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Abstract
We propose a novel housing market model to explore the effectiveness of rent con-
trol. Our model reveals that the expectation formation and learning behavior of 
boundedly rational homebuyers, switching between extrapolative and regressive 
expectation rules subject to their past forecasting accuracy, may create endogenous 
housing market dynamics. We show that policymakers may use rent control to 
reduce the rent level, although such policies may have undesirable effects on the 
house price and the housing stock. However, we are also able to prove that well-
designed rent control may help policymakers to stabilize housing market dynamics, 
even without creating housing market distortions.

Keywords  Housing market dynamics · Expectation formation and learning 
behavior · Rent control · Steady state, stability and out-of-equilibrium analysis

JEL Classification  D84 · G12 · R21

1  Introduction

Galbraith (1994), Kindleberger and Aliber (2011) and Glaeser (2013) demonstrate 
that boom–bust housing market dynamics may be quite harmful to the real econ-
omy. Obviously, the instability of housing markets may also affect the rental mar-
ket. To provide affordable rental housing, policymakers may control the rental mar-
ket, e.g., by placing caps on rent increases or even by freezing rents, as reported by 
Arnot (1995), Turner and Malpezzi (2003), Autor et al. (2014) and Metcalf (2018). 
When it comes to explaining what really causes the boom–bust behavior of hous-
ing markets, Case and Shiller (2003), Case et  al. (2012) and Shiller (2015) stress 
that homebuyers’ extrapolative expectations are major drivers of endogenous house 
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price fluctuations. However, it is important to note that economic agents are not irra-
tional. As argued by Hommes (2013), economic agents usually rely on a limited 
set of plausible rules to form expectations and select between them according to 
their evolutionary fitness. Against this background, the goal of our paper is twofold. 
First, we develop a novel expectations-driven housing market model to enhance our 
understanding of housing market dynamics. Second, we use our model to explore 
the extent to which policymakers can influence housing markets by imposing rent 
control.

We may summarize the setup of our (unregulated) housing market model as fol-
lows. There is a single price for housing that is paid by all homebuyers. The house 
price is determined via an intertemporal no-arbitrage condition and equals the dis-
counted value of the next period’s expected house price and rent payments. To form 
their expectations, homebuyers use a mix of extrapolative and regressive expecta-
tion rules. The weights of these expectation rules, modeled via exponential replica-
tor dynamics, depend on their evolutionary fitness, measured in terms of squared 
prediction errors. While the extrapolative expectation rule is free, the regressive 
expectation rule is costly. The (unregulated) rent level decreases with the exist-
ing stock of houses. The housing stock, in turn, is subject to depreciation and new 
housing construction, where new housing construction depends positively on past 
house prices. Our model, equivalent to a six-dimensional nonlinear map, possesses 
one economically meaningful steady state at which the house price corresponds to 
the discounted value of future rent payments. We show that this steady state may 
become unstable due to a Neimark–Sacker bifurcation if homebuyers extrapolate 
past house price changes strongly. We then observe oscillatory fluctuations of the 
house price, the housing stock and the rent level. As it turns out, we can also use 
our model to study the effectiveness of rent control. Most importantly, we are able 
to prove analytically that well-designed rent control allows policymakers to stabilize 
housing markets without creating welfare-hampering distortions. Needless to say, 
ill-designed rent control programs may achieve the opposite.

Our paper is organized as follows. In Sect. 2, we relate our paper more closely to 
the existing literature. In Sect. 3, we develop our housing market model. In Sects. 4 
and 5, we present our main analytical and numerical results, respectively. In Sect. 6, 
we conclude our work and point out some avenues for future research. Appendix 
A, B and C provides a detailed formal analysis of our model as well as a number of 
additional robustness checks.

2 � Literature review

Our paper builds on the work by Dieci and Westerhoff (2016) and Schmitt and West-
erhoff (2019). Dieci and Westerhoff (2016) combine Poterba’s (1984, 1991) hous-
ing market framework, comprising explicit relations between the house price, the 
housing stock and the rent level, with a quite parsimonious approach that captures 
the expectation formation and learning behavior of boundedly rational homebuy-
ers, as put forward by Day and Huang (1990), de Grauwe et al. (1993) and He and 
Westerhoff (2005). In particular, the expectation formation and learning part of their 
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model assumes that homebuyers, relying on extrapolative and regressive expectation 
rules to forecast future house prices, increasingly turn to the regressive expectation 
rule as house prices disconnect from their fundamental values, simply because they 
fear that the housing market bubble will burst. The simplicity of the model by Dieci 
and Westerhoff (2016), formally equivalent to a two-dimensional nonlinear map, 
allows deep analytical insights into the intricate interplay between real and specula-
tive forces. Moreover, simulations reveal that their model is able to generate cyclical 
housing market dynamics with lasting periods of overvaluation and overbuilding, as 
observed in many real housing markets.

Schmitt and Westerhoff (2019) combine Poterba’s (1984, 1991) housing market 
model with the heuristic switching approach by Brock and Hommes (1997, 1998), 
capturing in more detail homebuyers’ expectation formation and learning behav-
ior. To be more precise, homebuyers switch between extrapolative and regressive 
expectation rules subject to their forecasting accuracy. As it turns out, their model 
is able to replicate key properties of housing market dynamics, including its short-
run momentum, long-run mean reversion and excess volatility. More importantly, 
however, Schmitt and Westerhoff (2019) analytically prove that such dynamics can 
only occur if extrapolative expectations are heavy-handed. Policy applications based 
on these two frameworks are provided, for instance, by Martin et al. (2020a, b). The 
former paper studies whether central banks may stabilize the housing market by 
adjusting the interest rate, while the latter paper explores the extent to which policy-
makers can stabilize housing markets by altering the tax code.

Our paper deviates from this line of research in at least two important dimen-
sions. First, we employ exponential replicator dynamics to capture homebuyers’ 
rule selection behavior. Exponential replicator dynamics entails a herding behavior 
among homebuyers and has, in contrast to the heuristic switching approach, alterna-
tive steady-state implications. As we will see, a key property of exponential rep-
licator dynamics is that all homebuyers use the expectation rule that produces the 
highest evolutionary fitness at the (economically meaningful) steady state, i.e., no 
homebuyer will pick an inferior expectation rule when the dynamics is at rest. Sec-
ond, we use our model to explore possible consequences of rent control. As far as 
we are aware, no other papers apply expectations-driven housing market models to 
study the steady-state, stability and out-of-equilibrium effects of rent control.

Further contributions in this blossoming research field, focusing on the expec-
tation formation and learning behavior of boundedly rational homebuyers, include 
Bao and Hommes (2019), Bolt et al. (2019), Burnside et al. (2016), Campisi et al. 
(2018), Dieci and Westerhoff (2012, 2013), Eichholtz et al. (2015), Diks and Wang 
(2016), Kouwenberg and Zwinkels (2014) and Glaeser and Nathanson (2017). Dieci 
and He (2018) review parts of the literature.

3 � The model

Let us turn to our model. As in Schmitt and Westerhoff (2019), there is a single 
price of housing paid by all homebuyers. Moreover, the house price P

t
 is derived 

from an intertemporal no-arbitrage condition and equals the discounted value of the 
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next period’s expected house price E
t
[P

t+1] plus rent payments R
t
 , due at the end of 

the period. Formally, the house price in period t obeys

where r > 0 stands for the risk-free interest rate and 0 < 𝛿 < 1 denotes the hous-
ing depreciation rate. Clearly, (1) implies that the house price adjusts such that risk-
neutral homebuyers are indifferent between investing their wealth in a safe asset, 
guaranteeing the risk-free interest rate r , and investing in the housing market, yield-
ing the expected gain (E

t
[P

t+1] + R
t
− (1 + �)P

t
)∕P

t
 . Suppose, for instance, that the 

interest rate is lower than the expected gain, i.e., r < (E
t
[P

t+1] + R
t
− (1 + 𝛿)P

t
)∕P

t
 . 

Then, homebuyers will increase their housing demand up to the point where the 
resulting house price increase is such that the no-arbitrage condition (1) holds once 
again.1

Homebuyers have the choice between different types of expectation rules and 
select between them depending on their evolutionary fitness. For analytical tractabil-
ity, we concentrate on two representative expectation rules. In line with empirical 
and experimental evidence (Menkhoff and Taylor 2007; Hommes 2011), we assume 
that homebuyers can choose between an extrapolative expectation rule and a regres-
sive expectation rule. Homebuyers’ house price expectations are defined by

where EE

t

[
P
t+1

]
 and ER

t

[
P
t+1

]
 represent predictions generated by the extrapolative 

and the regressive expectation rule, respectively, and WE

t
 and WR

t
 represent their cor-

responding weights.
The extrapolative expectation rule presumes that the current house price trend 

will continue. Inspired by Chiarella (1992) and Chiarella et al. (2006), we formalize 
the extrapolative expectation rule by

where 𝜂 =
2𝜅

𝜋
> 0 and 𝜒 > 0 determine homebuyers’ extrapolation strength. Note 

that the latter term of (3) represents an S-shaped function that is bounded in the 
interval ( −�, � ), reflecting homebuyers’ tendency to react more cautiously to larger 
house price changes.2 The regressive expectation rule predicts that the house price 
will converge toward its fundamental value. Let F denote homebuyers’ perception of 

(1)P
t
=

E
t
[P

t+1] + R
t

1 + r + �
,

(2)E
t
[P

t+1] = W
E

t
E
E

t

[
P
t+1

]
+W

R

t
E
R

t

[
P
t+1

]
,

(3)E
E

t

[
P
t+1

]
= P

t−1 + � arctan

[
�

�
(P

t−1 − P
t−2)

]
,

1  Dieci and Westerhoff (2016) derive an explicit expression for homebuyers’ housing demand via a 
standard one-period mean–variance framework. Their house price equation becomes equivalent to ours if 
homebuyers’ risk aversion approaches zero.
2  Note that our analytical results (see Proposition 1) also hold when homebuyers rely on the linear 
extrapolative expectation rule EE

t

[
Pt+1

]
= Pt−1 + �(Pt−1 − Pt−2) , with 𝜒 > 0 . However, the nonlinear 

extrapolative expectation rule (3) produces more reasonable bounded housing market dynamics. The 
same is true for the regressive expectation rule (4).
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the true fundamental house price. Using again an S-shaped function, we express the 
regressive expectation rule by

where 𝜃 =
2𝜆

𝜋
> 0 and 0 ≤ � ≤ 1 capture homebuyers’ expected mean reversion 

speed.3 Importantly, homebuyers’ perception of the fundamental house price may 
be right or wrong, i.e., F may deviate from the true steady-state value of the house 
price.4 As is common in this line of research, homebuyers predict the house price for 
period t + 1 at the beginning of period t , based on information available at the end of 
period t − 1.

The expectation rules’ evolutionary fitness depends negatively on squared predic-
tion errors and possible costs arising from their use. Hence, we have

and

where � is a positive parameter that measures the sensitivity of the expectation 
rules’ evolutionary fitness with respect to their past forecasting accuracy. In line 
with Brock and Hommes (1997, 1998), the extrapolative expectation rule is free, but 
the more sophisticated regressive expectation rule, requiring the computation of F , 
incurs positive information costs �.5 We may also regard parameter � as a behavioral 
bias in favor of the simpler extrapolative expectation rule, as discussed in Anufriev 
et al. (2016, 2018).

We use the exponential replicator dynamics approach by Hofbauer and Sigmund 
(1988) and Hofbauer and Weibull (1996) to determine the weights of the two expec-
tation rules. Accordingly, we have

and

(4)E
R

t

[
P
t+1

]
= P

t−1 + � arctan

[
�

�
(F − P

t−1)

]
,

(5)A
E

t
= −�

(
P
t−1 − E

E

t−2

[
P
t−1

])2

(6)A
R

t
= −�

(
P
t−1 − E

R

t−2

[
P
t−1

])2
− �,

(7)W
E

t
=

W
E

t−1
exp

[
�AE

t

]

W
E

t−1
exp

[
�AE

t

]
+W

R

t−1
exp

[
�AR

t

]

(8)W
R

t
=

W
R

t−1
exp

[
�AR

t

]

W
E

t−1
exp

[
�AE

t

]
+W

R

t−1
exp

[
�AR

t

] ,

3  Note that � = 0 implies naïve expectations, while � = 1 and � → ∞ entail pure fundamentalist beliefs.
4  At first sight, this may appear to be a minor detail. However, computing the true fundamental house 
price correctly is nearly impossible in real markets. Our model does not rely on this assumption; home-
buyers may be right or wrong with respect to their perception of the true fundamental house price.
5  In Appendix B, we study the case � = 0.
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where parameter 𝜀 > 0 denotes homebuyers’ intensity of choice. For our purpose, 
the exponential replicator dynamics approach has the following three desirable eco-
nomic implications. First, homebuyers tend to choose the expectation rule that has 
the higher evolutionary fitness. Second, the impact of the expectation rule that yields 
better predictions increases with homebuyers’ intensity of choice. Third, homebuy-
ers display (a mild form of) herding behavior.6

While first-generation rent control policies simply suggest freezing the rent 
level, second-generation rent control policies at least recommend allowing for some 
kind of rent flexibility (Arnot 1995; Turner and Malpezzi 2003; Autor et al. 2014 
and Metcalf 2018). In general, it seems plausible to assume that the rent level will 
depend negatively on the existing stock of houses, say R̃

t
= 𝛼 − 𝛽H

t
 , with � , 𝛽 > 0 . 

In this paper, we consider a policy according to which policymakers restrict the evo-
lution of the rent level as follows:

where RG stands for policymakers’ target rent level and 0 ≤ � ≤ 1 is a control param-
eter. With the rent control policy (9), policymakers seek to keep the rent level near 
the target rent level and, thereby, also to tame changes in the rent level. Let us con-
sider a few examples. For � = 1 , the rent level, given by R

t
= � − �H

t
 , is completely 

flexible, as in Dieci and Westerhoff (2016).7 For � = 0 , the rent level is fixed and 
equal to R

t
= R

G , as is the case in first-generation rent control policies. For � = 0.5 , 
the regulated rent level is given by the average of policymakers’ target rent level and 
the rent level that would result in an unregulated environment. Accordingly, lower 
values of the control parameter � mean tighter regulation of the rental market.8

Finally, the housing stock evolves as

where new housing construction depends positively on the past house price, i.e.

with 𝛾 > 0 . Note that new housing construction is consistent with the assumptions 
that housing constructors face a one-period production lag, maximize expected 

(9)R
t
= R

G + 𝜏
(
R̃
t
− R

G
)
= (1 − 𝜏)RG + 𝜏

(
𝛼 − 𝛽H

t

)
,

(10)H
t
= I

t
+ (1 − �)H

t−1,

(11)I
t
= �P

t−1,

7  Dieci and Westerhoff (2016) motivate this relation as follows. Market clearing in the rental market 
implies that the demand for housing services, Dt = a − bRt , with a, b > 0 , is equal to the supply of 
housing services, St = cHt , with c > 0 , that is Dt = St . It immediately follows that Rt = � − �Ht , with 
𝛼 =

a

b
> 0 and 𝛽 =

c

b
> 0. Note that the whole housing stock enters the rental market, i.e., all homebuy-

ers offer their houses on the rental market.
8  In Appendix C, we explore the effects of a related rent control policy, assuming that policymakers only 
activate (9) in periods when the rent level exceeds a critical threshold.

6  To see this, note that (7) may also be expressed by WE
t
= WE

t−1
∕
(
WE

t−1
+ (1 −WE

t−1

)
exp

[
�
(
AR
t
− AE

t

)]
) . 

As WE
t−1

 approaches zero or one, the weights of the two expectation rules in period t  depend less strongly 
on the difference of their evolutionary fitness and more strongly on their past popularity. See Dindo and 
Tuinstra (2011), Bischi et al. (2015), Kopel et al. (2014) and Schmitt et al. (2017) for further applications 
of the exponential replicator dynamics approach.
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profits subject to a quadratic cost function, i.e., C
t
=

1

2�
I
2
t
 and form naïve expecta-

tions.9 Moreover, lower values of � imply higher building costs and a more sluggish 
housing supply. See Bao and Hommes (2019) for a similar modeling setup of new 
housing construction.

4 � Analytical results

In Appendix A, we show that the dynamics of our model is driven by the iteration 
of a six-dimensional nonlinear map. Moreover, our model possesses two (boundary) 
steady states. While one of the boundary steady states is economically meaningful 
and locally asymptotically stable for a certain part of the parameter space, the other 
boundary steady state is always unstable.10 The following proposition summarizes 
our main analytical results (an overbar denotes steady-state quantities):

Proposition 1  The model’s economically meaningful steady state, implying that 
P =

((1−�)RG+��)�
(r+�)�+���

 , H =
�

�
P =

((1−�)RG+��)�
(r+�)�+���

 , R = (r + �)P =
(r+�)�((1−�)RG+��)

(r+�)�+���
 and 

W
E
= 1 , becomes unstable if the stability condition 𝜒 < 1 + r + 𝛿 − 𝜏

𝛽𝛾(1−𝛿)𝜒

r+𝛿(2−𝜒(1−𝛿))
 is 

violated. Moreover, the loss of stability is associated with a Neimark–Sacker 
bifurcation.

Proposition 1 deserves some discussion. Let us start with the model’s economi-
cally meaningful steady state:

•	 The house price, the housing stock and the rent level depend only on the housing 
market’s real side. Put differently, the model’s behavioral parameters, character-
izing homebuyers’ expectation formation and learning behavior, are irrelevant 
for the determination of P , H and R.

•	 The model’s real parameters have straightforward and important steady-state 
implications. Let us consider one example. Suppose that the central bank 
increases the interest rate. Higher interest rates lessen the attractiveness of the 
housing market as an investment opportunity for homebuyers. As a result, the 
house price will decrease. Lower house prices, in turn, dampen the construction 
of new housing, and, consequently, the housing stock decreases, an outcome that 
increases the rent level (except for � = 0).

9  In Dieci and Westerhoff (2012), housing constructors have perfect-foresight expectations. Campisi 
et al. (2018) assume that housing constructors rely on a mix of perfect foresight and naïve expectations. 
However, Martin et al. (2020a) demonstrate that models with larger production lags may produce quite 
similar housing market dynamics as models in which new housing construction is given by (11).
10  At the second boundary steady state, all homebuyers rely on the regressive expectation rule. Since the 
steady-state fitness of the costly regressive expectation rule is always lower than the steady-state fitness 
of the free extrapolative expectation rule, even if homebuyers perceive the true fundamental house price 
correctly, the second boundary state is economically uninteresting. Eventually, homebuyers should real-
ize their mistakes and switch to the extrapolative expectation rule. This is also the reason why this steady 
state is unstable.
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•	 Moreover, the model’s economically meaningful steady state implies that 
W

E

= 1 , i.e., all homebuyers use the free extrapolative expectation rule. Note 
that this expectation rule makes no steady-state prediction errors. It immediately 
follows from the house price Eq. (1) that P =

R

r+�
 . Accordingly, the house price 

corresponds to the discounted value of future rent payments, as already men-
tioned by Poterba (1984, 1991). The term r + � is usually regraded as the user 
costs of housing.

•	 Importantly, if policymakers set the target rent level equal to the rent level that 
would prevail in an unregulated rental market, the steady-state levels of the 
house price, the housing stock and the rent level will be unaffected by rent con-
trol. More formally, for R

G = R =
(r+�)��

(r+�)�+��
 , we obtain P =

��

(r+�)�+��
 and 

H =
��

(r+�)�+��
 . In the following, we call this policy a well-designed rent control 

policy, since P , H and R correspond to their true fundamental values, and policy-
makers’ regulation of the rental market therefore does not inflict any housing 
market distortions.

•	 Note that policymakers are able to influence the steady-state rent level by adjust-
ing the target rent level. In particular, R decreases for lower values of RG . Unfor-
tunately, a lower rent level makes the housing market less attractive for home-
buyers and, consequently, the house price and the housing stock will decrease, 
too.11 Alternatively, policymakers may decide to reduce the rent level by decreas-
ing the control parameter � , provided that RG < R =

(r+𝛿)𝛿𝛼

(r+𝛿)𝛿+𝛽𝛾
 . As before, a 

reduction in the rent level depresses the house price and results in a smaller hous-
ing stock. Clearly, a smaller housing stock may not be in the interest of policy-
makers.12

Let us now turn to the Neimark–Sacker stability condition13:

•	 The emergence of endogenous housing market cycles requires that homebuyers 
form extrapolative expectations. Put differently, if homebuyers have naïve expec-
tations, i.e., if � = 0 , the Neimark–Sacker stability condition will always hold.

•	 The model’s steady state will lose its local asymptotic stability at the latest if 
parameter � approaches 1 + r + � , provided that the economically reasonable 

11  Similar steady-state effects of rent control policies are reported in Sims (2007) and Autor et al. (2014).
12  Glaeser and Luttmer (2003) discuss rent-control welfare losses that may arise due to the undersup-
ply and misallocation of housing units. See Turner and Malpezzi (2003) for a more general cost–benefit 
analysis of rent control.
13  As shown in Appendix A, the economically meaningful steady state may also become unstable due 
to a Flip bifurcation. By giving rise to a period-two cycle, however, a Flip bifurcation is less suited to 
explain the oscillatory behavior of actual housing markets. Moreover, within our model framework, a 
Flip bifurcation necessitates a rather extreme response of the housing market’s real side to changes in 
the rent level and the house price, which is why we focus on the much more interesting Neimark–Sacker 
bifurcation scenario.
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assumption r + 𝛿 < 1 holds.14 To see this, note that the term � ��(1−�)�

r+�(2−�(1−�))
 

remains positive as long as 𝜒 < 2∕(1 − 𝛿).
•	 Due to the term � ��(1−�)�

r+�(2−�(1−�))
 , however, the loss of stability may occur before � 

exceeds 1 + r + � . In particular, the Neimark–Sacker stability condition becomes 
more binding if the rental market reacts more strongly to the housing stock and/
or if new housing construction reacts more strongly to the house price.

•	 Fortunately, however, policymakers can stabilize the housing market by control-
ling the rental market: a decrease in the control parameter � from one to zero 
monotonically increases the parameter domain that ensures market stability.

•	 Note furthermore that the Neimark–Sacker stability condition is independent of 
policymakers’ target rent level. By adjusting RG , policymakers can influence the 
steady-state quantities of P , H and R without affecting the local asymptotic sta-
bility of the model’s economically meaningful steady state. In contrast, changes 
of the control parameter � affect the model’s steady-state levels and stability 
domain, except when RG =

(r+�)��

(r+�)�+��
 . Setting RG =

(r+�)��

(r+�)�+��
 allows policymakers 

to stabilize the housing market without affecting its true fundamental steady 
state.

As we will see, our analytical insights provide a useful orientation for the numeri-
cal analysis of our model, addressed in the next section.

5 � Numerical results

To simulate the dynamics of our model, we have to specify its parameters. For the 
model’s real side, we assume that � = 20 , � = 0.1 , � = 0.05 , � = 0.05 , r = 0.05, 
R
G = 10 and � = {0, 0.5, 1} . Irrespective of our choice of parameter � , we thus have 

P = 100 , H = 100 and R = 10 . Note that RG = R , i.e., policymakers’ target rent 
level is equal to the rental market’s true fundamental value. For the model’s behavio-
ral side, we assume that � = 1.07 , � = 10 , � = 0.25 , � = 10 , F = 100 , � = 1 , � = 1 
and � = 1 . Note that homebuyers using the regressive expectation rule perceive 
the true fundamental house price correctly.15 Depending on policymakers’ con-
trol parameters, our analytical results predict the emergence of a Neimark–Sacker 

15  Since information costs are positive, all homebuyers opt for the superior extrapolative expectation rule 
at the steady state, implying that homebuyers’ perception of the true fundamental house price is irrel-
evant for the steady state’s coordinates and its local asymptotic stability domain. Out of equilibrium, 
however, homebuyers’ perception of the true fundamental house price may influence housing markets. 
Simulations reveal, for instance, that the housing market may become overvalued when (i) homebuyers 
favor the regressive expectation rule and (ii) overestimate the true fundamental house price.

14  We would like to point out an interesting connection between our housing market model and related 
expectations-driven asset-pricing models. For � = � = � = � = 0 , our stability condition boils down 
to 𝜒 < 1 + r . Such a stability condition would also result in an asset-pricing model in which the divi-
dend payments of the risky asset are given by RG and in which all market participants rely on extrapola-
tive expectations, implying a steady-state risky-asset price of P = RG∕r . See, for instance, Brock and 
Hommes (1998) and Schmitt and Westerhoff (2020).
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bifurcation at �NS

crit
≈ 1.051 for � = 1 (flexible rents), �NS

crit
≈ 1.075 for � = 0.5 (regu-

lated rents) and �NS

crit
= 1.1 for � = 0 (fixed rents). Our assumptions about the model 

parameters, e.g., the interest rate or the depreciation rate, suggest that we may regard 
one time step in our model as 1  year. However, we do not aim at replicating the 
behavior of actual housing markets in finer detail.

Figure 1 illustrates the model’s dynamics for our base parameter setting. The left 
panels of Fig. 1 show the evolution of the house price for flexible rents ( � = 1 ), fixed 
rents ( � = 0 ) and regulated rents ( � = 0.5 ), respectively. The center (right) panels 
of Fig. 1 depict the corresponding development of the housing stock (rent level). In 
all three cases, we introduce a one-percent shock to the house price in period t = 1 
and present the consequent dynamics for the next 200 time steps. The top line of 
panels in Fig. 1 indicates that our model may produce endogenous housing market 

Fig. 1   Housing market dynamics in the time domain. The left panels show the evolution of house prices 
for flexible rents ( � = 1 ), fixed rents ( � = 0 ) and regulated rents ( � = 0.5 ), respectively. The center (right) 
panels show the corresponding development of the housing stock (rent levels). See Sect.  5 for more 
details on the underlying parameter setting
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dynamics. After a brief transient period, the house price, the housing stock and the 
rent level oscillate around their true fundamental steady-state values with a constant 
amplitude. The central line of panels in Fig. 1 suggests that a strict regulation of the 
rental market can stabilize the housing market. If policymakers set the target value 
equal to its steady-state value, then the dynamics of the housing market will die out 
and the house price, the housing stock and the rent level will correspond to their 
true fundamental steady-state values. The bottom line of panels in Fig.  1 depicts 
an intermediate scenario. For � = 0.5 , we still observe endogenous housing market 
dynamics, yet the amplitude of the house price, the housing stock and the rent level 
is lower than in the case of an unregulated rental market.

Figure  2 shows bifurcation diagrams of the house price versus homebuyers’ 
extrapolation parameter � for flexible rents ( � = 1 ), fixed rents ( � = 0 ) and regulated 
rents ( � = 0.5 ), respectively. For all three scenarios, we eventually observe the onset 
of oscillatory housing price fluctuations. However, smaller values of policymakers’ 
control parameter maintain the stability of the housing market for larger values of 
homebuyers’ extrapolation parameter. Moreover, when the housing market displays 
endogenous dynamics, the amplitude of house price fluctuations will decrease for 
lower values of parameter � . Of course, the same is true for the housing stock and 
the rent level (not depicted),

So far, we have assumed that policymakers set the target rent level equal to the 
steady-state level of the unregulated housing market. However, policymakers may 
have reasons to deviate from this assumption, e.g., because they are influenced by 
certain interest groups (Fallis 1988, Arnot 1995, Epple 1998). Of course, policy-
makers may also misperceive the steady-state value of the unregulated rental mar-
ket. Figure 3 shows bifurcation diagrams of the house price versus policymakers’ 
control parameter for higher target rents ( RG = 11 ), unbiased target rents ( RG = 10 ) 
and lower target rents ( RG = 9 ). As can be seen, the level of the target rent has no 
impact on the Neimark–Sacker bifurcation value. In line with Proposition 1, the Nei-
mark–Sacker bifurcation occurs for our parameter setting at �NS

crit
≈ 0.587 . However, 

policymakers can influence the steady-state values of the house price, the housing 
stock and the rent level via RG . For instance, the bottom panel demonstrates that a 
lower value of the target rent level reduces not only the rent level, but also the house 
price and the housing stock. As can furthermore be seen, a tighter regulation of the 
housing market, i.e., a lower value of parameter � , fosters this development.16

In Fig.  4, we show how policymakers may affect volatility, defined as 
1

T

∑T

t=1
��Pt

− P
t−1

�� , distortion, defined as 1

T

∑T

t=1

���Pt
− P

��� , the average rent level, 
defined as 1

T

∑T

t=1
R
t
 , and the rent level’s average absolute deviation from the target 

rent level, defined as 1
T

∑T

t=1
��Rt

− R
G�� , by jointly setting parameters � and RG . We 

vary both parameters in 50 discrete steps in the range of 0 ≤ � ≤ 1 and 9 ≤ R
G ≤ 10 , 

16  Note that homebuyers misperceive the true fundamental house price in the simulations depicted in the 
top and bottom panels in Fig. 3. At the steady state, homebuyers’ misperceptions of the true fundamental 
house price do not matter since they do not use the regressive expectation rule. Further simulations (not 
depicted) reveal that the out-of-equilibrium effects of homebuyers’ misperception of the true fundamen-
tal house price are relatively mild, at least as long as misperceptions do not become too large.
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giving rise to 2,500 grid points, and use T = 1000 observations to compute the 
above statistics. Importantly, policymakers can select from the displayed menu. By 
setting � = 0 and RG = 9 , for instance, policymakers can eliminate house price fluc-
tuations, reduce the average rent level and bring the average rent level close to their 
target rent level, yet produce significant distortion in the housing market. By setting 

Fig. 2   Effects of homebuyers’ extrapolation strength. The panels show bifurcation diagrams of house 
prices versus homebuyers’ extrapolation parameter � for flexible rents ( � = 1 ), fixed rents ( � = 0 ) and 
regulated rents ( � = 0.5 ), respectively. See Sect. 5 for more details on the underlying parameter setting
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� = 0.5 and RG = 10 , however, policymakers can reduce the housing market’s vola-
tility and distortion. While the average rent level is near the target rent level, the 
average rent level is higher than in the previous scenario. Clearly, selecting � and RG 

Fig. 3   Effects of policymakers’ rent control strength. The panels show bifurcation diagrams of house 
prices versus policymakers’ control parameter � for higher target rents ( RG

= 11 ), unbiased target rents 
( RG

= 10 ) and lower target rents ( RG
= 9 ). See Sect. 5 for more details on the underlying parameter set-

ting
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is not a scientific task; it is the task of policymakers to choose from this menu, tak-
ing into account their policy objectives.

6 � Conclusions

The reviews by Galbraith (1994), Kindleberger and Aliber (2011) and Glaeser (2013) 
highlight the fact that housing markets are capable of producing significant boom–bust 
cycles, often associated with dramatic economic consequences. Since Case and Shiller 
(2003), Case et al. (2012) and Shiller (2015) report that extrapolative expectations are 
major drivers of such dynamics, we present a novel housing market model in which 
homebuyers rely on extrapolative and regressive expectation rules to forecast future 
house prices. In line with Hommes (2013), homebuyers are capable of learning in 
the sense that they select expectation rules that have produced lower prediction errors 
in the past. However, homebuyers also display herding behavior. Our analytical and 
numerical results reveal that endogenous housing market dynamics is set in motion if 
homebuyers rely strongly on extrapolative expectations. The house price, the housing 
stock and the rent level then oscillate around their steady-state values, although there 
are neither exogenous shocks nor changes in the housing market’s fundamentals.

Fig. 4   Joint impact of policymakers’ control parameters. The panels show how parameters � and RG 
affect volatility, distortion, the average rent level and the rent level’s average absolute deviation from the 
target rent level, respectively. See Sect. 5 for more details on the underlying parameter setting
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As it turns out, we can use our model to explore the effectiveness of rent control. 
Turner and Malpezzi (2003) estimate that around 40–50% of the world’s urban popu-
lation live in rental housing and that most of these housing units are subject to rent 
control. The costs and benefits of rent control are a hotly disputed topic among econo-
mists. For instance, Metcalf (2018, p. 66) writes that “From the sample of economists 
that I have known, it appears that opposition to rent control is something like an oath 
of office.” However, Arnot (1995, p. 99) states that there has been a wave of revision-
ism among economists on the subject of rent control and adds that “Perhaps a major-
ity, at least among the younger generation, would agree with the statement that a well-
designed rent control program can be beneficial.” Interestingly, both statements are in 
line with our results.

A well-designed rent control program in which policymakers set the target rent level 
equal to the steady-state rent level that would prevail in an unregulated rental market 
can help to stabilize the housing market, either by preventing the onset of oscillatory 
housing market dynamics or by decreasing its amplitude. Importantly, such a policy 
does not create any distortions: the steady-state values of the house price, the housing 
stock and the rent level correspond to their true fundamental values. However, if poli-
cymakers set the target rent level too low, e.g., because they are influenced by certain 
interest groups (Fallis 1988; Epple 1998), then the house price and the housing stock 
will decrease as well, an outcome that is usually associated with welfare losses (Glaeser 
and Luttmer 2003).

Let us conclude our paper by pointing out some possible avenues for future research. 
In this paper, we assume that policymakers seek to keep the rent level near its target 
level. However, policymakers may also regulate the rental market in different ways. For 
instance, policymakers may impose a strict upper boundary for the rent level. Tech-
nically speaking, a strict rent ceiling implies that the dynamics of our model would 
be due to a piecewise-defined map. Avrutin et al. (2019) provide tools to study such 
dynamical systems. Alternatively, policymakers may place a cap on the maximum 
allowable percentage change (or increase) in the rent level. Of course, it is important to 
study rent control programs with other expectations-driven housing markets, too. We 
hope that our paper stimulates more work in this research direction.
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Appendix A

Introducing the auxiliary variables X
t
= P

t−1 , Yt = X
t−1 and Z

t
= Y

t−1 allows us to 
express our model by the six-dimensional nonlinear map

where AR

t
− A

E

t
= �

{(
P
t−1 − Y

t−1 − � arctan

[
�

�

(
Y
t−1 − Z

t−1

)])2

−
(
P
t−1 − Y

t−1 − �
(
F − Y

t−1

))2}
− �.

By imposing the steady-state conditions on (A1), one easily obtains two 
(boundary) steady states, namely S1 =

(
P,P,P,P,

�

�
P, 1

)
 , where P =

((1−�)RG+��)�
(r+�)�+���

 , 

and S2 =
(
P,P,P,P,

�

�
P, 0

)
 , where P =

((1−�)RG+��+�F)�
(r+�+�)�+���

 . In order to check for their 
local asymptotic stability, we have to compute the Jacobian matrix, derive the 
characteristic polynomial, i.e.,  P(�) = det(J − �I) and determine whether the cor-
responding eigenvalues are less than one in modulus.

For the steady state S1 , we obtain

yielding

The third-degree polynomial P3(�) is the characteristic polynomial of the 
three-dimensional submatrix

(A1)T ∶

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P
t
=

P
t−1+W

E

t
� arctan

�
�

�
(P

t−1−Xt−1

�
]+(1−WE

t )�(F−Pt−1)+RG+�(�−�Ht
−RG)

1+r+�
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E
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t−1) exp [�(A
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,

(A2)

J(S1) =
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{
exp

[
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(
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}
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given by

where a1 =
−2+r(�−1)+�2+���−�

1+r+�
 , a2 =

1+2�−�(1+�)

1+r+�
 and a3 =

(�−1)�

1+r+�
.

From (A3) = 0 , we can conclude that two eigenvalues, say �1 and �2 , are equal 

to zero, while �3 = exp

[
�

(
−� − �

(
F − P

)2

�2

)]
 . Since −𝜎 − 𝜇

(
F − P

)2

𝜙2 < 0 

and 𝜀 > 0 , it is clear that 0 < 𝜆3 < 1 , implying that the stability properties of (A2) 
are fully determined by the third-degree characteristic polynomial (A5). We fol-
low Lines et al. (2020) and Gardini et al. (2020), who provide a simplified set of 
stability conditions for such a polynomial, to study the stability of steady state S1 . 
From (i) 1 + a1 + a2 + a3 > 0 , (ii) 1 − a1 + a2 − a3 > 0 and (iii) 
1 − a2 + a1a3 − a

2
3
> 0 , we obtain

and

whose violation is associated with a Fold, Flip and Neimark–Sacker bifurcation, 
respectively. As we have 0 < 𝛿 < 1 , 𝛽 > 0 , 𝛾 > 0 and 0 ≤ � ≤ 1 , condition (i) is 
always satisfied. Thus, steady state S1 loses its local asymptotic stability if inequality 
(ii) or (iii) is violated.

Computing the Jacobian matrix at the steady state S2 , i.e.

yields

where P3(�) is again the characteristic polynomial obtained from a submatrix, given 
by

(A5)P3(�) = �3 + a1�
2 + a2� + a3 = 0,

(i)𝛿(r + 𝛿) + 𝜏𝛽𝛾 > 0

(ii)𝜏𝛽𝛾 + 𝛿(r + 𝛿) < 4 + 2r + 2𝜒(2 − 𝛿)

(iii)𝜒 < 1 + r + 𝛿 − 𝜏
𝛽𝛾(1 − 𝛿)𝜒

r + 𝛿(2 − 𝜒(1 − 𝛿))
,

(A6)J(S2) =
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By setting (A7) equal to zero, it becomes clear that we again have two eigen-
values equal to zero, i.e., �1,2 = 0 , and one eigenvalue, say �3 , given by

�3 = exp

[
−�

(
−� − �

(
F − P

)2

�2

)]
 . However, it is always the case that 

𝜆3 > 1 , since −𝜀
(
−𝜎 − 𝜇

(
F − P

)2

𝜙2

)
> 0 , implying that steady state S2 is 

unstable.

Appendix B

If information costs are positive, all homebuyers rely on the extrapolative expectation 
rule at the model’s economically meaningful steady state. In this appendix, we briefly 
discuss the nongeneric, yet interesting case in which homebuyers have free access to 
the true fundamental house price, i.e., � = 0 and F = P . While it still follows that 
P =

((1−�)RG+��)�
(r+�)�+���

, H =
�

�
P and R = (r + �)P , W

E

 and W
R

 become indeterminate. To 
see this, note that neither the extrapolative expectation rule nor the regressive expec-
tation rule produces any prediction errors at this steady state and, consequently, their 
evolutionary fitness is identical and equal to zero. Moreover, whether the housing 
market settles on its fundamental steady state or displays endogenous cyclical dynam-
ics depends not only on the model’s parameters, but also on its initial conditions.

For instance, initial conditions may favor the use of the extrapolative expectation 
rule, keeping the dynamics of the housing market alive. Such a scenario is depicted 
in the left panels of Fig.  5, based on our standard parameter setting, except that 
� = 1.15 , � = 0 and � = 1 , showing the evolution of house prices, market shares 
of the extrapolative expectation rule and differences in the evolutionary fitness of 
the two expectation rules, respectively. Once the housing market starts to display 
cyclical dynamics, the extrapolative expectation rule tends to outperform the regres-
sive expectation rule, and the housing market continues its oscillatory behavior. In 
this respect, it seems worthwhile to recall that Case and Shiller (2003), Case et al. 
(2012) and Shiller (2015) report that homebuyers’ extrapolative expectations are in 
fact major drivers of actual house price dynamics, an observation that fits nicely 
with one of our main model predictions.

However, a different set of initial conditions may favor the use of the regressive 
expectation rule, pushing the house price toward its fundamental value, as visible in 
the right panels of Fig. 5. Here, we have an example in which the market share of 
the extrapolative expectation rule eventually settles on a value of about 30 percent, 
though we may observe similar scenarios where the market share of the extrapola-
tive expectation rule settles on a higher or a lower value. One other comment is 

(A8)B =

⎛
⎜⎜⎝

1−���−�

1+r+�
0 −

�(1−�)�

1+r+�

1 0 0

� 0 1 − �

⎞
⎟⎟⎠
.
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Fig. 5   Free access to the fundamental house price. The left panels show the evolution of house prices, 
market shares of the extrapolative expectation rule and differences in the evolutionary fitness of the two 
expectation rules, respectively. The right panels show the same for a different set of initial conditions. 
See Appendix B for more details on the underlying parameter setting
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in order. In the presence of exogenous shocks, our model may produce interesting 
attractor switching dynamics, e.g., periods in which the house price displays signifi-
cant cycles and periods in which the house price is close to its fundamental value. 
We believe that such model implications deserve greater attention in future work.

Appendix C

Rent control policy (9) regulates the rental market whenever the rent level deviates 
from the policymakers’ target rent level. However, policymakers may prefer a rent 
control policy that only becomes effective when the rent level is about to exceed a 
critical rent level. Such a rent control policy may be specified by

with RG > 0 and 0 ≤ � ≤ 1 as control parameters. Note that (C1) regulates the rental 
market in the same way as (9) does if the unregulated rent level exceeds policymak-
ers’ target rent level. Otherwise, it leaves the rental market unregulated.

Figure 6 illustrates some effects of rent control policy (C1). The top panel shows 
a bifurcation diagram of house prices versus homebuyers’ extrapolation parameter 
� , assuming our base parameter setting, except that RG = 10.1 and � = 0.2 . Note that 
Proposition 1 is still helpful to characterize our model. As long as the rent level stays 
below RG = 10.1 , the rental market is de facto unregulated (we can thus use � = 1 to 
evaluate Proposition 1’s predictions). Hence, the model’s fundamental steady state, 
implying, among other things, that P = 100 , H = 100 and R = 10 , becomes unstable 
due to a Neimark–Sacker bifurcation as parameter � exceeds �NS

crit
≈ 1.051 . At about 

� ≈ 1.08 , however, the amplitude of the rent cycles starts to exceed RG = 10.1 . 
From then on, the rental market is periodically regulated. Note furthermore that the 
fluctuations of the rent level become asymmetric. In particular, rent control policy 
(C1) manages to prevent the emergence of relatively high rent levels and occasion-
ally produces relatively low rent levels, an outcome that may be in the interest of 
policymakers. The bifurcation diagram depicted in the bottom panel rests on RG = 9

.95, implying that P = 99.66 , H = 99.66 and R = 9.66 . Since the rental market is 
always regulated at this steady state, we can again apply Proposition 1 and com-
pute the occurrence of a Neimark–Sacker bifurcation at �NS

crit
≈ 1.089 . Note that for 

𝜒 > 1.11 , there are periods where the rental market is not regulated because the rent 
level falls below RG = 9.95. The central panel of Fig. 6, based on RG = 10 , shows 
an intermediate scenario. We numerically observe that the housing market starts to 
display endogenous dynamics as parameter � exceeds �NS

crit
≈ 1.07 and find that rent 

control policy (C1) again helps to limit the rent level.

(C1)R
t
=

{
(1 − 𝜏)RG + 𝜏

(
𝛼 − 𝛽H

t

)
if RG < 𝛼 − 𝛽H

t

𝛼 − 𝛽H
t

otherwise
,
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