cycles through all interpretations for a type and for each type pro-
cesses the power set of the nested types. For each element of the power set the
cartesian product is computed, resulting in an expontential complexity. The final
computation of step (c) is the calculation of all permutations of the collected type
combinations, requiring a quadratic runtime. While the complexity of these steps
can become significant in the worst case, one needs to remember that these al-
gorithms describe the general case of unifying nested types. The computational
costs are mainly bound by the number of different nesting scenarios for a type
and the size of the MTG. Both are rather small in practice in the common case, as
observed in our benchmark in Ch. 17.

If one thinks about relaxing the restrictions of type compatibility when map-
ping memory regions along pointer edges, the complexity might become more of
an issue as much more mappings are possible along the edges. Such a scenario is
thinkable, e.g., if one does not trust Howard’s inferred primitive types and only re-
lies on the size of the allocated memory chunks and the pointer connections. This
scenario could be explored in future work to evaluate the state space explosion.

Space complexity. Part (i) of the DSIref algorithm is not too space consuming, as

it only depends linearly on the amount of edges, vertices and type mappings.
Part (ii) of the algorithm is more space intensive, as in stage one a local type

compatibility matrix per vertex is computed, resulting in a quadratic space con-
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sumption per vertex. The local type matrix per vertex is stored for the remainder
of the algorithm.

The second stage computes the global type compatibility matrix from all found
types, leading again to quadratic space consumption. When computing all hy-
potheses a power set of all types gets created leading to an expontential space con-
sumption.

The third stage calculates the type combinations. The space consumption of
the intermediate steps is neglected, as they do not add significantly to the over-
all space consumption. However in Alg. 31 a power set of the nested types is
computed again, together with the cartesian product for each set of the power set,
resulting in an expontenial space consumption. Finally the n-ary cartesian prod-
uct of all created interpretation sets is computed and stored, resulting again in an
expontential space consumption.

As is the case with the runtime complexity, the space complexity can potentially
become significant. However, our benchmark in Ch. 17 shows that the memory
consumption is easily feasible for all the examples of the benchmark.






17 Benchmarking of sophisticated approach

The type refinement approach discussed in the previous chapter has been im-
plemented by us into the DSIbin tool chain as the DSIref component shown in
Fig. 14.2. The implementation consists of nearly 3k LOC of Scala and about 700
LOC of Perl/Bash scripts. The parallelization of DSIsrc, as discussed in Ch. 7,
has actually also been implemented by us in the context of DSIbin, as DSIref may
generate many hypotheses that need to be evaluated by DSIcore and thus requires
higher throughput as is the case for the DSI prototype operating on source code.

DSlIref has been benchmarked with the benchmark shown in Tab. 15.1. With
the new DSIref component it is now possible to identify 26 of the 30 examples, in-
stead of 10 with only the naive combination of Howard and DSIcore. This chapter
is organized as follows. At first, an overview of the performance of the sophis-
ticated approach is given in Sec. 17.1 followed by a discussion of the results in
Sec. 17.2.

17.1 Performance

This section discusses the performance aspects of DSIbin. As mentioned before,
DSIbin benefits from the parallel implementation of the DSIcore algorithm as
discussed in Ch. 7. The longest running examples have an event trace length
of 5.5K events. The type inference with Howard together with DSIref’s type hy-
potheses generation took in the order of seconds (min: 1s, max: 13s, avg: 3.13s).
The memory consumption is about 565MB RAM on average (min: 0.2GB, max:
2.8GB). Each type hypotheses, including the initial type information inferred by
Howard and all created type hypotheses by DSIref, requires the creation of an
individual execution trace with the corresponding type information. Each run is
finished in seconds (min: 0.7s, max: 17s, avg: 1.8s) and consumed 27MB RAM
on average (min: 24MB, max: 33MB). However, this step also depends on the
execution time of the program under analysis.

The actual evaluation of all hypotheses for an example with DSIcore takes in
the order of (tens of) minutes. When looking at the evaluation of one hypothesis,
the average evaluation time is 63s (min: 1s, max: 2622s). Interestingly, the two
examples taking the longest computation time (50 minutes each), are different in
their nature. The first example consists of a large number of hypotheses (156), but
each hypothesis is evaluated quickly. The second contains only a few hypotheses
that are complex and, thus, require more computational resources. On average,
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each example produces 13.8 hypotheses (min: 1, max: 156), while the average
memory consumption for a hypothesis is 2.4GB RAM (min: 0.2GB, max: 3.2GB).

The tool chain is a prototypical implementation, which is composed of several
parts, e.g., the Pin tool for instrumentation which is written in C/C++ and the
(larger) DSIcore part running on the JVM. Thus, more performance improve-
ments are expected, e.g., some of which are also discussed for future work in Ch. 7,
when putting more engineering effort into the tooling.

17.2 Discussion

We now discuss the benchmark results from Tab. 15.1, which are listed under
the heading “Sophisticated Combination” and where the columns are the same as
explained in Sec. 15.1. Additionally, column (pr) states, whether a type refinement
of the primitive data types is conducted. The final column (ch hyp) states which
technique produced the chosen interpretation by the algorithm, while brackets
indicate a wrong interpretation. Examples that do not require type merging, i.e.,
they only contain one allocation site, are listed with an “0” in column (m).

Howard:

/
A
(\
\
\
N

N
RN

Figure 17.1: Two doubly linked lists running in parallel, showing the possible
strand combinations for the types inferred by Howard (top) and by
DSIref (bottom). Figure reproduced from our publication [94].
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17.2.1 Sophisticated versus naive combination

With the help of DSIref, it is possible to increase the number of (correctly) detected
DDSs from 10 to 26 out of the 30 examples. Thus, the sophisticated combination
generally outperforms the naive combination. However, we have found an exam-
ple (1it-5), where only the naive combination produces the correct result. Thus,
the initial unmodified types inferred by Howard are added to the set of type hy-
potheses generated by DSIref. Consequently, all hypotheses are treated equally
when evaluating them with DSIcore. This reflects the nature of the DSIref ap-
proach, where the pointer and primitive type information is considered a strong
hint of how the actual DDS looks like, but nevertheless is a speculative approach.

As seen in column ch hyp, situations exist, where both the naive and sophis-
ticated combination miss the ground truth. This can be seen in example tb-4,
which contains an SLL, where the head and the tail of the list are allocated at dif-
ferent locations. The list carries a string payload, but the access pattern for the
head and the tail differ. For the head, the strcpy function from string.h is
used, whereas a single character gets assigned for the tail nodes. These differ-
ent usage patterns lead Howard to infer different primitive type interpretations,
which in turn prevents both Howard and DSIref from merging the two allocation
sites. The inferred primitive data types from Howard are incompatible and thus
not mergeable by either of the two approaches. The countermeasures for such a
scenario could be manifold, and are left for future work. On the one hand, the
example encourages to deepen Howard’s ability to detect memcpy like functions,
e.g., strcpy in this particular case, to refine its type inference. If Howard is able to
infer binary compatible types in such cases, the merging would again be possible
for both approaches. On the other hand, DSIref’s binary compatibility could be
relaxed to allow for more merging options. This in turn would increase the num-
ber of possible type mappings and, thus, the number of hypotheses that need to
be evaluated.

17.2.2 Type merging

With examples syn-08 and 1it-2, it can be seen how the merging strategy of
types influences the precision of the inferred DDS. The two examples show the
strengths and weaknesses of DSIref’s merge strategy in comparison to the naive
implementation. We start out with the positive example syn-08, where we first
discuss the ground truth of its used DDS. It contains a child DLL whose head
node is embedded inside the parent DLL, i.e., nesting on overlay. The head node
is accessed flattened; thus, Howard is unable to recognize the nested head node,
which in turn leads DSIcore to identify an indirect nesting relation between the
parent DLL and the child DLL. Hence, Howard’s merge strategy is insufficient
to reveal the ground truth. The missed child head node can cause even bigger
problems leading to a missed child DLL by DSIcore, if the child consists of only
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two elements. In this scenario, DSIcore would not form a strand for the child,
as at least two elements are required for a strand. Thus, in the worst case all
child elements only consist of the missed head node plus an additional node, and
DSIcore would miss the parent-child relation completely. As a side note, structural
and temporal repetition mitigates this problem, if at least some child element has
more than two elements. However, overlay nesting would never be detected with
the missed head node.

When applying DSIref’s merge strategy, the head of the nested child is revealed
by mapping the child element outside of the parent back into the parent along the
pointer connection. Thus three things happen: (i) the previously missed nested
element is detected, (ii) the type inside the parent is merged with the type outside
the parent, and (iii) the previous pointer of the nested head element is typed to
a pointer. Besides missing the nested node completely, Howard is unable to type
the previous pointer, as it is not accessed within the nested head node. This
underlines the different usage patterns of different DDS parts, as we have already
discussed previously.

When looking at (ii) in more detail, the child DLL is allocated at two different
allocation sites and no iteration pointer is present. This prevents Howard from
merging the allocation sites of the child DLL. As DSIref merges types along the
pointer connections all nodes of the child DLL are merged. The absence of the
iteration pointer and the presence of two allocation sites also pushes into the di-
rection of obfuscating the DDS. This allows us to construct situations where the
true shape of the DDS cannot be recognized with Howard. This can be seen with
the currently discussed example where only the parent DLL gets detected with the
naive approach leaving the child DLL undetected. With the sophisticated approach
the ground-truth interpretation can be inferred.

To contrast syn-08 we now discuss example 1it-2, where the type merging
strategy of DSIref decreases the precision of the DDS detection. The ground truth
of the example is a multitude of SLLs that form multiple levels of nesting-on-
indirection. Each level has a unique type, although all of them are binary compat-
ible, as each consists of two pointers. One of the pointers is used to connect the
SLL nodes of the current level, i.e., the horizontal connection. The other pointer is
the downward or vertical connection from the parent to the child SLL. The only dif-
ference among the otherwise binary compatible types is that sometimes the first
and sometimes the second pointer is used for the horizontal and vertical linkages,
respectively. This in turn leads the type merging of DSIref to merge some of the
types in the MTG, i.e., as long as the linkage condition is met as discussed in Ch. 5.
With this merged type information, DSIcore now detects both nesting-on-overlay
as well as nesting-on-indirection, which does not reflect the ground truth of ex-
clusive nesting-on-indirection relations. DSIref cannot detect a situation where
the types are binary compatible and are only distinguished by the programmer via
their naming found in source code.
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As discussed before, the types inferred by Howard are also added to the set of
possible type hypotheses, to be evaluated by DSIcore. In this particular example,
the types inferred by Howard actually reveal the ground truth interpretation of
the example due to the lack of an iteration pointer. However, the final selection
algorithm, which chooses the most complex DDS from the set of hypotheses, con-
siders overlay nesting to be structurally more complex than indirect nesting, which
leads to the wrong interpretation. This problem is related to false positives intro-
duced due to the merging strategy. False positives are also discussed in Ch. 11.

The examples 1it-3, r-1, r-2, syn-01, and tb-3 all require to merge (m) the
nodes of the DDS, which are all standard DDSs, such as DLL, BT and SL on over-
lay. All these DDSs are exclusively heap allocated. Here, DSIref fully merges the
nodes of the examples, as does Howard. So DSIref does not introduce any false
positives in this scenario, which would prevent the detection of the true shape of
the structure. The same is true for examples syn-15 and syn-09, where the nest-
ing relations are unaffected by DSIref, i.e., the merge strategy does not introduced
false positives.

17.2.3 Shortcomings of the DSlcore algorithm

Example r-3 reveals a general shortcoming of the DSIcore algorithm. DSIcore
has chosen the design decision to create strands immediately upon the detection
of a linkage condition, i.e., two cells of the same type get connected. But this can
lead to wrong interpretations of the DDS. Example r-3 consists of a parent DLL
with indirectly nested child DLLs, and is taken from the Carberp malware [34]. In
principle, the data structure can be detected, but the DSIcore algorithm treats the
connection between the parent and the child elements as a strand of length two.
This results in an DLL interpretation of length 5 with a hint on nesting on overlay
(see Tab. 15.1). The result has nothing to do with the merge strategy of DSIref, but
is the mentioned design decision of DSIcore, i.e., DSIcore produces the identical
result on the source code example. With example syn-10, DSIref does a similar
misclassification as with r-3, i.e., DSIcore wrongly chooses the strand of length
two between the parent and the child SLL as an opportunity to detect a nesting
relation. When viewed in isolation, this assumption of DSIcore is correct. Hence,
DSlref performs the correct type merging, but the limitations of DSIcore prevents
the intuitively correct interpretation from the point of view of the parent strand.

The consequences are similar to the previous example 1it-2, as indirect nest-
ing gets interpreted as overlay nesting. This results in folding the child elements
back into the parent DLL, when creating the FSG, i.e., when performing structural
repetition. The resulting DDS consists of one DLL only, instead of two, i.e., one
for the parent and one for the child.

A strategy to counter this problem could be a delayed creation of strands by
DSIcore, e.g., only create a strand once more elements over a configurable thresh-
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old are observed. Once reaching the threshold, the information could be prop-
agated backwards in the trace. Another strategy could be the same as is already
proposed in Ch. 8 for handling tsort like DDS, i.e., to track the access patterns
into the DDS, which might reveal the parent and child parts of the DDS. With
such information, a folding of the parent and child elements in the FSG might be
preventable. Both approaches could be investigated by future work.

17.2.4 C++ and C examples and loss of perfect type information

This section points out that the usage of binary code opens up DSIbin not only
for C, but also for C++. Therefore, C++ examples where added to the benchmark:
er-1, er-2, syn-02 and syn-03. Further, those examples are discussed in the
context of the loss of perfect type information, as predicted for DSIcore in Ch. 11.

At first, let us briefly discuss that DSIbin is capable of processing both C and
C++ examples. Therefore, we sum up several examples that contain the same
DDS (at least partially) once implemented in C and once in C++. Specifically,
these are examples er-1 and er-2 with a LKL like std::list implementation in C++
and example syn-7 with the corresponding LKL implementation in C. In both
C++ examples the linkage struct gets embedded into the payload with an addi-
tional external head node. Examples syn-02 and syn-03 are C++ implementa-
tions of SLLs, including nesting on overlay. The corresponding C examples are,
e.g., syn-05 and syn-14. All C/C++ examples are detectable by DSIbin, as seen
under Sophisticated Combination in Tab. 15.1 in column DSIbin.

Now we pick up the discussion about the loss of perfect type information and its
consequences for DSIcore as discussed in Ch. 11. In the following we will review
selected examples of our benchmark that support the predicted outcomes when
type information gets lost. One predication is the lost precision of the detected
DDS, which can be seen with example er-1 whose detection degenerates from a
CDLL into a DLL. It uses a nested element at the head of the surrounding struct
(see column n@h under section Code in Tab. 15.1). Without perfect type informa-
tion, i.e., using only Howard’s type information where the nested element at the
head is missed, it is not possible to reveal the CDLL. Instead, a DLL is detected, as
the head element is not considered as being part of the remainder of the list.

Example syn-02 degenerates from an overlay parent-child relation between
SLLs into an indirect nesting relation. The reason is that the nested element of
the child SLL resides inside the parent SLL and is not merged with the remainder
of the child list when using Howard’s type information. For both examples, the
revealed DDS is not too far off from the ground truth, yet operations such as inser-
tions into a DLL and CDLL might differ significantly, making the higher precision
of DSIref highly desirable for a binary analyst.
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17.2.5 Strand length

A variety of the SLL examples, e.g., tb-1, tb-2, syn-11, and syn-12, only differ
in one element in length. This is also predicted during the discussion of type
information loss, although the impact is less severe as an analyst still gets the
correct overall interpretation of an SLL in these situations. However, the examples
reveal shortcomings of the naive combination that prevent detecting a strand fully.
This can be extended to lead to misinterpretations or missing a strand completely,
although the examples only provoke missing one element in a strand. Thus, some
of the aspects discussed in this section can also be seen from the perspective of
DDS obfuscation, as discussed in the following section.

Example syn-11 nests the head of the list into a dedicated head node, which
requires DSIcore’s cell abstraction and merging of the nested head node with the
exclusive elements of the remainder of the list. DSIref is able to perform the type
merging and thus reveals the true length of the SLL.

Example syn-12 creates two dedicated list head nodes on the heap and subse-
quently allocates the remainder of both list heads at two different allocation sites.
Afterwards both lists are connected, i.e., the next pointer of the first list gets con-
nected to the head of the second list. Howard is able to merge both lists, except
for the head node of the first list with the rest of both lists. This is because of
the lack of an iteration pointer. Instead, DSIref only requires the setting of the
next pointer to perform its type merging along the pointer connections, as long
as binary compatibility between the connected memory chunks is given. The type
merging by DSIref allows the inclusion of the previously missed head node into
the analysis, resulting in the identification of the correct strand length.

Interestingly tb-1 and tb-2 allocate a dedicated head node, on which an inser-
tion after the head node gets performed. Hence the head node is only the han-
dle into the list. As the head node and the remainder of the list are allocated at
different allocation sites but no iteration pointer iterates both over the head and
the remainder of the list, Howard has no chance to apply its merge strategy. For
DSlref, setting the next pointer is again sufficient to perform the type merging
and reveal the head node of both SLLs.

syn-04 which is a SL like implementation, with only one skip level. The list
contains barrier nodes, which store the meta data for deciding whether a skip
forward in the list to the next barrier node is required, or a local search following
the payload nodes immediately after the tested barrier node should be performed.
The payload nodes are a DLL and the barrier nodes form an SLL running in parallel
to the DLL. The DLL and the SLL only touch at the barrier nodes. The linkage of
the SLL is chosen in such a way that a propagation of type instances as inferred
by DSIref creates overlapping type instances. This challenges DSIref’s collision
detection algorithm that resolves such issues, i.e., Phase (f) of Fig. 16.1. With the
refinement both the full length of the DLL can be revealed together with the SLL
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of the barrier nodes, with multiple intersection points between the SLL and the
DLL. Without DSIref, the SLL cannot be revealed as the nested element within
the barrier nodes that establishes the SLL linkage is accessed flat, i.e., the nested
element is not detected by Howard resulting in an incoming pointer which is not
at the head of a struct. Thus, DSIcore does not consider the SLL linkage, as only
pointers pointing to the beginning of a (nested) struct are considered for creating
strands. This scenario can also be seen in Fig. 11.1 at the bottom.

17.2.6 Data structure obfuscation

The DDS obfuscation aspect of some of the examples, both intended and unin-
tended, are already discussed in Ch. 15. Itis possible to hide the presence of a DDS
completely for the naive approach, e.g., examples syn-06 and syn-13. While they
artificially avoid an iteration pointer, these techniques could potentially be used
in a larger context, e.g., creating an SL, where chances are high that not all parts
of the SL are accessed, i.e., iterated. This would lead DSIbin to not being able to
detect the SL, as the strand connections would not match the SL predicates. With
the help of DSIref, the two examples can be fully revealed, as DSIref does not rely
on the presence of iteration pointers. As discussed previously, tracking memory
chunks and pointer connections is sufficient for DSIref to create its MTG and to
refine and merge types subsequently.

Example syn-16 puts the head node of an SLL onto the stack. Otherwise, the list
is created and used without any restrictions, e.g., the list is iterated freely during
the execution of the example code. As DSIbin tracks both stack and heap-allocated
memory and places the memory chunks into the MTG, the allocation site is trans-
parent to DSIref. This allows DSIrefto merge the heap and stack types, something
which is not done by related work [51]. Thus, merging the head and remainder
of the list requires DSIref. Without DSIref, a list can be hidden from detection
by iteratively allocating and connecting heap- and stack-allocated nodes. Both the
examples 1it-1 and 1it-4 also suffer from cut off head elements, a mixture of
heap and stack allocated memory, and nested head elements. DSIref is able to
reveal the missing head nodes and perform the type merging along the pointer
connections. This allows to identify the cyclicity of the DLLs. Additionally, the
nesting on overlay relation is identified by DSIcore with the information provided
by DSIref. The nesting relation is also refined by DSIref with example syn-14,
which also has a nested child struct inside of the parent struct. The difference is
the missing cyclicity between the CDLL child of the previous two examples and the
SLL child of the current example. This in turn leads to less pointer connections
in the MTG. Therefore the examples both test the propagation of type instances
along cyclic and non-cyclic pointer connections within the MTG.

Example tb-4 suffers from the imprecise primitive type recovery of Howard as
discussed in Ch. 15. As the inferred types by Howard are not binary compatible,
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it is not possible for DSIref to merge the types as is the case with tb-1 and tb-2.
This technique can thus be used to obfuscate a DDS whenever it is possible to
trick Howard into inferring binary incompatible types, e.g., due to different usage
patterns of the payload.

Both intended and unintended obfuscation techniques could potentially be used
in addition to polymorphic code techniques to hide or alter the DDS between dif-
ferent malware versions. This would trick techniques such as Laika [60], which
creates signatures for detecting malware (families) based on DDS. Or, to put it the
other way round, DSIbin could be beneficial for signature based approaches as it
still detects the true DDS in most situations.

17.2.7 False positives for nesting detection

An interesting aspect of DSIref is the detection of nested elements, when the
ground truth does not have nested elements, e.g., examples r-1 and syn-02 and
syn-08. DSIbin still reveals the correct DDS interpretation for those examples, al-
though DSIref reports false positives for the nested elements. However, this can
rather be seen as a feature of DSIref that reveals the actual linkage backbone of
the DDS. More precisely, DSIref separates the DDS part from the payload part to
a certain extent.

17.2.8 Primitive type refinement

For four of the examples, i.e., tb-1, tb-2, syn-08 and r-3, DSIref is able to refine
the primitive types as inferred by Howard. Specifically, DSIref is able to type pre-
viously untyped memory, which stems from different usage patterns of different
parts of DDS which prevents Howard from typing, e.g., unaccessed memory. This
happens, e.g., when the head or tail node of a list is not used in the same way as
the remainder of the list.

Consider a DLL with its previous/next pointers that are never used in case of a
head/tail node. This can, e.g., be seen with example r-3, where the previous/next
pointers are revealed by DSIref. Additionally, the payload elements of the head/tail
nodes are typed by DSIref, but not by Howard as they are never accessed. Both the
pointer and payload refinement are shown in Fig. 10.1. Note that Howard types
memory that gets NULL assigned as INT64, which is observable in Fig. 10.1 by
the switched position of the VOID* and INT64 element corresponding to the used
previous/next pointer of the head/tail element. Thus, DSIref exclusively refines
the INT64 to VOID* and the remaining payload elements, which are left untyped
by Howard due to the lack of access patterns.

Another aspect to note about the refinement is that the refinement is even done
on a fine grained basis in terms of nested structs, in the sense that not the com-
plete memory needs to be refined at once. This is in contrast to ARTISTE, which
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also refines types but only complete memory chunks. Refining complete memory
chunks is also supported by DSIref, as can be seen with examples tb-1 and tb-2.
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In Pt. I of this dissertation, its second research question was answered:

Research Question 2: Can DSI’s concepts and strengths be preserved
when inspecting binaries?

This question was answered positively by developing, implementing and bench-
marking DSIbin. DSIbin improves upon DSI, as source code is no longer required
and, due to the nature of binary code, the analysis could be extended from C to
also C++ binaries. Thus, DSI is now enabled for reverse engineering binaries,
a tedious and error prone, yet mandatory task when source code is unavailable.
SEGA’s example of lost source code [1] and the need to analyse the steadily grow-
ing amount of malware [17] are prominent uses cases. DSIbin opens up DSI to
binaries and thus improves upon the state-of-the-art [49, 69, 74] by handling ar-
bitrary parent-child nesting, data structures distributed between heap and stack,
and data structures running through nodes of different types such as the Linux
kernel list or the C++ std::list implementation. Additionally, data structures such
as skip lists which are neglected by related work, e.g.,[49, 69], are now identifiable
by DSIbin due to DSIcore. In contrast, MemPick [69] cuts connections between
nodes of different types, thus disabling the detection of nesting or data structures
comprised of differently typed nodes. DDT requires the presence of well defined
interfaces, whereas DSIbin does not assume any the presence of interface func-
tions. ARTISTE [49] executes its analysis on a sample of the heap every n-th time
step, without avoiding or explicitly handling degenerate shapes, leading to loss of
precision.

To enable DSI on binaries, the unavailability of type information found in source
code was compensated when dealing with the first challenge:

Challenge 2.1: Can external type recovery tools for binaries excavate
sufficiently precise information for DSI to function on binaries?

The problem of recovering all required memory-manipulating events from the
binaries without access to source code was addressed in the second challenge:
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Challenge 2.2: Can the required event trace generated with CIL be
reproduced with a binary instrumentation framework?

Both Challenges 2.1 and 2.2 were answered by developing the DSIbin proto-
type, which uses the state-of-the-art type recovery tool Howard [98] and the Intel
Pin framework [82] for instrumenting binaries. Challenge 2.2 was answered pos-
itively, because all memory manipulating events needed by DSI’s offline analy-
sis are captured by the Pin framework. This required the creation of a shadow
heap and stack for tracking the states of both memory regions, thus tracing mem-
ory (de-)allocations and local variables entering and leaving scope. Additionally,
pointer writes to the heap and stack are recorded. As binaries rely on the usage of
registers, e.g., for returning values from functions, it is crucial for DSIbin’s anal-
ysis to model those, too, because registers might be the only handle into allocated
memory. Otherwise false positives could result from the memory leak detection
algorithm (see Ch. 4), resulting in an undermined analysis with missing parts of
a data structure.

Challenge 2.1 cannot unrestrictedly be answered positively. It is indeed possi-
ble to draw useful information from the state-of-the-art type recovery tool Howard,
which was incorporated into DSIbin and which enables the detection of certain
data structures like skip lists and parent-child nestings which are not covered by
related work. However, Howard misses nested structs and does not perform type
merging between nested instances, and combinations of nested and exclusive in-
stances of the same type. Additionally, types spread across heap and stack are not
merged. These features are, however, vital for DSIbin to overcome additional lim-
itations of related work [49,69,74], such as data structures running through nodes
of different types or data structures distributed across heap and stack. Therefore,
DSIbin needed to attack the limitations of Howard, leading to the third challenge:

Challenge 2.3: Can the recovered type information from binaries be
refined with the help of DSI itself?

The positive answer to this challenge has certain facets to point out. The refine-
ment is somewhat recursive in nature, because DSI itself is used to refine the types
it requires. The idea is that DSI selects the most complex data structure given the
multitude of possible type refinements, with the intuition being that the features
of a data structure do not appear by coincidence. To base the type guessing on
solid facts, the implicit information found in pointer connections between mem-
ory regions is exploited to (i) reveal nested structs based on the assumption that
incoming pointers are always to the head of a (nested) type, and (ii) perform type
merging between memory regions. Our type refinement approach transparently
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handles both heap and stack, something that is not done by current type recovery
tools [51]. Because type refinement improves Howard’s recovered type informa-
tion by revealing previously missed nested types, performing type merging and
typing some missed primitive data types, DSIbin implicitly acts as an improved
version of Howard.

All these aspects are fundamental when reverse engineering binaries because
(i) reasoning about DDSs would not be possible without type merging, because
connected elements of the same type allocated at different locations could not be
recognized as being of the same type; (ii) the smallest common memory subregion
of DDS comprised of differently sized nodes, such as the Linux kernel list, could
not be determined without nesting detection; (iii) untyped memory regions need
to be further analysed by the reverse engineer without primitive type recovery. All
three aspects give a much more comprehensive view upon the binary; informa-
tion is now revealed such as which mallocs allocate the same type of memory for
a DDS, and which stack based nodes participate in a DDS. Even if analysts are
not primarily concerned with DDSs, DSIbin’s results should also be interesting
for them because DDS specific code can be identified and then be left out of the
analysis of the core logic of the binary.

The improvements of DSIbin were shown via an extensive benchmark that in-
cludes real world examples such as the VNC clipping library found in Carberp [34],
The Computer Language Benchmarks Game: Binary Tree [32], and the Olden
Benchmark [20]. Additionally, examples from the shape analysis literature, text-
book examples and hand-written examples were used to create a diverse bench-
mark. The hand-written examples stress test some features such as arbitrary nest-
ing, or try to obfuscate nested structs to prevent Howard’s merge strategies. The
latter aims at demonstrating how resilient the refinement approach is to obfus-
cation techniques. From the shown results, it can clearly be seen that the first
Howard-DSI combination is already quite promising by correctly identifying ex-
amples out of the box. However, with the refinement step in place, the preci-
sion improves significantly by including stack elements into the analysis, thus en-
abling, e.g., the detection of cyclicity, revealing doubly linked lists that have been
completely unobservable before, or refining a nesting scenario from indirect to
overlay nesting by uncovering a previously unseen nested struct.

Future work. Because DSIbin provides the same information as DSI about the
identified data structures, such as its cells, its strands and the final data structure
interpretation, DSIbin should be seamlessly integrateable into the operation de-
tection and visualization techniques discussed in Pt. I. This would be another
notable advancement of the state-of-the-art in reverse engineering, where oper-
ation detection is either not done at all or has strong assumptions, such as the
presence of well defined interfaces [74].
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Because DSI tracks the data structures and how they are accessed, it is possible
to establish a notion of ownership between code and its associated data structures.
This information could be used to enable the monitoring of software to detect be-
havioural changes in line with [93]. This helps building intrusion detection sys-
tems that periodically monitor whether known DDS perform out of the norm and
whether new and unexpected DDSs occur.

When dealing with C/C++ code, custom memory allocators are common prac-
tice [45]. Currently, DSIbin does not handle such allocators, but they can be de-
tected by techniques such as [54]. The integration of such an additional tool into
the current DSIbin tool-chain needs to be investigated in order to address the
question how well DSIbin works in this scenario: how does the instrumentation
with Pin work for those custom memory allocators? How does the type recovery
perform? Once custom memory allocators are visible, DSI’s memory abstraction
should be able to transparently handle such memory states.

With the recovered precise data structure information found in malware bina-
ries, it would be interesting to create new or extend existing signatures that are
used to detect malware families. This approach is in line with the one of Laika [60],
although Laika does not offer DSI’s precision in detecting data structures; utiliz-
ing DSI’s information should enable a more fine-grained classification of binaries.
Naturally, when tackling malware from the angle of data structures, an arms race
is inevitable between obfuscation techniques for data structures and counter mea-
sures against those. The obfuscation techniques given in [79], which mainly ran-
domize the order of struct members and add ambiguous memory paddings, are
no problem for DSI. Instead, the XOR-list [44,76] is an example that breaks DSI’s
current detection capabilities by blurring the actual pointer values by XOR-ing
two pointer fields into one. In this situation, techniques such as information flow
tracking [100] may help to determine from which memory locations an address
is calculated; this would allow DSI to still establish its strand abstraction by ob-
serving pointer dereferences. Besides the pointer manipulations, additional code
obfuscation techniques should be tested so as to actually see how robust DSIbin
is against such attacks.

The DSI/DSIbin approach is not bound to a particular programming language
or operating system. As stated before, C/C++ programs are used exemplary here,
because they allow for challenging heap states that are not supported by other
programming languages. Given the popularity of the Windows and Android
platforms, one could investigate DSIbin on these platforms. For Windows, the
amount of available malware is much larger than for Linux, whereas the wealth
of Android applications is a motivating use case for porting DSIbin to Java, a pro-
gramming language far more restrictive than C. Indeed, the Java bytecode already
exposes type information found in source code, which might deem DSIbin super-
fluous. However, the precise behaviour of a data structure cannot be drawn from
this information with certainty, as a data structure might be, e.g., misnamed or
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misused. Additionally, Android offers obfuscation by shortening class, field and
method names [25], which makes DSI’s capabilities even more desirable to a Java
bytecode reverse engineer.






Part Ili

Conclusions of dynamic data
structure detection on source
code and binaries
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This dissertation contributes to the state-of-the art in automated dynamic data
structure detection by means of a dynamic analysis in two domains: (i) program
comprehension of dynamic data structures when C source code is available, and
(i) reverse engineering of dynamic data structures in C/C++ binaries. Both (i)
and (ii) deal with the recent approach DSI' that tackles limitations of related
work [49,69,74] in terms of detectable data structures, e.g., skip lists, and complex
parent child nestings. DSI employs a novel memory abstraction based on strands,
which are essentially singly linked lists, and their interconnections to form com-
plex dynamic data structures.

Additionally, DSI is capable of inspecting the whole lifetime of a data structure,
i.e., its creation, usage and destruction, including degenerate shapes, which occur
during data structure operations. Importantly, DSI is still able to detect the stable
shape of the DDS by gathering evidence for a data structure during its lifetime. By
reinforcing evidence by structural repetition, i.e., multiple parts of a data structure
perform the same role as is the case with multiple child elements in a parent
child nesting, and temporal repetition, i.e., observing the data structure over its
lifetime, less likely interpretations are ruled out. MemPick [69] and DDT [74] avoid
degenerate shapes completely, thus missing interesting DDS behaviour during
these operations. ARTISTE [49] does not explicitly avoid degenerate shapes, but
becomes more conservative with its analysis when it observes them.

For domain (i) above, this dissertation developed certain parts of DSI’s theory,
such as algorithms to keep DSI’s memory abstraction consistent and the quanti-
fied description of the interconnections between strands. Both are fundamental
for performing DSI’s analysis, as without memory consistency the precision of the
analysis would be hampered and without the interconnection between strands nei-
ther the data structures nor the evidence reinforcement would work. Within this
dissertation, the whole DSI theory was implemented and the resulting DSI tool
was benchmarked, resulting in a positive answer to our first research question:

Research Question 1: Isthe DSI approach adequate to reach its goals
of automatically detecting dynamic data structure shapes with high
precision in the presence of degenerate shapes and, in particular, how
far must the DSI concept be refined in order to deal with the wealth of
dynamic data structure implementations employed in real-world soft-
ware?

Subsequently to the first research question, domain (ii) was addressed by open-
ing up DSI for the inspection of C/C++ binaries and to positively answer our sec-
ond and central research question of this dissertation:

ISWT Research Group, University Bamberg, DFG-Project LU 1748/4-1
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Research Question 2: Can DSI’s concepts and strengths be preserved
when inspecting binaries?

Among the biggest problem when dealing with binaries is the loss of perfect
type information found in source code. This led to the incorporation of the dedi-
cated type recovery tool Howard [98] into DSIbin, the binary version of DSI. This
combination already outperformed related work [49, 69, 74] with regards to de-
tectable data structures such as skip lists and certain parent child nestings. How-
ever, DST’s full potential could not be exploited due to some limitations of Howard
with regards to type merging and nested type detection. These prevent DSI from
detecting strands, leading to diminished precision of the analysis. The problem
was countered within this dissertation by devising a type refinement algorithm
that significantly enhances Howard’s excavated types. The algorithm operates by
propagating type information along pointer connections, resulting in a multitude
of possible type hypotheses. Interestingly, DSI itself is used to choose the best hy-
pothesis by evaluating all of the hypotheses and choosing the most complex DDS
found by DSI. This refined type information enables DSI to deal with Linux ker-
nel list (like) DDSs that can run through nodes of different types and which are
not covered by related work [49, 69, 74]. Hence, DSIbin can also be seen as an
improved version of Howard. Therefore, DSIbin contributes both to the reverse
engineering of dynamic data structures as well as type merging, nested type de-
tection and, as a byproduct, primitive type detection. The insight gained is that
the higher level dynamic data structure information helps one to infer the lower
level information in a top down fashion.

Because our ultimate future work use case for DSIbin is the inspection and pos-
sibly even data structure based classification of malware, a survey was conducted
on leaked malware source code to verify that current malware actually employs dy-
namic data structures. That this is actually the case can be seen within the hidden
VNC server found in the Carberp malware [34], which is included in Carberp’s
code base as an off-the-shelf open source component. Additionally, (partial) reuse
of identical data structures for DNS caching was present in the MyDoom, Hellbot
and Grum malware [95]. These facts underline that malware has matured to plug
and play software, where external components are used and also reused within
malware families.

Future work. As the specific conclusions of Pt. I and Pt. II of this dissertation
already cover topics for future work that are more technical in nature, we now
give directions for future work that are more targeted towards the interaction of
DSI and DSIbin with the end user, i.e., software developers and reverse engineers.
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It would be desirable to quantify the usefulness of DSI by conducting a case
study regarding program comprehension of source code. This could cover topics
such as the comprehension of the general data structure shape, or the shape of a
data structure given a particular input. By letting two groups solve the program
comprehension tasks, where only one group is equipped with DSI, differences
could be detected such as time required for program comprehension, the amount
of correctly identified data structures, and the correct interpretation of data struc-
ture behaviour in certain situations.

A second aspect could be to study how DSI can help a software developer who is
confronted with conducting code reviews for legacy code. As DSI already provides
a notion of DDS complexity, this information could be used to find code complex-
ity hot-spots, i.e., a complex skip list implementation versus a singly linked list.
This would be beyond simply reporting the results, but would require to rank the
found data structures and to point the software engineer to the actual source code
sections that are interfacing with the particular data structure.

Finally, when looking at DSIbin, it would be highly interesting to combine the
inferred information, e.g., with those reported by IDA Pro [33], the de-facto in-
dustry standard for the reverse engineering of binaries. IDA Pro has its strength
in reverse engineering assembly code into high-level functions, collecting prim-
itive type information and detecting compound types. However it does not de-
tect dynamic data structures, therefore leaving space for improving the correla-
tion between DDS changing code and visualizing the corresponding high level
DDS. Additionally, the semantic information learned by DSIbin could be over-
laid upon the reverse engineered dynamic data structure types, such as labeling a
chunk of memory as a “DLL” node and the associated pointers as “next” and “pre-
vious”. Current visualization techniques [39, 85] do not offer a consistent view
upon the data structure during its lifetime or are not in the focus of the binary
analysis [49, 69, 74]. All of these cited approaches do not provide the precision of
DSIbin in inspecting each time step of a DDS, including the ones in which DDS
are in degenerate shapes, which gives DSIbin the advantage of providing informa-
tion about a DDS even during DDS operations.

All these future work directions could also be evaluated with regards to DSI’s
usability. This would help to design a user interface that integrates DSI best into
the work context of software developers, either as a standalone tool or as a plugin
for other tools such as IDA Pro or Eclipse.
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Reverse engineering of binaries is tedious, yet mandatory when pro-
gram behavior must be understood while source code is unavaila-
ble, e.g., in case of malware. One challenge is the loss of low level
type information, i.e., primitive and compound types, which even
state-of-the-art type recovery tools, such as Howard, often cannot
reconstruct with full accuracy. Further programmers use high level
dynamic data structures, e.g., linked lists. Therefore the detection of
data structure shapes is important for reverse engineering. A recent
approach called Data Structure Investigator (DSI), aims for detecting
dynamic pointer based data structures. While DSI is a general ap-
proach, a concrete realization for C programs requiring source code
is envisioned as type casts and pointer arithmetic will stress test the
approach.

This dissertation improves upon the state-of-the-art of shape de-
tection and reverse engineering by
(i) realizing and evaluating the DSI approach, including contribu-
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(iii) handling data structures with DSIbin not covered by some rela-
ted work, e.g., skip lists;
(iv) refining the nesting detection and performing type merging for
types excavated by Howard.
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