BAMBERGER BEITRAGE
ZUR WIRTSCHAFTSINFORMATIK UND ANGEWANDTEN INFORMATIK
ISSN 0937-3349

Nr. 90

Betsy - A BPEL Engine Test System

Simon Harrer, Jorg Lenhard

July 2012

FAKULTAT WIRTSCHAFTSINFORMATIK UND ANGEWANDTE INFORMATIK

OTTO-FRIEDRICH-UNIVERSITAT BAMBERG

Distributed Systems Group

Otto-Friedrich Universitat Bamberg
Feldkirchenstr. 21, 96052 Bamberg, GERMANY

Prof. Dr. rer. nat. Guido Wirtz

http://www.uni-bamberg.de/pi/

Due to hardware developments, strong application needs and the overwhelming influence of
the net in almost all areas, distributed systems have become one of the most important topics
for nowadays software industry. Owing to their ever increasing importance for everyday busi-
ness, distributed systems have high requirements with respect to dependability, robustness and
performance. Unfortunately, distribution adds its share to the problems of developing complex
software systems. Heterogeneity in both, hardware and software, permanent changes, concur-
rency, distribution of components and the need for inter-operability between different systems
complicate matters. Moreover, new technical aspects like resource management, load balancing
and guaranteeing consistent operation in the presence of partial failures and deadlocks put an
additional burden onto the developer.

The long-term common goal of our research efforts is the development, implementation and
evaluation of methods helpful for the realization of robust and easy-to-use software for complex
systems in general while putting a focus on the problems and issues regarding distributed systems
on all levels. Our current research activities are focussed on different aspects centered around
that theme:

e Reliable and inter-operable Service-oriented Architectures: Development of design me-
thods, languages, tools and middle-ware to ease the development of SOAs with an em-
phasis on provable correct systems that allow for early design-evaluation due to rigorous
development methods. Additionally, we work on approaches and standards to provide
truly inter-operable platforms for SOAs.

e Implementation of Business Processes and Business-to-Business-Integration (B2Bi): Star-
ting from requirements for successful B2Bi development processes, languages and systems,
we investigate the practicability and inter-operability of different approaches and plat-
forms for the design and implementation of business processes with a focus on combining
processes from different business partners.

o Quality-of-Service (QoS) Aspects for SOA and B2Bi: QoS aspects, especially reliability
and security, are indispensable when putting distributed systems into practical use. We
work on methods that allow for a seamless observance of QoS aspects during the entire de-
velopment process from high-level business processes down to implementation platforms.

o Agent and Multi-Agent (MAS) Technology: Development of new approaches to use Multi-
Agent-Systems for designing, organizing and optimizing complex systems ranging from
service management and SOA to electronic markets and virtual enterprises.

o Visual Programming- and Design-Languages: The goal of this long-term effort is the uti-
lization of visual metaphors and languages as well as visualization techniques to make
design- and programming languages more understandable and, hence, more easy-to-use.

More information about our work, i.e., projects, papers and software, is available at our home-
page (see above). If you have any questions or suggestions regarding this report or our work in
general, don’t hesitate to contact me at guido.wirtz@uni-bamberg.de

Guido Wirtz
Bamberg, January 2010

BPEL
Engine
Test
SYstem

Betsy - A BPEL Engine Test System

Simon Harrer, Jorg Lenhard
Lehrstuhl fiir Praktische Informatik, Fakultdt WIAI

https://github.com/uniba-dsg/betsy

Abstract More than five years have passed since the final release of the long-desired OASIS
standard of a process language for web service orchestration, the Web Services Business Process
FEzecution Language (BPEL). The aim of this standard is to establish a universally accepted
orchestration language that forms a core part of current service-oriented architectures and,
because of standardisation, avoids vendor lock-in. High expectations, in academia and practice
alike, have been set on it. By now, several fully conformant and highly scalable engines should
have arrived in the market. The perception of many however, is that standard conformance in
current engines is far from given. It is our aim to shed light on this situation. In this study, we
present the tool betsy, a BPEL Engine Test System that allows for a fully-automatic assessment
of the standard conformance of a given BPEL engine. We use it to examine the five most
important open source BPEL engines available today. Betsy comes with a large set of engine-
independent conformance test cases for assessing BPEL standard conformance. This enables us
to give a view of the state of the art in BPEL support.

Keywords Service-oriented Architecture, BPEL, Engine, Open Source, Conformance Testing

https://github.com/uniba-dsg/betsy

Contents

1 Purpose and Context

2 Open Source BPEL Engines under Test

3 System Architecture

4 Structure and Execution of Betsy

4.1 Program Architecture
4.2 Data Structures for Test Case Configuration
4.3 Test Generation and Execution
4.3.1 Preparation
4.3.2 Generation
4.3.3 Engine Installation and Startup
4.3.4 Deployment and Execution,
4.3.5 Shutdown
4.3.6 Reporting
4.4 Download and Installation of the Software

5 Test Cases
5.1 Test Case Definition
5.1.1 Structuring and Scope Lo L
5.1.2 Test Interface and Example00
5.2 Test Case Configuration
5.3 Restrictions
6 Results
6.1 ODE Results

6.2 Bpel-g Results

10
12
13
13
14
15
15
16

16

18
18
18
20
24

26

IT

7

6.3 OpenESB Results
6.4 Orchestra Results

6.5 Petals ESB Results

Summary

Bibliography

A

Compact Result Tables
A.1 basic-activities L
A2 Scopes ...

A3 structured-activities L

Test Descriptions and Results

Elements Excluded from the Test Descriptions

List of previous University of Bamberg reports

35

36

40
40
42
43

45

91

92

I1I

List of Figures

1 General Structure of Betsyo 7
2 Structure of the groovy Package oL 9
3 Data Structures for Defining a Test Configuration. 10
4 Test Execution Process 13

5 Structure of the Tests Package 19

vV

List of Tables

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

General Engine Properties oo 4
Schema of a Test Description 27
Overall Test Results o 35
Assign-Copy-DoXslTransform Test 45
Assign-Copy-DoXslTransform-InvalidSourceFault Test 45
Assign-Copy-DoXslTransform-SubLanguageExecutionFault Test 45
Assign-Copy-DoXslTransform-XsltStylesheetNotFound Test 46
Assign-Copy-GetVariableProperty Test 46
Assign-Copy-IgnoreMissingFromData Test 46
Assign-Copy-KeepSrcElementName Test 46
Assign-Copy-Query Test 47
Assign-Empty Test 47
Assign-Expression-From Test o oo 47
Assign-Expression-To Test 47
Assign-Literal Test 48
Assign-PartnerLink Test o 48
Assign-PartnerLink-UnsupportedReference Test 48
Assign-Property Testo 48
Assign-SelectionFailure Test oL 49
Assign-Validate Test 49
Assign-VariablesUnchangedInspiteOfFault Test 49
Empty Test o 50
Exit Test o o 50
ExtensionActivity-MustUnderstand Test 50

ExtensionActivity-NoMustUnderstand Test o1

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20
ol
52
53
54
95
26

o7

Invoke-Async Test 51
Invoke-Catch Test 51
Invoke-CatchAll Test 51
Invoke-CompensationHandler Test 52
Invoke-Correlation-InitAsync Test 52
Invoke-Correlation-InitSync Testo 52
Invoke-Correlation-Pattern-InitAsync Test 53
Invoke-Correlation-Pattern-InitSync Test 53
Invoke-Empty Test 53
Invoke-FromParts Test 54
Invoke-Sync Test 54
Invoke-Sync-Fault Test 54
Invoke-ToParts Test 54
Receive Test o 55
Receive-AmbiguousReceiveFault Test 56
Receive-ConflictingReceiveFault Test, 56
Receive-Correlation-InitAsync Test 57
Receive-Correlation-InitSync Test oL 57
ReceiveReply Test o 57
ReceiveReply-ConflictingRequestFault Test 58
ReceiveReply-Correlation-InitAsync Test 58
ReceiveReply-Correlation-InitSync Test 58
ReceiveReply-CorrelationViolation-Join Test 59
ReceiveReply-CorrelationViolation-No Test 59
ReceiveReply-CorrelationViolation-Yes Test 59
ReceiveReply-Fault Test 60

ReceiveReply-FromParts Test 60

VI

o8
29
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83

84

ReceiveReply-MessageExchanges Test 60
ReceiveReply-ToParts Test 60
Rethrow Test o 61
Rethrow-FaultData Test 61
Rethrow-FaultDataUnmodified Test 61
Throw Test o 62
Throw-CustomFault Test 62
Throw-CustomFaultInWsdl Test 63
Throw-FaultData Test 63
Throw-WithoutNamespace Test 63
Validate Test 63
Validate-InvalidVariables Test 64
Variables-DefaultInitialization Test 64
Variables-Uninitialized VariableFault-Invoke Test 64
Variables-Uninitialized VariableFault-Reply Test 64
Wait-For Test o 65
Wait-For-InvalidExpressionValue Test 65
Wait-Until Test o 65
MissingReply Test 65
MissingRequest Test Lo 66
Scope-Compensate Test 66
Scope-CompensateScope Test 66
Scope-ComplexCompensation Test 67
Scope-CorrelationSets-InitAsync Test 68
Scope-CorrelationSets-InitSync Test 68
Scope-EventHandlers-InitAsync Test 69

Scope-EventHandlers-InitSync Test L. 69

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111

VII

Scope-EventHandlers-OnAlarm-For Test 69
Scope-EventHandlers-OnAlarm-RepeatEvery Test 70
Scope-EventHandlers-OnAlarm-RepeatEvery-For Test 70
Scope-EventHandlers-OnAlarm-RepeatEvery-Until Test 70
Scope-EventHandlers-OnAlarm-Until Test 71
Scope-EventHandlers-Parts Test 71
Scope-ExitOnStandardFault Test 71
Scope-ExitOnStandardFault-JoinFailure Test 72
Scope-FaultHandlers Test 72
Scope-FaultHandlers-CatchAll Test, 72
Scope-FaultHandlers-CatchOrder Test 73
Scope-FaultHandlers-FaultElement Test 73
Scope-FaultHandlers-FaultMessageType Test 73
Scope-FaultHandlers-VariableData Test, 74
Scope-Isolated Test 75
Scope-MessageExchanges Test 75
Scope-PartnerLinks Test 76
Scope-RepeatableConstructCompensation Test 76
Scope-RepeatedCompensation Test 76
Scope-TerminationHandlers Test 7
Scope-TerminationHandlers-FaultNotPropagating Test 7
Scope-Variables Test 7
Scope-Variables-Overwriting Test 78
Flow Test 78
Flow-BoundaryLinks Test 78
Flow-GraphExample Test 79

Flow-Links Test« . . 79

VIII

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138

Flow-Links-JoinCondition Test, 80
Flow-Links-JoinFailure Test 80
Flow-Links-ReceiveCreatingInstances Test 80
Flow-Links-SuppressJoinFailure Test 81
Flow-Links-TransitionCondition Test 81
Flow-ReceiveCreatinglnstances Test 82
ForEach Test 82
ForEach-CompletionCondition Test, 83
ForEach-CompletionCondition-NegativeBranches Test 83
ForEach-CompletionCondition-Parallel Test 83
ForEach-CompletionCondition-SuccessfulBranchesOnly Test 84
ForEach-CompletionConditionFailure Test 84
ForEach-DuplicateCounterVariable Test 84
ForEach-NegativeStartCounter Test 85
ForEach-NegativeStopCounter Test 85
ForEach-Parallel Test 85
ForEach-TooLargeStartCounter Test 85
If Test . . . o o o 86
I[f-Else Test 86
If-Elself Test o 86
[f-Elself-Else Test o 87
[f-InvalidExpressionValue Test 87
Pick-Correlations-InitAsync Test L. 87
Pick-Correlations-InitSync Test 88
Pick-Createlnstance Test 88
Pick-OnAlarm-For Test 89
Pick-OnAlarm-Until Test 89

139
140
141

142

RepeatUntil Test o o

RepeatUntilEquality Test

Sequence Test

While Test

IX

X

List of Listings

1 Methods of an Engineo oo 10
2 Optional Engine Methods o 11
3 Test Case WSDL Interface 20
4 Test Case for the sequence Activity 23

5 Test Case Configuration Examples 25

List of Acronyms

BPEL
CLI
DSL
ESB
EPR
HTML
HTTP
JVM
SOA
SOAP
URI
URL
WSDL
war
WSA
XML
XSL
XSD
XPath

Web Services Business Process Execution Language
Command Line Interface

Domain Specific Language

Enterprise Service Bus

Endpoint Reference

Hypertext Markup Language

Hypertext Transfer Protocol

Java Virtual Machine

Service-Oriented Architecture

formerly known as Simple Object Access Protocol
Universal Resource Identifier

Uniform Resource Locator

Web Services Description Language

web archive

WS-Adressing

eXtensible Markup Language

eXtensible Stylesheet Language

XML Schema Definition

XML Path Language

1 Purpose and Context

The BPEL specification [28] defines a language that can be used to build stateful Web Services
that take part in long-running interactions which are typical in today’s enterprise domain. As
its name suggests, it is part of the larger Web Services architecture and relies strongly on
other Web Services specifications, primarily the Web Services Description Language (WSDL)
[40] in revision 1.1 and SOAP 1.1 [39], but it is also designed to be compatible with WS-*!
specifications. Its main purpose being the construction of composite services from basic ones,
BPEL is seen as a core part of Web Services-based Service-Oriented Architectures (SOAs) [30].

The advent of BPEL has been embraced by several scientific communities world-wide and many
approaches for solving different problems in the area of distributed systems base on the standard.
Such approaches implicitly assume that fully conformant engines are available one day. One
typical subfield where BPEL is of relevance is the field of choreography modeling and execution
that goes hand in hand with orchestration languages®?. Roughly speaking, a choreography
specifies a communication protocol between different distributed parties from a global point
of view. Approaches for executing these communication protocols mostly involve a translation
of the global protocol into several local models (top-down) or the construction of the global
protocol from preexisting local models (bottom-up). For the implementation of the latter, BPEL
is a natural candidate. Some approaches in this area, without claiming to be complete, are
[7,8,16,18,29,32,45]. Another area where BPEL is closely scrutinized is that of process language
suitability and expressiveness. Here, existing languages are assessed for their suitability for a
certain domain based on their expressiveness, which is largely determined by the constructs
available in the languages. Examples of studies in this area are [1,2,9,10,23,36|. Finally,
adapter synthesis is a field that concerns the generation of services to fix incompatibilities
between stateful services whose communication protocols do not match [35]. Again, existing
tool-chains [24,25] assume that the different services are built in BPEL.

All these approaches benefit from the fact that BPEL is an open standard. It is free for anyone
to use and, given multiple functioning and conformant engines implementing it are in place, it is
a powerful tool to avoid vendor lock-in. If this premise is not fulfilled, the previous approaches
release their full potential only in theory. Still, their practical usage would be desirable.

Here, we investigate the market of open source BPEL engines® and determine the degree of
support for the BPEL specification that is in place today. To reach this aim, we have im-
plemented the tool betsy. Betsy comprises a conformance testing suite that allows for the
automatic assessment of the standard conformance of BPEL engines. This includes a large
corpus of conformance tests that define standard-conformant behaviour, and a software system
that can instrument these tests and execute them automatically for a given engine. Apart from
providing correct results in a performant and readily understandable manner, the aim of this
tool is to be easily extensible to include (i) an increased set of test cases, to obtain even more

I'WS-* comprises a set of different standards for orthogonal aspects of service-oriented architectures. Notable
standards are WS-Addressing [44] or WS-Security [27]. For more information on the Web Services architecture,
please refer to [41].

2[31] gives an introductionary overview of this area.

3We focus on open source engines, because they are generally more important to scientists. Nonetheless, the
analysis of proprietary engines is important to practicioners and planned as future work.

2 1 PURPOSE AND CONTEXT

significant results, and (ii) further engines, to get a more comprehensive picture of the current
situation.

The testing of BPEL processes has so far attracted some interest in the research community*.
Current approaches concentrate on three areas:

1. Unit testing of executable BPEL processes
2. Veritying the conformance of BPEL processes to a certain specification or formalism
3. Performance testing of BPEL processes or engines

The next paragraphs briefly discuss each of these areas and outline the similiarities and dif-
ferences betsy shares with prominent approaches in each area. Basically, betsy builds on unit
testing approaches and shares the aspect of testbed generation with performance testing ap-
proaches. It differs from conformance testing approaches in the system under test, being the
middleware in the case of betsy and concrete process models in the case of other approaches.
To the best of our knowledge, no other tool with the focus of the conformance testing of BPEL
middleware can be found yet.

The area of unit testing BPEL processes is certainly the one that received the most interest,
but even here more work is called for [46]. In this area, the BPELUnit® project [22] received the
most wide-spread acceptance. BPELUnit is a member of the XUnit family, a set of unit testing
frameworks where each framework targets the language X [15]. It allows for the construction
of unit and integration tests for BPEL processes that run on specific engines. The aim of
BPELUnit, and related unit testing approaches for BPEL, is to test and verify the correctness
of specific BPEL processes. Betsy on the other hand, is aimed at the testing of the conformance
of BPEL engines; that is, the systems under test are different. For the unit testing approaches
it is a business application and for betsy it is the middleware infrastructure. Betsy is similar to
BPELUnit in the manner that it allows for the automatic deployment, execution and verification
of BPEL processes for specific engines. In fact, betsy internally uses a unit testing framework,
soapUI®, to automate the test execution and reporting, and builds its conformance testing
workflow on top of that. We decided to use this framework instead of BPELUnit, because it
has reached a more mature state and the set of engines we aimed to observe is intrinsically
different to the set supported by BPELUnit. Nevertheless, betsy could be adapted to build on
BPELUnit in the future which would offer the benefit of a higher richness of detail in the test
configuration.

Conformance testing or conformance verification of BPEL is generally not understood as the
testing of the conformance of a BPEL engine to the BPEL specification. Instead, the terms
refer to the verification of the behavioural properties of a concrete BPEL process. For instance,
it is verified that a concrete BPEL process behaves as specified by some abstract process model.
Fields, such as business process modeling or choreography modeling (cf. above), have devel-
oped an extensive set of formalisms for the modeling of processes to which implementations,

4A comprehensive overview of academic approaches to web service testing is given in [5]. A subset of these
approaches applies to BPEL and is discussed in the following.

5More details can be found at the project homepage: http://bpelunit.github.com/introduction/.

6S0apUl is a unit testing framework not specifically attached to BPEL, but to Web Services in general. It
will be discussed more closely in the following sections.

http://bpelunit.github.com/introduction/

often written in BPEL, have to conform. Alongside comes a large set of conformance notions
that define different levels of conformance among these models”. Here, we do not focus on
approaches for verifying behavioural conformance of concrete process models, but instead on
implementation conformance of the middleware to the standard specification in the sense of
[26, pp. 203-208],[20]. That is, a conformant implementation of the BPEL standard is an
implementation that satisfies both, static and dynamic, conformance requirements. Such re-
quirements are defined in the specification using the notational conventions [28, pp. 9/10] which
follow the guidelines from [19].

The third area is performance testing of BPEL engines. To the best of our knowledge, this area
has received only little attention and not many practical evaluations and case studies can be
found. Nevertheless, perfomance is a leading factor when deciding about the usage of BPEL
in mission-critical applications. The main approaches in this area are SOABench® [3] and
GENESIS2? [21]. Both, SOABench and GENESIS? are testbed environments that can be used
to generate testbeds for complex service-oriented systems. Whereas GENESIS2 is directed at
service-oriented systems in general, SOABench is specifically directed at the testing and analysis
of the performance and scalability characteristics of BPEL engines. Consequently, in terms of
the underlying domain models, betsy and SOABench have a larger intersection than betsy and
GENESIS2. Both, SOABench and betsy treat the BPEL engines under test as black boxes
and describe the test setup in an engine-independent domain model. Each tool uses its domain
model to automatically generate and execute test cases and provides a plugin mechanism to
extend the execution environment with new engines. However, the domain model of SOABench
is more complex than that of betsy and includes the modeling of clients, physical machines and
exchangable atomic services. Although this domain model is more complex to build, it also
provides a more fine-grained control of the testing environment. This is required to enable
SOABench to gather and compute performance metrics. As betsy is directed at conformance
testing, it has no such requirements. Finally, whereas SOABench comes with four BPEL process
definitions that are aimed at testing the performance and scalability of an engine, betsy comes
with a set of almost 140 processes that have the aim to assess the standard conformance of an
engine. Moreover, betsy natively supports five engines instead of three.

This report serves as an architectural white paper to the structure and functioning of betsy.
It provides extensive results for five BPEL engines that serve as a demonstration of betsy’s
capabilities. The next section examines the engines under test. After that, we describe the
architecture of the testing tool and the test cases we use to assess standard conformance.
Finally, we give a detailed view of the results and discuss specialities of and implications for
each of the engines.

TA subset of these models, which is not intended to be exhaustive, is [4,12,13,33,34].

8The project homepage can be found at http://code.google.com/p/soabench/.

9The project homepage is located at http://www.infosys.tuwien.ac.at/prototyp/Genesis/Genesis_
index.html. Unfortunately as of July 2012, the sources for GENESIS2 are not provided, so it is not possible
to build upon this tool.

http://code.google.com/p/soabench/
http://www.infosys.tuwien.ac.at/prototyp/Genesis/Genesis_index.html
http://www.infosys.tuwien.ac.at/prototyp/Genesis/Genesis_index.html

4 2 OPEN SOURCE BPEL ENGINES UNDER TEST

2 Open Source BPEL Engines under Test

In the following, we provide a short description of the structure, architecture and setting of
each of the engines under test, being Apache ODE, bpel-g, the OpenESB BPEL Service Engine,
Orchestra and Petals ESB. All these engines are freely available, offer support for BPEL 2.0,
and are still under active development today. Some of the engines claim to support both,
BPEL 2.0 and its predecessor BPEL 1.1. As BPEL 2.0 is intended to replace BPEL 1.1, we
focus solemly on BPEL 2.0 here. Interestingly, all engines are developed in Java.

Apache ODE Bpel-g OpenESB Orchestra Petals BPEL SE
Version 1.3.5 5.3-snapshot 2.2 4.9 1.1.0
License Apache GPL CDDL LGPL LGPL 2.1
Release Date Feburary 2011 April 2012 December 2009 | January 2012 February 2012
Programming Java Java Java Java Java
Language
Deployable WAR X X (0] X (@)
Download Size 35.3 MB 31.9 MB 195 MB 125 MB 136 MB
Container Tomcat 7.0.26 | Tomcat 7.0.26 Glassfish v2 Tomcat 7.0.26 | Petals ESB 4.0
Deployment FS, WS, WI FS, WS CLI, WI CLI, WS FS, WS
Deployment ODE ODE or BPR JBI - JBI
Descriptor Format
Amount of Deploy- 1 1 3 0 3
ment Descriptors

Table 1: General Engine Properties

Table 1 outlines several general properties about the engines under test. Most engines are
available as a web archive (war) and can be deployed on a servlet container, for example Apache
Tomcat!®. Processes can be deployed to the engines using different mechanisms, outlined by
the Deployment row. The different deployment options bear the following meaning:

FS: File System; The engine supports hot deployment which means that processes are de-
ployable by copying a deployment archive to a specific directory in the file system of the
server.

WS: Web Service; Once started, the engine offers a web service at a predefined endpoint to
which deployment archives can be sent for deployment.

WI: Web Interface; Once started, the engine offers a web interface that can be accessed
through a web browser. This interface has the option to select and upload a deployment
archive.

Command Line Interface (CLI): Command Line Interface; The engine comes with tooling that
can be invoked via the command line. This tooling offers the option to deploy a deploy-
ment archive.

There are several different formats, supported by varying engines, for the deployment descriptors
that are required in the deployment archives. The Deployment Descriptor Format row outlines
the most common formats we observered:

10The project homepage of Tomcat can be found at http://tomcat.apache.org/.

http://tomcat.apache.org/

ODE: The Apache ODE project has developed a custom deployment descriptor format!! that
subsequently also gained support by other engines.

BPR: This is a custom format that was used by ActiveBPEL and has gained wider acceptance
as it is used in ActiveVOS as well as bpel-g.

JBI: JBI 1.0 is a format based on JSR-208'? to connect services which are deployed on service
engines with endpoints through bindings via binding components. In our cases, the BPEL
processes are deployed onto a BPEL service engine and connected to SOAP endpoints via
a SOAP binding component using HT'TP. This specification also received wider support
by different engines and enterprise service buses (ESBs).

The following paragraphs briefly describe the origin and nature of each of the engines. The
details and sources can be found at the respective project homepages, to which links are pro-
vided.

Apache ODE

As of today, Apache ODE is the most well-known and most widely used Open source BPEL
engine available. It is maintained by the Apache Foundation'® and supported among others
by Intalio and JBoss. The engine is implemented in Java and relies on Jacob!4, a concurrency
framework based on the actor model [17]. The most recent stable release at the time of writing,
and the one used in this work, is ODE 1.3.5.

Bpel-g

The bpel-g engine is a derivate of the former ActiveBPEL by Active Endpoints!®. Whilst
ActiveBPEL is no longer available, bpel-g is still under development and maintained as a
Google Code project'®. The engine comprises the functionality provided by ActiveBPEL, but
is extended to support and integrate with software libraries, such as Spring!” or Apache Camel*®.
This analysis uses the 5.3 snapshot of bpel-g, being the most recent version available at the time.
This is a beta release, and the stable release building on it may include additional features.

OpenESB

The OpenESB is an open Enterprise Service Bus that includes a BPEL engine!?. It is written in
Java and preceding its acquisition by Oracle, it was maintained by Sun. Today, its development
is driven by LogiCoy? and Pymma Consulting?!. OpenESB is commonly collocated with the

1See http://ode.apache.org/creating-a-process.html#UserGuide-DeploymentDescriptor for a de-
scription of this format.

12For a documentation of the format, see http://jcp.org/aboutJava/communityprocess/final/jsr208/
index.html.

13The project page is available at http://ode.apache.org/.

4More on Jacob can be found at http://ode.apache.org/jacob.html

15The company homepage is located at http://www.activeendpoints.com/.

16The project can be found at http://code.google.com/p/bpel-g/.

17See http://www.springsource.org/ for details.

18See http://camel.apache.org/ for details.

19For simplicity, by OpenESB we refer to its BPEL engine in this report.

20The company homepage can be found at http://www.logicoy.com/.

2IThe company homepage is available at http://www.pymma.com/.

http://ode.apache.org/creating-a-process.html#UserGuide-DeploymentDescriptor
http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html
http://ode.apache.org/
http://ode.apache.org/jacob.html
http://www.activeendpoints.com/
http://code.google.com/p/bpel-g/
http://www.springsource.org/
http://camel.apache.org/
http://www.logicoy.com/
http://www.pymma.com/

6 2 OPEN SOURCE BPEL ENGINES UNDER TEST

Glassfish application server to form a full enterprise integration solution. The project homepage
is http://openesb-dev.org/ and the version used here is 2.2.

Orchestra

Orchestra is an open source BPEL engine released under LGPL and available at http://
orchestra.ow2.org/. It is written in Java and developed by the OW2 consortium?? and Bull.
We analyze Orchestra 4.9, being the most recent stable revision at the time of writing. Orchestra
executes BPEL on a generic process virtual machine. As listed in Table 1, Orchestra does not
require a separate deployment package for deploying to an engine. Instead, it is sufficient to
provide the BPEL and WSDL files directly. Although not being required, it is still possible to
use a packaged format [6, pp. 21/22].

Petals ESB

Petals ESB is an open source ESB that includes a BPEL service engine?® and a SOAP binding
component. It is developed by the OW2 consortium, just as Orchestra, and is available at http:
//petals.ow2.org/. Instead of reusing Orchestra as a BPEL engine, Petals ESB provides a
separate engine, namely EasyBPEL?4. In the tests, we use EasyBPEL 4.0. Just like the other
engines, EasyBPEL is written in Java.

22The consortium homepage is http://ow2.org/.

23For simplicity, by Petals ESB we refer to its BPEL engine in this report.

2Tts documentation can be found at http://research.petalslink.org/display/easybpel/EasyBPEL+
Overview.

http://openesb-dev.org/
http://orchestra.ow2.org/
http://orchestra.ow2.org/
http://petals.ow2.org/
http://petals.ow2.org/
http://ow2.org/
http://research.petalslink.org/display/easybpel/EasyBPEL+Overview
http://research.petalslink.org/display/easybpel/EasyBPEL+Overview

3 System Architecture

Figure 1 outlines the overall structure of the testing tool. At root level, it contains build
scripts and seperates into the packages for the build tool and the program code. The build
tool we use is Gradle®®. Gradle essentially is a Domain Specific Language (DSL) based on the
scripting language Groovy?% that combines the build systems Ant and Maven®” with an object
model tailored to the build process. The program and testing code is contained in the package

] src/main

Contains BPEL, WSDL, XSD and XSL B
tests @ artifacts (test case definition) and the
configuration of the test cases

— betsy —
Comprises the mock
implementation of the Contains the mai
java D— Web Service needed for groovy [0} program code for
testing BPEL invokes the test tool
_| Contains configuration files _| Contams the xelt scrnt
that are required by an . P
. that are required to
engine. Examples are tomcat .
. L - | build deployment
resources p— configuration files or specific xslt [} K .
. . . archives for each engine
installation scripts. Also XSD X
) from the artifacts of the
files for the relevant
tests package.

standards are located here.

1
Contains the buil
gradle D tool (gradle) and The root package
properties files contains build and
versioning files

Figure 1: General Structure of Betsy

src/main and is itself split into the following packages:

tests The tests package comprises all test cases and their configuration. The test cases them-
self consist of BPEL, WSDL, XML Schema Definition (XSD), and eXtensible Stylesheet
Language (XSL) files. Basically, the directory contains the resources betsy uses for gen-
erating the deployment archives for the engines under test, as well as for generating the
corresponding soapUI test cases. The detailed description of the contents of this package
is the purpose of section 5.

25For more detailed information, see http://www.gradle.org/.

26For more detailed information, see http://groovy.codehaus.org/

2"Both, Ant and Maven are Apache projects and their documentation is available at http://ant . apache.org/
and http://maven.apache.org/ respectively.

http://www.gradle.org/
http://groovy.codehaus.org/
http://ant.apache.org/
http://maven.apache.org/

3 SYSTEM ARCHITECTURE

groovy The groovy package contains most of the program code and forms the main body of

java

betsy. It is dependent on an installation of Ant and soapUI on the local system. SoapUI
is a mature unit testing tool for Web Services that is licensed under LGPL. It is available
at http://www.soapui.org/. We use it so send SOAP messages to the service endpoints,
to collect and analyze the replies, and to represent the outcome in a structured way. The
groovy package implements the test execution process, being the process for installing
the engines, generating the deployment archives and soapUI tests as well as executing the
tests. A detailed description of the functioning of this software is given in section 4.

The java package is required for the implementation of basic mock Web Services that are
needed to test BPEL invoke activities. The classes and service interface in this package
are generated using the wsimport®® tool. The implementation of the interfaces and a
publishing service is located in groovy/betsy/executables/ws.

resources The resources package contains additional files that are required by a specific en-

xslt

gine. This can be a custom logéj.properties configuration for more detailed logging,
as is the case for bpel-g and ODE. Other examples are custom installation scripts that
are required for OpenESB. Finally, the package contains the XSD files for all relevant
standards, such as BPEL, WSDL, and WS-Addressing.

Building the deployment archives involves the construction of deployment descriptors for
most engines. These descriptors are XML files that can be derived directly from the
BPEL and WSDL files for a given test case. A convenient way to construct these XML
files are XSL transformations. Such transformations are located within the xs1t package,
separated by engine. Additionally, due to the specifics of each engine, the WSDL or BPEL
files may need to be modified. As an example, WSDL files are not allowed to contain
operation elements which are not used in the corresponding BPEL process for bpel-g.
For this purpose, XSL transformations are used, too.

28The wsimport tool is part of the JDK and can be found within its bin folder.

http://www.soapui.org/

4 Structure and Execution of Betsy

The next section describes the architecture of the testing tool, followed by the structure of the
test cases and their runtime representation. In section 4.3, the workflow for executing a test
run is explained. In combination, these sections explain how to extend the tool with a new
engine. Finally, section 4.4 describes how to download, install and run betsy.

4.1 Program Architecture

As stated in the previous section, the groovy package contains the main program code. This
section clarifies the static structure and architecture of this package and provides hints on how
to extend the software for the testing of further engines or further test cases. Its core parts,
the data structures used to represent test cases and engines, and the classes that implement
the runtime behaviour of the program, are detailed here.

The groovy package is structured as depicted in Figure 2. The core of this package, which

\ betsy

Contains the | |
main program data executables
code _I | |
assertions soapui generator
engines util ws reporting

[I

Contains the classes that implement the

Contains Qata structures for program flow and build and execute tests
representing the test which are constructed as defined by the
configuration and engines data structures.

Figure 2: Structure of the groovy Package

is also the most relevant place when it comes to extending the software for another engine,
comprises the data and executables packages.

The classes of the data package are used to represent test cases, test assertions and engines
under test. Using a configuration of the instances of these classes, the executables can exe-
cute a corresponding test run and produce test reports. The sub-packages of the data package,
assertions and engines include the classes for representing test assertions and engines re-
spectively.

10 4 STRUCTURE AND EXECUTION OF BETSY

The classes of the executables package implement the workflow that is executed at runtime
and described in section 4.3. The packages soapui, util and ws contained in executables
provide classes with auxilliary functions. Soapui provides a wrapper that translates a test
configuration, as defined by the data structures in data, into a soapUI project configuration.
The package util consists of several helper classes, for example for measuring the execution
time of the steps of a test run. The classes in ws implement and publish mock Web Services
that are needed to test a BPEL invoke activity. The package reporting contains classes used
to build report files, such as csv files, from the outcome of a test run. Finally, the classes for
generating deployment archives can be found in the generation package.

4.2 Data Structures for Test Case Configuration

Figure 3 depicts the data structures that can be used to define a test configuration that can be
executed by betsy.

1 1.*% 1 1.* 1.%
TestSuite Engine Process TestCase
1
| |
OdeEngine BpelgEngine TestStep

X TestAssertion

WsdIOperatlon (XpathExpression,
(Sync / Async) SoapFault, Exit,

NotDeployable)

Figure 3: Data Structures for Defining a Test Configuration.

The starting point is a TestSuite. This is a top-level container that bundles multiple engines
which are to be tested in a single run of betsy. The Engine class is abstract and defines the
behaviour that must be implemented by a concrete engine, such as ODE or bpel-g to participate
in the testing workflow. There is one concrete class for each engine under test. If betsy is to
support a new engine, the Engine class must be extended and a new implementation for that
engine must be provided. The following behaviour must be implemented:

Listing 1: Methods of an Engine
1// Lifecycle methods for the engine itself

)
)

4void shutdown ()

2 void imnstall

PR

3 void startup

4.2 Data Structures for Test Case Configuration 11

6// lifecycle methods to deploy deployment archives on the engine

7 void deploy(process)

8

9// getters for identifying folder names and generating endpoint urls
10 String getName ()

11 String getDeploymentPrefix ()

12 String getDeploymentPostfix ()

An engine must provide the behaviour to install itself, which in most cases means coyping a war
to a designated place in the file system. The startup and shutdown methods normally map
to the execution of specific scripts shipped with the engine. Given the engine runs on tomcat,
these methods map to the execution of the tomcat startup and shutdown scripts.

Finally, an engine must be able to deploy a given process as well as provide getter methods
for the engine name and a deployment prefix (e.g. the hostname, port and url part at which
processes deployed on that engine can be reached) and postfix (e.g. name tokens that are to
be used by convention. For instance, the names of WSDL services need to end in Service).

Optionally, an Engine can override methods to hook into the execution process.

Listing 2: Optional Engine Methods

1// Lifecycle methods for the engine itself

2 void failIfRunning()

3

4// lifecycle methods to create deployment archives
5 void buildDeploymentDescriptors(process)

6 void transform(process)

7 void buildAdditionalArchives(process)

Most engines cannot be started if they already run and an attempt to do can disturb a currently
executing test run. The method failIfRunning is used to detect whether an engine is already
running and abort the whole test run if this is the case. This method is only called in the
preparation phase and ensures that the relevant engines for that test run are not active.

The buildDeploymentDescriptors and transform methods are used to construct deployable
artifacts from a set of engine-independent BPEL, WSDL and XSD files. The deployment de-
scriptor must adhere to the format supported by the engine?. In all cases, this is a specific
XML DSL and its concrete structure can be directly derived from the engine-independent files.
Some engines also require specific transformations of the engine-independent files to support
deployment which has to be implemented in the transform method. The buildAddition-
alArchives method is called after the basic package is created. This is needed by some engines
to build nested deployment archives.

Next, an engine is connected to a set of Processes. Each process references the files that are
required for that process, being at least a BPEL and a WSDL file, but possibly also additional
XSD or XSL files. Moreover, a process references several TestCases which define isolated tests
of that process.

29The supported deployment descriptor formats are listed in Table 1.

12 4 STRUCTURE AND EXECUTION OF BETSY

A test case consists of multiple SOAP messages sent to an endpoint for a concrete service,
each of which is defined in a TestStep. FEach test step has a single WsdlOperation which
can either be synchronous or asynchronous and a set of TestAssertions. Assertions are used
to evaluate the outcome of a test step and to determine whether an engine supports a given
feature. Given one assertion fails for a test step, the complete test case is marked as failure.
Following assertions, located in groovy/betsy/data/assertions, are available:

XpathTestAssertion This assertion can be used to test a synchronous invocation. It selects
a certain element in the response message and compares its content to a predefined value.
If they are unequal, the test case is marked as failure.

SoapFaultTestAssertion Also this assertion can be used to test a synchronous invocation.
It tests whether the response is a SOAP fault and optionally checks whether the response
contains a given string (case sensitive).

NotDeployableAssertion Some test cases describe processes that must be rejected according
to the BPEL standard. Generally, such cases should be detected by static analysis of the
BPEL processor of an engine and not be deployed. This assertion verifies that the engine
does not provide a WSDL at the expected location.

ExitAssertion The exit activity as well as the exitOnStandardFault attribute on the pro-
cess element can terminate an instance immediatly. The BPEL standard does not specify
the reaction of an engine if there are request-response operations which are still open at
this time. This assertion tests for multiple different acceptable reactions observed for the
engines, such as no response at all, a response with a HT'TP error code of 200 and no
response content, or a response containing “processTerminated”.

Additionally, a test step can define a timeout after it has been executed. This allows to de-
fine delays between test steps. Such delays proved to be necessary as some engine need the
time to correctly register correlation sets. Without the timeout, some tests for the correlation
mechanism would fail otherwise. Finally, a description can be set for a TestStep, to enable
meaningful error reporting if the step fails.

4.3 Test Generation and Execution

The workflow for generating and executing the test cases consists of several steps that are
executed as shown in Figure 4 on the next page. At the beginning of every test run, the
directory containing the deployment artifacts and reports of a previous test run are deleted.
Next comes the testing of each process for each engine. This requires several substeps and is
executed strictly sequential. This limitation ensures that the the execution of each test is not
influenced by the parallel execution of another test and thus remains reproducible.

The first phase of the test execution is the generation phase, during which the deployment
artifacts and soapUI test cases are generated. Next, the engine under test is installed and
started. As soon as the engine is running, the previously generated deployment artifacts are
deployed and the generated soapUI test cases can be run. Thereafter, the engine is stopped.

The aggregation of the reports, based on the outcome of the tests, takes place after all processes
have been tested for all engines.

4.3 Test Generation and Execution 13

All these phases are explained in detail in the following sections. The input to this sequence of
phases is formed by a list of engines and a list of processes. These are concrete instances of the
classes described in Figure 3. The two lists are wired up and the set of processes, along with
their test configuration, are executed for each of the engines.

per engine and per process

Prepare | | | Generate Generate Inst-all Sta-rt Deploy Execute St9p | || Generate
Folders BPEL Test Engine Engine BPEL Test Engine Reports

Figure 4: Test Execution Process

4.3.1 Preparation

The preparation phase is quite simple. It deletes the test folder of a previous run and recreates
it afterwards. Additionally, it ensures that no engine that is to be tested is currently running.
This is neccessary as engines cannot start if their ports are already in use.

4.3.2 Generation

The generation of the testing artifacts, being the deployable artifacts and the test projects,
comprises two subsequent steps. The classes PackageBuilder and TestBuilder are responsible
for the execution of these steps. The generation takes place for each process separately and
leverages the run configuration of that process, as outlined in Figure 3 on page 10.

The deployment packages are created from the BPEL, WSDL and XSL files located in the
tests directory. This generation involves the following steps:

Copy raw files: First, the raw files are copied into a specific directory for each engine
and each test case in the test output directory. Per default, this is /test/$Engine-
Name/$Process-Name/bpel.

Build deployment descriptor: Next the deployment descriptor is generated from the raw
files. The generation of this descriptor is governed by each engine and implemented in
XSL transformations. We use the ODE format for Apache ODE and bpel-g and the
JBI format for openESB and Petals ESB. The only exception is Orchestra, which works
without a deployment descriptor.

Apply transformations: Except for Orchestra, the combination of the raw files and the
deployment descriptor is not yet deployable on an engine, because the service address in
the raw file is a wildcard string and for execution it must be set according to an engine-
specific naming convention. Bpel-g also requires the elimination of operations in the
WSDL that are not matched by corresponding inbound message activities in the BPEL
process. A deployment package with such a combination of files would be rejected upon
deployment.

Package files: In all cases, the deployment package needs to be a single archive file. Most
engines require a simply structured archive with the transformed files in the root folder

14 4 STRUCTURE AND EXECUTION OF BETSY

of the archive. OpenESb and PetalsESB require a more complex structure with several
additional archives included in the deployment package.

The second part of the generation phase is the generation of the soapUI test projects. One soa-
pUI project is generated for each process. This project includes the execution of all test cases
as defined by the test configuration. TestSteps translate to soapUI Wsd1lTestRequests and
the Assertions are translated into XML Path Language (XPath) expressions, ContainAsser-
tions or Groovy scripts for scanning the response of a TestStep, given it exists. This task is
implemented in betsy.executables.soapui.SoapUiWrapper which encapsulates the soapUI
API and automatically generates the test as defined by the given process.

4.3.3 Engine Installation and Startup

Each engine is installed separately by invoking an Ant task of the build file, build.xml. This
file contains the following main targets.

Main targets:

all Install all BPEL engines
bpelg Install Bpel-g
ode Install Apache ODE

openesb Install OpenESB
orchestra Install Orchestra
petalsesb Install Petals ESB
Default target: all

The installation process of each engine works in the following steps:

Download required files: First, each engine is downloaded from the URL set in the build
script. Currently, we provide the distributions used for the test results in this report at
our department, but this may be subject to change. If another version of an engine is to
be tested, it is sufficient to replace the download URL with another mirror. If the file is
already present in the downloads folder, the download itself is skipped.

Delete previously installed engine: All engines are installed into the server folder lo-
cated in the root folder of the tool. Given an engine has already been installed into this
directory, it is deleted in this step. This is required to guarantee that a previous test run
does not influence the current run. In a previous run, a certain process instance might
have damaged the engine itself or its configuration. This can happen if an engine persists
runtime data and there are bugs in the persistence mechanism.

Extract downloaded files: In this step, the downloaded files are copied in a newly-created
and engine-specific folder in the server directory. Most engines come as archives, so they
are extracted here. Moreover, Tomcat is extracted for engines that run on it and engine
installation takes place by extracting the engine war file into Tomcat’s webapps folder.

4.3 Test Generation and Execution 15

Customize installation: The engine installations are customized to collect more log mes-
sages from the engines under test. The files located in src/main/resources/ENGINE_NAME
are copied to the corresponding destination for this reason.

For the details of the installation process of each engine, we refer to the Ant script.

Apache ODE, bpel-g, and Orchestra can be started by starting the Tomcat instance which the
respective engines were installed in. Petals ESB and OpenESB can be started via their CLI.

As the BPEL engines under test tend to have high memory requirements, it is necessary to
increase the amount of RAM allocated to the Java Virtual Machine (JVM) on which the engines
run, especially for the engines using Tomcat. For the engines for which these requirements apply,
an additional start script is provided which basically looks as follows:

SET "CATALINA_OPTS=-Xmx3048M -XX:MaxPermSize=2048m "
call normal tomcat start script

The first line sets the amount of memory used for this Tomcat JVM. The JVM can use up to
3 GB for elements that can be garbage-collected (e.g. instances of most classes), and up to 2
GB for elements that are never garbage-collected (e.g. classes or Strings). In the second line,
the Tomcat startup script which ships with Tomcat itself is called.

4.3.4 Deployment and Execution

All engines deploy their artifacts sequentially. Apache ODE, bpel-g and Petals ESB allow for
hot deployment. We use this deployment mechanism, as it is the fastest option. For Orchestra
and OpenESB, the fastest deployment mechanism works via the CLI.

Once deployment is finished for a process on a specific engine, the execution phase starts. At
first, two additional Web Services that conform to the WSDL definition used by the tests for
the BPEL invoke activity are published using TestPartnerServicePublisher. These Web
Services are implemented using javax.jws and run in the JVM of betsy itself. Next, the soapUI
project corresponding to the current process is executed using the SoapUiRunner which acts as
a wrapper for the soapUI class SoapUITestCaseRunner. SoapUI records all messages sent and
received, as well as the outcome of the evaluation of the assertions in report files for each test
case executed.

4.3.5 Shutdown

Once the test case has been executed, the corresponding engine is shut down. As each Engine
has to implement the shutdown method, each engine can have a different shutdown strategy.
For Apache ODE, bpel-g, and Orchestra, this is shutting down the Tomcat instance in which
the respective engine runs. The fastest option is to use the command taskkill to kill the
corresponding JVM. As each engine is installed again for each process, there is no problem in

16 4 STRUCTURE AND EXECUTION OF BETSY

just killing the JVM. For PetalsESB this strategy applies as well, whereas OpenESB is shut
down via an invocation of the CLI.

4.3.6 Reporting

After all test cases for all engines have been run, the reports are generated. The reports can
be found in the test/reports directory. They are aggregated for the overall test run, but are
also available in disaggregated form for each engine and process.

Report generation is implemented in the betsy.executables.reporting.Reporter class in
four steps. First, the JUnit reports provided from the execution of the soapUI tests are enriched.
The JUnit reports are merged with the text files containing detailed information about the
messages exchanged. That way, it is possible to drill down from JUnit test reports to the
corresponding message exchanges within the HTML reports generated in the next step. These
reports are generated using an ant script leveraging the junitreport task. Due to the test
package structure, the resulting report allows to drill down per engine and per test group.
Thereafter, the test results are stored in tests/reports/results.csv for further automatic
analysis. This file can be analyzed with any spreadsheet application. Lastly, LaTeX tables with
the results and test case descriptions are generated. These tables can be found in sections A
and B in the appendix.

4.4 Download and Installation of the Software

Betsy is available as an open source project on Github and can be checked out using git clone
git@github.com:uniba-dsg/betsy. Following requirements must be met to execute betsy:

Working Internet Connection: The engines and required files are downloaded on demand
during run-time. The following ports are used by the default configuration:

2000: Additional mock Web Services

8080: Orchestra

8080: Bpel-g

8080: Apache ODE

8084: Petals ESB

Various port in the range 4848 to 18181: Openksb

The fact that different engines can use the same ports is unproblematic. During a test
run, at most one engine is running to avoid side-effects, so there are no port conflicts
among the engines.

Windows 7: Betsy was developed in the Windows 7 operating system and has been verified
to run in it. The tool is linked to the Windows operating system family, because engine
startup and related tasks is implemented using batch scripts. Rewriting these scripts
for another operating system should enable betsy to run on that system given the other
requirements are met. A 64 bit system with at least 8 GB RAM is recommended.

4.4 Download and Installation of the Software 17

JDK 1.7.0.03 (64 bit) or higher: JAVA_HOME must point to the JDK directory and PATH
must include JAVA_HOME/bin.

Ant 1.8.3: ANT_HOME must point to the Ant directory and PATH must include ANT_HOME/bin.

SoapUI 4.5.0 (64 bit): SoapUI 4.5.0 must be installed to C:\Program Files\SmartBear\
soapUI-4.5.0. The soapUI libraries need to be available at compile time.

Given these requirements are met, the tool can be started by passing a set of engines and
processes to its core class, src/main/groovy/betsy.Betsy. Main classes for this task are
available in src/main/tests/configuration. Another option to automatically run all test
cases on all engines is to execute the command gradlew run in the root folder of the downloaded
project. Gradle automatically downloads all necessary dependencies (including itself) and no
further configuration is required.

18 5 TEST CASES

5 Test Cases

The test cases are an essential part of the software and consist of two main components. The
first one comprises the test case definitions, being raw standard-conformant BPEL, WSDL,
XSD, or XSL files. The second one is made up of the test case configuration, the definition
of message exchange sequences as well as inputs and expected outputs, and is implemented in
Groovy classes. The structure of the test case definitions is explained in section 5.1. The test
case configuration is discussed in the section thereafter.

5.1 Test Case Definition

The test case definitions are made up of BPEL, WSDL, XSD and XSL files that are required
to derive the deployment artifacts for a specific engine. These test files themselves are derived
from the relevant specifications [28,37-40, 42-44] and are constructed conforming strictly to
them, in an engine-independent manner. Each test case definition describes a specific feature
of the BPEL specification, in a relatively isolated fashion, including files from other standards
when needed.

5.1.1 Structuring and Scope

All engine-independent test files are located in the src/main/tests package. Figure 5 on the
facing page depicts the contents of this folder.

basic-activities This package contains the test cases for all activities that are declared as
basic activities in the BPEL specification; that is, those activities described in section 10
of the specification [28, pp. 84-97]: invoke, receive and reply, assign, throw, wait,
empty, exit, validate and rethrow. The cases cover different configurations of these
activities in relative isolation and test for good cases as well as edge conditions and
faults, verifying the correctness of the behaviour inspite of faults. Tests for the following
BPEL standard faults®® are included: xsltInvalidSource, xsltStylesheetNotFound,
subLanguageExecutionFault, invalidExpressionValue, invalidVariables, unsup-
portedReference, selectionFailure, correlationViolation, conflictingReceive,
ambiguousReceive, conflictingRequest and uninitializedVariable. Finally, the
package contains tests for the use of extensionActivities.

structured-activities This package contains the test cases for all structured activites defined
in section 11 of the specification [28, pp. 98-114]. These are sequence, if, while,
repeatUntil, pick, flow and forEach. Just like in the specification, although being
structured, scopes are treated seperately. Again, good cases, specific edge conditions and
problematic configurations are tested for, as well as faults typical for structured activities.
Such faults are joinFailure, invalidExpressionValue, invalidBranchCondition, and
completionConditionFailure.

30For a comprehensive list of BPEL standard faults, see [28, 192/193].

5.1 Test Case Definition 19

| tests
Package for test case language-features
definitions; WSDL files
required for all BPEL
processes
basic-activities scopes strus:t_u.red-
activities

[[[

BPEL files for assign, empty,

. . > BPEL files for scopes, event-, BPEL files for flow, forEach,
exit, extensionActivity, L e . .
. . fault-, and termination if, pick, repeatUntil,
invoke, receive, reply, throw, .
handlers sequence and while

rethrow, validate and wait

$\ I
configuration

Package for test case Definition of messagh
configuration; Main classes exchange sequences,
for executing betsy test case inputs and
expected outputs

processes o—

[1]

Functionality for B
validating the
correctness of a
configuration

util o

Figure 5: Structure of the Tests Package

scopes The scopes package contains all tests for attributes specific for scope activities and
related constructs, such as fault-, compensation-, termination-, and eventHandlers,
as defined in [28, pp. 115-147]. Practically all these contstructs can be used at process-
level scope and do not require the explicit use of the scope construct. The tests for
faultHandlers comprise tests for different configurations of the catch and the catchAll
constructs. The compensationHandler tests also include the activities compensate and
compensateScope, which are strictly speaking basic activities that can only be applied
in faultHandlers. The eventHandler tests examine the two types of eventHandlers,
onMessage and onAlarm. Also this package tests for several standard faults, in partic-
ular joinFailure, missingReply, and missingRequest. Finally, the package includes
tests for the scope-level definition and overwriting of several constructs that are typically
defined at process-level. These are variables, partnerLinks, correlationSets and
messageExchanges.

20 5 TEST CASES

There are no additional test packages for the aspects of sections 6 to 9 of the specification®!
[28, pp. 36-83]. As hinted in the preceding description, these aspects are tested for in the context
of activity tests. They are generally not (conformance-) testable in complete isolation and a
working process can hardly be built without leveraging several of these features. PartnerLinks
are a necessity for communicating with a process instance in the first place and variables and
data handling are needed to make sense of the process behaviour and verify its conformance
to the specification. CorrelationSets are not required in all cases, just in those that involve
multiple, especially asynchronous, message exchanges.

The tests of BPEL standard faults [28, pp. 192/193] are also distributed over the test packages
and included according to the best fit. The faults uninitializedPartnerRole and scopeIni-
tializationFailure are not tested for in this setup. The problem here is that the provocation
of these faults is basically engine-specific. For example, there is no standard way to construct a
process definition that forces an engine to throw a scopeInitializationFailure during pro-
cess execution. A variety of errors that could provoke this fault are typically detected during
static analysis and prohibit deployment, or produce other faults, such as invalidVariables.
Although it is possible to forbid the initialization of a partnerLink on process instatiation, an
engine is free to initialize it during its first use, thus completely avoiding the fault uninitial-
izedPartnerRole.

It is important to emphasize once more that our tests are conformance tests; that is, the
tests try to verify that constructs and combinations thereof that are defined by the BPEL
specification [28], are supported and behave as specified. We denote this as positive support
which is our main focus here. Except for some important edge cases, we do not test that certain
process definitions that must be rejected according to the specification are also rejected. This
behaviour describes negative support. Positive support of a vast part of a specification is the
prerequiste for a useable piece of software and negative support is not equally critical in this
context. The current state of the engines under test3? suggests that positive support is still far
from sufficient, rendering tests for correct negative support less important. Nevertheless, future
work will improve this situation. As we test for standard conformance, we do also exclude any
concrete extensions an engine may provide. A certain feature, such as the execution of XSL
transformations or the assignment of partnerLinks may be supported by an engine, but in a
fashion that does not conform to the specification. Although this increases the functionality of
an engine, it renders the process definitions for this engine hardly portable and at least partly
defeates the usage of open standards in the first place.

5.1.2 Test Interface and Example

To make the test case definitions instrumentable for betsy and to streamline their execution, all
process definitions follow a common schema. First, every test case shares the same interface;
that is, each process reuses the same WSDL definition as myRole partnerLink. This definition
can be found in listing 3.

31These sections cover partnerLinks, variables, data handling and message correlation.
32See section 6 for the details.

5.1 Test Case Definition

Listing 3: Test Case WSDL Interface

1 <?xml version="1.0" encoding="UTF-8"7>

2 <definitions name="TestInterface"

3

o

o N O

10
11

12

13
14
15

16

17

18

19
20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

targetNamespace="http://dsg.wiai.uniba.de/bpel-engine-
comparison/activities/wsdl/testinterface"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.o0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:plink="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop"
xmlns:tns="http://dsg.wiai.uniba.de/bpel-engine-
comparison/activities/wsdl/testinterface">

<plink:partnerLinkType name="TestInterfacePartnerLinkType">
<plink:role name="testInterfaceRole" portType="
tns:TestInterfacePortType"/>
</plink:partnerLinkType>

<vprop:property name="correlationId" type="xsd:int"/>
<vprop:propertyAlias messageType="tns:executeProcessSyncRequest" part="
inputPart" propertyName="tns:correlationId"/>

21

<vprop:propertyAlias messageType="tns:executeProcessSyncResponse" part="

outputPart" propertyName="tns:correlationId" />

<vprop:propertyAlias messageType="tns:executeProcessAsyncRequest" part="

inputPart" propertyName="tns:correlationId"/>

<types>
<xsd:schema targetNamespace="http://dsg.wiai.uniba.de/bpel-engine-

comparison/activities/wsdl/testinterface" xmlns:tns="http://dsg.

wiai.uniba.de/bpel-engine-
comparison/activities/wsdl/testinterface">
<xsd:element name="testElementSyncRequest" type="xsd:int"/>
<xsd:element name="testElementAsyncRequest" type="xsd:int"/>
<xsd:element name="testElementSyncResponse" type="xsd:int"/>
<xsd:element name="testElementSyncFault" type="xsd:int"/>
</xsd:schema>
</types>

<message name="executeProcessSyncRequest">

<part name="inputPart" element="tns:testElementSyncRequest"/>
</message>
<message name="executeProcessAsyncRequest">

<part name="inputPart" element="tns:testElementAsyncRequest"/>
</message>
<message name="executeProcessSyncResponse'">

<part name="outputPart" element="tns:testElementSyncResponse"/>
</message>
<message name="executeProcessSyncFault">

<part name="payload" element="tns:testElementSyncFault"/>
</message>

22

42
43

44

45
46
47

48

49
50
51
52

53

54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76

7
78
79

80

5 TEST CASES

<portType name="TestInterfacePortType">
<operation name="startProcessAsync">
<input name="asyncInput" message="tns:executeProcessAsyncRequest"
/>
</operation>
<operation name="startProcessSync">
<input name="syncInput" message="tns:executeProcessSyncRequest"/>
<output name="syncOutput" message="tns:executeProcessSyncResponse
"/>
<fault name="syncFault" message="tns:executeProcessSyncFault"/>
</operation>
</portType>

<binding name="TestInterfacePortTypeBinding" type="
tns:TestInterfacePortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.
org/soap/http"/>
<operation name="startProcessAsync">
<soap:operation soapAction="async'"/>
<input name="asyncInput">
<soap:body use="literal"/>
</input>
</operation>
<operation name="startProcessSync">
<soap:operation soapAction="sync'"/>
<input name="syncInput">
<soap:body use="literal'"/>
</input>
<output name="syncOutput">
<soap:body use="literal"/>
</output>
<fault name="syncFault">
<soap:fault name="syncFault" use="literal"/>
</fault>
</operation>
</binding>

<service name="TestInterfaceService">
<port name="TestInterfacePort" binding="
tns:TestInterfacePortTypeBinding">
<soap:address location="ENDPOINT_URL"/>
</port>
</service>

81 </definitions>

The structure of this definition is intended to be as minimalistic as possible, while preserving the
ability to adequately test all features of BPEL. The partnerLinkType definition is required to
use the WSDL definition as a BPEL partnerLink. Properties and propertyAliases need to
be in place to test correlation and asynchronous messaging. Next, the types and corresponding

5.1 Test Case Definition 23

message definitions are very simple. Basically, all messages consist of a single message part
that is of type xs:int [43]. By using a message part this simple, we intend to avoid problems
resulting from the use of non-conformant or inadequate XML processors for data handling by
an engine. Conformance tests of the XML processing capabilities of the engines, or rather their
XML processors, are important, but not our focus here and should be conducted separately3?.
The portType we use for invoking the processes contains two operations, an asynchronous and
a synchronous one that may return a fault. This is all that is needed for testing any sequence
of message exchanges which can be constructed based on BPEL’s correlation mechanism. In
most test cases®®, the correctness of a test is assessed by interpreting the result of a synchonrous
invocation. The binding we use is of document |1literal style. This type of binding is relatively
simplistic and thus has a high potential of being supported by an engine. Using this binding,
SOAP messages are send as is, in a single document, without any encoding or additional wrapper
elements, as it would be the case with other styles such as rpc|encoded [40, Sec.3]. In essence,
this is the most basic SOAP binding currently available.

Listing 4 demonstrates a BPEL process that is used to test the support for the sequence
activity. Obviously, the test consists of more structures than said activity, so the test is not
strictly isolated. Yet, this is normal for a conformance test [26, pp. 203-208].

Listing 4: Test Case for the sequence Activity

1 <?xml version="1.0" encoding="UTF-8"7>
2 <process

3 name="Sequence"

4 targetNamespace="http://dsg.wiai.uniba.de/bpel-engine-
comparison/activities/bpel/sequence"

5 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

6 xmlns:ti="http://dsg.wiai.uniba.de/bpel-engine-
comparison/activities/wsdl/testinterface">

7 <import namespace="http://dsg.wiai.uniba.de/bpel-engine-
comparison/activities/wsdl/testinterface" location="../TestInterface.

wsdl" importType="http://schemas.xmlsoap.org/wsdl/"/>

9 <partnerLinks>

10 <partnerLink name="MyRoleLink" partnerLinkType="
ti:TestInterfacePartnerLinkType" myRole="testInterfaceRole"/>

11 </partnerLinks>

12

13 <variables>

14 <variable name="ReplyData" messageType="ti:executeProcessSyncResponse"/>

15 <variable name="InitData" messageType="ti:executeProcessSyncRequest"/>

16 </variables>

17

18 <sequence>

19 <receive name="InitialReceive" createlnstance="yes"

33 Although XML processors are relatively stable today, this is a real issue for the engines at hand. Even the
simple data types used here revealed problems in the XML processing capabilities. Most notably, Apache ODE
did not correctly process xs:int, converting it to xs:decimal instead and also replying decimal values where
integer values are required by the schema definition. For the details, see section 6.1

34This naturally excludes the test cases that specifically test asynchronous communication.

24 5 TEST CASES

20 partnerLink="MyRoleLink" operation="startProcessSync"

21 portType="ti:TestInterfacePortType" variable="InitData"/>

22 <assign name="AssignReplyData">

23 <copy>

24 <from variable="InitData" part="inputPart"/>

25 <to variable="ReplyData" part="outputPart"/>

26 </copy>

27 </assign>

28 <reply name="ReplyToInitialReceive" partnerLink="MyRoleLink"

operation="startProcessSync" portType="ti:TestInterfacePortType"
variable="ReplyData"/>

29 </sequence>

30

31 </process>

Every BPEL process must have a partnerLink defined as myRole and must import the ac-
cording partnerLinkType and WSDL definition for this partnerLink. Here, this is the WSDL
definition described before. Moreover, every process definition needs to have a start activity
that performs the process instance creation. In BPEL, this is always an inbound message activ-
ity. The most basic inbound message activity is the receive activity. Used in a basic fashion,
it has the highest chance of being correctly supported and, therefore, is unlikely to interfere
with the actual feature under test. This assumption can be verified with designated receive
activity tests and has been proven correct for the engines at hand®>. The process uses a syn-
chronous operation to have output available that can be interpreted to verify the correctness of
the test. For this reason, variables for in- and outbound messages and an assign and a reply
activity, for assigning the output data and for sending the response, are required. It would be
possible to use an asynchronous operation with no inbound variables and no reply and, strictly
speaking, such a test case would test a language feature in a more isolated fashion. However,
such a test case would not return a result that can be evaluated to verify the correctness of
the implementation. Instead, it would be necessary to evaluate engine logs or similar resources
to make that decision. This would strongly link the testing procedure to the concrete engines
and make the tool hard to extend. As demonstrably the simple synchronous invocation works
for all engines under test, we are safe to use it as the basis for the conformance tests without
corrupting the results.

5.2 Test Case Configuration

The artifacts from the previous section are sufficient to automatically build engine-specific
deployment packages, but they are not yet sufficient for conformance tests. What is missing
is the configuration of the test execution; that is the definition of inputs, message exchange
sequences, and desired outputs. This configuration can be built using the classes described
in section 4.2. The classes that build the configuration are located in tests/configuration,
in parallel to the test case definitions. Most importantly, a Process comprises all necessary
configuration for a single test. This structure is depicted in Figure 5 on page 19. In the

35For the details, see section 6.

5.2 Test Case Configuration 25

processes package, several classes that construct valid test case configurations can be found. In
its root, the configuration package contains main classes that use these configuration classes
to construct a set of complete conformance tests and thereafter hand over that configuration
to betsy to execute it. Listing 5 exemplifies two test case configurations.

Listing 5: Test Case Configuration Examples

1 public final Process SEQUENCE = builder.buildStructuredActivityProcess(

2 "Sequence", "A receive-reply pair enclosed in a sequence.",

3 [

4 new TestCase(testSteps: [new TestStep(input: "5", output: "5",
operation: WsdlOperation.SYNC)])

6)

s public final Process FLOW_LINKS_JOIN_CONDITION = builder.
buildStructuredActivityProcess (
9 "Flow-Links-JoinCondition", "A receive-reply pair with an intermediate flow
that contains three assigns, two of which point to the third using
links. Both links have transitionConditions and their target a
joinCondition defined upon them. A joinFailure should result, given not
both of the links are activated.",

10 [new TestCase(testSteps: [new TestStep(input: "1", assertions: [new
SoapFaultTestAssertion(faultString: "joinFailure")], operation:
WsdlOperation.SYNC)]),

1 new TestCase(testSteps: [new TestStep(input: "3", output: "6",

operation: WsdlOperation.SYNC)])
12]

13)

As demonstrated in the listing, processes are constructed using factory methods [11]. There
is one such method that provides the necessary configuration for every test case definition.
Lines 1 to 6 show the cofiguration of the sequence test case. In line 1, a builder is used to
construct the configuration for a structured activity. Line 2 first sets the name of the BPEL
file, here Sequence, relative to the test case definition directory of the structured activities.
The builder ensures that all necessary files, such as WSDL files, are referenced in the process
configuration. The second part of line 2 sets a description of the process. Next come the
TestCases that are to be executed. For the sequence test, there is a single TestCase, consisting
of a single TestStep. The TestStep requires the execution of the synchronous operation and
the usage of an input of 5 in the message sent to the service. It expects the response message
to include the value 5 as content for the proper message part. Only if that is true, the test case
is successful. Otherwise, it is marked as failed.

Lines 8 to 13 show a more complex configuration for testing the support for 1inks in the flow
activity, including joinConditions. Apart from a more lengthy description of the process, there
are two TestCases. Both consist of a single TestStep that uses the synchronous operation.
However, they differ in the input they provide and the output they expect. The first TestStep
uses an input of 1, which is a special number that should make the process instance throw a
fault, and expects the response to be SOAP that contains the string joinFailure. The second
TestStep uses an input of 3 and expects the response to be a regular SOAP message with a
content of 6.

26 5 TEST CASES

5.3 Restrictions

Certain specific aspects required in executable BPEL processes, namely partner reference
schemes, the usage of XSL style sheet resources and fault propagation in the case a process in-
stance faults with open inbound message activities are not defined in the specification. Strictly
speaking, this means that features like the assignment of partnerLinks or the usage of XSL
stylesheets cannot be implemented in a standard-conformant and portable manner. We decided
to test these features nonetheless, focusing on reasonable reference and addressing schemes.

When it comes to the assignment of partnerLinks, the specification requires this as a manda-
tory feature, but only defines a container for a service reference, service-ref [28, pp. 38/39].
The concrete format of the reference is left open, the only restriction is that an engine should
throw an unsupportedReference fault, if it does not understand the format. A reasonable and
portable format to use here is a WS-Addressing EndpointReference [44] which is what we test
for.

Furthermore, if a BPEL process uses a XSL transformation, the style sheet should be identified
by a Universal Resource Identifier (URI) [28, p. 63]. The structure of this URI however, is left
open. We decided to use the name of the style sheet as URI and to put the style sheet in the
same place where the other deployment files go.

Finally, the BPEL specification does not require a certain behavior in case a process fails at
top-level with open inbound message activites. The fault handling mechanism of virtually
any high-level programming language like Java or C# would propagate the fault to the caller.
Such behaviour is also a requirement for distributed fault handling in the first place [14]. This
mechanism is adopted by all but one of the engines under test. The conformance tests check
for the fault names to appear in the response of a request-response interaction, expecting that
a fault is propagated to the caller.

27

6 Results

The following sections describe the result of an execution run of betsy for the complete test set
and all engines described in section 2. This provides a detailed outline of the degree of support
each of the engines provide for the BPEL specification. Naturally, this degree of support may
change in future revisions of an engine. Using betsy, such changes can be easily detected.

The test run described here was configured as follows: All test cases were executed strictly
sequential for all engines. There was no parallelism between the execution of the tests of the
different engines. Before each test case for an engine, the engine was deleted and completely
reinstalled from scratch. The intent of this configuration, lacking any parallelism at the cost of
a high execution time, is to guarantee that no test case execution is influenced by a previous
test case execution for the same engine or by parallel test case executions for another engine.
In our setup, the execution time of this configuration was about twelve hours. To start this
test run, execute the following command in the root folder of the project:

gradlew run

An overview of the support is given for each engine separately. The complete result tables
can be found in the appendix in section A. The appendix also contains test descriptions and
configurations for every test case which can be found in section B. Each test description follows
the schema presented in Table 3.

Process name The name of the test which outlines the feature under test.

Activities and configuration A list of the BPEL activities, special constructs, and attributes used in the
test.

Description A short description of the structure and functioning of the test.

Test case: One row for every case
associated with the test. Every
test case consists of at least one
test step

input operation assertions

The input | The operation used | The assertions used to verify the
value used in | in this test step. | correctness of the result. This
this test step | This can be syn- | can for example be an expected
chronous or asyn- | output value (output: 5) or a

chronous fault (fault: xsltInvalidSource).
optionally: Time in millisec-
wait for onds
Support: The result of the test
per engine. - marks a failure of bpel-g ODE openESB | Orchestra | PetalsESB
all test cases, +/- a partial fail- + N + N N
ure, and + a success of all test
cases.

Table 3: Schema of a Test Description

Every test description starts with the name of the test, which provides a short outline of the
feature under test. The test name is also identical to the file and process name that form
the test definition. Next comes a list of all activities and special constructs or configurations
that are used in the test definition. Certain elements that reoccur in every test definition,

28 6 RESULTS

such as process, import, partnerLinks, variables and elements that are mandatory given
certain other elements are used, such as finalCounterValue and startCounterValue in case
the process uses a forEach, are excluded from this list. A full listing of the excluded elements
can be found in section C in the appendix. Thereafter comes a short description of the test that
outlines the structure of the test definition and special behavioural properties. Then follows a
list of all test cases for the given test; that is, a list of all connected sequences of test steps.
For each test step, the value used in the message sent to the process and the operation, being
asynchronous or synchronous, and the assertions are listed. The assertions are of the types
described in section 4.2. Examples are an expected output value for the proper message part
or a SOAP fault that contains a certain string. Given a single assertion of any test step of a
test case fails, the overall test case is marked as failure. A test step can define a wait period to
delay the test execution for a specific amount of time. If this is the case, a row is added after
the test step stating the timeout in milliseconds. In the end comes the support rating for all
engines. The support rating is the metric that defines whether an engine successfully passed
the test. The rating is trivalent and has the domain of -, if all test cases failed, +/- if at least
one test case was successful and +, if all test cases were successful.

It needs to be noted that there may be false positives in the results. This is can occur for
example when testing that a process must be rejected by an engine. Such a case is asserted
by verifying that the WSDL file is not present at a given Uniform Resource Locator (URL).
The problem is that we cannot assert why the WSDL file is not present. It can result from
the BPEL process being rejected correctly or because the process uses yet another feature of
BPEL which always leads to a deployment error for that engine. Therefore, the results have to
be interpreted with care.

The next sections give an overview of the results for each of the engines. They discuss main
findings and highlight areas of strong or weak conformance. This forms a good start for under-
standing the detailed results for each engine, contained in the appendix.

6.1 ODE Results

ODE itself describes its standard compliance on its homepage®. In the following, we focus

solemly on our results. ODE is rated third in the overall BPEL support rating. Its major
shortcoming is the unsupported initialization of correlationSets using asynchronous oper-
ations. For this reason, each test using correlationSets is available in two variants, one
initializing them with an asynchronous operation and one with a synchronous operation. The
name of the tests using asynchronous operations end with -InitAsync while the ones using
synchronous operations end with —~InitSync. This allows to test other features relying on cor-
relationSets independently of this ODE specific error. The second most important reason
for ODE failing a test is that it did not deploy a BPEL process. Due to its internal BPEL
compiler?”, many test processes are rejected. This compiler has a list of BPEL constructs which
are not supported by ODE and rejects any process definition which contains any of these con-

36For the details, see http://ode.apache.org/ws-bpel-20-specification-compliance.html
37The tool can also be called separately by invoking the bin/bpelc.bat script. For more information, see
http://ode.apache.org/bpelc-command.html

http://ode.apache.org/ws-bpel-20-specification-compliance.html
http://ode.apache.org/bpelc-command.html

6.1 ODE Results 29

structs. The third most important reason for a failing test is a timeout while waiting for the
response to a corresponding request. However, we could not find a pattern hinting to a specific
unimplemented or buggy feature or activity linked to this timeout. There may be multiple
sources for such timeouts instead.

structured activities: The flow activity is supported in full, including links, Join- and
TransitionConditions as well as the optional suppressJoinFailure attribute. How-
ever, ODE accepts process models that should be rejected according to the BPEL speci-
fication. This is the case for a BPEL process which defines start activities and non-start
activities to execute in parallel. The forEach activity is only supported in sequence or
in parallel without any CompletionConditions and without validations of invalid values
for the startCounter and stopCounter. Interestingly, ODE catches variable duplica-
tion errors and rejects deployment. The if activity along with else and elseif are
supported while invalid expression values within a condition of an if activity are not
detected. Initializing correlationSets during an asynchronous receive leads to an in-
ternal NullPointerException as can be seen in the console log. An infinite loop occurs
when the termination condition of a RepeatUntil activity is based on comparison with
the equality operator.

basic activities: As mentioned in the previous paragraph, correlationSets cannot be ini-
tialized in conjunction with an asynchronous operation. Therefore, all tests ending with
-InitAsync fail and typically allmost all tests ending with -InitSync succeed. How-
ever, there is one exception. When having initialized a correlationSet in a synchronous
receive activity and using this correlationSet for an asynchronous receive, the same
NullPointerException occurs.

ODE does not support toParts and fromParts for invoke or receive activities. Such
processes are rejected during deployment as ODE itself is aware of that fact. This also
applies for empty from or to elements in copy blocks as well as doXs1Transform functions
used in assign activities. Processes using any form of XSD validation, either a validate
activity or a validate attribute within an assign are not rejected but the validation is
simply ignored during execution. The same holds for the use of the keepSrcElementName
attribute within an assign activity.

ODE does not throw correct faults (or any fault at all) in case of ambigious or conflicting
receives or requests. The same is true for any correlationViolation fault. Throwing
and rethrowing is implemented in a standard conformant way. However, their counter-
parts, namely the catch and catchAll activities cause timeouts during execution when
attached to an invoke activity. When a request-response connection is open and an in-
termediate invoke receives a fault as response, this fault is not propagated to the outer
scopes.

Variables cannot be initialized with a default value as the corresponding initialization
block is ignored and the fault uninitializedVariable is thrown.

Despite its internal BPEL compiler, ODE does not reject processes referencing Exten-
sionActivity elements using mustUnderstand=’yes’ but ignores them instead. Thus,
the inverse test using mustUnderstand="no’ succeeds. The assignment of partnerLinks
is not supported in conjunction with WS-Adressing (WSA). However, it does work in a

30 6 RESULTS

more simplified manner, by copying the Endpoint Reference (EPR) url to the partner-
Link.

scopes: ODE does not support terminationHandlers and ignores such handlers during exe-
cution. The faults missingReply or missingRequest are not thrown when they should
be. When using the parts element within an eventHandler, the process is rejected dur-
ing deployment. This is caused by the internal compilation with the bpelc tool. ODE
basically ignores exitOnStandardFault attribute and if a fault occurs it is always thrown
to the caller regardless of its type. The compensate activity in conjunction with the com-
pensationHandler is works, except for the case of compensating a scope which has been
instantiated multiple times within a while activity. In that case, only the first scope is
compensated instead of all scopes that have been enabled during the execution of the
while activity.

6.2 Bpel-g Results

In the overall support rating, bpel-g offers the highest degree of standard conformance; that is,
it passes more test cases than the other engines. Especially the error handling of the engine
is more standard-conformant than it is for other engines. Bpel-g more often throws the BPEL
faults that must be thrown in a certain situation.

Apart from the SOAP faults that are expected in some test cases, bpel-g shows two typi-
cal errors that can happen during the execution of a process. These errors mark situations
where the execution of a test case failed unexpectedly. The first one seems to apply if there
is a problem with the handling of the input to a process at some stage during its execu-
tion. In this case, the process instance crashes without a standard BPEL fault. The fault
code of this error is soapenv:Server.userException and the fault string is the quite generic
org.activebpel.rt.bpel.AeBusinessProcessException. The other error also marks an un-
expected crash of a process instance and results in a SOAP fault. Bpel-g’s behaviour in this
case is, in principle, not distinguishable from the previous error. However, the faultcode sent
reads like a more problematic issue, indicating problems in the engine itself. This faultcode is
systemError.

structured activities: The flow activity is supported in full, including links, Join- and
TransitionConditions and the suppressJoinFailure attribute. However, bpel-g also
allows for process models where start activities and non-start activities could be executed
in parallel. Such a process definition should be rejected according to the specification.
Bpel-g does not support time-related activities in a conformant manner. The pick activity
with a onAlarm handler does not properly process the contents of neither a for, nor an
until element. The tests indicate that both handlers do never fire when executed with
an xs:dateTime or xs:duration. Bpel-g does not properly verify the counter variable
of a forEach activity on its initialization. The counter can be initialized with values too
large for xs:unsignedInt. Moreover, negative values are not processed entirely correct
for this activity. Although such a case should throw an invalidExpressionValue fault, it
results in an invalidBranchCondition fault during execution when evaluating a negative

6.3 OpenESB Results 31

completionCondition. Finally, bpel-g allows for the deployment of process definitions
with variable duplication errors. Such process definitions should be rejected by static
analysis. Apart from these deficiencies, bpel-g passes all structured activity tests.

basic activities: There are several problematic spots in bpel-g’s support for basic activities.
Just like the other engines, bpel-g does not support empty from or to elements in copy
blocks and instead fails with one of its custom exceptions. Furthermore, bpel-g does not
read XSL style sheets identified as defined in section 5.3, but it does inform about this
fact with the correct SOAP fault. Remarkably, bpel-g is the only engine that supports
the assignment of a partnerLink with a WS-Addressing endpointReference, although
it does not throw the expected unsupportedReference fault if a bogus reference scheme
is used, but replies with a systemError. Bpel-g ignores extensions that it does not under-
stand, even if the attribute mustUnderstand is set to true. In the latter case, deployment
should fail instead. When it comes to the invocation of Web Services, bpel-g supports
most invariants. That is synchronous and asynchronous invocation, faultHandlers, al-
though faults that are thrown by the invoked web service are not handled correctly and
can also not be caught by name in a catch. Furthermore, compensationHandlers, the
use of correlationSets, fromParts and toParts are supported in an invoke. The only
broader lack in Web Service invocation is that bpel-g is not able to invoke operations that
expect empty messages. The receive activity and its counterpart reply also show high
support. Here, the only problem is correct fault handling. ConflictingReceiveFault
and correlationViolation are partly not thrown when they should have been or result
in the typical userException instead. Finally, the timing activity wait and its for and
until elements are again not supported using the standard XSD data types. All other
tests for basic activities pass correctly.

scopes: Bpel-g’s support for scopes and FCT-handlers is fairly comprehensive. The only
bigger problem spots are as before time-related event handlers, which again are unable
to deal with XSD data types, and terminationHandlers which are not supported at all.
All other tests pass correctly.

6.3 OpenESB Results

The OpenESB BPEL service engine shows a fair degree of standard conformance and is the
engine ranking second in the overall comparison. In case there are unexpected crashes of a
process instance, the engine replies with a generic failure with the fault code SOAP-ENV: Server.
The fault string carries additional information like stack traces or, in some cases, the BPEL
fault.

structured activities: The OpenESB supports the flow activity in a relatively limited fash-
ion. To be exact, links are not supported by this engine. The OpenESB accepts process
definitions that include links, but ignores their usage. This can lead to the case that a
process definition is executed correctly, but only if the activities in the flow are defined
in the same order as the precedence relationsship specified by the links. Thus, this
behaviour is coincidental. The parallel attribute for the forEach activity is ignored,

32 6 RESULTS

just like 1inks, and results in a sequential execution. Also, counter values exceeding
xs:unsignedInt and duplicate variable definitions are not properly handled in this con-
text. When it comes to conditions, the engine seems to evalute any value that is not a
xs:boolean, say an arbitrary string, to true, instead of rejecting it with an invalidEx-—
pressionValue. Finally, the OpenESB has problems in handling the correlations of a
pick activity. Given, the operation used in the onMessage of the pick is already used
before in the same process instance, the operation fails with the SOAP-ENV:Server fault
and the string of this fault indicates a correlationViolation. This happens, even if the
correlation set used in said onMessage is initiated and used correctly.

basic activities: The usage of XSL stylesheets is not possible with OpenESB and processes us-
ing the respective XPath function are not deployed. The keepSrcElementName attribute
of a copy element is ignored and the assignment of partnerLinks with EndpointRefer-
ences does not work. The documentation of OpenESB states that WSA EndpointRef-
erences are supported, but links to the initial submission version of WSA and not the
final recommendation. So, this may be a simple namespacing issue, where the OpenESB
expects an EndpointReference with an outdated namespace. Nevertheless, the engine
correctly throws an unsupportedReference fault for a bogus referencing scheme. Process
definitions that include extensions which are not understood by OpenESB are ignored and
deployed, even if mustUnderstand is set to yes. The parts syntax is not supported for
messaging activities and the same applies to fault- and compensationHandlers, as well
as the correlations elements for the invoke activity. The invocation of Web Service
operations with an empty message is unsupported, too. If no fault data is used, faults
thrown by throw or rethrow activities are propagated to the caller correctly. Given faults
occur in messaging activities or the throwing activities use fault data, the OpenESB does
not reply with the respective fault, but with its custom fault. Finally, the default initial-
ization of variables is not supported, resulting is an uninitializedVariables fault, on
the first usage of a variable.

scopes: OpenESB’s support for scope-related aspects is the most comprehensive of all engines
under test. It only fails to support missingReply and missingRequest faults, fromParts
in eventHandlers and scope-level definition of correlationSets.

6.4 Orchestra Results

Orchestra takes a somewhat different approach to fault propagation than the other engines.
That is, Orchestra does not propagate faults to the caller if a process instance fails with a fault at
root level and still has open request-response conversations. Instead, faults are only propagated
if specifically requested. If a fault is thrown and not handled in the context of the process
instance, the engine replies with a HTTP 200 status code and zero length content. The fault
only reaches a caller, if it is explicitly propagated using a reply activity. As discussed before,
this mechanism contrasts current fault-handling practices and severly hampers distributed fault
handling. It is also hardly possible to diagnose the origin of an error.

6.5 Petals ESB Results 33

structured activities: Orchestra’s support for the flow activity is quite comprehensive, in-

cluding 1inks with joinConditions and transistionConditions. The only aspect that
could not be verified, due to Orchestra’s fault handling strategy, is the handling of join-
Failures. The forEach activity, however, is not supported at all. Orchestra forbid’s
the deployment of process definitions that include this activity, marking the test for the
rejection of a definition with duplicate variables as a false positive. Finally, Orchestra
seems unable to initiate a correlationSet with an asynchronous operation.

basic activities: Because of its fault propagation strategy, Orchestra fails a large set of the

basic activity tests. The cases where a test makes a process instance terminate with a
fault, and where an interal failure resulting from a software bug crashes the instance,
are undistinguishable with this strategy. For this reason, Orchestra fails all tests for
the throw and rethrow activities, as well as all other tests that are expected to result
in a fault. A basic level of support could be verified for the assign activity, where
the ignoreMissingFromData attribute, the getVariableProperty function, from and
to elements, literal assignment, and queries are correctly supported. Orchestra rejects
any process definition with an extension it does not understand. This is the correct
behaviour, if the mustUnderstand attribute is set to yes, but wrong if it is left default.
The invoke activity supports invocation with empty messages, the fromParts syntax,
and, interestingly, also faultHandlers. This aspect indicates that fault handling is indeed
in place and only the fault propagation mechanism is debatable. CompensationHandlers
are not supported for the invoke activity, however. The receive and reply activities
work in a basic fashion, including the parts syntax and messageExchanges, but the
correctness of fault handling could not be verified. The wait activity and the default
initialization of variables work, but the validate activity is unsupported.

scopes: The faultHandler test cases show that Orchestra internally handles faults, at least

as long as no faultVariables are used. Basic support for compensationHandlers seems
to be in place, although there are issues in invoking these handlers. The simple test
cases fail with Orchestra’s typical fault behaviour, but a more complex test case with
multiple nested scopes passes. These results suggest that Orchestra has problems if a
compensationHandler is attached to a scope directly under the root scope, but not if it
is attached to a deeper nested scope. The scope-level definition of correlationSets is not
supported. OnMessage eventHandlers lack support for the parts syntax and onAlarm
handlers do not allow the repeatEvery attribute in conjunction with for or until.

6.5 Petals ESB Results

Petals ESB supports only a minimal set of activities and is ranking lowest in the overall ranking.

More than 75% of the tests fail. The three most common errors observed in the tests are:

e A valid BPEL process could not be deployed successfully.
e A timeout occured during message exchange.

e A SOAP fault occured referencing a Petals ESB namespaced fault string with a java stack

trace caused by a javax.jbi.messaging.MessagingException.

34 6 RESULTS

All three errors are very generic and do not give much information about the initial cause of
the error. Thus, for some features, the reasons why they do not work cannot be detected. For
instance, no test case using correlationSets was successful and the SOAP fault containing
the MessagingException is thrown. It is unclear whether this is an internal bug or whether
correlationSets simply have not been implemented. Regardless of the root of this error,
lacking support for correlationSets leaves this engine unsuitable for asynchronous messaging.

structured activities: The support for structured activities in Petals ESB is limited to the
very basic control flow constructs in their default configuration. The if activity with its
else and elseif additions is supported in full while the forEach activity is functioning
in parallel and in sequence only. The most basic activity, namely sequence, is supported
as well as the while loop. A pick can only be used to create an instance without a
correlation set.

basic activities: Petals ESB can receive and send (invoke) messages synchronously as well
as asynchronously in a basic fashion. A catchAll block attached to an invoke is also
supported, but all variants of message exchanges are not. Interestingly however, Petals
ESB is the only engine which rethrows a fault from an invoke, given there are open
request-response operations. The copying of data using the assign activity works when
using expressions, properties or literals and the activity also supports the ignoreMiss-
ingFromData attribute. Variables can be initialized with default values and the empty
and exit activities work as expected. The wait activity only works in conjunction with
the until condition and the usage of for leads to a timeout.

scopes: Petals ESB’s support for scopes is limited to faultHandlers which work in any com-
bination except for the access of the fault variable in the catch element. Additionally,
the exitOnStandardFault attribute is supported in part. A process definition with this
attribute set to yes behaves correctly as long as no joinFailure is thrown.

35

7 Summary

Table 4 shows the aggregated number of successful, partially successful and failed test cases
by engine, as well as the resulting ranking. Bpel-g achieves the highest amount of standard
conformance, followed by OpenESB and ODE close up. Orchestra comes fourth and the fifth
position is taken by Petals ESB, which shows a relatively limited degree of support.

bpel-g ODE openESB | Orchestra | PetalsESB
successful tests 106 82 85 63 32
partially successful tests 0 0 2 1 0
failed tests 28 52 47 70 102
Rank 1 3 2 4 5

Table 4: Overall Test Results

It is striking that hardly any activity is supported by all engines. Looking at the basic activities,
only basic configurations of assign, empty, exit, invoke, receive, and reply are supported
by all engines. The same applies to if, sequence, and while, as well as faultHandlers. This
implies that relatively basic communication and control-flow facilities are in place, but there is
no common support for more than the absolute minimum. Porting BPEL processes from an
engine to another one, therefore, is a daunting task.

Betsy eases this task considerably by revealing the capabilities of each of the engines and assess-
ing their degree of standard conformance in a comparable and uniform manner. Still, there are
plenty of areas where betsy and the assessment of the standard conformance of BPEL engines
can be improved. For instance, the test set used by betsy, although being quite comprehen-
sive, does not cover every single aspect defined in the BPEL specification. One area are the
static analysis features described in appendix B of the specification [28, pp. 194-205]. These
features describe process definitions that should be rejected by a BPEL engine and currently
betsy tests only a few of them. Moreover, all the current test cases test single features. It
should be interesting to include complex realistic use cases that use a variety of features in
combination. It can be expected that features that work in relative isolation may stop working
when used in combination with other constructs. Another important aspect is the testing of
more engines, especially commercial ones, such as the Oracle Process Manager or IBM Web-
sphere. Complementary standards and languages, revolving around BPEL, form a third area
of future work. As indicated by the measurements here, the XML processing capabilities of
at least one engine are problematic. Moreover, the support for standards such as WS-Security
and WS-ReliableMessaging may be crucial in a business application and the WS-Stack that an
engine builds upon should be evaluated for these capabilities as well.

All in all, betsy comes a long way in terms of the conformance evaluation of BPEL engines. We
have demonstrated its applicability and its current state forms an excellent position for tackling
further issues. We aim to extend the tool with more functionality and hope that it can be of
benefit to the research community. The test results attached to this report and especially the
test cases that ship with betsy have the potential to improve any of the engines under test.
They can be used to track down bugs that hamper a certain feature and can also be used for
regression testing. Using betsy, this testing process can be easily automated. Last but not
least, the results provide an interesting snapshot of state of the implementation of BPEL.

36 REFERENCES
References
[1] A. P. Barros, G. Decker, M. Dumas, and F. Weber. Correlation Patterns in Service-

[10]

[11]

[12]

Oriented Architectures. In Proceedings of the 9th International Conference on Fundamental
Approaches to Software Engineering (FASE), pages 245-259, Braga, Portugal, March/April
2007.

A. P. Barros, M. Dumas, and A. H. M. ter Hofstede. Service Interaction Patterns. In
3rd International Conference on Business Process Management, pages 302-318, Nancy,
France, September 2005.

D. Bianculli, W. Binder, and M. L. Drago. Automated performance assessment for service-
oriented middleware: a case study on BPEL engines. In Proceedings of the 19th interna-
tional conference on World wide web, pages 141-150, Raleigh, North Carolina, USA, April
2010.

A. Both and W. Zimmermann. Automatic Protocol Conformance Checking of Recursive
and Parallel BPEL Systems. In European Conference on Web Services (ECOWS), pages
81-91, Dublin, Ireland, November 2008. IEEE.

M. Bozkurt, M. Harman, and Y. Hassoun. Testing & Verification In Service-Oriented
Architecture: A Survey. Software Testing, Verificaton and Reliability, 00:1-7, May 2012.

Bull SAS — OW2 Consortium. Orchestra User Guide, October 2011.

G. Decker, O. Kopp, F. Leymann, and M. Weske. BPEL4Chor: Extending BPEL for
Modeling Choreographies. In Proceedings of the IEEE 2007 International Conference on
Web Services (ICWS), pages 296-303, Salt Lake City, Utah, USA, July 2007.

G. Decker, O. Kopp, F. Leymann, and M. Weske. Interacting services: From specification
to execution. Data & Knowledge Engineering, Elsevier, 68(10):946-972, 20009.

G. Decker and J. Mendling. Process Instantiation. Data and Knowledge Engineering,
Elsevier, 68:777-792, 2009.

G. Decker, H. Overdick, and J. Zaha. On the Suitability of WS-CDL for Choreography
Modeling. In Proceedings of Methoden, Konzepte und Technologien fiir die Entwicklung
von dienstebasierten Informationssystemen (EMISA), pages 21-33, Hamburg, Germany,
October 2006.

E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns: FElements of
Reusable Object-Oriented Software. Addison-Wesley, Amsterdam, 1995. ISBN: 0201633612.

J. Garcia-Fanjul and J. T. Claudio de la Riva. Generation of Conformance Test Suites for
Compositions of Web Services Using Model Checking. In Testing: Academic and Industrial
Conference — Practice And Research Techniques, Windsor, United Kingdom, August 2006.
IEEE.

REFERENCES 37

[13]

[14]

[15]
[16]

23]

[24]

[25]

[26]

[27]

M. Geiger, A. Schonberger, and G. Wirtz. Towards automated conformance checking of
ebBP-ST choreographies and corresponding WS-BPEL based orchestrations. In Confer-
ence on Software Engineering and Knowledge Engineering (SEKE), Miami, Florida, USA.
Knowledge Systems Institute, 7.-9. July 2011.

C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. On the Interplay Between Fault Han-
dling and Request-Response Service Interactions. In 8th International Conference on Ap-
plication of Concurrency to System Design, pages 190-198, Xi’an, China, June 2008.

P. Hamill. Unit Test Frameworks. O'Reilly, 2004. ISBN-13: 978-0596006891.

S. Harrer, A. Schonberger, and G. Wirtz. A Model-Driven Approach for Monitoring ebBP
BusinessTransactions. In Proceedings of the 7th World Congress on Services 2011 (SER-
VICES2011), Washington, D.C., USA. IEEE, July 2011.

C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR formalism for artificial
intelligence. In International Joint Conference on Artificial intelligence, IJCAT’'73, pages
235-245, San Francisco, CA, USA, 1973.

B. Hofreiter and C. Huemer. A model-driven top-down approach to inter-organizational
systems: From global choreography models to executable BPEL. In Join Conf CEC, EEE,
2008.

IETF. Key words for use in RFCs to Indicate Requirement Levels, March 1997. RFC 2119.

ISO. ISO/IEC 9646-1:199] — Information technology — Open Systems Interconnection —
Conformance testing methodology and framework — Part 1: General concepts, 1994.

L. Juszczyk and S. Dustdar. Script-based generation of dynamic testbeds for soa. In 8th
IEEE International Conference on Web Services (ICWS), Miami, Florida, USA, July 2010.

D. Liibke. Unit Testing BPEL Compositions. In L. Baresi and E. D. Nitto, editors, Test
and Analysis of Service-oriented Systems, pages 149-171. Springer, 2007. ISBN 978-3-540-
72911-2.

J. Lenhard, A. Schonberger, and G. Wirtz. Edit Distance-Based Pattern Support As-
sessment of Orchestration Languages. In On the Move 2011 Confederated International
Conferences: CooplS, IS, DOA and ODBASE,, Hersonissos, 2011.

N. Lohmann. A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 and its Compiler
BPEL20WFN. Informatik-Berichte 212, Humboldt-Universitit zu Berlin, August 2007.

N. Lohmann and J. Kleine. Fully-automatic Translation of Open Workflow Net Models
into Simple Abstract BPEL Processes. In Modellierung, volume P-127 of LNI, pages 57-72.
GI, 2008.

A. P. Mathur. Foundations of Software Testing. Dorling Kindersley, 2009. ISBN-13:
978-81-317-1660-1.

OASIS. WS-Security Core Specification 1.1, 2006.

38

28]

[29]

[30]

[33]

[34]

[35]

[36]

[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]

REFERENCES

OASIS. Web Services Business Process Ezecution Language, April 2007. v2.0.

C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and W. M. P. van der Aalst. From BPMN
Process Models to BPEL Web Services. In International Conference on Web Services
(ICWS), pages 285-292, 2006.

M. P. Papazoglou and D. Georgakopoulos. Service-oriented Computing. Communications

of the ACM, 46(10):24-28, October 2003.

C. Peltz. Web Services Orchestration and Choreography. IEEE Computer, 36(10):46-52,
October 2003.

A. Schonberger. The CHORCH B2Bi Approach: Performing ebBP Choreographies as
Distributed BPEL Orchestrations. In International Workshop on Services Computing for
B2B (SC4B2B), Miami, Florida, USA, July 2010.

W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and E. Verbeek. Conformance
Checking of Service Behavior. ACM Transactions on Internet Technology (TOIT), 8(3),
May 2008.

W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. From Public
Views to Private Views - Correctness-by-Design for Services. In Web Services and Formal
Methods, Forth International Workshop, WS-FM, pages 139-153, September 2007.

W. M. P. van der Aalst, A. Mooij, C. Stahl, and K. Wolf. Service Interaction: Patterns,
Formalization, and Analysis. In Formal Methods for Web Services, volume 5569 of LNCS,
pages 42-88. Springer Berlin/ Heidelberg, 2009. ISBN: 978-3-642-01917-3.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, Springer, 14(1):5-51, July 2003.

W3C. XML Path Language (XPath) Version 1.0, November 1999. v1.0.
W3C. XSL Transformations (XSLT) Version 1.0, November 1999.
W3C. Simple Object Access Protocol (SOAP) 1.1, 2000.

W3C. Web Services Description Language (WSDL) 1.1, March 2001.
W3C. Web Services Architecture, February 2004.

W3C. XML Schema Part 1: Structures Second FEdition, October 2004.
W3C. XML Schema Part 2: Datatypes Second Edition, October 2004.
W3C. Web Services Addressing 1.0 - Core, 2006.

I. Weber, J. Haller, and J. Mulle. Automated Derivation of Executable Business Processes
from Choreographies in Virtual Organisations. International Journal of Business Process
Integration and Management, 3:85-95, 2008.

REFERENCES 39

[46] Z. Zakaria, R. Atan, A. Ghani, and N. Sani. Unit Testing Approaches for BPEL: A sys-
tematic Review. In Asia-Pacific Software Engineering Conference, pages 316-322, Penang,
Malaysia, December 2009. IEEE.

A COMPACT RESULT TABLES

|

Io[pueHuorjesuaduwo))-oyoauy

+|+

[V IPYED -0%0AT]

o3e)-o50AU]

++|+

OUASY -0y OAU]

++

++

+]+

PUR}SIOPU) ISNNON-ANATPO Y UOISU)XT]

puRISIOPU) ISTA -AJATO Y UOISUOIX

XY

Aydwryg

+|H |+ |+

++[+

e grONdsurposurydU) SO[(RLIRA -USISS Y

9)ePI[RA -USISSY

QIN[IRUOI}IA[0G-USISS Y

++

|+ |+ |+ |+

£y10doi-usissy

[+

oouaIejey partoddnsu) -yurpoulre J-usissy

NUrjoulIRJ-usssy

[RIOYIT-USISS Y

O ,-UOoIsSo1dX{-USISS Y

++]+

++]+

+ |+ |+ +

WOI-UOISSoId X -USISS Y

Lydurg-udssy

+

+

L1on{)-AdoH-usissy

oure \Juaw[o15deay-Ado)-uSissy

R)R(JUWOL]SUISSI\[2I0US[-Ad0))-USISS Y

+|+

Kyrodorgaqerre 190)-Ado))-usissy

R

PUNOJI0NI99SO[A)G)SK -ULIOJSURIT [SX O([-Ad0)-USISS Y

JNe JuornooXfogensue qng-uiojsuet [[SYo([-AdoH-usissy

}[NRJ0INOGPI[RAUT-ULIOJSURI] [SXO([-Ad0))-uSIssy

40

ULIOJSURIT [SXO([-Ad0)-usIssy

gsesrejad

BI}SOYOIJIO

gseuado

opo

Sredq

SOI}IAI}OR-OISB(q

SOI)IAIOR-OISEq ['V

so[qel, ynsoy joeduwio) Vy

41

A.1 basic-activities

[PS M UTH B {WO)STL)-MOIY T,

R JWO)SI)-MOIY T,

[+

MOIT T,

payIpowu) eye (N, -MOI}Y

BYR([HNB-MOIYIY

][+

MOIT}OY

syreJo],-Ardoyeateooy

+

SOBURTDXOFRSSIIN -A[dOYOATO0Y

syre Juol -ATdoyoAtesay

Jne;g-Ardoyostoooy

||

SO X ~UOT}R[OI A UOT}R[2110))-A[doy[0A1000Y]

ON-TIOT}R[OI A UOT}R[0.110,)-A]doA1909Y]

UIO[-UOI}R[OI A UOI}R[9110)-A[doVOAT09Y]

OUAGHUT-UOT)R[OLIO))-A[dOOAT000Y

+|+

OUASY JTUT-UOIIR[OLI0))-ATd00AT000Y]

IR 18onboySUnOIFu0)-A[doY0AT000Y

AdoyoAT000Y

OUAGHUT-UOIYR[OLIO) -OATOIY

+|+ |+

OUASY JTU-UOTIR[OII0)-9ATOINY

R JOATO0Y SUIIOTJUO)-OATINY]

IR OATODISNONSIUIY -OATOIIY]

AATOON

+|+

++ |+

S)IeJO,-o50AU]

)N J-OUAG-5OAU]

|

OUAG-9¥0AU]

+|+

S1Ie WO -0y OAU]

++[+

Kydwr-osjoAuf

+|+

OUAGIUT-TLIDIR J-UOIJR[O.LIO)) - OAU]

OUASY JTU-UTIO}JR J-UOT}R[DII0) - OAU]

|

+

OUAGHUT-UOT)R[S.LI0)) - OAU]

+ |+ |+ +

OUASY HUT-UOTJR[SLIO) -ONOAU]

gsesrejad

BI}SOYIJIO

gseuado

opo

Sredq

SaI}IAI}OR-OISB(q

A COMPACT RESULT TABLES

42

+

+

Jnegprepur)gu)yx-odoog

|

sypreJ-sIo[pueiuoa-0doog

[() -WLIR] T U()-SIOPURTUAH -0d00G

[1u) -AreAryeadoy-uLre] yu()-smopue iusa-odoog

10-A10Ar 1R doy -t U()-SIO[pURHIUAH -0d00g

A1oar]yeadoy]-uIe] yu()-SIo[pURjuaA-0d0oog

+ |+ |+ |+ +

I0,{-TLIR] Y U()-SIS[PURueAf -0d0og

|+ |+]+

OUAGHUT-SIO[PUR JUSAG-0d00G

+

JUASY JIUT-SI[pURIuaAq -0d0dg

|

OUAGHUT-S30GUOI}R[2.110)-0d00g

DUASYJTUT-S)oQUOT)R[9.110)-0d00g

uorjyesuoduwoH)xe[duro)-odoog

odoogejesuaduio))-0doog

4|+ |+

4]+

oresuaduio))-odoog

1sonboySUISSI

|]+

AdoySutssIy

gsesrejad

BJI)SOYDIO

qseuado

opo | Sfodq

sodoos

sodoos

¢’V

[IU)-3Te M

+

ON[BA UOISSOIAX PI[RAUT-I0 -} TRAN

10-3TeA

ATdoyg - e o[RITR A POZITRTITUIU) -SOTqRIIRA

[+

[+

OOAUT-)[1eJO[([RLIRA POZI[RTTUIU) -SO[(RLIR A\

UOLYRZI[RTIU[}[NeJO(]-SO[(RLIEA

SO[([RLIE\ PI[RAU-DJRPI[BA

9FepI[eA

]+

ooedsoure NJNOY I A\ -MOIY T,

+|+

[

RYR(THIBI-MOIY T,

gsesfejad

BIIS9YDIO

gseuado

apo

Sredq

SAI}IAI}OR-OISB(q

43

structured-activities

A3

S9OUR)ISUTSUIYRII)OATIIN]-MO[]

UOI}IPUO) UO}ISURL] -SYUIT-MO]]

amyrejuropssorddng-syury-mor

SOOUR)SUTSUIYII)IATIIN]-SHUIT-MO] .

QIN[IBUIO[-SYUI'T-MO]]

UOI}IPUOULO [-S)UITT-MO[]

SHUT[-MOTH

o[durexsyydeIn)-morfq

SYUrTATepunog-Mmo[q

l_l

IT

|||+

|]+

MO[]

gsesrejad

BI}SOYOI0

gseuado

opo

Sredq

SOI}IAT}OR-PAIN)ONIIS

SOI}IAI}OR-PAINIONIIS

€V

SUIILIMIOA()-So[qeLIRA -0d00g

+|+

so[qreLIeA -0d00g

SuryeSedoi 1o NNe-SIo[pURUOI}eUTULIs],-0d00g

4|+ |+

sIs[puruolyeuIuLIg] -0d0oog

|

uoryesuaduwo)pajeada -odoog

uorjesuoduon)jonajsuoHorqeieadoy -odoog

syureujIeJ-0doog

+|+|+

so8uRyoXosesso N -0d00g

poyeos-odoog

vIR([O[(LIRA -SIo[pUR}Ne-0d00g

od A T o8esso\ e -SIo[puR I Ne]-0d0og

JuoWRH e J-SIo[pueHine J-0doog

IOPIO DY) -SI[PURH N I-0d0dg

[V [P¥e) S10[pue3ue {-0doog

|+ |+ [+

l_l
l_l

sIo[pueHIneg-0doog

R R R e e e e e e P E B

|+ |+ | |||

I Ed R R R EA EA R s

aIn[re JuIof-yne Jprepue)su)x-odoog

gsesfejad

BI}S9OYIJIO

gseuado

9

T

o

Sredq

sodoos

A COMPACT RESULT TABLES

44

O

+|+

Qouenbag

Ayrpenbgyqryup yeodoy

4|+ |+

M yeadoy

[HU[) -ULeVUQ- L]

10,{-WLIR[UL

|+ [+ |||+

9OURISUTIYRII) -1]

||

+ |+ |+ |+ +

OUAGHU-SUOIJR[OLION) DI]

|

OUASY U-SUOT)R[OIION) -1

oN[RA UOISSOIAX pI[eAUT-J]

OSTHJIOSTH I

JIOSTH I

OSTHJI

H[H[+]+

||+

||

J1

I9YUNO))}IRIGOSIRTOO T -ORH IO

+

[erR IR J-Y2RHI0]

Ipyuno)dojgeAreSa N -yorHI0q

++[+

+] 4|+

I9JUNO0)}TRIGOATIRGO N -[ORG 10,

aqreLIRA I9JUN0)RR dN([-[oeHI0]

sIn[re Juoryipuo) uore[dwo)-yoei 10,

AU SOYPURIGNISSOONG-UOTHTPUO)UOTIS[A U0 -[DRG10,]

++]+

[P[reIRJ -UO01IPUO)UOI[d O -[2RH 10,

SeTPURIFAAIRFO N -U0IIPUO) U0 WO) -[eH 10,

uonIpuo)uona[duwo)-ype 10,4

l_|

]

YORHIO

gses[ejad

BJIIS9YD.IO

gseuado

apo

Sredq

SOI}IAI}OR-PAIN)ONIIS

45

B Test Descriptions and Results

Process name

Assign-Copy-DoXslTransform

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that uses the doXslTrans-
form function.

Test case: Good-Case

input operation assertions
) synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB

Table 9: Assign-Copy-DoXslTransform Test

Process name

Assign-Copy-DoXslTransform-InvalidSourceFault

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that uses the doXslTrans-
form function without a proper source for the script.

Test case: Good-Case

input operation assertions
1 synchronous | fault: xsltInvalidSource
Support
bpel-g ODE openESB | Orchestra | PetalsESB

Table 10: Assign-Copy-DoXslTransform-InvalidSourceFault Test

Process name

Assign-Copy-DoXslTransform-SubLanguageExecutionFault

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that uses the doXslTrans-
form function, but where the actual stylesheet has errors.

Test case: Good-Case

input operation assertions

1 synchronous | fault: subLanguageExecutionFault
Support

bpel-g ODE openESB | Orchestra | PetalsESB

Table 11: Assign-Copy-DoXslTransform-SubLanguageFExecutionFault Test

46

B TEST DESCRIPTIONS AND RESULTS

Process name

Assign-Copy-DoXslTransform-XsltStylesheet Not Found

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that uses the doXslTrans-
form function, but where the stylesheet does not exist.

Test case: Good-Case

input operation assertions

1 synchronous | fault: xsltStylesheetNotFound
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ - - - -

Table 12: Assign-Copy-DoXslTransform-XsltStylesheetNotFound Test

Process name

Assign-Copy-Get VariableProperty

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that uses the getVari-
ableProperty function.

Test case: Good-Case

input operation assertions
5 synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 13:

Assign-Copy-Get VariableProperty Test

Process name

Assign-Copy-IgnoreMissingFromData

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign with a copy that has ignore-
MissingFromData set to yes and contains a from element with an erroneous
xpath statement. Therefore, the assign should be ignored.

Test case: Good-Case

input operation assertions
) synchronous | output: -1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 14:

Assign-Copy-IgnoreMissingFromData Test

Process name

Assign-Copy-KeepSrcElementName

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign with a copy that has keep-
SrcElementName set to yes. This should trigger a fault.

Test case: Good-Case

input operation assertions

1 synchronous | fault: mismatchedAssignmentFailure
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ - - - -

Table 15: Assign-Copy-KeepSrcElementName Test

47

Process name

Assign-Copy-Query

Activities and configuration

assign query receive reply sequence

Description

A process with a receive-reply pair with an intermediate assign that uses a
query in a from element.

Test case: Good-Case

Support

input operation assertions

) synchronous | output: 5

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 16: Assign-Copy-Query Test

Process name

Assign-Empty

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that uses empty to and
from elements.

Test case: Good-Case

input operation assertions
) synchronous | output: 5

Support

bpel-g ODE openESB | Orchestra | PetalsESB

Table 17: Assign-Empty Test

Process name

Assign-Expression-From

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that uses an expression in
a from element.

Test case: Good-Case

Support

input operation assertions

5 synchronous | output: 5

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 18: Assign-Expression-From Test

Process name

Assign-Expression-To

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that uses an expression in
a to element.

Test case: Good-Case

Support

input operation assertions

) synchronous | output: 5

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 19: Assign-Expression-To Test

48

B TEST DESCRIPTIONS AND RESULTS

Process name

Assign-Literal

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that copies a literal.

Test case: Good-Case

Support

input operation assertions

) synchronous | output: 1

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 20: Assign-Literal Test

Process name

Assign-PartnerLink

Activities and configuration

addr:EndpointReference assign invoke receive reply sequence sref:service-ref

Description

A receive-reply pair with an intermediate assign that assigns a WS-A End-
pointReference to a partnerLink which is used in a subsequent invoke.

Test case: Good-Case

Support

input operation assertions

5 synchronous | output: 0

bpel-g ODE openESB | Orchestra | PetalsESB
| - - - -

Table 21: Assign-PartnerLink Test

Process name

Assign-PartnerLink-UnsupportedReference

Activities and configuration

assign invoke receive reply sequence sref:service-ref

Description

A receive-reply pair with an intermediate assign that assigns a bogus refer-
nce to a partnerLink which is used in a subsequent invoke. The refernce
scheme should not be supported by any engine and fail with a corresponding
fault.

Test case: Good-Case

input operation assertions

1 synchronous | fault: unsupportedReference

Support

bpel-g ODE openESB | Orchestra | PetalsESB

- - + - -

Table 22: Assign-PartnerLink-UnsupportedReference Test

Process name

Assign-Property

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that copies from a property
instead of a variable.

Test case: Good-Case

Support

input operation assertions

) synchronous | output: 5

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - +

Table 23: Assign-Property Test

49

Process name

Assign-SelectionFailure

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that uses a from that retuns
zero nodes. This should trigger a selectionFailure.

Test case: Good-Case

input operation assertions
1 synchronous | fault: selectionFailure
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - -

Table 24: Assign-SelectionFailure Test

Process name

Assign-Validate

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair with an intermediate assign that has validate set to yes.
The assign copies to a variable that represents a month and the validation
should fail for values not in the range of one to twelve.

Test case: Input Value 13 should

return validation fault input operation assertions
13 synchronous | fault: invalidVariables

Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + - -

Table 25: Assign-Validate Test

Process name

Assign-VariablesUnchangedInspiteOfFault

Activities and configuration

assign catchAll faultHandlers receive reply sequence

Description

A receive-reply pair with two intermediate assigns, the second of which
produces a fault that is handled by the process-level faultHandler to send
the response. Because of the fault, the second assign should have no impact
on the response.

Test case: Good-Case

input operation assertions
1 synchronous | output: -1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 26: Assign-VariablesUnchangedInspiteOfFault Test

20

B TEST DESCRIPTIONS AND RESULTS

Process name

Empty

Activities and configuration

assign empty receive reply sequence

Description

A receive-reply pair with an intermediate empty.

Test case: Good-Case

Support

input operation assertions

5 synchronous | output: 5

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 27: Empty Test

Process name

Exit

Activities and configuration

assign exit receive reply sequence

Description

A receive-reply pair with an intermediate exit. There should not be a normal
response.

Test case: Good-Case

input operation assertions
1 synchronous | Exit

Support

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 28: Exit Test

Process name

ExtensionActivity-MustUnderstand

Activities and configuration

assign extensionActivity extensions receive reply sequence

Description

A receive-reply pair with an extensionActivity from an extension that has
mustUnderstand set to no. The process defnition must be rejected according
to Sec. 14.

Test case: Good-Case

input operation assertions
5 synchronous | NotDeployable

Support

bpel-g ODE openESB | Orchestra | PetalsESB

- - - - -

Table 29:

ExtensionActivity-MustUnderstand Test

51

Process name

ExtensionActivity-NoMust Understand

Activities and configuration

assign extensionActivity extensions receive reply sequence

Description

A receive-reply pair with an extensionActivity from an extension that has
mustUnderstand set to no. The activity should be treated as an empty
according to Sec. 10.9.

Test case: Good-Case

Support

input operation assertions

b) synchronous | output: 5

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - -

Table 30: ExtensionActivity-NoMustUnderstand Test

Process name

Invoke-Async

Activities and configuration

assign invoke receive reply sequence

Description

A receive-reply pair with an intermediate asynchronous invoke.

Test case: Good-Case

input operation assertions
5 synchronous | output: 5

Support

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 31: Invoke-Async Test

Process name

Invoke-Catch

Activities and configuration

assign catch invoke receive reply sequence

Description

A receive-reply pair with an intermediate invoke that results in a fault for
certain input, but catches that fault and replies.

Test case: Good-Case

input operation assertions
-5 synchronous | output: 0

Support

bpel-g ODE openESB | Orchestra | PetalsESB
- - - _|_ -

Table 32: Invoke-Catch Test

Process name

Invoke-CatchAll

Activities and configuration

assign catchAll invoke receive reply sequence

Description

A receive-reply pair with an intermediate invoke that results in a fault for
certain input, but catches all faults and replies.

Test case: Enter-CatchAll

input operation assertions
-5 synchronous | output: 0

Support

bpel-g ODE openESB | Orchestra | PetalsESB
+ - - + +

Table 33: Invoke-CatchAll Test

52

B TEST DESCRIPTIONS AND RESULTS

Process name

Invoke-CompensationHandler

Activities and configuration

assign catchAll compensate compensationHandler faultHandlers invoke re-
ceive reply sequence throw

Description

A receive-reply pair combined with an invoke that has a compensation-
Handler, followed by a throw. The fault is caught by the process-level
faultHandler. That faultHandler triggers the compensationHandler of the
invoke which contains the reply.

Test case: Good-Case

input operation assertions
1 synchronous | output: 0
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + - - -

Table 34: Invoke-CompensationHandler Test

Process name

Invoke-Correlation-Init Async

Activities and configuration

assign correlationSets invoke receive reply sequence

Description

An asynchronous receive that initiates a correlationSet used by a subsequent
invoke which is thereafter followed by receive-reply pair that also uses the
correlationSet.

Test case: Good-Case

input operation assertions
1 asynchronous
wait 1000 ms
for
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
| - - - -

Table

35: Invoke-Correlation-InitAsync Test

Process name

Invoke-Correlation-InitSync

Activities and configuration

assign correlationSets invoke receive reply sequence

Description

A synchronous receive that initiates a correlationSet used by a subsequent
invoke which is thereafter followed by receive-reply pair that also uses the
correlationSet.

Test case: Good-Case

input operation assertions
1 synchronous | output: 0
wait 1000 ms
for
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + - + -

Table 36: Invoke-Correlation-InitSync Test

93

Process name

Invoke-Correlation-Pattern-Init Async

Activities and configuration

assign correlationSets invoke receive reply sequence

Description

An asynchronous receive that initiates a correlationSet used by a subsequent
invoke that also uses a request-response pattern and is thereafter followed
by receive-reply pair that also uses the correlationSet.

Test case: Good-Case

input operation assertions
1 asynchronous
wait 1000 ms
for
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + - -

Table 37:

Invoke-Correlation-Pattern-Init Async Test

Process name

Invoke-Correlation-Pattern-InitSync

Activities and configuration

assign correlationSets invoke receive reply sequence

Description

A synchronous receive that initiates a correlationSet used by a subsequent
invoke that also uses a request-response pattern and is thereafter followed
by receive-reply pair that also uses the correlationSet.

Test case: Good-Case

input operation assertions
1 synchronous | output: 0
wait 1000 ms
for
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + - - -

Table 38:

Invoke-Correlation-Pattern-InitSync Test

Process name

Invoke-Empty

Activities and configuration

assign invoke receive reply sequence

Description

A receive-reply pair with an intermediate invoke of an operation that has no
message associated with it. No definition of inputVariable or outputVariable
is required.

Test case: Good-Case

input operation assertions
b) synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
- _|_ - _|_ -

Table 39: Invoke-Empty Test

o4

B TEST DESCRIPTIONS AND RESULTS

Process name

Invoke-FromParts

Activities and configuration

assign fromParts invoke receive reply sequence

Description

A receive-reply pair with an intermediate synchronous invoke that uses the
fromParts syntax.

Test case: Good-Case

input operation assertions
5 synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - - + -

Table 40: Invoke-FromParts Test

Process name

Invoke-Sync

Activities and configuration

assign invoke receive reply sequence

Description

A receive-reply pair with an intermediate synchronous invoke.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 41: Invoke-Sync Test

Process name

Invoke-Sync-Fault

Activities and configuration

assign invoke receive reply sequence

Description

A receive-reply pair with an intermediate synchronous invoke that should
trigger a fault.

Test case: Good-Case

assertions
fault: CustomFault

input operation
-5 synchronous

Support

bpel-g ODE openESB | Orchestra | PetalsESB
- - - - +

Table 42: Invoke-Sync-Fault Test

Process name

Invoke-ToParts

Activities and configuration

assign invoke receive reply sequence toParts

Description

A receive-reply pair with an intermediate synchronous invoke that uses the
toParts syntax.

Test case: Good-Case

input operation assertions
5 synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - - + -

Table 43: Invoke-ToParts Test

95

Process name

Receive

Activities and configuration

receive

Description

A single asynchronous receive.

Test case: Good-Case

input operation assertions
1 asynchronous
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 44: Receive Test

26

B TEST DESCRIPTIONS AND RESULTS

Process name

Receive-AmbiguousReceiveFault

Activities and configuration

assign correlationSets flow receive reply sequence

Description

An asynchronous receive that initiates two correlationSets, followed by a
flow with two sequences that contain synchronous receive-reply pairs for
the same operation but differnet correlationSets. Should trigger an ambigu-
ousReceive fault.

Test case: Good-Case

input operation assertions
1 asynchronous
wait 1000 ms
for
1 synchronous | fault: ambiguousReceive
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - - - -

Table 45: Receive-AmbiguousReceiveFault Test

Process name

Receive-ConflictingReceiveFault

Activities and configuration

assign correlationSets flow receive reply sequence

Description

An asynchronous receive that iniates a correlationSet, followed by a flow
with two sequences that contain synchronous receive-reply pair for the same
operation and correlationSet. Should trigger a conflictingReceive fault.

Test case: Good-Case

input operation assertions
1 synchronous
wait 1000 ms
for
1 synchronous | fault: conflictingReceive
Support
bpel-g ODE openESB | Orchestra | PetalsESB

Table 46: Receive-ConflictingReceiveFault Test

o7

Process name Receive-Correlation-Init Async
Activities and configuration assign correlationSets receive reply sequence
Description Two asynchronous receives, followed by a receive-reply pair, and bound to
a single correlationSet.
Test case: Good-Case i _ _
nput operation assertions
1 asynchronous
wait 1000 ms
for
1 asynchronous
wait 1000 ms
for
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
| - - - -
Table 47: Receive-Correlation-Init Async Test
Process name Receive-Correlation-InitSync
Activities and configuration assign correlationSets receive reply sequence
Description One synchronous receive, one asynchronous receive, followed by a receive-
reply pair, and bound to a single correlationSet.
Test case: Good-Case i _ _
mput operation assertions
1 synchronous | output: 0
wait 1000 ms
for
1 asynchronous
wait 1000 ms
for
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - - - -
Table 48: Receive-Correlation-InitSync Test
Process name ReceiveReply
Activities and configuration assign receive reply sequence
Description A simple receive-reply pair.
Test case: Good-Case
input operation assertions
) synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 49: ReceiveReply Test

o8

B TEST DESCRIPTIONS AND RESULTS

Process name

ReceiveReply-ConflictingRequestFault

Activities and configuration

assign correlationSets messageExchanges receive reply sequence while

Description

A synchronous interaction, followed by intermediate while that subsequently
enables multiple receives that correspond to a single synchronous message

exchange. Should trigger a conflictingRequest fault.

Test case: Good-Case

input operation assertions

1 synchronous | output: 1

wait 1000 ms

for

1 synchronous

wait 1000 ms

for

1 synchronous | fault: conflictingRequest
Support

bpel-g ODE openESB | Orchestra | PetalsESB

Table 50: ReceiveReply-ConflictingRequestFault Test

Process name

ReceiveReply-Correlation-Init Async

Activities and configuration

assign correlationSets receive reply sequence

Description

An asynchronous receive that initiates a correlationSet followed by a receive-
reply pair that uses this set.

Test case: Good-Case

input operation assertions
) asynchronous
wait 1000 ms
for
5 synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + - -

Table 51:

ReceiveReply-Correlation-InitAsync Test

Process name

ReceiveReply-Correlation-InitSync

Activities and configuration

assign correlationSets receive reply sequence

Description

A synchronous recieve that initiates a correlationSet followed by a receive-
reply pair that uses this set.

Test case: Good-Case

input operation assertions
5 synchronous | output: 0
wait 1000 ms
for
5 synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + - - -

Table 52:

ReceiveReply-Correlation-InitSync Test

29

Process name

ReceiveReply-CorrelationViolation-Join

Activities and configuration

assign correlationSets invoke receive reply sequence

Description

A receive-reply pair that initates a correlationSet with an intermediate in-
voke that tries to join the correlationSet. The join operation should only
work if the correlationSet was initiate with a certain value.

Test case: Good-Case-1

input operation assertions

1 synchronous | fault: correlationViolation
Test case: Good-Case-2 i _ _

mput operation assertions

2 synchronous | output: 2

Support

bpel-g ODE openESB | Orchestra | PetalsESB

Table 53: ReceiveReply-CorrelationViolation-Join Test

Process name

ReceiveReply-Correlation Violation-No

Activities and configuration

assign correlationSets receive reply sequence

Description

A receive-reply pair that uses an uninitiated correlationSet and sets initiate
to no. Should trigger a correlationViolation fault.

Test case: Good-Case

input operation assertions
1 synchronous | fault: correlationViolation

Support

bpel-g ODE openESB | Orchestra | PetalsESB
- - _|_ - -

Table 54: ReceiveReply-CorrelationViolation-No Test

Process name

ReceiveReply-Correlation Violation-Yes

Activities and configuration

assign correlationSets receive reply sequence

Description

Two subsequent receive-reply pairs which share a correlationSet and where
both receives have initiate set to yes.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
wait 1000 ms
for
1 synchronous | fault: correlationViolation
Support
bpel-g ODE openESB | Orchestra | PetalsESB
| - - - -

Table 55: ReceiveReply-CorrelationViolation-Yes Test

60

B TEST DESCRIPTIONS AND RESULTS

Process name

ReceiveReply-Fault

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair replies with a fault instead of a variable.

Test case: Good-Case

input operation assertions
1 synchronous | fault: syncFault
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 56: ReceiveReply-Fault Test

Process name

ReceiveReply-FromParts

Activities and configuration

assign fromParts receive reply sequence

Description

A receive-reply pair that uses the fromPart syntax instead of a variable.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - - + -

Table 57: ReceiveReply-FromParts Test

Process name

ReceiveReply-MessageExchanges

Activities and configuration

assign messageExchanges receive reply sequence

Description

A simple receive-reply pair that uses a messageExchange.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 58: ReceiveReply-MessageExchanges Test

Process name

ReceiveReply-ToParts

Activities and configuration

assign receive reply sequence toParts

Description

A receive-reply pair that uses the toPart syntax instead of a variable.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - - + -

Table 59: ReceiveReply-ToParts Test

61

Process name

Rethrow

Activities and configuration

assign catchAll faultHandlers receive rethrow sequence throw

Description

A receive activity with an intermediate throw and a fault handler with a
catchAll. The fault handler rethrows the fault.

Test case: Good-Case

input operation assertions

1 synchronous | fault: completionConditionFailure
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ + + - -

Table 60: Rethrow Test

Process name

Rethrow-FaultData

Activities and configuration

assign catch faultHandlers receive rethrow scope sequence throw

Description

A receive activity with an intermediate throw that uses a faultVariable.
A fault handler catches and rethrows the fault. The fault should be the
response along with the data.

Test case: Good-Case

input operation assertions

1 synchronous | output: 1; fault: completionConditionFailure
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ + - - -

Table 61: Rethrow-FaultData Test

Process name

Rethrow-FaultDataUnmodified

Activities and configuration

assign catch faultHandlers receive rethrow scope sequence throw

Description

A receive activity with an intermediate throw that uses a faultVariable. A
fault handler catches the fault, changes the data, and rethrows the fault.
The fault should be the response with unchanged data.

Test case: Good-Case

input operation assertions

1 synchronous | output: 1; fault: completionConditionFailure
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ + - - -

Table 62: Rethrow-FaultDataUnmodified Test

62

B TEST DESCRIPTIONS AND RESULTS

Process name

Throw

Activities and configuration

assign receive reply sequence throw

Description

A receive-reply pair with an intermediate throw. The response should a
soap fault containing the bpel fault.

Test case: Good-Case

input operation assertions

1 synchronous | fault: completionConditionFailure
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ + + - -

Table 63: Throw Test

Process name

Throw-CustomFault

Activities and configuration

receive sequence throw

Description

A receive-reply pair with an intermediate throw that throws a custom fault
that undefined in the given namespace. The response should be a soap fault
containing the custom fault.

Test case: Good-Case

input operation assertions
1 synchronous | fault: testFault
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - -

Table 64: Throw-CustomFault Test

63

Process name

Throw-CustomFaultInWsdl

Activities and configuration

assign receive sequence throw

Description

A receive-reply pair with an intermediate throw that throws a custom fault
defined in the myRole WSDL. The response should be a soap fault contain-
ing the custom fault.

Test case: Good-Case

input operation assertions
1 synchronous | fault: syncFault
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - -

Table 65: Throw-CustomFaultInWsdl Test

Process name

Throw-FaultData

Activities and configuration

assign receive reply sequence throw

Description

A receive-reply pair with an intermediate throw that also uses a faultVari-
able. The content of the faultVariable should be contained in the response.

Test case: Good-Case

input operation assertions

1 synchronous | output: 1; fault: completionConditionFailure
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ + - - -

Table 66: Throw-FaultData Test

Process name

Throw-WithoutNamespace

Activities and configuration

assign receive reply sequence throw

Description

A receive-reply pair with an intermediate throw that uses a bpel fault with-
out explicitly using the bpel namespace. The respone should be a soap fault
containing the bpel fault.

Test case: Good-Case

input operation assertions

1 synchronous | fault: completionConditionFailure
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ + + - -

Table 67: Throw-WithoutNamespace Test

Process name

Validate

Activities and configuration

assign receive reply sequence validate

Description

A receive-reply pair with an intermediate variable validation. The variable
to be validated describes a month, so only values in the range of 1 and 12
should validate successfully.

Test case: Input Value 13 should

return validation fault input operation assertions
13 synchronous | fault: invalidVariables

Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + - -

Table 6&8: Validate Test

64

B TEST DESCRIPTIONS AND RESULTS

Process name

Validate-Invalid Variables

Activities and configuration

assign receive reply sequence validate

Description

A receive-reply pair with an intermediate variable validation. The variable
to be validated is of type xs:int and xs:boolean is copied into it.

Test case: Good-Case

input operation assertions
1 synchronous | fault: invalidVariables
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - - - -

Table 69: Validate-InvalidVariables Test

Process name

Variables-DefaultInitialization

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair where the variable of the reply is assigned with a default

value.
Test case: Default Value-10-
Should-Be-Returned input operation assertions
) synchronous | output: 10
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - - + +

Table 70: Variables-DefaultInitialization Test

Process name

Variables-Uninitialized VariableFault-Invoke

Activities and configuration

invoke receive reply sequence

Description

A receive-reply pair with intermediate invoke.

invoke is not initialized.

The inputVariable of the

Test case: Good-Case

input operation assertions

1 synchronous | fault: uninitializedVariable
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ + + - -

Table 71: Variables-Uninitialized VariableFault-Invoke Test

Process name

Variables-Uninitialized VariableFault-Reply

Activities and configuration

receive reply sequence

Description

A receive-reply pair where the variable of the reply is not initialized.

Test case: Good-Case

input operation assertions

1 synchronous | fault: uninitializedVariable
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ + - - -

Table 72: Variables-Uninitialized VariableFault-Reply Test

65

Process name

Wait-For

Activities and configuration

assign receive reply sequence wait

Description

A receive-reply pair with an intermediate wait that pauses execution for five
seconds.

Test case: Good-Case

input operation assertions
5 synchronous | output: 5

Support

bpel-g ODE openESB | Orchestra | PetalsESB
- + + + -

Table 73: Wait-For Test

Process name

Wait-For-InvalidExpressionValue

Activities and configuration

assign receive reply sequence wait

Description

A receive-reply pair with an intermediate wait. The for element is assigned
a value of xs:int, but only xs:duration is allowed.

Test case: Good-Case

Support

input operation assertions

5 synchronous | fault: invalidExpressionValue
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - -

Table 74: Wait-For-InvalidExpressionValue Test

Process name

Wait-Until

Activities and configuration

assign receive reply sequence wait

Description

A receive-reply pair with an intermediate wait that pauses the execution
until a date in the past. Therefore, the wait should complete instantly.

Test case: Good-Case

input operation assertions
) synchronous | output: 5

Support

bpel-g ODE openESB | Orchestra | PetalsESB
- + + + +

Table 75: Wait-Until Test

Process name

MissingReply

Activities and configuration

assign receive sequence

Description

A receive for a synchronous operation with no associated reply.

Test case: Good-Case

Support

input operation assertions

1 synchronous | fault: missingReply

bpel-g ODE openESB | Orchestra | PetalsESB
| - - - -

Table 76: MissingReply Test

66

B TEST DESCRIPTIONS AND RESULTS

Process name

MissingRequest

Activities and configuration

assign messageExchanges receive reply sequence

Description

A receive and a reply which belong to different messageExchanges. On the
execution of the reply, a missingRequest fault should be thrown.

Test case: Good-Case

Support

input operation assertions

1 synchronous | fault: missingRequest

bpel-g ODE openESB | Orchestra | PetalsESB
+ - - - -

Table 77: MissingRequest Test

Process name

Scope-Compensate

Activities and configuration

assign catchAll compensate compensationHandler faultHandlers receive re-
ply scope sequence throw

Description

A scope with a receive-reply pair where the reply is located in a compensa-
tionHandler. The scope is followed by a throw and the compensationHandler
is invoked from the process-level faultHandler that catches the fault using
compensate.

Test case: Good-Case

Support

input operation assertions

1 synchronous | output: 1

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - -

Table 78: Scope-Compensate Test

Process name

Scope-CompensateScope

Activities and configuration

assign catchAll compensateScope compensationHandler faultHandlers re-
ceive reply scope sequence throw

Description

A scope with a receive-reply pair where the reply is located in a compensa-
tionHandler. The scope is followed by a throw and the compensationHandler
is invoked from the process-level faultHandler that catches the fault using
compensateScope.

Test case: Good-Case

Support

input operation assertions

1 synchronous | output: 1

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - -

Table 79: Scope-CompensateScope Test

67

Process name

Scope-ComplexCompensation

Activities and configuration

assign catchAll compensate compensationHandler empty faultHandlers re-
ceive reply scope sequence throw

Description

Complex scope compensation test case that implements the scenario de-
scribed in Sec. 12.4.2.

Test case: Good-Case

input operation assertions
1 synchronous | output: 3
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 80: Scope-ComplexCompensation Test

68

B TEST DESCRIPTIONS AND RESULTS

Process name

Scope-CorrelationSets-InitAsync

Activities and configuration

assign correlationSets receive reply scope sequence

Description

A scope with an asynchronous receive which initiates the correlation set and
a receive-reply pair, as well as a scope-level definition of a correlationSet that
is used by the messaging activities.

Test case: Good-Case

input operation assertions
1 asynchronous
1 synchronous | output: 2
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + - -

Table 81: Scope-CorrelationSets-Init Async Test

Process name

Scope-CorrelationSets-InitSync

Activities and configuration

assign correlationSets receive reply scope sequence

Description

A scope with two subsequent receive-reply pairs and a scope-level definition
of a correlationSet that is used by the messaging activities.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
1 synchronous | output: 2
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + - - -

Table 82: Scope-CorrelationSets-InitSync Test

69

Process name

Scope-EventHandlers-InitAsync

Activities and configuration

assign correlationSets eventHandlers onEvent receive reply scope sequence
wait

Description

An asynchronous receive followed by a wait and a process-level onMessage
eventHandler. The receive initiates a correlationSet on which the onMessage
correlates with a synchronous operation.

Test case: Good-Case

input operation assertions
5 asynchronous
) synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + - -

Table 83: Scope-EventHandlers-InitAsync Test

Process name

Scope-EventHandlers-InitSync

Activities and configuration

assign correlationSets eventHandlers onEvent receive reply scope sequence
wait

Description

A receive-reply pair followed by a wait and a process-level onMessage even-
tHandler. The receive initiates a correlationSet on which the onMessage
correlates with a synchronous operation.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
wait 3000 ms
for
1 synchronous | output: 2
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + - + -

Table 84: Scope-EventHandlers-InitSync Test

Process name

Scope-EventHandlers-OnAlarm-For

Activities and configuration

assign eventHandlers onAlarm receive reply scope sequence wait

Description

A receive-reply pair and a process-level onAlarm eventHandler. The receive
is followed by a wait that pauses execution for five seconds. The even-
tHandler waits for two seconds and replies to the receive.

Test case: Good-Case

input operation assertions
) synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
- + + + -

Table 85:

Scope-EventHandlers-OnAlarm-For Test

70

B TEST DESCRIPTIONS AND RESULTS

Process name

Scope-EventHandlers-OnAlarm-RepeatEvery

Activities and configuration

assign eventHandlers onAlarm receive repeatEvery reply scope sequence
wait

Description

A receive-reply pair with an intermediate wait and a process-level onAlarm
eventHandler. The eventHandler repeats execution every second and adds
one to the final result. The intermediate wait pauses execution for 2.2
seconds, after which the current result is replied.

Test case: Good-Case

input operation assertions
5 synchronous | output: 2
Support
bpel-g ODE openESB | Orchestra | PetalsESB
- + + + -

Table 86: Scope-EventHandlers-OnAlarm-RepeatEvery Test

Process name

Scope-EventHandlers-OnAlarm-RepeatEvery-For

Activities and configuration

assign eventHandlers onAlarm receive repeatEvery reply scope sequence
wait

Description

A receive-reply pair with an intermediate wait and a process-level onAlarm
eventHandler. The eventHandler repeats execution every second and adds
one to the final result. The repetition takes place after one second, so the
handler should repeat exactly once. The intermediate wait pauses execution
for 2.2 seconds, after which the current result is replied.

Test case: Good-Case

input operation assertions
) synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
- _|_ _|_ - -

Table 87: Scope-EventHandlers-OnAlarm-RepeatEvery-For Test

Process name

Scope-EventHandlers-OnAlarm-Repeat Every-Until

Activities and configuration

assign eventHandlers onAlarm receive repeatEvery reply scope sequence
wait

Description

A receive-reply pair with an intermediate wait and a process-level onAlarm
eventHandler. The eventHandler repeats execution every second and adds
one to the final result. The repetition takes place after a date in the past,
so the handler should execute immediately. The intermediate wait pauses
execution for 2.2 seconds, after which the current result is replied.

Test case: Good-Case

input operation assertions
5 synchronous | output: 2
Support
bpel-g ODE openESB | Orchestra | PetalsESB
- + + - -

Table 88: Scope-EventHandlers-OnAlarm-RepeatEvery-Until Test

71

Process name

Scope-EventHandlers-OnAlarm-Until

Activities and configuration

assign eventHandlers onAlarm receive reply scope sequence wait

Description

A receive followed by a scope with an onAlarm eventHandler and a wait.
The onAlarm waits until a date in the past and should therefore execute
immediately. Its body contains the reply to the initial receive.

Test case: Good-Case

input operation assertions
) synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
- + + + -

Table 89:

Scope-EventHandlers-OnAlarm-Until Test

Process name

Scope-EventHandlers-Parts

Activities and configuration

assign correlationSets eventHandlers fromParts onEvent receive reply scope
sequence wait

Description

An asynchronous receive followed by a wait and a process-level onMessage
eventHandler. The receive initiates a correlationSet on which the onMessage
correlates with a synchronous operation. Furthermore, the onMessage uses
the fromPart syntax.

Test case: Good-Case

input operation assertions
5 asynchronous
) synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
| - - - -

Table 90: Scope-EventHandlers-Parts Test

Process name

Scope-ExitOnStandardFault

Activities and configuration

assign receive reply sequence throw

Description

A scope with receive-reply pair and an intermediate throw. There is no
faultHandler, but the exitOnStandardFault attribute of the scope is set to
yes.

Test case: Good-Case

input operation assertions
5 synchronous | Exit
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + + +

Table 91: Scope-ExitOnStandardFault Test

72

B TEST DESCRIPTIONS AND RESULTS

Process name

Scope-ExitOnStandardFault-JoinFailure

Activities and configuration

assign receive reply scope sequence throw

Description

A scope with a receive-reply pair and an intermediate throw that throws
a joinFailure. There is no faultHandler, but the exitOnStandardFault at-
tribute of the scope is set to yes. However, the exitOnStandardFault semat-
ics do not apply to joinFailures.

Test case: Good-Case

input operation assertions
1 synchronous | fault: joinFailure
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - - - -

Table 92: Scope-ExitOnStandardFault-JoinFailure Test

Process name

Scope-FaultHandlers

Activities and configuration

assign catch faultHandlers receive reply scope sequence throw

Description

A scope with a receive followed by a intermediate throw. The fault that is
thrown is caught by the scope-level faultHandler by its faultName. Inside
this faultHandler is the reply to the initial receive.

Test case: Good-Case

assertions
output: 5

input operation
) synchronous

Support

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 93: Scope-FaultHandlers Test

Process name

Scope-FaultHandlers-CatchAll

Activities and configuration

assign catchAll faultHandlers receive reply scope sequence throw

Description

A scope with a receive followed by a intermediate throw. The fault that
is thrown is caught by the scope-level catchAll faultHandler. Inside this
faultHandler is the reply to the initial receive.

Test case: Good-Case

input operation assertions
5 synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 94: Scope-FaultHandlers-CatchAll Test

73

Process name

Scope-FaultHandlers-CatchOrder

Activities and configuration

assign catch catchAll empty faultHandlers receive reply scope sequence
throw

Description

A scope with a receive followed by a intermediate throw. The scope is
associated with mulitple faultHandlers. A specific one of these should catch
the fault and only inside this faultHandler is the reply to the initial receive.
The process is adapted from the example in Spec. 12.5.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - +

Table 95: Scope-FaultHandlers-CatchOrder Test

Process name

Scope-FaultHandlers-FaultElement

Activities and configuration

assign catch faultHandlers receive reply scope sequence throw

Description

A scope with a receive followed by a intermediate throw. The fault that is
thrown is caught by the scope-level faultHandler that uses a faultVariable
and faultElement configuration. Inside this faultHandler is the reply to the
initial receive.

Test case: Good-Case

input operation assertions
) synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - +

Table 96: Scope-FaultHandlers-FaultElement Test

Process name

Scope-FaultHandlers-FaultMessageType

Activities and configuration

assign catch faultHandlers receive reply scope sequence throw

Description

A scope with a receive followed by a intermediate throw. The fault that is
thrown is caught by the scope-level faultHandler that uses a faultVariable
and faultMessageType configuration. Inside this faultHandler is the reply
to the initial receive.

Test case: Good-Case

input operation assertions
5 synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - +

Table 97: Scope-FaultHandlers-FaultMessageType Test

74 B TEST DESCRIPTIONS AND RESULTS

Process name Scope-FaultHandlers-VariableData
Activities and configuration assign catch faultHandlers receive reply scope sequence throw
Description A scope with a receive followed by a intermediate throw. The fault that is

thrown is caught by the scope-level faultHandler that uses a faultVariable
and faultMessage configuration. Inside this faultHandler is the reply to the
initial receive and the data replied is the content of the faultVariable.

Test case: Good-Case

input operation assertions
1 synchronous | output: 0
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - -

Table 98: Scope-FaultHandlers-VariableData Test

I0)

Process name

Scope-Isolated

Activities and configuration

assign flow receive reply scope sequence

Description

A receive-reply pair that encloses a flow with ten isolated scopes which all
increment the result by one. As the scopes should not run in parallel, the

outcome must be deterministic.

Test case: Good-Case

input operation assertions
1 synchronous | output: 11
4 synchronous | output: 14
123 synchronous | output: 133
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - -

Table 99: Scope-Isolated Test

Process name Scope-MessageFExchanges
Activities and configuration assign messageExchanges receive reply scope sequence
Description A scope with a receive-reply pair and a scope-level definition of messageEx-
changes.
Test case: Good-Case
input operation assertions
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 100: Scope-MessageExchanges Test

76

B TEST DESCRIPTIONS AND RESULTS

Process name

Scope-PartnerLinks

Activities and configuration

assign invoke receive reply scope sequence

Description

A scope with a receive-reply pair and an intermediate invoke. The partner-
Link which is invoked is defined at scope-level.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 101: Scope-PartnerLinks Test

Process name

Scope-RepeatableConstructCompensation

Activities and configuration

assign catchAll compensate compensationHandler faultHandlers receive re-
ply scope sequence throw while

Description

A receive followed by a while that contains a scope with a compensation-
Handler. After the while comes a throw and its fault is caught by the
process-level faultHandler. This faultHandler first invokes compensation of
all scopes and the replies to the initial receive. The content of the reply
depends on the execution of the compensationHandlers.

Test case: Good-Case

input operation assertions
3 synchronous | output: 3
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + + -

Table 102: Scope-RepeatableConstructCompensation Test

Process name

Scope-RepeatedCompensation

Activities and configuration

assign catchAll compensate compensationHandler faultHandlers receive re-
ply scope sequence throw

Description

A scope with a receive-reply pair where the reply is located in a compen-
sationHandler. The scope is followed by a throw. The process-level fault-
Handler that catches the fault contains two subsequent compensates the
second of which should be treated as empty.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - -

Table 103: Scope-RepeatedCompensation Test

7

Process name

Scope-TerminationHandlers

Activities and configuration

assign catchAll empty faultHandlers flow receive reply scope sequence ter-
minationHandler throw wait

Description

A scope with a receive-reply pair and a nested scope in between. That
scope in turn contains a flow with two parallel scopes. Both scopes pause
execution for a short period. The scope that resumes execution first throws
a fault caught by the faultHandler of its parent scope. The should trigger

the execution of the terminationHandler of its sibling scope.

Test case: Good-Case

input operation assertions
) synchronous | output: -1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
- - + + -

Table 104: Scope-TerminationHandlers Test

Process name

Scope-TerminationHandlers-FaultNotPropagating

Activities and configuration

assign catch empty faultHandlers flow receive reply rethrow scope sequence
terminationHandler throw wait

Description

A scope with a receive-reply pair and a nested scope in between. That
scope in turn contains a flow with two parallel scopes. Both scopes pause
execution for a short period. The scope that resumes execution first throws
a fault caught by the faultHandler of its parent scope. The should trigger
the execution of the terminationHandler of its sibling scope. That termina-
tionHandler also throws a fault which should not be propagated.

Test case: Good-Case

input operation assertions
5 synchronous | output: -1

Support

bpel-g ODE openESB | Orchestra | PetalsESB
- - —+ —+ -

Table 105: Scope-TerminationHandlers-FaultNotPropagating Test

Process name

Scope-Variables

Activities and configuration

assign receive reply scope sequence

Description

A scope with a receive-reply pair and an intermediate invoke. The partner-
Link which is invoked is defined at scope-level.

Test case: Good-Case

Support

input operation assertions

1 synchronous | output: 1

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 106: Scope-Variables Test

78

B TEST DESCRIPTIONS AND RESULTS

Process name

Scope-Variables-Overwriting

Activities and configuration

assign receive reply scope sequence

Description

A scope with a receive-reply pair and another nested scope. The nested
scope overwrites a variable of the parent scope. Child-level manipulation of
this variable should not be visible at the parent scope.

Test case: Good-Case

Support

input operation assertions

123 synchronous | output: 3

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table

107: Scope-Variables-Overwriting Test

Process name

Flow

Activities and configuration

assign flow receive reply sequence

Description

A receive-reply pair with an intermediate flow that contains two assigns.

Test case: Good-Case

Support

input operation assertions

) synchronous | output: 7

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 108: Flow Test

Process name

Flow-BoundaryLinks

Activities and configuration

assign flow links receive reply sequence

Description

A receive-reply pair with an intermediate flow that contains an assign and
a sequence with an assign, as well as a link pointing from the former to
the later assign. That way the links crosses the boundary of a structured
activity, the sequence.

Test case: Good-Case

Support

input operation assertions

1 synchronous | output: 2

bpel-g ODE openESB | Orchestra | PetalsESB
+ + - + -

Table 109: Flow-BoundaryLinks Test

79

Process name Flow-GraphExample
Activities and configuration assign correlationSets empty flow joinCondition links receive reply sequence
Description An implementation of the flow graph process defined in Sec. 11.6.4.
Test case: Good-Case-1 i _ _
mput operation assertions
1 synchronous | output: 1
1 synchronous | output: 1
1 asynchronous
1 synchronous | output: 1
1 asynchronous
Test case: Good-Case-2
input operation assertions
1 synchronous | output: 1
1 asynchronous
1 synchronous | output: 1
1 synchronous | output: 1
1 asynchronous
Test case: Good-Case-3 i _ _
mput operation assertions
1 synchronous | output: 1
1 synchronous | output: 1
1 asynchronous
1 asynchronous
1 synchronous | output: 1
Test case: Good-Case-4 i _ _
nput operation assertions
1 synchronous | output: 1
1 asynchronous
1 synchronous | output: 1
1 asynchronous
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + - + -
Table 110: Flow-GraphExample Test
Process name Flow-Links
Activities and configuration assign flow links receive reply sequence
Description A receive-reply pair with an intermediate flow that contains two assigns

which have a precedence relationship between each other using links.

Test case: Good-Case

input operation assertions
1 synchronous | output: 2
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + - + -

Table 111: Flow-Links Test

80

B TEST DESCRIPTIONS AND RESULTS

Process name

Flow-Links-JoinCondition

Activities and configuration

assign flow joinCondition links receive reply sequence transitionCondition

Description

A receive-reply pair with an intermediate flow that contains three assigns,
two of which point to the third using links. Both links have transitionCon-
ditions and their target a joinCondition defined upon them. A joinFailure
should result, given not both of the links are activated.

Test case: Good-Case-1

input operation assertions
1 synchronous | fault: joinFailure
Test case: Good-Case-2
input operation assertions
3 synchronous | output: 6
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + +/- +/- -

Table 112: Flow-Links-JoinCondition Test

Process name

Flow-Links-JoinFailure

Activities and configuration

assign flow joinCondition links receive reply sequence transitionCondition

Description

A receive-reply pair with an intermediate flow that contains three assigns,
two of which point to the third using links. Both links have transitionCon-
ditions and their target a joinCondition defined upon them. The transi-
tionConditions do never evaluate to true, resulting in a joinFailure on each
invocation.

Test case: Good-Case-1

input operation assertions
1 synchronous | fault: joinFailure
Test case: Good-Case-2 i i i
mput operation assertions
3 synchronous | fault: joinFailure
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + - - -

Table 113: Flow-Links-JoinFailure Test

Process name

Flow-Links-ReceiveCreatinglnstances

Activities and configuration

assign flow links receive reply sequence

Description

A flow with a starting activity (receive with createlnstance set to yes) and
a non-starting activity (assign), where a precedence relationship is defined
using links.

Test case: Good-Case

Support

input operation assertions

5 synchronous | output: 6

bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 114: Flow-Links-ReceiveCreatinglnstances Test

81

Process name

Flow-Links-SuppressJoinFailure

Activities and configuration

assign flow joinCondition links receive reply sequence transitionCondition

Description

A receive-reply pair with an intermediate flow that contains three assigns,
two of which point to the third using links. Both links have transitionCon-
ditions and their target a joinCondition defined upon them. The transi-
tionConditions do never evaluate to true, resulting in a joinFailure on each
invocation. However, this joinFailure is suppressed.

Test case: Good-Case-1

input operation assertions
1 synchronous | output: 3
Test case: Good-Case-2
input operation assertions
3 synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + - + -

Table 115: Flow-Links-SuppressJoinFailure Test

Process name

Flow-Links-TransitionCondition

Activities and configuration

assign flow links receive reply sequence transitionCondition

Description

A receive-reply pair with an intermediate flow that contains three assigns,
two of which point to the third using links. Both links have transitionCon-
ditions that do fire only if the input is greater than two.

Test case: Good-Case-1

input operation assertions
2 synchronous | output: 4
Test case: Good-Case-2
input operation assertions
3 synchronous | output: 6
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + +/- + -

Table 116: Flow-Links-TransitionCondition Test

82

B TEST DESCRIPTIONS AND RESULTS

Process name

Flow-ReceiveCreatingInstances

Activities and configuration

assign flow receive reply sequence

Description

A flow with a starting activity (receive with createlnstance set to yes) and
non-starting activities (assign) that run in parallel. Such a process definition
must be rejected by an engine.

Test case: Good-Case

input operation assertions
) synchronous | NotDeployable
Support
bpel-g ODE openESB | Orchestra | PetalsESB
- - - + -

Table 117: Flow-ReceiveCreatingInstances Test

Process name

ForEach

Activities and configuration

assign forEach receive reply scope sequence

Description

A receive-reply pair with an intermediate forEach that loops for n times,
where n is equal to the input. Each iteration the current loop number is
added to the final result.

Test case: 0-equals-0

input operation assertions
0 synchronous | output: 0
Test case: Oplusl-equals-0 i i i
mput operation assertions
1 synchronous | output: 1
Test case: Opluslplus2-equals-3
input operation assertions
2 synchronous | output: 3
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - +

Table 118: ForEach Test

83

Process name

ForEach-CompletionCondition

Activities and configuration

assign completionCondition forEach receive reply scope sequence

Description

A receive-reply pair with an intermediate forEach that should terminate
given two of its children have terminated. N+1 children are scheduled for
execution, where n is equal to the input. If N+1 is less than two, an in-
validBranchConditionFault should be thrown.

Test case: Skipping the third it-

eration input operation assertions
2 synchronous | output: 1
Test case: Cannot meet comple- | _ _ _
tion condition mput operation assertions
0 synchronous | fault: invalidBranchCondition
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + - -

Table 119: ForEach-CompletionCondition Test

Process name

ForEach-CompletionCondition-NegativeBranches

Activities and configuration

assign completionCondition forEach receive reply scope sequence

Description

A receive-reply pair with an intermediate forEach that should always fail
with an invalidExpressionValue fault as branches is initialized with a nega-
tive value.

Test case: Iterate-Twice

input operation assertions

2 synchronous | fault: invalidExpressionValue
Support

bpel-g ODE openESB | Orchestra | PetalsESB

- - + - -

Table 120: ForEach-CompletionCondition-NegativeBranches Test

Process name

ForEach-CompletionCondition-Parallel

Activities and configuration

assign completionCondition forEach receive reply scope sequence

Description

A receive-reply pair with an intermediate forEach that should terminate
given two of its children have terminated. N+1 children are scheduled for
execution in parallel, where n is equal to the input. If N+1 is less than two,
an invalidBranchConditionFault should be thrown.

Test case: Skipping the third it-

eration input operation assertions
2 synchronous | output: 1
Test case: Cannot meet comple- | _ _ _
tion condition mput operation assertions
0 synchronous | fault: invalidBranchCondition
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + - -

Table 121

: ForEach-CompletionCondition-Parallel Test

84

B TEST DESCRIPTIONS AND RESULTS

Process name

ForEach-CompletionCondition-Successful BranchesOnly

Activities and configuration

assign catch completionCondition empty faultHandlers forEach if receive
reply scope sequence throw

Description

A receive-reply pair with an intermediate forEach that should terminate
given two of its children have terminated successfully. Each child throws a
fault, given the current counter value is even. N children are scheduled for
execution, where n is equal to the input.

Test case: Good-Case-1

input operation assertions
) synchronous | output: 6
Test case: Good-Case-2
input operation assertions
10 synchronous | output: 6
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + - -

Table 122: ForEach-CompletionCondition-SuccessfulBranchesOnly Test

Process name

ForEach-CompletionConditionFailure

Activities and configuration

assign catchAll completionCondition empty faultHandlers forEach receive
reply scope sequence throw

Description A receive-reply pair with an intermediate forEach that should terminate
given two of its children have terminated. N+1 children are scheduled for
execution in parallel, where n is equal to the input. If N+1 is less than two,
an invalidBranchConditionFault should be thrown. This is a seperate test
case that tests only for the failure.

Test case: Expect completion- | _ i i

ConditionFailure mput operation assertions

1 synchronous | fault: completionConditionFailure

Support

bpel-g ODE openESB | Orchestra | PetalsESB
+ - + - -

Table 123:

ForEach-CompletionConditionFailure Test

Process name

ForEach-DuplicateCounter Variable

Activities and configuration

assign forEach receive reply scope sequence

Description

A receive-reply pair with an intermediate forEach that contains a variable
of the same name as the counter variable in its child scope. The process
definition must be rejected.

Test case: SA00076

input operation assertions
2 synchronous | NotDeployable
Support
bpel-g ODE openESB | Orchestra | PetalsESB
- + - + +

Table 124: ForEach-DuplicateCounterVariable Test

85

Process name

ForEach-NegativeStartCounter

Activities and configuration

assign forEach receive reply scope sequence

Description

A receive-reply pair with an intermediate forEach that should always fail
with an invalidExpressionValue fault as startCounterValue is negative.

Test case: Iterate-Twice

input operation assertions

2 synchronous | fault: invalidExpressionValue
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ - + - -

Table 125: ForEach-NegativeStartCounter Test

Process name

ForEach-NegativeStopCounter

Activities and configuration

assign forEach receive reply scope sequence

Description

A receive-reply pair with an intermediate forEach that should always fail
with an invalidExpressionValue fault as finalCounterValue is negative.

Test case: NegativeStopCounter

input operation assertions

1 synchronous | fault: invalidExpressionValue
Support

bpel-g ODE openESB | Orchestra | PetalsESB

+ - + - -

Table 126: ForEach-NegativeStopCounter Test

Process name

ForEach-Parallel

Activities and configuration

assign forEach receive reply scope sequence

Description

A receive-reply pair with an intermediate forEach that executes its children
in parallel.

Test case: Opluslplus2-equals-3

input operation assertions
2 synchronous | output: 3
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + - +

Table 127: ForEach-Parallel Test

Process name

ForEach-TooLargeStartCounter

Activities and configuration

assign forEach receive reply scope sequence

Description

A receive-reply pair with an intermediate forEach that should always fail
with an invalidExpressionValue fault as startCounter Value is initialized with
a value that exceeds xs:unsignedlInt.

Test case: Iterate-Twice

input operation assertions

2 synchronous | fault: invalidExpressionValue
Support

bpel-g ODE openESB | Orchestra | PetalsESB

Table 128: ForEach-ToolLargeStartCounter Test

86

B TEST DESCRIPTIONS AND RESULTS

Process name

If

Activities and configuration

assign if receive reply sequence

Description

A receive-reply pair with an intermediate if that checks whether the input
is even.

Test case: Not-If-Case

input operation assertions
1 synchronous | output: 0
Test case: If-Case i i i
mput operation assertions
2 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +
Table 129: If Test
Process name If-Else

Activities and configuration

assign else if receive reply sequence

Description

A receive-reply pair with an intermediate if-else that checks whether the

input is even.

Test case: Else-Case

input operation assertions
1 synchronous | output: 0
Test case: If-Case i i i
mput operation assertions
2 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 130: If-Else Test

Process name

If-Elself

Activities and configuration

assign elseif if receive reply sequence

Description

A receive-reply pair with an intermediate if-elseif that checks whether the
input is even or divisible by three.

Test case: Not-If-Or-Elself-Case

input operation assertions
1 synchronous | output: 0
Test case: If-Case i i i
mput operation assertions
2 synchronous | output: 1
Test case: Elself-Case i i i
mput operation assertions
3 synchronous | output: 2
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 131: If-Elself Test

87

Process name

If-Elself-Else

Activities and configuration

assign else elseif if receive reply sequence

Description

A receive-reply pair with an intermediate if-elseif-else that checks whether
the input is even or divisible by three.

Test case: Else-Case

input operation assertions
1 synchronous | output: 0
Test case: If-Case
input operation assertions
2 synchronous | output: 1
Test case: Elself-Case
input operation assertions
3 synchronous | output: 2
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 132: If-Elself-Else Test

Process name

If-InvalidExpression Value

Activities and configuration

assign if receive reply sequence

Description

A receive-reply pair with an intermediate if that should throw an invalid-
ExpressionValue fault because of an invalid condition.

Test case: SelectionFailure

Support

input operation assertions

1 synchronous | fault: invalidExpressionValue
bpel-g ODE openESB | Orchestra | PetalsESB
| - - - -

Table 133: If-InvalidExpressionValue Test

Process name

Pick-Correlations-Init Async

Activities and configuration

assign correlationSets onMessage pick receive reply sequence

Description

An asynchronous receive that initiates a correlationSet, followed by a pick
with a synchronous onMessage that correlates on this set.

Test case: Good-Case

input operation assertions
1 asynchronous
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + - -

Table 134: Pick-Correlations-InitAsync Test

88

B TEST DESCRIPTIONS AND RESULTS

Process name

Pick-Correlations-InitSync

Activities and configuration

assign correlationSets onMessage pick receive reply sequence

Description

A receive-reply pair that initiates a correlationSet, followed by a pick with
a synchronous onMessage that correlates on this set.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
1 synchronous | output: 2
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + - + -

Table 135: Pick-Correlations-InitSync Test

Process name

Pick-Createlnstance

Activities and configuration

assign onMessage pick reply sequence

Description

A pick with a synchronous onMessage that has createlnstance set to yes.

Test case: Good-Case

input operation assertions
1 synchronous | output: 1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 136: Pick-Createlnstance Test

89

Process name

Pick-OnAlarm-For

Activities and configuration

assign correlationSets onAlarm onMessage pick receive reply sequence throw

Description

An onAlarm with for test case. The test contains a receive-reply pair that
initiates a correlationSet and an intermediate pick that contains an onMes-
sage and an onAlarm with an for element. The onAlarm should fire after
two seconds and the process should reply with a default value.

Test case: Good-Case

input operation assertions
1 synchronous | output: -1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
- + + + -

Table 137: Pick-OnAlarm-For Test

Process name

Pick-OnAlarm-Until

Activities and configuration

assign correlationSets onAlarm onMessage pick receive reply sequence

Description

A receive-reply pair that initiates a correlationSet and an intermediate pick
that contains an onMessage and an onAlarm with an until element. The
onAlarm should fire immediately.

Test case: Good-Case

input operation assertions
1 synchronous | output: -1
Support
bpel-g ODE openESB | Orchestra | PetalsESB
- + + + -

Table 138: Pick-OnAlarm-Until Test

Process name

RepeatUntil

Activities and configuration

assign receive repeatUntil reply sequence

Description

A receive-reply pair with an intermediate while that loops for n+1 times,
where n is equal to the input.

Test case: Good-Case

input operation assertions
2 synchronous | output: 3
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + -

Table 139: RepeatUntil Test

Process name

RepeatUntilEquality

Activities and configuration

assign receive repeatUntil reply sequence

Description

A receive-reply pair with an intermediate while that loops for n times, where
n is equal to the input.

Test case: Good-Case

input operation assertions
2 synchronous | output: 2
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ - + + -

Table 140: RepeatUntilEquality Test

90

B TEST DESCRIPTIONS AND RESULTS

Process name

Sequence

Activities and configuration

assign receive reply sequence

Description

A receive-reply pair enclosed in a sequence.

Test case: Good-Case

input operation assertions
) synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 141: Sequence Test

Process name

While

Activities and configuration

assign receive reply sequence while

Description

A receive-reply pair with an intermediate while that loops for n times, where
n is equal to the input.

Test case: Good-Case

input operation assertions
) synchronous | output: 5
Support
bpel-g ODE openESB | Orchestra | PetalsESB
+ + + + +

Table 142: While Test

91

C Elements Excluded from the Test Descriptions

The following activities, special constructs and attributes are excluded from the Activities and
configuration row of the test descriptions. The reason for this is that they either appear in
every test case or their occurence is implied by the use of other elements that are listed in the
Tow.

addr:Address
branches
condition

copy
correlation
correlationSet
correlations
documentation
ex:foo
extension
finalCounterValue
foo:barEPR
for

from

fromPart
import

link

literal
messageExchange
partnerLink
partnerLinks
process

source

sources
startCounterValue
target

targets

to

toPart

until
variable
variables

92 D LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

D List of previous University of Bamberg reports

| Bamberger Beitrage zur Wirtschaftsinformatik |

Nr. 1 (1989) Augsburger W., Bartmann D., Sinz E.J.: Das Bamberger Modell: Der Diplom-Stu-
diengang Wirtschaftsinformatik an der Universitdt Bamberg (Nachdruck Dez.
1990)

Nr. 2 (1990) Esswein W.: Definition, Implementierung und Einsatz einer kompatiblen Daten-
bankschnittstelle fiir PROLOG

Nr. 3 (1990) Augsburger W., Rieder H., Schwab J.: Endbenutzerorientierte Informationsgewin-
nung aus numerischen Daten am Beispiel von Unternehmenskennzahlen

Nr. 4 (1990) Ferstl O.K., Sinz E.J.: Objektmodellierung betrieblicher Informationsmodelle im
Semantischen Objektmodell (SOM) (Nachdruck Nov. 1990)

Nr. 5 (1990) Ferstl O.K., Sinz E.J.: Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM)

Nr. 6 (1991) Augsburger W., Rieder H., Schwab J.: Systemtheoretische Représentation von
Strukturen und Bewertungsfunktionen iiber zeitabhéngigen betrieblichen numeri-
schen Daten

Nr. 7 (1991) Augsburger W., Rieder H., Schwab J.: Wissensbasiertes, inhaltsorientiertes Retrie-
val statistischer Daten mit EISREVU / Ein Verarbeitungsmodell fiir eine modulare
Bewertung von Kennzahlenwerten fiir den Endanwender

Nr. 8 (1991) Schwab J.: Ein computergestiitztes Modellierungssystem zur Kennzahlenbewertung

Nr. 9 (1992) Gross H.-P.: Eine semantiktreue Transformation vom Entity-Relationship-Modell
in das Strukturierte Entity-Relationship-Modell

Nr. 10 (1992) Sinz E.J.: Datenmodellierung im Strukturierten Entity-Relationship-Modell
(SERM)

Nr. 11 (1992) Ferstl O.K., Sinz E. J.: Glossar zum Begriffsystem des Semantischen Objektmo-
dells

Nr. 12 (1992) Sinz E. J., Popp K.M.: Zur Ableitung der Grobstruktur des konzeptuellen Schemas
aus dem Modell der betrieblichen Diskurswelt

Nr. 13 (1992) Esswein W., Locarek H.: Objektorientierte Programmierung mit dem Objekt-Rol-
lenmodell

Nr. 14 (1992) Esswein W.: Das Rollenmodell der Organsiation: Die Beriicksichtigung aufbauor-
ganisatorische Regelungen in Unternehmensmodellen

Nr. 15 (1992) Schwab H. J.: EISREVU-Modellierungssystem. Benutzerhandbuch

Nr. 16 (1992) Schwab K.: Die Implementierung eines relationalen DBMS nach dem
Client/Server-Prinzip

Nr. 17 (1993) Schwab K.: Konzeption, Entwicklung und Implementierung eines computerge-
stiitzten Biirovorgangssystems zur Modellierung von Vorgangsklassen und Ab-
wicklung und Uberwachung von Vorgingen. Dissertation

.18 (1993)
.19 (1994)

.20 (1994)

.21 (1994)

.22 (1994)

.23 (1994)

.24 (1994)

.25 (1994)

.26 (1995)

.27 (1995)

.28 (1995)
.30 (1995)

.31 (1995)

.32 (1995)

.33 (1995)

.34 (1995)

.35 (1995)

.36 (1996)

Ferstl O.K., Sinz E.J.: Der Modellierungsansatz des Semantischen Objektmodells

Ferstl O.K., Sinz E.J., Amberg M., Hagemann U., Malischewski C.: Tool-Based
Business Process Modeling Using the SOM Approach

Ferstl O.K., Sinz E.J.: From Business Process Modeling to the Specification of
Distributed Business Application Systems - An Object-Oriented Approach -. 1™
edition, June 1994

Ferstl O.K., Sinz E.J. : Multi-Layered Development of Business Process Models
and Distributed Business Application Systems - An Object-Oriented Approach -.
2™ edition, November 1994

Ferstl O.K., Sinz E.J.: Der Ansatz des Semantischen Objektmodells zur Modellie-
rung von Geschéftsprozessen

Augsburger W., Schwab K.: Using Formalism and Semi-Formal Constructs for
Modeling Information Systems

Ferstl O.K., Hagemann U.: Simulation hierarischer objekt- und transaktionsorien-
tierter Modelle

Sinz E.J.: Das Informationssystem der Universitét als Instrument zur zielgerichte-
ten Lenkung von Universitdtsprozessen

Wittke M., Mekinic, G.: Kooperierende Informationsrdume. Ein Ansatz fiir ver-
teilte Fithrungsinformationssysteme

Ferstl O.K., Sinz E.J.: Re-Engineering von Geschiftsprozessen auf der Grundlage
des SOM-Ansatzes

Ferstl, O.K., Mannmeusel, Th.: Dezentrale Produktionslenkung. Erscheint in CIM-
Management 3/1995

Ludwig, H., Schwab, K.: Integrating cooperation systems: an event-based approach

Augsburger W., Ludwig H., Schwab K.: Koordinationsmethoden und -werkzeuge
bei der computergestiitzten kooperativen Arbeit

Ferstl O.K., Mannmeusel T.: Gestaltung industrieller Geschiftsprozesse

Gunzenhduser R., Duske A., Ferstl O.K., Ludwig H., Mekinic G., Rieder H.,
Schwab H.-J., Schwab K., Sinz E.J., Wittke M: Festschrift zum 60. Geburtstag von
Walter Augsburger

Sinz, E.J.: Kann das Geschéftsprozefmodell der Unternechmung das unterneh-
mensweite Datenschema ablosen?

Sinz E.J.: Ansétze zur fachlichen Modellierung betrieblicher Informationssysteme -
Entwicklung, aktueller Stand und Trends -

Sinz E.J.: Serviceorientierung der Hochschulverwaltung und ihre Unterstiitzung
durch workflow-orientierte Anwendungssysteme

Ferstl O.K., Sinz, E.J., Amberg M.: Stichworter zum Fachgebiet Wirtschaftsinfor-
matik. Erscheint in: Broy M., Spaniol O. (Hrsg.): Lexikon Informatik und Kom-
munikationstechnik, 2. Auflage, VDI-Verlag, Diisseldorf 1996

93

94

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

Nr

.37 (1996)

. 38 (1996)

.39 (1996)

.40 (1997)

.41 (1997)

.42 (1997)

.43 (1997):

. 44/ (1997)

.45 (1998)

.46 (1998)

.47 (1998)

.48 (1998)

.49 (1998)

D LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Ferstl O.K., Sinz E.J.: Flexible Organizations Through Object-oriented and Trans-
action-oriented Information Systems, July 1996

Ferstl O.K., Schifer R.: Eine Lernumgebung fiir die betriebliche Aus- und Weiter-
bildung on demand, Juli 1996

Hazebrouck J.-P.: Einsatzpotentiale von Fuzzy-Logic im Strategischen Manage-
ment dargestellt an Fuzzy-System-Konzepten fiir Portfolio-Ansétze

Sinz E.J.: Architektur betrieblicher Informationssysteme. In: Rechenberg P., Pom-
berger G. (Hrsg.): Handbuch der Informatik, Hanser-Verlag, Miinchen 1997

Sinz E.J.: Analyse und Gestaltung universitdrer Geschiftsprozesse und Anwen-
dungssysteme. Angenommen fiir: Informatik ’97. Informatik als Innovationsmotor.
27. Jahrestagung der Gesellschaft fiir Informatik, Aachen 24.-26.9.1997

Ferstl O.K., Sinz E.J., Hammel C., Schlitt M., Wolf S.: Application Objects —
fachliche Bausteine fiir die Entwicklung komponentenbasierter Anwendungssy-
steme. Angenommen fiir: HMD — Theorie und Praxis der Wirtschaftsinformatik.
Schwerpunkheft ComponentWare, 1997

Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using the Semantic Object
Model (SOM) — A Methodological Framework - . Accepted for: P. Bernus, K.
Mertins, and G. Schmidt (ed.): Handbook on Architectures of Information Systems.
International Handbook on Information Systems, edited by Bernus P., Blazewicz
J., Schmidt G., and Shaw M., Volume I, Springer 1997

Ferstl O.K., Sinz E.J.: Modeling of Business Systems Using (SOM), 2" Edition.
Appears in: P. Bernus, K. Mertins, and G. Schmidt (ed.): Handbook on Architectu-
res of Information Systems. International Handbook on Information Systems, edi-
ted by Bernus P., Blazewicz J., Schmidt G., and Shaw M., Volume I, Springer
1998

Ferstl O.K., Schmitz K.: Zur Nutzung von Hypertextkonzepten in Lernumgebun-
gen. In: Conradi H., Kreutz R., Spitzer K. (Hrsg.): CBT in der Medizin — Metho-
den, Techniken, Anwendungen -. Proceedings zum Workshop in Aachen 6. — 7.
Juni 1997. 1. Auflage Aachen: Verlag der Augustinus Buchhandlung

Ferstl O.K.: Datenkommunikation. In. Schulte Ch. (Hrsg.): Lexikon der Logistik,
Oldenbourg-Verlag, Miinchen 1998

Sinz E.J.: ProzeBgestaltung und ProzeBunterstiitzung im Priifungswesen. Erschie-
nen in: Proceedings Workshop ,,Informationssysteme fiir das Hochschulmanage-
ment®. Aachen, September 1997

Sinz, E.J.:;, Wismans B.: Das , Elektronische Priifungsamt®“. Erscheint in: Wirt-
schaftswissenschaftliches Studium WiSt, 1998

Haase, O., Henrich, A.: A Hybrid Respresentation of Vague Collections for Distri-
buted Object Management Systems. Erscheint in: IEEE Transactions on Know-
ledge and Data Engineering

Henrich, A.: Applying Document Retrieval Techniques in Software Engineering
Environments. In: Proc. International Conference on Database and Expert Systems

Nr.

.50 (1999)

.51 (1999)

.52 (1999)

.53 (1999)

54 (1999)

. 55 (2000)

. 56 (2000)

. 57 (2000)

. 58 (2000)
.59 (2001)

.60 (2001)

Applications. (DEXA 98), Vienna, Austria, Aug. 98, pp. 240-249, Springer, Lec-
ture Notes in Computer Sciences, No. 1460

Henrich, A., Jamin, S.: On the Optimization of Queries containing Regular Path
Expressions. Erscheint in: Proceedings of the Fourth Workshop on Next Genera-
tion Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel,
July, 1999 (Springer, Lecture Notes)

Haase O., Henrich, A.: A Closed Approach to Vague Collections in Partly Inacces-
sible Distributed Databases. Erscheint in: Proceedings of the Third East-European
Conference on Advances in Databases and Information Systems — ADBIS’99, Ma-
ribor, Slovenia, September 1999 (Springer, Lecture Notes in Computer Science)

Sinz E.J., Bohnlein M., Ulbrich-vom Ende A.: Konzeption eines Data Warehouse-
Systems fiir Hochschulen. Angenommen fiir: Workshop ,,Unternchmen Hoch-
schule” im Rahmen der 29. Jahrestagung der Gesellschaft fiir Informatik, Pader-
born, 6. Oktober 1999

Sinz E.J.: Konstruktion von Informationssystemen. Der Beitrag wurde in geringfii-
gig modifizierter Fassung angenommen fiir: Rechenberg P., Pomberger G. (Hrsg.):
Informatik-Handbuch. 2., aktualisierte und erweiterte Auflage, Hanser, Miinchen
1999

Herda N., Janson A., Reif M., Schindler T., Augsburger W.: Entwicklung des In-
tranets SPICE: Erfahrungsbericht einer Praxiskooperation.

Bohnlein M., Ulbrich-vom Ende A.: Grundlagen des Data Warehousing.
Modellierung und Architektur

Freitag B, Sinz E.J., Wismans B.: Die informationstechnische Infrastruktur der
Virtuellen Hochschule Bayern (vhb). Angenommen fiir Workshop "Unternehmen
Hochschule 2000" im Rahmen der Jahrestagung der Gesellschaft f. Informatik,
Berlin 19. - 22. September 2000

Bohnlein M., Ulbrich-vom Ende A.: Developing Data Warehouse Structures from
Business Process Models.

Knobloch B.: Der Data-Mining-Ansatz zur Analyse betriebswirtschaftlicher Daten.

Sinz E.J., Bohnlein M., Plaha M., Ulbrich-vom Ende A.: Architekturkonzept eines
verteilten Data-Warehouse-Systems fiir das Hochschulwesen. Angenommen fiir:
WI-IF 2001, Augsburg, 19.-21. September 2001

Sinz E.J., Wismans B.: Anforderungen an die IV-Infrastruktur von Hochschulen.
Angenommen fiir: Workshop ,,Unternehmen Hochschule 2001 im Rahmen der
Jahrestagung der Gesellschaft fiir Informatik, Wien 25. — 28. September 2001

Anderung des Titels der Schriftenreihe Bamberger Beitrige zur Wirtschaftsinformatik in Bamberger
Beitrdge zur Wirtschaftsinformatik und Angewandten Informatik ab Nr. 61

Note: The title of our technical report series has been changed from Bamberger Beitrdge zur
Wirtschaftsinformatik to Bamberger Beitrdge zur Wirtschaftsinformatik und Angewandten Informatik
starting with TR No. 61

95

96

D LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Bamberger Beitrage zur Wirtschaftsinformatik und Angewandten

Informatik

Nr

.61 (2002)

.62 (2002)

. 63 (2005)
. 64 (2005)

. 65 (2006)

. 66 (20006)

. 67 (2006)

. 68 (2006)

.69 (2007)

.70 (2007)

.71 (2007)

.72 (2007)

.73 (2007)
.74 (2007)

Goré R., Mendler M., de Paiva V. (Hrsg.): Proceedings of the International
Workshop on Intuitionistic Modal Logic and Applications (IMLA 2002),
Copenhagen, July 2002.

Sinz E.J., Plaha M., Ulbrich-vom Ende A.: Datenschutz und Datensicherheit in
einem landesweiten Data-Warehouse-System fiir das Hochschulwesen. Erscheint
in: Beitrdge zur Hochschulforschung, Heft 4-2002, Bayerisches Staatsinstitut fiir
Hochschulforschung und Hochschulplanung, Miinchen 2002

Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions

Ferstl, O.K.: Lebenslanges Lernen und virtuelle Lehre: globale und lokale
Verbesserungspotenziale. Erschienen in: Kerres, Michael; Keil-Slawik, Reinhard
(Hrsg.); Hochschulen im digitalen Zeitalter: Innovationspotenziale und
Strukturwandel, S. 247 — 263; Reihe education quality forum, herausgegeben durch
das Centrum fiir eCompetence in Hochschulen NRW, Band 2, Miinster/New
Y ork/Miinchen/Berlin: Waxmann 2005

Schonberger, Andreas: Modelling and Validating Business Collaborations: A Case
Study on RosettaNet

Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian Réglinger, Matthias
Sehr, Christian Wilms, Karsten Loesing, and Guido Wirtz: Concealing Presence
Information in Instant Messaging Systems, April 2006

Marco Fischer, Andreas Griinert, Sebastian Hudert, Stefan Konig, Kira Lenskaya,
Gregor Scheithauer, Sven Kaffille, and Guido Wirtz: Decentralized Reputation
Management for Cooperating Software Agents in Open Multi-Agent Systems,
April 2006

Michael Mendler, Thomas R. Shiple, Gérard Berry: Constructive Circuits and the
Exactness of Ternary Simulation

Sebastian Hudert: A Proposal for a Web Services Agreement Negotiation Protocol
Framework . February 2007

Thomas Meins: Integration eines allgemeinen Service-Centers fiir PC-und
Medientechnik an der Universitit Bamberg — Analyse und Realisierungs-
Szenarien. Februar 2007

Andreas Griinert: Life-cycle assistance capabilities of cooperating Software Agents
for Virtual Enterprises. Mérz 2007

Michael Mendler, Gerald Liittgen: Is Observational Congruence on p-Expressions
Axiomatisable in Equational Horn Logic?

Martin Schissler: out of print

Sven Kaffille, Karsten Loesing: Open chord version 1.0.4 User’s Manual.
Bamberger Beitrdge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
74, Bamberg University, October 2007. ISSN 0937-3349.

Nr.

.75 (2008)

.76 (2008)

.77 (2008)

.78 (2008)

.79 (2008)

80 (2009)

. 81 (2009)

. 82 (2009)

. 83 (2009)

.84 (2010)

.85 (2010)

Karsten Loesing (Hrsg.): Extended Abstracts of the Second Privacy Enhancing
Technologies Convention (PET-CON 2008.1). Bamberger Beitrdge zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 75, Bamberg University,
April 2008. ISSN 0937-3349.

Gregor Scheithauer and Guido Wirtz: Applying Business Process Management
Systems? A Case Study. Bamberger Beitrige zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 76, Bamberg University, May 2008. ISSN 0937-
3349.

Michael Mendler, Stephan Scheele: Towards Constructive Description Logics for
Abstraction and Refinement. Bamberger Beitrdge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 77, Bamberg University, September 2008. ISSN
0937-3349.

Gregor Scheithauer and Matthias Winkler: A Service Description Framework for
Service Ecosystems. Bamberger Beitrdge zur Wirtschaftsinformatik und
Angewandten Informatik Nr. 78, Bamberg University, October 2008. ISSN 0937-
3349.

Christian Wilms: Improving the Tor Hidden Service Protocol Aiming at Better
Performances. Bamberger Beitrige zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 79, Bamberg University, November 2008. ISSN 0937-3349.

Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schonberger, Guido Wirtz: QoS Enabled
B2B Integration. Bamberger Beitridge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 80, Bamberg University, May 2009. ISSN 0937-3349.

Ute Schmid, Emanuel Kitzelmann, Rinus Plasmeijer (Eds.): Proceedings of the
ACM SIGPLAN Workshop on Approaches and Applications of Inductive
Programming (AAIP'09), affiliated with ICFP 2009, Edinburgh, Scotland,
September 2009. Bamberger Beitrdge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 81, Bamberg University, September 2009. ISSN 0937-3349.

Ute Schmid, Marco Ragni, Markus Knauff (Eds.): Proceedings of the KI 2009
Workshop Complex Cognition, Paderborn, Germany, September 15, 2009.
Bamberger Beitrdge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
82, Bamberg University, October 2009. ISSN 0937-3349.

Andreas Schonberger, Christian Wilms and Guido Wirtz: A Requirements Analysis
of Business-to-Business Integration. Bamberger Beitridge zur Wirtschaftsinformatik
und Angewandten Informatik Nr. 83, Bamberg University, December 2009. ISSN
0937-3349.

Werner Zirkel and Guido Wirtz: A Process for Identifying Predictive Correlation
Patterns in Service Management Systems. Bamberger Beitrige zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 84, Bamberg University,
February 2010. ISSN 0937-3349.

Jan Tobias Mihlberg und Gerald Liittgen: Symbolic Object Code Analysis.
Bamberger Beitrage zur Wirtschaftsinformatik und Angewandten Informatik Nr.
85, Bamberg University, February 2010. ISSN 0937-3349.

97

98

Nr

Nr

Nr

Nr

Nr

.86(2010)

.87 (2010)

.88 (2011)

.89 (2011)

.90 (2012)

D LIST OF PREVIOUS UNIVERSITY OF BAMBERG REPORTS

Werner Zirkel and Guido Wirtz: Proaktives Problem Management durch
Eventkorrelation — ein Best Practice Ansatz. Bamberger Beitrige zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 86, Bamberg University,
August 2010. ISSN 0937-3349.

Johannes Schwalb, Andreas Schonberger: Analyzing the Interoperability of WS-
Security and WS-ReliableMessaging Implementations. Bamberger Beitrige zur
Wirtschaftsinformatik und Angewandten Informatik Nr. 87, Bamberg University,
September 2010. ISSN 0937-3349.

Jorg Lenhard: A Pattern-based Analysis of WS-BPEL and Windows Workflow.
Bamberger Beitrdge zur Wirtschaftsinformatik und Angewandten Informatik Nr.
88, Bamberg University, March 2011. ISSN 0937-3349.

Andreas Henrich, Christoph Schlieder, Ute Schmid [eds.]: Visibility in Information
Spaces and in Geographic Environments — Post-Proceedings of the KI’11
Workshop. Bamberger Beitrdge zur Wirtschaftsinformatik und Angewandten
Informatik Nr. 89, Bamberg University, December 2011. ISSN 0937-3349.

Simon Harrer, Jorg Lenhard: Betsy - A BPEL Engine Test System. Bamberger
Beitridge zur Wirtschaftsinformatik und Angewandten Informatik Nr. 90, Bamberg
University, July 2012. ISSN 0937-3349.

	Purpose and Context
	Open Source BPEL Engines under Test
	System Architecture
	Structure and Execution of Betsy
	Program Architecture
	Data Structures for Test Case Configuration
	Test Generation and Execution
	Preparation
	Generation
	Engine Installation and Startup
	Deployment and Execution
	Shutdown
	Reporting

	Download and Installation of the Software

	Test Cases
	Test Case Definition
	Structuring and Scope
	Test Interface and Example

	Test Case Configuration
	Restrictions

	Results
	ODE Results
	Bpel-g Results
	OpenESB Results
	Orchestra Results
	Petals ESB Results

	Summary
	Bibliography
	Compact Result Tables
	basic-activities
	scopes
	structured-activities

	Test Descriptions and Results
	Elements Excluded from the Test Descriptions
	List of previous University of Bamberg reports

