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Abstract: Similarity search in general metric spaces is a key aspect in many applica-
tion fields. Metric space indexing provides a flexible indexing paradigm and is solely 
based on the use of a distance metric. No assumption is made about the representation 
of the database objects. 

Nowadays, ever-increasing data volumes require large-scale distributed retrieval 
architectures. Here, local and global indexing schemes are distinguished. In the local 
indexing approach, every resource administers a set of documents and indexes them 
locally. Resource descriptions providing the basis for resource selection can be dis-
seminated to avoid all resources being contacted when answering a query. On the other 
hand, global indexing schemes are based on a single index which is distributed so that 
every resource is responsible for a certain part of the index. 

For local indexing, only few exact approaches have been proposed which support 
general metric space indexing. In this paper, we introduce RS4MI—an exact resource 
selection approach for general metric space indexing. We compare RS4MI with ap-
proaches presented in literature based on a peer-to-peer scenario when searching for 
similar images by image content. RS4MI can outperform two exact general metric 
space resource selection schemes in case of range queries. Fewer resources are con-
tacted by RS4MI with—at the same time—more space efficient resource descriptions. 

1 Introduction 

The efficient processing of similarity queries (e.g. range queries searching for all da-

tabase objects within a given search radius from the query object) is a key aspect in 
many domains and application fields such as multimedia and 3D object retrieval, sim-

ilarity search on business process models, data compression, pattern recognition, ma-

chine learning, bioinformatics, statistical data analysis, malware detection, and data min-

ing [ZADB05, HCS09, KW11, BKSS07]. Hereby, many similarity search problems are 
modeled in general metric spaces where no assumption is made about the representation 
of the database/feature objects. The only assumption is that distances between feature 
objects can be measured by a distance metric. 
Furthermore, in many search scenarios, centralized architectures are no longer sufficient 
and large-scale solutions are necessary. Here, as a particular technique for distributed 

93 

mailto:daniel.blank|andreas.henrich}@uni-bamberg.de


query processing, resource selection techniques provide a valuable solution. They are 
for example applicable in dynamic environments such as peer-to-peer (P2P) information 
retrieval (IR) systems with data sources joining and leaving frequently. 
In the P2P IR domain, it can become infeasible to solely apply global indexing schemes, 
i.e. distributed indexing structures with every peer being responsible for a certain range of 
the feature space and peers transferring their indexing data to remote peers according to 
their “region(s) of interest”. Peers entering the system and updating indexing data might 
induce a high network load the system can hardly cope with [LLOS07]. 
Summary-based resource selection approaches and thus local indexing schemes such as 
the ones discussed and evaluated in this work are one possibility to deal with this problem. 
Here, every peer indexes the data it administers and describes it in form of data summaries 
which are transfered to remote peers. During search, promising peers are selected based 
on the resource descriptions and the query is sent to them. In summary-based P2P IR 
systems, peers leaving the network ungracefully do not take indexing data of other peers’ 
documents with them. Furthermore, leaving peers do not take documents with them for 
which indexing data is still present in the network and the documents thus still can be 
found. Peer autonomy is better respected compared to distributed index structures. On 
the other hand, many distributed index structures offer query processing with logarithmic 
cost [DVNV10] which is hard to guarantee for local indexing schemes. 
The work in this paper focuses on space efficient resource description and corresponding 
selection techniques which allow for efficient distributed query processing in general met-

ric spaces. As a proof-of-concept and application scenario being assumed, the resource 
description and selection techniques are designed for the use within a particular P2P IR 
scenario. However, they can also be applied for traditional resource selection in distributed 
IR and within other variants of P2P IR systems. Furthermore, there is a range of possible 
application fields beyond P2P IR systems, such as (visual) sensor [ERO+09] and ad-hoc 
networks [LLOS07], to name only a few. 
As the contribution of this paper, we present RS4MI (Resource Selection for Metric In-

dexing), a new exact resource description and selection technique applicable for similarity 
search in general metric spaces. Its design is motivated by application scenarios where 
space efficient resource descriptions are required. As a rule of thumb, the average size 
of a resource description in our scenario should be below 1 kB. However, the presented 
techniques are by no means limited to this scenario. We review related work in the field 
of resource selection and identify techniques applicable in general metric spaces. The 
only exact technique presented in literature so far is compared against RS4MI. In addition, 
another baseline technique relying on local k-medoid clustering is included in the analysis. 
The remainder of this paper is organized as follows. In Sect. 2, we briefly recapitulate 
main concepts of similarity search in metric space. Sect. 3 discusses further related work 
by presenting existing solutions to the resource description and selection problem in gen-

eral metric spaces. RS4MI and the two competing approaches are in detail outlined and 
evaluated in Sect. 4. The paper concludes with an outlook on future work in Sect. 5. 
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2 Metric Space Indexing 

Multi-dimensional (spatial) access methods (SAMs; for an overview cf. [Sam06]) are de-

signed for vector spaces whereas metric access methods (MAMs) can be applied in any 
metric space. An overview on MAMs is for example given in [CNBYM01, ZADB05]. 
A metric space M is defined as a pair M = (D, d). D represents the domain of objects 
o ∈ O with O ⊂ D and d : D × D → R corresponds to a metric distance function which 
satisfies the metric postulates ∀ x, y, z ∈ D [ZADB05]: 

d(x, y) = 0 ⇐⇒ x = y identity 
d(x, y) > 0 ⇐⇒ x = y non-negativity 
d(x, y) =  d(y, x) symmetry 
d(x, y) +  d(y, z) ≥ d(x, z) triangle inequality 

Many MAMs rely on a set C = { ci| 1 ≤ i ≤ n} of reference objects (also called pivots or 
centers) in order to structure the feature space. There are different ways of how to partition 
the feature space. Within ball partitioning methods [ZADB05], the feature space is parti-

tioned by often multiple hyper-spheres. In contrast, many structures relying on hyperplane 
partitioning conceptually rely on a list Lo, ordering the pivot IDs i by increasing d(ci, o). 
In case of generalized hyperplane partitioning [ZADB05], o is assigned to the cluster (i.e. 
a region of the feature space induced by the space partitioning) with ID Lo[1] of the clos-

∗ est reference object c = arg minci∈C d(ci, o). In other cases, the list Lo truncated after 
position l with l ∈ {  2, . . . , n} identifies the cluster where o lies in (cf. [NBZ11]). 
The distance between feature objects is frequently used to model the similarity between 
them. Usually, it is assumed that the smaller the distance the higher the similarity. In this 
context, range queries are a popular type of similarity queries [Sko06, p. 4]. 
A range query R(q, r) with query object q ∈ D and search radius r ∈ R+ retrieves all 
database objects from O ⊂ D which are within distance r from q, i.e. { o ∈ O | d(q, o) ≤ 

′ r} . The subspace V ⊂ D for which ∀ v ∈ V : d(q, v) ≤ r and ∀ v ∈ D\ V : d(q, v ′ ) > r  is 
called the query ball [SB11]. 
For the space partitioning methods outlined above as well as hybrid combinations, various 
pruning criteria can be applied. They are in the following described in the context of range 
queries following the notation of [ZADB05]. 

Pruning criteria in metric spaces 

When only per-cluster information (in contrast to per-object information) is stored in the 
resource descriptions, range query processing can be summarized as follows. The data 
descriptions of the resources are iteratively analyzed. If all populated database clusters of a 
resource can be pruned, i.e. no populated cluster intersects the query ball, the very resource 
can be discarded from search. Remaining resources have to be contacted. Criteria capable 
of cluster and hence resource pruning are outlined in the following, similarly to [NBZ11]. 
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If a query lies in the cell of center c ∗ (i.e. reference object c ∗ is the closest center out of the 
set C of all available reference objects according to a given query object q), by exploiting 

∗the triangle inequality, any cluster [ci] can be pruned if d(ci, q) − d(c , q) > 2r, where r 
corresponds to the search radius (double-pivot distance constraint). 

maxIf a maximum cluster radius r for a cluster [ci] is given, i.e. the maximum distance of i 
any object o in the cluster from its center ci, the very cluster can be pruned if d(ci, q)−r >  
maxr (range-pivot distance constraint). A similar condition can be applied according toi 

minthe minimum cluster radius r , i.e. the minimum distance of any object o within thei 
cluster from its center ci. Cluster [ci] can be pruned if d(ci, q) + r < rmin .i 

The range-pivot distance constraint can also be used in an inter-cluster way. To this end, 
two matrices MAX and MIN are applied to store maximum and minimum cluster radii 
max min maxr and r respectively for i, j ∈ {1, . . . , n}, where r represents the maximumi,j i,j i,j 

mindistance of any object from cluster [ci] to cluster center cj , and r represents the mini-i,j 
max minmum distance of any object from cluster [ci] to cluster center cj . Elements r and ri,i i,i 

on the diagonal of the matrices MAX and MIN thus capture the maximum cluster radius 
max minr and the minimum cluster radius r of cluster [ci], respectively, as described above. i i 

minCluster [ci] can be pruned if there exists a cluster [cj ] for which d(cj , q) + r < ri,j or 
maxd(cj , q)− r > ri,j [Woj02]. 

Fig. 1 visualizes a search situa-

tion in case of a range query with 
search radius r where cluster [c1] !" 
can be pruned successfully. By 
solely using the double-pivot dis-

tance constraint, cluster [c1] can-

not be pruned, since the query 
ball V intersects cluster [c1]. If, 
for every cluster, we administer 
only the minimum and the max-

imum cluster radius of objects in 
the cluster (shown by the hyper-

ring H1,1 around cluster center c1 
in Fig. 1), cluster [c1] can still not 
be pruned. The matrices MIN and 
MAX are thus necessary to suc-

cessfully prune cluster [c1]. If Figure 1: Cluster pruning example. 
minwe also apply the radii r1,2 and 

maxr1,2 , i.e. the minimum and the maximum distance of feature objects in cluster [c1] from 
c2, it can be determined that there are no relevant feature objects in the intersection area of 
the query ball V and the hyper-ring H1,1. The region of possible feature objects is limited 
to the two dark gray shaded intersection areas of H1,1 and H1,2, and since the query ball V 
does not intersect any of these regions, cluster [c1] does not contain any database objects 
relevant to the query. 
A further pruning constraint can be applied on an object level rather than a cluster level. 
The application of this constraint in a resource selection scenario requires per-object in-
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formation to be stored in the resource descriptions—either solely or in addition to storing 
per-cluster information. Contacting a resource can be avoided by storing distance values 
d(ci, o) in the summaries. If |d(ci, q) − d(ci, o)| > r, object o can be pruned without 
computing d(q, o). This is called the object-pivot distance constraint. 
In order to enhance the pruning power for complete resources, d(ci, o) values can be 
stored for multiple cluster centers ci. Hence, contacting a resource is not necessary if 
maxci |d(ci, q) − d(ci, o)| > r  is fulfilled for all database objects of a resource. This 
so called pivot filtering is a direct application of the object-pivot distance constraint. Al-

though appearing impracticable at first glance due to the space requirements, per-object 
information might be useful in hybrid approaches for peers with few objects. This will be 
considered in Sect. 4.4. 

3 Related Work on Resource Selection in General Metric Spaces 

There is plenty of work on the description and selection of text databases in distributed IR 
(cf. [SS11]). In addition, some resource description and selection schemes have emerged 
in the context of content-based multimedia IR such as in content-based image retrieval 
(CBIR). Our work addresses local indexing approaches and in particular the ones which 
consider the resource selection task as a geometric problem. Here, certain properties of the 
feature space or distance information are used in order to prune resources which cannot 
contribute database objects to the search result. The remaining resources can be ranked by 
the “proximity” of their feature objects and the query object (which can be beneficial when 
e.g. performing k-nearest neighbor (k-NN) queries). We will discuss these approaches in 
the following. Probabilistic (cf. e.g. [NF03, EBMH08]) as well as geometric resource 
selection techniques only applicable in vector spaces (cf. e.g. [KLC02]) are out of the 
scope of our present work. We also do not consider database selection approaches based 
on one-dimensional numeric values (e.g. [YSMQ01]). 
In the following, two approaches applicable in general metric spaces are described. The 
approach by Berretti et al. [BDP04] is the only approach which represents an exact re-

source selection scheme, the latter approach is an approximate technique. However, it is 
presented here, because RS4MI can be considered as an extension of this approach w.r.t. 
exact query processing. 
Berretti et al. [BDP04] applies a special form of hierarchical clustering based on the M-

tree [CPZ97] to a resource’s set of feature objects to generate a resource description. A 
cluster radius threshold θ is used for determining the cluster centers which are included in 
the resource description. Every path in the clustering tree built for the local collection is 
descended as long as the cluster radius of a node is bigger than the predefined threshold θ. 
The centers of the nodes where the search stops are included in the resource description. In 
addition, per cluster, the maximum cluster radius, i.e. the maximum distance of a database 
object from its cluster center as well as the number of objects within the cluster are stored 
in the resource description (the latter may be beneficial for ranking peers when performing 
k-NN queries). By varying θ, the granularity and size of the resource descriptions can be 
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adjusted. It is suggested in [BDP04] to set θ to the maximum possible distance value if 
the distance metric has an upper bound. The block size of the M-tree nodes is the second 
tuning parameter of this approach. When it comes to resource selection, a resource cannot 
be pruned from search if the query ball intersects any cluster ball of the resource. 
Eisenhardt et al. [EMH+06] extends the cluster histogram technique initially proposed 
in Müller et al. [MEH05a]. To compute a cluster histogram as resource description, a set 
with a moderate number of reference objects ci is applied: C = {ci|1 ≤ i ≤ n} with e.g. 
n = 256. Every feature object of a resource’s collection is assigned to the closest refer-

ence object and a histogram captures how many objects have been assigned to a certain 
reference object. Eisenhardt et al. [EMH+06] shows that a random selection of reference 
objects might replace distributed clustering. Resource selection performance slightly de-

creases, but network load can be reduced because distributed clustering becomes obsolete. 
For performing k-NN queries, during peer ranking a list Lq of reference object IDs i is 
sorted in ascending order according to d(q, ci), i.e. the distance from the query object q to 
a cluster center ci. The first element of Lq corresponds to the ID of the cluster center being 
closest to q. A  peer with more documents in the corresponding cluster—indicated by the 
summary—is ranked higher than a peer with fewer documents in the very cluster. If two 
peers pa and pb administer the same amount of documents in the analyzed cluster, the next 
element out of Lq is chosen and—based on the indicated number of documents within the 
very cluster—it is tried to rank peer pa before peer pb or vice versa. When the end of the 
list Lq is reached, a random decision is made. The resource descriptions of this approach 
are further improved in [BEMH07, BH10]. They are binarized and the number of used 
reference objects is increased to e.g. n = 8192 or even more. Compression techniques are 
applied to prevent a huge increase in average summary sizes. 

4 Exact Resource Selection Approaches for Metric Space Indexing 

In the following, we describe and compare three different resource description and selec-

tion schemes for metric space indexing. The experimental setup is outlined in Sect. 4.1. 
In Sect. 4.2, the technique introduced in Berretti et al. [BDP04] (cf. Sect. 3) is analyzed. 
Another approach—based on k-medoid clustering and used as second comparison base-

line for RS4MI—is presented in Sect. 4.3. RS4MI is explained and analyzed in Sect. 4.4. 
Finally, Sect. 4.5 subsumes the main results of the experimental comparison. 

4.1 Experimental setup 

We analyze a scenario where every peer knows the resource description of every other 
peer. Of course, such an approach would not scale. However, this scenario is for example 
typical in a subnet of a scalable Rumorama-based P2P IR network. Rumorama [MEH05b] 
can cope with multiple subnets and thus scale to much higher workloads than the ones 
analyzed in this work. 
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As underlying data collection, 233827 
10000 

images crawled from Flickr are used 
(cf. [BH10]). They are assigned to 
peers based on the Flickr user ID in 
order to reflect a realistic scenario, i.e. 
distribution to resources. Hence, we 
assume that every Flickr user operates 
a peer of its own. In this way, the im-

ages are mapped to 10601 peers/users. n
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Fig. 2 shows the distribution of peer 1 
1 10 100 1000 10000 

sizes, i.e. the number of images which peers ordered by decreasing number of images 
are maintained per peer. The general 
characteristic is typical for P2P file Figure 2: Distribution of peer sizes, i.e. the number of 
sharing applications, with few peers images per peer. 
managing large amounts of the im-

ages and many peers administering only few images [SKG02]. 
Pivots for summary creation and peer ranking in case of RS4MI are randomly chosen from 
a secondary data collection consisting of 45931 Flickr images. This reflects a scenario 
where the reference objects are transfered to the resources with updates of the P2P software 
in order to reduce network load. All resources administer the same set of pivots. The 
external (secondary) collection is disjoint from the underlying collection according to the 
unique Flickr image and user IDs. However, there is some minor natural overlap amongst 
collections according to image content; 24 of the 233827 images also appear in the external 
collection because some images are uploaded independently by multiple users on Flickr. 
In the experiments, query objects are randomly chosen from the underlying data collection. 
This seems reasonable in case of range queries relying on the query-by-example paradigm. 
Retrieval performance is measured by analyzing peer selectivity, i.e. the fraction of peers 
which must be contacted to retrieve all images with feature objects lying within distance r 
from q. In addition to search efficiency, the size of the resource descriptions is analyzed. 
If not mentioned otherwise, summaries are compressed with gzip1. 
As feature descriptor, we use the unquantized version of the CEDD descriptor2 (144-

dimensional vector of 4 byte floats and thus in total 576 byte per descriptor). CEDD 
has the potential to outperform the MPEG-7 features for CBIR [CZBP10]. The Hellinger 

1 ! " "
12)metric d(q, o) = dH (q, o) = (2 · dSC (q, o)) = (2 · ( q[i]− o[i])i (cf. [DD09]) 2 2 

is applied converting the non-metric squared chord distance dSC into a metric. It is shown 
in [LSR+08] that dSC provides good retrieval results in case of CBIR. Internal studies with 
two collections of groundtruth images reveal that the Hellinger metric in combination with 
CEDD features offers promising retrieval results, outperforming many other distance mea-

sures. However, our analysis does not focus on search effectiveness in CBIR and thus the 
choice of an effective feature descriptor in combination with a distance metric is not the 

1The time requirements for building the resource descriptions are not analyzed in this work. This task is 
parallelized in a real-world scenario with every peer computing its resource description and hereby all promising 
approaches subsumed in Sect. 4.5 are suitably fast. 

2Features were extracted using the Lire library obtained from http://www.semanticmetadata.net/ lire/ . 
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min q25 median mean q75 max 
database objects 1 4 21.5 126.7 94.3 2028 

peers 1 3 18 72.0 76.3 654 

Table 1: Statistics of the number of relevant database objects and the number of peers administering 
relevant documents for the 200 range queries with search radius r = 0.5. 

main focus of our work. Our general setting offers an intrinsic dimensionality (as defined 
in [CNBYM01, p. 303]) of almost 10 and thus represents a rather hard indexing task. 
We evaluate 200 range queries with search radius r = 0.5 for every parameter setting. 
Tab. 1 shows statistics of the number of database objects lying within the search radius. 
Relevant documents are on average found at 72 peers. An optimal resource selection would 

72thus on average only contact ≈ 0.7% of the peers to retrieve the relevant documents. 
10601 

4.2 M-tree based local clustering 

To our knowledge, the approach by Berretti et al. [BDP04] is the only exact approach 
which has so far been proposed for general metric space indexing. Thus, we apply this 
technique as a comparison baseline for RS4MI. In order to do so, we use revision 27 of 
the M-tree library from http://mufin.fi.muni.cz/ trac/mtree/ (last visit of all URLs in this 
paper on 27.09.12) and acknowledge its contributors. The approach mainly depends on 
two parameters. A cluster radius threshold θ and the block/node size of the M-tree are 
the keys for trading-off the granularity of the resource descriptions (cf. Sect. 3) versus 
their selectivity. The influences and interactions when varying these two parameters are 
evaluated in the following. 
The insertion of all database objects of a resource into an M-tree and the threshold-based 
search algorithm for generating the resource description leads to a partitioning of the fea-

ture space based on multiple hyper-spheres. A reference object mi together with the cluster 
maxradius r , both maintained in a node entry of the M-tree, has to be stored in the resourcei 

description for every cluster (i.e. hyper-sphere) to be able to perform exact range queries. 
With this information, the range-pivot distance constraint (cf. Sect. 2) testing the overlap 
of the query ball with any cluster ball can then be applied during search in order to prune 
irrelevant peers, i.e. peers with no relevant documents. 

Analysis of M-tree based local clustering 

In the upper left quadrant of Fig. 3, the selectivity of the summaries of the M-tree based 
local clustering approach is shown. The lower left quadrant depicts the corresponding 
summary sizes. To understand this figure, the following aspects have to be considered: 
(1) A block size of 576 byte corresponds to leaf nodes containing one object each. In 
this case, the M-tree implementation assures that inner nodes (including the root node) are 
bigger and the degree of each inner node is two. In general, a block size of sb means that 
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Figure 3: M-tree based local clustering (left) with special treatment of single node trees (right). 

a leaf node contains at most sb/576 objects. Hence, e.g. a node size of 18432 corresponds 
to leaf nodes containing at most 32 objects. (2) A cluster radius threshold of 0.01 has 
the consequence that the summary roughly contains clusters describing exactly the leaf 
nodes. At the other extreme, a cluster radius threshold of 16384 would yield a summary 
containing only one cluster representing the root node of the M-tree and in consequence 
the complete set of objects on the peer3. 
With the above information in mind, we can interpret the left side of Fig. 3. If we consider 
the average summary size in dependence of the cluster radius threshold (lower left quad-

rant) it becomes obvious that the summary sizes decrease for higher threshold values. The 
reason is that for higher threshold values the clusters for the summaries are taken from 
higher levels of the M-tree. Obviously, this effect is only given for small block sizes (blue, 
orange and yellow bars), because for higher block sizes (e.g. dark red bars) the height of 
the M-trees is extremely low anyway. 
The upper left quadrant of Fig. 3 shows the selectivity of the summaries measured by the 
fraction of peers seen. Let us first consider the fraction of peers seen in dependence of the 
cluster radius threshold. As a special case, the block size of 576 together with a cluster 
radius threshold of 0.01 has to be considered. In this situation, each leaf node contains 

3Please note that all object distances are at most 2. However, due to heuristic upper bound approximation of 
the cluster radii in the inner nodes of the M-tree, values bigger than 2 exist in the tree. 

HECA?? =:8?5 2‹,8C?A)&$ 

066! 

*6! 

'6! 

#6! 

-6! 

6! 
6360 

06666 

*666 

'666 

#666 

-666 

6 

0 - * 0'%*# 
2‹,8C?A A:5),8 C"A?8"G‹5 

6360 0 - * 0'%*# 
2‹,8C?A A:5),8 C"A?8"G‹5 

4D?2):‹ CA?:C>?&C GF 8)&$‹? &G5? CA??8 

066! 

*6! 

'6! 

#6! 

-6! 

6! 
6360 0 - * 0'%*# 

2‹,8C?A A:5),8 C"A?8"G‹5 

06666 

*666 

'666 

#666 

-666 

6 
6360 0 - * 0'%*# 

2‹,8C?A A:5),8 C"A?8"G‹5 

101 



only a single item and because of the low threshold value, the clusters describing the leaf 
nodes are included in the summaries. Consequently, the summaries exactly represent the 
objects on each peer. Based on this information, a querying peer can exactly determine 
the peers containing objects in the query ball and therefore, the fraction of peers seen 
corresponds to the theoretical optimum of 0.7%. However, this result is achieved by a  
complete replication of all objects within the network on all peers. Unfortunately, these 
parameter settings are not realistic for huge networks. Neither a threshold value yielding 
only leaf nodes nor a node size storing only one object per node are practical. 
Despite from these special cases, the fraction of peers seen is roughly between 70% and 
80%. It is also interesting to consider the effect of the block sizes e.g. for a cluster radius 
threshold of 8. With this threshold, only in very rare cases the clusters used in the summary 
are taken from lower levels of the tree. With the block size of 576 byte, peers with only one 
image are represented by one cluster in the summary and peers with 2 or more images are 
(with some exceptions) represented by two clusters, since the fan-out of the root node is 2 
in this case. With the block size of 1152 byte, peers with one or two images are represented 
by one cluster in the summary and peers with 3 or more images are (with few exceptions) 
represented by two clusters. The less precise representation of peers with 2 images results 
in an increase of the peers which have to be considered from 75.8% to 81.8% and at the 
same time reduces the average summary size drastically. With the block size of 2304 byte, 
peers with one to four images are represented by one cluster in the summary and peers 
with 5 or more images are (with few exceptions again) represented by two to four clusters. 
Hence, the summaries of small peers become less accurate but the summaries of bigger 
peers become more accurate, since the root node of the M-tree now has up to 4 successors. 
Obviously, these considerations can be continued for bigger block sizes. 
The above results achieved for the originally proposed M-tree based local clustering ap-

proach inspired us to change the approach marginally in order to exploit the long-tail dis-

tribution of images on peers (cf. Fig. 2). Over 50% of the peers contain 7 or less images. 
As a consequence: If the summaries of these small peers would contain the exact objects, 
only the peers out of these 50% which really contribute to the result of the range query 
must be visited. With such a technique we can easily outperform the approaches presented 
above which have to address 70% to 80% of the peers. 
To integrate this idea into the M-tree based local clustering approach we use a special 
treatment for situations where the M-tree consists of only one (leaf) node—which is typical 
for small peers. In this case the summary now contains one cluster with radius zero for 
each object in this leaf node instead of one single cluster with a huge radius describing the 
whole node. As a consequence e.g. at a block size of 18432 byte a peer maintaining 32 
objects fitting into one single leaf node is now represented by a summary containing these 
32 objects as single clusters with the objects as centers and radius zero. 
The effect of this variation can be seen on the right hand side of Fig. 3. Let us—again at 
a cluster radius threshold of 8—consider the green bars representing a node size of 4608 
byte, resp., at most 8 objects. In this case 5643 (= 53%) of all peers are represented exactly 
in the summaries. This allows to reduce the number of peers to be contacted during query 
processing to 45.3%. The avg. summary size is 1531 byte (compared to 1010 byte without 
the special treatment of small peers). 
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Although, the improvements achieved with this variation are impressive, it remains a bit 
problematic that we have such indirect and hard to handle parameters; the threshold value 
θ, the block size of the M-tree and the special treatment of trees comprising only one node. 
According to the threshold value θ, Fig. 3 shows that the heuristic of setting θ = 2, i.e. 
the maximum possible distance value, might not be a suitable solution in all cases. In 
fact, it might be much easier to use an explicit clustering approach with more intuitive 
parameters. This directly leads us to the k-medoid clustering. 

4.3 Local k-medoid clustering 

Some approximate resource selection approaches for the use in vector spaces apply k-

means clustering to cluster the database objects of a peer (cf. e.g. [EBMH08]). However, k-

means, due to the mean calculation, is not applicable in general metric spaces. When using 
k-medoid clustering instead (or any other suitable algorithm applicable in general metric 
spaces), an additional baseline technique for the comparison with RS4MI can be designed. 
In this case, each peer clusters its local data collection and stores cluster centers mi and 

maxmaximum cluster radii r in its resource description. This results in a similar datai 
space partitioning and similar resource descriptions as the approach proposed in Berretti 
et al. [BDP04] (cf. Sect. 4.2). The resource description of a peer in case of range queries 
thus consists of a list of cluster center and corresponding maximum cluster radius pairs. 
There are two general options for determining k, i.e. the number of clusters of a peer 
needed as an input parameter to k-medoid clustering. As one alternative, the maximum 
number of allowed clusters per peer k can be set as a global threshold being identical for 
all peers. Of course, peers with less than k distinct database objects directly transfer these 
and do not apply clustering. On the other hand, algorithms which automatically detect an 
appropriate number of clusters can be used. Multiple of these algorithms are presented in 
literature (for references see e.g. [TWH01]). Our choice of algorithms in the following is 
by no means exhaustive. It is our intention to evaluate different techniques which return a 
range of average numbers of clusters per peer when applied to our scenario. 
Rule of thumb (r.o.t.): A coarse rule of thumb is presented in [MKB79, p. 365]. It is " 
suggested to calculate the number of clusters of a data set of size |O| as k ≈ |O|/2. " 
Thus, we use k = ∀ |O|/2 . 
This rule of thumb directly calculates the number of desired clusters. In contrast, the 
techniques presented in the following are applied in an iterative process. A single key 
figure results for a specific value of k. Various values of k are thus to be tested to select the 
best k minimizing/maximizing the key figure. To reduce runtime performance, even when 
applying the rule of thumb, an adaptation of the original k-medoid clustering algorithm 
is used. The FAMES extension to k-medoid clustering uses pivots in order to speed-up 
k-medoid clustering [PNT11]. FAMES avoids the calculation of all pair-wise distances 
when computing the medoid of a certain cluster. In addition to improving efficiency, it 
is shown in [PNT11] that FAMES can also increase the effectiveness of the clustering 
since the efficiency gain is not due to the consideration of a random sample of database 
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objects as medoid candidates—which is the approach of some traditional algorithms. For 
determining the initial candidate set of medoids, we minimize in 10 runs the sum over all 
clusters of within-cluster object-to-medoid distances. 
Besides the rule of thumb, we apply three variants of the well-known GAP statistic. The 
GAP statistic [TWH01] is frequently used and offers the property that—in contrast to 
many alternative approaches—it can also detect the presence of only a single cluster. 
GAP: The GAP statistic as originally defined in [TWH01] is based on a sampling process 
which is not directly applicable in all metric spaces. However, as suggested in [TWH01], 
when only distance information is available, a specific mapping technique such as mul-

tidimensional scaling can be used to obtain feature vectors in a low dimensional space, 
which provide the basis for the sampling process. In our experiments, we directly apply 
ten sampling steps on the feature vectors without the use of an additional mapping tech-

nique in order to obtain a best case comparison baseline against which we can compare 
our approach RS4MI. 
GAPw, introduced in [YY07], modifies the weighting scheme of the GAP statistic. 
GAPn represents another slight modification of the GAP statistic, where all logarithms 
used in the formulae of the GAP statistic are removed [MES10]. 
Sil1 and Sil2: The Silhouette technique [Rou87] is also adapted as a means for calculating 
the desired number of clusters of a peer. It is only applicable in case of k > 1. Thus, two 
alternatives are used in our experiments. If two is indicated as optimum cluster number, 
we set k = 1  in case of Sil1; k = 2  is used in case of Sil2. Peers with only a single 
database object—of course—only encode a single cluster in the resource description. 
To determine an appropriate value for k, the above mentioned approaches based on the 
GAP statistic and the Silhouette technique are iteratively tested on every peer till k = √ ⇐min(2 nDocs, nDocs)∈ with nDocs denoting the number of documents/images of a peer. 

Analysis of local k-medoid clustering 

Tab. 2 (top) shows the average fraction of visited peers, the average number of clusters 
per peer, as well as average summary sizes in case of local k-medoid clustering when 
automatically determining the number of clusters of a peer. The rule of thumb (r.o.t.) 
leads to decent retrieval performance at the cost of comparatively large summaries. Better 
peer selectivity is achievable by the SIL2 approach with more space efficient resource 
descriptions. 
Using the GAP statistic for determining the number of clusters of a peer results in average 
summary sizes of approximately 1 kB and 73.7% of peers being contacted for retrieving 
all relevant documents. GAPw and GAPn lead to fewer numbers of clusters per peer and 
thus more space efficient resource descriptions. However, both perform worse than GAP. 
SIL1 leads to similar average summary sizes as GAP. The average number of clusters 
per peer is in both cases approximately 2.3, but GAP offers better peer selectivity. SIL1 
always assumes one cluster when there might be two (which GAP might detect). SIL2 
shows better peer selectivity than the other competing approaches (even better than the 
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r.o.t. GAP GAPw GAPn SIL1 SIL2 

visited peers 67.4% 73.7% 75.3% 76.4% 76.4% 65.7% 
clusters per peer 3.1 2.3 1.9 1.5 2.3 2.8 

summary size 1350.3 B  1048.4 B  880.7 B  722.9 B  1029.5 B  1232.2 B 

k = 1  k = 2  k = 4  k = 8  k = 32 k = 128 
peers seen 79.9% 68.7% 54.4% 37.7% 13.1% 2.7% 

clusters per peer 1.0 1.9 3.4 5.6 12.2 18.2 
summary size 525.0 B  867.2 B  1.4 kB 2.3 kB 4.9 kB 7.3 kB 

Table 2: Results for local k-medoid clustering with automatic determination of the number of clus-
ters k (top) and all peers using the same global k (bottom). 

rule of thumb which identifies on average 3.1 clusters per peer) at the cost of storing on 
average 2.8 clusters per peer in the summaries. Overall, GAPn and GAPw seem promising 
approaches with average summary sizes clearly below 1 kB. 
A main drawback of the k-medoid approaches analyzed in this section so far is that the 
summary sizes cannot be influenced by any kind of design parameter of the approach. An 
alternative in this respect is to globally specify k, the maximum allowed number of clusters 
per peer. In this case, peers with nDocs ≤ k store all feature objects in their summary. 
Since for some peers the number of feature objects is smaller than k, the average number 
of clusters per peer becomes smaller than k as well. This scenario which is thus similar to 
the special treatment of single node trees in Sect. 4.2 is evaluated in Tab. 2 (bottom). 
The explicit definition of an upper bound for the number of clusters allows for a direct and 
accurate adjustment of summary sizes and selectivity. This gives a  clear advantage over 
the M-tree based approach and also over the approaches which automatically determine a 
suitable number of clusters per peer. However, if very small summaries are necessary, the 
flexibility is restricted by the discrete values of k. 
It can be observed from Tab. 2 (bottom) that only in cases where the maximum desired 
number of clusters per peer is set to k = 1  or k = 2, average summary sizes with less than 
1 kB can be achieved. If a maximum of two clusters is allowed, 68.7% of the resources are 
visited with an average summary size of 867 byte. In order to further reduce this figure, 
only a single cluster per peer can be allowed. However, almost 80% of peers are contacted 
in this case with an average summary size of 525 byte. 

4.4 RS4MI: Resource Selection for Metric Indexing 

RS4MI can make use of all pruning criteria mentioned in Sect. 2. A set of n reference 
objects C—globally unique for all resources—is applied in order to assign a database 

∗object o of a resource to the closest cluster center c = arg minci∈C d(ci, o). The set of 
reference objects is transfered to remote peers together with updates of the P2P software, 
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so that no additional network load is imposed during the operating phase of the P2P IR 
system. Such an approach is for example proposed in [BEMH07]. 
Different variants of RS4MI resource descriptions are evaluated in the following to find 
the best alternative. These variants can make use of different pruning criteria and thus 
result in different peer selectivity and average summary sizes. 
RS4MI1xxxx: Here, only a single bit is stored per cluster in order to indicate if any database 
objects lie in the very cluster or not. This results in a bit vector of size n and thus resource 
descriptions with O(n) space complexity. The double-pivot distance constraint outlined 
in Sect. 2 is the only pruning constraint which can be used in this case to prune peers from 
search. 
RS4MIx??xx: Resource descriptions offering O(n) space complexity can also be designed 
by storing the minimum and/or maximum cluster radii. By doing so, the range-pivot dis-

tance constraint can be applied on an intra-cluster level (cf. Sect. 2). In addition to storing 
both minimum and maximum cluster radii for the n clusters (i.e. RS4MIx11xx), we test pa-

rameter settings of RS4MIx1xxx and RS4MIxx1xx where only minimum or maximum cluster 
radii are stored respectively. A  single distance value is always represented as a four byte 
float. 
Of course, the double-pivot distance constraint can also be applied in this case. If no 
minimum/maximum cluster radius is set for a particular cluster, it is indicated by the sum-

mary that the corresponding peer does not administer any database objects within the very 
cluster. So, the double-pivot distance constraint is used by all of the following resource 
selection schemes whenever applicable. 
RS4MIxxx??: If all criteria for cluster pruning described in Sect. 2 should be applied, two 
matrices MIN and MAX have to be administered by every database as resource description 
(RS4MIxxx11). This requires O(n2) space per resource. As before, a single matrix cell 
requires four byte in order to store radius information. Both matrices are sent as resource 
description and used for the pruning of resources without querying them. We also test 
parameter settings where only a single matrix MIN (RS4MIxxx1x) or MAX (RS4MIxxxx1) is 
used. 
Two further combinations are included in the analysis. RS4MIx1xx1 stores minimum clus-

ter radii and the matrix MAX as resource description. In opposition, RS4MIxx11x applies 
maximum cluster radii and the MIN matrix to prune peers during search. 
We also evaluate a hybrid resource selection scheme where either per-cluster or per-object 
information is stored in the resource description of a peer. 

Analysis of RS4MI 

In the following, different ways of how to best design summaries in case of RS4MI are 
evaluated. First, summaries storing only per-cluster information are analyzed. Later, hy-

brid summaries are evaluated. We should note here that hybrid in case of RS4MI means 
storing per-cluster or per-object information. RS4MI can of course, similar to the ap-
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Figure 4: Results of RS4MI for summaries with space complexity O(n) (left) and O(n 2) (right). 

proaches evaluated in Sect. 4.2 and Sect. 4.3, be extended to store feature objects for peers 
with few images directly in the summaries. An analysis is part of future work. 

RS4MI approaches storing per-cluster information: Fig. 4 (top left) visualizes retrie-

val performance for resource descriptions with O(n) space complexity. It can be observed 
that RS4MI1xxxx and thus only applying the double-pivot distance constraint does not lead 
to an acceptable peer selectivity. RS4MI1xxxx with a bit-vector as underlying data structure 
however results in very space efficient resource descriptions, even in case of larger values 
of n (e.g. n = 1024 in Fig. 4 (bottom left)). 
Comparing RS4MIx1xxx with RS4MIxx1xx, it can be observed that although both approaches 
have similar average summary sizes, RS4MIxx1xx can prune clearly more peers than 
RS4MIx1xxx. Even RS4MIx11xx cannot noticeably improve peer selectivity. RS4MIxx1xx 
with a very large number of reference objects being used (e.g. n = 8192 or even more) 
seems the best choice amongst the approaches considered in the left part of Fig. 4. 
In addition, resource descriptions with O(n2) space complexity are analyzed. For these 
approaches a binning technique is applied in order to reduce summary sizes. Every four 
byte distance value is quantized into a single byte. The minimum and maximum distance 
value from the database objects of the external collection to every cluster center ci is 
determined. The range between these two boundaries per reference object ci is uniformly 
quantized into 253 intervals. From the remaining three values, two are used to represent 
distance values below and above the boundaries. The third remaining value is used to 
indicate an empty cluster with no entry. Here, it is again assumed that the minimum and 
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gzip bzip2 lzma png paq8o8 webpll 
summary size 867.0 B  1020.1 B  863.4 B  880.4 B  803.1 B  777.7 B 

Table 3: Average summary sizes for RS4MIxxx11 with n = 64. 

maximum distances from feature objects of the external collection to the cluster centers ci 
are known to all peers in advance and transfered to them by updates of the P2P software so 
that all peers can correctly estimate the true distance from the quantized values. However, 
this information is also small enough to be transfered to participating peers during the 
operation phase of the P2P IR system. 
Fig. 4 (bottom right) shows that the average summary sizes in case of RS4MIxxx1x, 
RS4MIxxxx1, RS4MIx1xx1, and RS4MIxx11x are very similar. According to retrieval per-

formance (cf. Fig. 4 (top right)) RS4MIxx11x applying the MIN matrix and an array of 
length n with maximum cluster radii clearly outperforms the other three approaches. Also 
RS4MIxxx11 encoding the quantized MIN and MAX matrices with a small value of n is 
promising (e.g. n = 64). For the feature set being indexed, RS4MIxxx11 with n being 
small or RS4MIxx1xx with n being big seem to be the most promising RS4MI approaches. 
To further reduce the summary sizes of RS4MIxx1xx with n = 8192, alternative compres-

sion algorithms might be suitable. When changing the compression algorithm to bzip2, 
summary sizes are reduced on average from 253.2 (gzip) to 222.1 byte and to 234.2 byte 
in case of lzma. Thus, a reduction of approximately 10% seems easily possible4. 
Summary sizes for RS4MIxxx11 with n = 64 can also be reduced. The bzip2 implementa-

tion seems to be inappropriate with average summary size noticeably increasing, and also 
lzma does not lead to a significant reduction (cf. Tab. 3). Thus, in addition to gzip, bzip2, 
and lzma, three image compression algorithms are tested, where the concatenation of the 
quantized MIN and MAX matrices is interpreted as a 2-dimensional 256 bit gray-scale im-

age of size 64×128 pixels. Tab. 3 shows the results. Standard png compression provides 
some overhead, but paq8o85 and especially webp6 lossless image compression provide 
more space efficient resource descriptions; webp in particular by significantly improving 
the memory requirements of the summaries of the peers with images in few clusters. 

Hybrid RS4MI approaches storing per-object information: The RS4MI approaches 
presented so far solely rely on cluster pruning principles. Object pruning and thus the en-

coding of per-object information in the resource descriptions is not considered. However, 
the distribution of peer sizes (cf. Fig. 2) indicates many peers with few documents. Thus, 
at least for peers with very few documents it might be beneficial to encode per-object 
summary information and apply pivot filtering (cf. Sect. 2). 

4Additional compression results are based on the at4j library (http://at4j.sourceforge.net/ ). We acknowledge 
the contributors of at4j and of contributing libraries such as 7-zip (http://www.7-zip.org/ ) and apache commons 
compress (http://commons.apache.org/compress/ ). 

5cf. http://mattmahoney.net/dc/#paq 
6cf. https://developers.google.com/speed/webp/ 
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n = 1  n = 2  n = 4  n = 8  n = 12 n = 16 
peers seen 97.3% 95.5% 90.9% 82.5% 75.8% 73.5% 

summary size 136.5 B  216.9 B  372.5 B  676.2 B  976.1 B  1274.6 B 

Table 4: Results when purely applying pivot filtering. 

sd = 100 sd = 200 sd = 400 sd = 600 sd = 800 sd = 1000 
(8439)  (9612) (10202) (10385) (10459) (10503) 
81.1% 76.0% 69.9% 66.0% 63.4% 61.4% 

n = 512 
174.9 B  251.9 B  426.9 B  585.1 B  759.6 B  919.2 B 
80.3% 75.7% 69.8% 65.9% 63.4% 61.4% 

n = 4096 
214.8 B  277.8 B  443.0 B  596.8 B  768.9 B  926.8 B 

Table 5: Results for hybrid summaries. Table cells show the fraction of contacted peers (top) and 
the avg. summary size (bottom). The number of peers applying pivot filtering is given in brackets. 

First, we analyze settings where only object-pivot distances (and thus no per-cluster in-

formation) are used in the resource descriptions. Tab. 4 shows the results for different 
numbers of reference objects. Such an undifferentiated approach is inappropriate and re-

sults in very big summary sizes for peers with many documents. When using 16 reference 
objects and thus encoding 16 object-to-pivot distance values per database object, 73.5% of 
peers are contacted with resource descriptions of 1.3 kB on average. 
We also analyze a hybrid resource description scheme with peers choosing between ei-

ther per-object or per-cluster summarization, depending on nDocs, the number of images 
a peer administers. In order to very roughly estimate the number of possible reference 
objects per database object for which object-pivot-distances are stored in the summary, 

sdthe formula nRefsPerObject = ⇐ ∈ is applied. The parameter sd hereby denotes the
4·nDocs 

desired average summary size in byte and a factor of four in the denominator is used since 
a single distance value is represented as a four byte float. From Tab. 5, it can be seen that 
this estimate of the average summary size roughly holds. If nRefsPerObject > 0, pivot 
filtering is applied on the basis of per-object resource descriptions. Otherwise, per-cluster 
summaries RS4MIxx1xx are applied as before. 
Table 5 visualizes results of the hybrid resource selection scheme when varying sd and n. 
The number of peers applying pivot filtering is denoted in brackets. If these results are 
compared with the ones applying only per-cluster information, several approaches can be 
outperformed; for example a parameter settings with n = 512 and sd = 600 seems promis-

ing. However, peer selectivity of RS4MIxx1xx(n = 8192) can only be achieved with much 
bigger average summary sizes, since compression techniques in case of RS4MIxx1xx(n = 
8192) can dramatically reduce the summary size of peers with documents in only few 
clusters. 

109 



4.5 Brief comparison of approaches 

In Sects. 4.2 and 4.3, we saw that techniques yielding an exact representation of small 
peers, either applying a special treatment for single node M-trees or defining a desired 
value for k, are promising in situations with a long-tail distribution of the objects over the 
peers. Of course, such techniques can also be applied for RS4MI—a consideration of this 
approach is planned for the near future. To assess the potential in large scale networks, let 
us concentrate on the summary sizes and the selectivity of the basic techniques here. 
Table 6 gives a brief overview of 
different approaches discussed in peers seen avg. summary size 
Sect. 4.2, Sect. 4.3, and Sect. 4.4. M-tree(576;16384) 75.8% 813.2 byte 
All of them result in average sum- 2-medoid 68.7% 867.7 byte 

RS4MIxx1xx(n = 8192)  62.2% 253.0 byte mary sizes below 1  kB. Concep-
RS4MIxxx11(n = 64)  57.2% 880.7 byte 

tually, the source selection tech-

niques based on M-tree and k-
Table 6: Comparison of the different approaches with results 

medoid clustering are similar to averaged over ten runs. 
each other both applying local 
clustering and transferring medoids and cluster radii. The parametrization of the tech-

niques is crucial for both approaches. In this regard, the k-medoid based local clustering 
approach with its easy to interpret design parameter k is more handy than M-tree based 
clustering and also retrieval performance (as briefly summarized in Tab. 6 and in more 
detail outlined in Sect. 4.2 and Sect. 4.3) does not give a clear evidence for using the ap-

proach based on the M-tree. RS4MIxx1xx(n = 8192) leads to better retrieval results with 
significantly smaller average resource description sizes. The number of contacted peers is 
further reduced by RS4MIxxx11(n = 64) at the cost of larger summaries, comparable with 
those of 2-medoid. Of course, it is also possible to use different RS4MI summary types 
within a single P2P IR system. We will analyze this in future work. 

5 Conclusion and Outlook 

We presented RS4MI—an exact resource selection scheme for general metric spaces and 
showed how the processing of range queries can be performed. RS4MI can outperform an 
M-tree based exact resource selection scheme and a selection scheme based on k-medoid 
clustering w.r.t. the number of peers which are contacted and w.r.t. memory requirements. 
In case of range queries, RS4MI is especially beneficial in scenarios when the memory 
requirements of the database objects are huge since RS4MI does not store them in the 
summaries. Furthermore, with large numbers of reference objects fine-grained adaptations 
are possible w.r.t. the avg. summary size. Peer(s) monitoring the network can adaptively 
adjust summary sizes since every peer per se knows the summary size of all other peers. 
In future work, we will also analyze the processing of k-NN queries and strategies for 
determining the reference objects. In addition, we will derive approximate extensions pro-

viding a good compromise between runtime performance and adequate retrieval quality. 
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